CLOSE-PACKING AND FROTH

In commemoration of G. A. Miller

BY
H. S. M. CoxXETER

Cannon-balls may aid the truth,
But thought’s a weapon stronger;
We’ll win our battles by its aid;—
Wait a little longer.
CHARLEs MaAcrAy (1814-1889)
(“The Good Time Coming’’)

1. Algebraic introduction
The abstract groups (2, p, q), defined by
R? = 8% = (RS)* = 1,
or R?=8"=T =RST =1,
or 8! =T = (8ST)" =1,
have been studied intensively ever since Hamilton [11] expressed (2, 3, 5) in

the form
F= =2 =1, A=«

and wrote, “I am disposed to give the name ‘Icosian Calculus’ to this system
of symbols.” Dyck ([8, p. 35]; see also [4, p. 407]) expressed the symmetric
and alternating groups

S, W, S, Us

in the form (2, 3, ¢) with ¢ = 2, 3, 4, 5, respectively. Miller [19, p. 117] re-
marked that the case when ¢ = 6 is entirely different. In fact [20], the group
(2, p, ¢) is finite if and only if
1.1 —2)(g—2) <4.
Thus the finite groups in the family are

the dihedral group (2, 2, g) of order 2g,

the tetrahedral group (2, 3, 3) of order 12,

the octahedral group (2, 3, 4) of order 24,
the icosahedral group (2, 3, 5) of order 60.

The inequality 1.1 is a necessary and sufficient condition for the finiteness
of the number ¢, which we define to be the period of any one of the elements

R’S’, R'STRS, TSR, S 'TST.
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In the infinite case, Brahana [3] obtained interesting factor groups by assigning
a finite period to these elements.
When (2, 3, q) is expressed in the form

8! =T = (8ST)* = 1,
the commutator TS™'T'S = STS- 8 is conjugate to S*T'; thus ¢ is the period
of 8T. Ifq = 3, wehave 8T = T,sothatc = 2. Ifq =4, 8T = (TS)™,
sothat ¢ = 3. If ¢ = 5, S*T is conjugate to ST'T'S™ = T'ST, so that ¢ = 5.
In §5 we shall find a natural way to combine these three results in the single
formula
o = 12

7—q
and to express the order of (2, 3, ¢) in the form 2¢(c + 1).

In §6 we shall obtain the criterion

p—4/p+2¢+r—4/r <12

for the finiteness of the group [29, p. 217]

1.2 RP=8"=T = (RS’ = (R8T’ = (ST’ =1 (p,q,r > 2).

-1 2 <qg<6)

2. Geometric introduction

Hamilton’s “Icosian Calculus” and Klein’s “Lectures on the Icosahedron”
remind us that one of the most significant properties of the polyhedral groups
(2, p, @) is their occurrence as finite groups of rotations in three-dimensional
Euclidean (or non-Euclidean) space, i.e., as the rotation groups of the Platonic
solids {p, g}. In the words of the late Hermann Weyl [30, pp. 78, 79], “These
groups . . . are an immensely attractive subject for geometric investigation.”

In the Schlifli symbol {p, ¢}, p is the number of vertices (or sides) of a face,
and ¢ is the number of faces (or edges) at a vertex; e.g., the cube is {4, 3}. If
such a polyhedron has V vertices, E edges, and F faces, we easily verify that

qV = 2E = pF

[5, p. 11]. With the aid of Euler’s formula V — E + F = 2, we can deduce
expressions for V, E, F as functions of p and q. For instance, if ¢ = 3,
_ 4 _ 6p _ 12
2.1 V_G-p’ E—G—p’ F—-6~———__p.
In 5.1 we shall see why E is always the product of two consecutive integers.

A Petrie polygon of {p, q} is a skew 2c-gon whose sides are 2¢ edges of the
solid, so chosen that any two consecutive sides, but no three, belong to a face;
e.g., the Petrie polygon of a cube is a skew hexagon. Every edge belongs to
two faces, and therefore also to two Petrie polygons. Since there are E edges,
there are E/c Petrie polygons.
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Since a Petrie polygon is symmetrical by a half-turn about the line joining
the midpoints of two opposite sides, the midpoints of its 2¢ sides lie in a plane
and are the vertices of a plane 2¢-gon, {2c¢}.

Reciprocating {p, q} with respect to the sphere that touches its edges, we
obtain the reciprocal polyhedron {q, p}, which has F vertices, E edges, and V
faces. Itsedges crossthose of {p, ¢} at right angles. Thus the Petrie polygon
of {q, p} is of the same type as that of {p, ¢}, and the plane polygon formed
by the midpoints of its sides is the same {2c}.

In §5 we shall follow the procedure of Steinberg [25] to obtain an explicit
formula for c.

A vertex figure of {p, q} is the plane g-gon, {¢}, whose vertices are the mid-
points of the ¢ edges meeting at one vertex, i.e., the section of the solid by the
plane through these midpoints. Thus {p, q} may be described as having
face {p} and vertex figure {q}.

The four-dimensional analogues of the five Platonic solids are the six regular
hypersolids, which include the regular simplex {3, 3, 3} and the hypercube
{4, 3, 3}. Such a four-dimensional polytope {p, ¢, r} is a configuration of
equal polyhedra {p, ¢}, called cells, fitting together in such a way that each
face {p} belongs to two cells, and each edge to r cells. It follows that the
arrangement of the cells at a vertex corresponds to the arrangement of the
faces of a {q, r}, in the sense that each face of the {q, 7} is a vertex figure of the
corresponding cell. This {g, r}, whose vertices are the midpoints of the edges
at one vertex of {p, ¢, }, is naturally called the vertex figure of the polytope
[5, p. 129]. Thus {p, q, r} may be described as having cell {p, ¢q} and vertex
figure {g, r}.

In §6 we shall obtain a new version (6.1) of one of the principal results in
Regular Polytopes [5, p. 232], and use it to obtain a criterion for the available
values of p, g, 7.

The notation {p, ¢, r} extends naturally from finite polytopes to infinite
honeycombs so as to suggest the symbol {4, 3, 4} for the three-dimensional
honeycomb of cubes, whose vertices may be taken to be all the points (z, y, 2)
for which z, y, z are integers. Its cell is the cube {4, 3}, and its vertex figure is
the octahedron {3, 4} whose 8 faces are the vertex figures of the 8 cubes that
surround a vertex.

In §7 we shall attempt to describe a hypothetical regular honeycomb
{p, 3, 3}, which has a value of p lying between 5 and 6 but still may be re-
garded as existing in a statistical sense. It provides a theoretical explanation
for some experimental results obtained by Matzke and his colleagues.

3. Close-packing

In old war memorials one often sees a pyramidal heap of cannon balls: one
at the top resting on four others which, in turn, rest on nine, and so on, the n*
horizontal layer containing #»*. Each interior ball touches twelve others: four
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in its own layer, four above, and four below. The centers of these twelve
spheres are the vertices of a cuboctahedron, i.e., they are the mid-edge points
of a cube. The shape of the whole square pyramid is just the “top’’ half of a
regular octahedron, since each sloping face is an equilateral triangle formed by
1424 3+ --- cannon balls.

This triangular arrangement suggests the simpler problem of packing equal
circles in a plane [9, p. 58], or stacking circular cylinders. Each circle touches
six others whose centers are the vertices of a regular hexagon. In other words,
the circles are the incircles of the cells of the regular tessellation {6, 3}, which
has three hexagons at each vertex.

One way to pack equal spheres is to begin with a horizontal layer whose
“equators” form such a packing of circles. The same arrangement in the next
layer above can be so placed that each sphere rests on three, and this can be
done in two equivalent ways. When we come to the third layer, the two ways
are no longer equivalent [12, p. 46]; [27, p. 170]: in hexagonal close-packing each
sphere in the third layer is exactly above one in the first layer, but in cubic
close-packing the repetition is delayed till the fourth layer. It was Barlow
[1] who first pointed out that the latter is the same as the normal piling of
cannon balls (after the application of a suitable rotation). Hexagonal close-
packing and cubic close-packing are equally dense, but the latter is more
nearly “isotropic” since the spheres occur in straight rows in six different
directions: the centers of the spheres form a lattice (in the crystallographic
sense). Cubic close-packing is actually the densest lattice-packing. Gauss’s
original proof has been simplified by Mordell [21] and Dempster [7].

This lattice is called the “face-centered cubic lattice”, because it can be
derived from the simple cubic lattice {4, 3, 4} by taking not only the vertices
but also the centers of the square faces. In other words, the spheres are the
inspheres of the cells of the honeycomb of rhombic dodecahedra [27, p. 153].

The densest lattice-packing is not necessarily the densest packing. A first
suspicion in this direction arises from the existence of equally dense non-
lattice packings: the hexagonal close-packing and also several hybrids [18].
This suspicion is increased by carefully examining the twelve neighbors of any
one sphere. In the lattice-packing their centers are the vertices of a cubocta-
hedron (the reciprocal of the rhombic dodecahedron), whose faces consist of
8 triangles and 6 squares. Another familiar polyhedron having 12 vertices is
the regular icosahedron, whose faces are 20 triangles. If a sphere is sur-
rounded by 12 equal spheres located in this manner, the 12 spheres, while all
touching the first, will not touch one another at all. Accordingly, if we let
them roll on the first sphere until they are concentrated in one direction, it
seems plausible that they might somehow make room for one more, so that the
first sphere would touch thirteen others. According to H. W. Turnbull, who
has studied the unpublished notebooks of David Gregory, this idea originated
in a conversation of Gregory with Newton about 1694, apropos of the distribu-
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tion of stars of various magnitudes! It remained an open question till 1953,
when its impossibility was established by Schiitte and van der Waerden [24];
see also [15]. Although the thirteenth sphere cannot quite touch the one in
the middle, it can be pushed in far enough to make a hopeful beginning for a
dense packing that might conceivably be continued. Boerdijk [2] describes
such a packing in an infinite tubular region, but there is apparently no satis-
factory way to fill space by stacking such regions.

Stephen Hales stated, in his Vegetable Staticks [10a, pp. 95, 206]: “I com-
pressed several fresh parcels of Pease in the same Pot, with a force equal to
1600, 800, and 400 pounds; in which Experiments, tho’ the Pease dilated, yet
they did not raise the lever, because what they increased in bulk was, by the
great incumbent weight, pressed into the interstices of the Pease, which they
adequately filled up, being thereby formed into pretty regular Dodecahe-
drons.”

Marvin [16] and Matzke [17] repeated Hales’s experiment, replacing his peas
by lead shot, “carefully selected under a microscope for uniformity of size and
shape,” in a steel eylinder, compressed with a steel plunger at a sufficient
pressure (about 40,000 pounds) to eliminate all interstices. They found that,
if the shot were stacked in cannon-ball fashion and compressed, nearly
perfect rhombic dodecahedra were formed. But ““if the shot were just poured
into the cylinder the way Hales presumably put his peas into the iron pot,
irregular 14-faced bodies were formed.... They were never rhombic do-
decahedra.” Nearly all the faces were either quadrangles, pentagons, or
hexagons, with pentagons predominating.

Hulbary [13] examined cells in undifferentiated vegetable tissues, and con-
cluded that the internal cells have an average of approximately 14 faces.
Among 650 such cells, chosen without special selection, he found a remarkable
variety of shapes. The most prevalent (32 of the 650) had only 13 faces: 3
quadrangles, 6 pentagons, 4 hexagons; 33 edges, and 22 vertices.

4. Froth

Lord Kelvin [14] believed that, of the various polyhedra which can be re-
peated to fill Euclidean space without interstices, the shape with the smallest
surface for its volume is the truncated octahedron, whose faces consist of 8
hexagons and 6 squares. (For this solid he coined the outrageous name
“tetrakaidecahedron,’” as if it were the chief or only polyhedron having four-
teen faces! Actually it is one of the thirteen Archimedean solids, and it
appears as one of the perspective drawings of models made by Leonardo da
Vinei in Fra Luca Paccioli’s Divina proportione [22, p. 240]. The name trun-
cum octaédron is due to Kepler.) Kelvin’s conjecture is supported by the fact
that, if S is the surface and C the volume, the value of 8°/C* is 150.1 - - - for
the truncated octahedron, and 152.8 - - - for the rhombic dodecahedron [9,
p. 174].

In the space-filling of truncated octahedra (whose centers form the ‘‘body-
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centered cubic lattice,” consisting of the vertices and cell-centers of the simple
cubic lattice), there are three cells at each edge, four at each vertex. To this
extent it agrees with the theoretical specification for a froth of approximately
uniform bubbles. But the balancing of surface tensions requires equal angles
of 120° between the three faces that come together at an edge. Seeing that all
the dihedral angles of the truncated octahedron are different from 120° (some
greater, some less), Kelvin proposed a modification in which the flat hexagons
are replaced by monkey-saddle-shaped minimal surfaces (cf. [12, p. 192],
where however, Figure 200 is obviously incorrect).

This ‘“remarkable conformation” [28, p. 552] remained unchallenged till
1940, when Matzke made a microscopic examination of an actual froth of 1900
measured bubbles, each one-tenth of a ce. [17, p. 225]. “For 600 central
bubbles examined, the average number of contacts was 13.70 - - - , however,
not a single bubble ... had the configuration which Kelvin had described and
which Thompson had accepted. The commonest combination was 1-10-2
(118 of 600 bubbles). There were no rhombic dodecahedra”. (‘“1-10-2”
means “1 quadrangle, 10 pentagons, 2 hexagons”.)

5. The Platonic solids and their characteristic triangles

The planes of symmetry of the regular polyhedron {p, ¢} meet a concentric
sphere in great circles which we shall call circles of symmetry. They de-
compose the sphere into 4F congruent right-angled spherical triangles
Py P; Py, where P, is on the radius through a vertex, P; is on the radius
through the midpoint of an edge, and P, is on the radius through the center of
a face [5, p. 24].

We are assuming here that p and ¢ are integers, greater than 2, satisfying
1.1, so that the polyhedron {p, ¢} is nondegenerate. Clearly, the reciprocal
polyhedron {g, p} yields the same network of spherical triangles with the
symbols Py and P, interchanged.

Figure 1 shows six such characteristic triangles in the neighborhood of an
edge Po Po. The three points marked P; , being the midpoints of three con-
secutive sides of a Petrie polygon, are three consecutive vertices of a {2¢} (see
§2). The great circle containing these 2¢ points P; is called an equator
([5, p. 67], where 2¢ is denoted by h). There are E/c equators: one for each

O

FiGURE 2
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()

points of intersection of pairs of equators are just the E points Py (which occur
in 3F pairs of antipodes), we have

E(E-1)-»,
¢ \c
whence

5.1 E=clc+1).

Any equator is crossed by each circle of symmetry in a pair of antipodal
points. It is crossed twice at each point P; (by two perpendicular circles of
symmetry) and once at the midpoint of each arc Py P; (by the hypotenuse
Py P, of a triangle Py Py P;). Hence the number of circles of symmetry (or of
planes of symmetry) is 3c; cf. [5, p. 68].

Figure 3 shows the 9 circles of symmetry (light) and the 4 equators (dark)
for the cube {4, 3} or the octahedron {3, 4}, drawn in stereographic pro-
jection; cf. [4, frontispiece].

Petrie polygon. Since the

The 3¢(3¢ — 1) points of intersection of pairs of circles of symmetry consist
of 1p(p — 1) at each of the F points P, , 3q(¢ — 1) at each of the V points P, ,

FIGURE 3
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and one at each of the E points P;. Hence
3¢Bc— 1) =3p(p — DF + 3¢ — DV + E
=(p-DE+(@-DE+E
=@+qg—Delc+1),

and therefore

12

5.2 C+1=m.

The connection with the ¢ of §1 is seen by writing
R=R1R2, S=R2Rs, T=R3R1,

where R;, R., R; are the reflections in the sides Py Py, P; Py, Py P; of the
characteristic triangle. Since 2¢ is the period of the product R; R, R; [5,
p. 91], ¢ itself is the period of

(R1 Rz R3)2 = RTS = stz.

The spherical triangle Py P; P, has angles n/p at Py, /2 at Py, n/q at Py .
Let the respectively opposite sides be denoted by ¢, x, ¥, as in Figure 2 [5,
p. 24]. Since the sides of all the 4F triangles are arcs of the 3¢ circles of
symmetry, each described twice, we have

4E(¢ + x + ¥) = b¢-2m,

whence

8w _ 3w _(10—p—gnr
53 erxtY=F =FiT g
[5, p. 74].

6. The regular hypersolids and their characteristic tetrahedra

The hyperplanes of symmetry of a finite polytope {p, ¢, r} (that is, the
hyperplanes which act as “mirrors” reflecting the polytope into itself) meet a
concentric hypersphere in ‘“great spheres’” which we naturally call spheres of
symmetry. They decompose the hypersphere into (say) g congruent quadri-
rectangular spherical tetrahedra Py P; P; P;, whose four vertices are on the
radii through a vertex, the midpoint of an edge, the center of a face, and the
center of a cell [5, p. 139]. This characteristic tetrahedron is said to be “quadri-
rectangular” because all four faces are right-angled triangles. It can most
easily be visualized by comparing it with the Euclidean tetrahedron that arises
from the analogous simplicial subdivision of the cubic honeycomb {4, 3, 4}
in ordinary space [5, p. 71], where the edges Py P, , Py P, P, P; are not only
mutually orthogonal (as they always must be) but straight, and equal in
length (since in this case Py P; is half an edge of a cube, P; P, is the inradius
of a square face, and P, P; is the inradius of the whole cube). Figure 4 shows
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an unfolded ‘“net”’ which the reader may like to copy on thick paper, cut out,
and fold up to make a solid model.

The angles between the edges P; Py, P; Py, P; P, are equal to the sides of
the characteristic triangle for the cell {p, ¢}, namely

ZPOP3P1=¢, ZP0P3P2=X, £P1P3P2=¢/.

Since P, is the center of a spherical p-gon of which P, P; is half a
side, £ZPy P, P; = w/p. Since the face Py P; P, is perpendicular to the edge
P; Py, £P, P, P, can alternatively be obtained as the dihedral angle at this
edge, which is the angle r/p of the characteristic triangle for {p, ¢}.
Similarly, the angles between the edges Po Py, Po Ps, Po P; are equal to the
sides (say ¢’, x’, ¥') of the characteristic triangle for the vertex figure {q, 7},
namely
ZP1POP2=¢’, LP1P0P3=XI, AP2POP3=¢/’.

Since the face P; P, P; is perpendicular to the edge Py Py, £ P; Py P; is equal
to the dihedral angle at this edge, which is the angle «/r of the characteristic
triangle for {q, r}.

Each sphere of symmetry is tessellated with triangular faces of characteristic
tetrahedra. Let a denote the average number of such triangles covering a
sphere of symmetry. (This is actually the precise number of triangles, since
every sphere of symmetry contains the same number; see [26, Corollary 5.2],
where a is denoted by g/h, as in [5, p. 231].) Since each of the g tetrahedra
has 4 faces, and each face belongs to 2 tetrahedra, the total number of tri-
angles is 2g, and the number of spheres of symmetry is 2¢g/a.

In terms of the radius of the hypersphere as unit, the total area of the 2¢g/a
great spheres is 8mg/a. This must be equal to the sum of the angular excesses
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of the 2¢g spherical triangles. Since the sum of all the angles of all the tri-
angles is g times the sum of the twelve face-angles of a single tetrahedron
(Figure 4), we can use 5.3 to obtain

8rg/a =39+ x+¥v+¢ +x' +¥ +n/p+n/r+4n/2) — 2r
=39ir(10—p—q+10—qgq—7r+4/p+4/r+ 8 — 16)
=3mg(12 —p — 2 — v + 4/p + 4/7),
whence [25]
6.1 64/a = 12 — (p — 4/p) — 29 — (r — 4/7).

Since a is positive for a four-dimensional polytope and infinite for a three-
dimensional honeycomb, we must have

p—4/p+2¢+r—4/r =12
with equality only in the case of a honeycomb, namely when
p=r=4 and ¢q=3.

It is interesting to observe how this algebraic criterion has the same effect as
Schlifli’s trigonometrical criterion [23, p. 215]

sin(w/p) sin(w/r) = cos(w/q).
Since the vertex figure {q, r} must be one of the five Platonic solids
{3,3}, (3,4}, {43}, {8,5}, {5,3},

the regular hypersolids can be enumerated by assigning these particular values
to ¢, r, and using the inequality

p—4/ps12—2¢—r+4/r
or

6.2 P—(12—-2¢—r+4/p—4=0
to determine the possible values for p.
When ¢ = 3and r = 3, we have p < (13 + 4/313)/6 = 5.115 - - - .
When ¢ = 3and r = 4, we have p =< 4.
When g = 4andr = 3, wehavep < (7 + 4/193)/6 = 3.48 --- .
When ¢ = 3andr = 5, wehave p < (9 + +/481)/10 = 3.09 --- .
When ¢ = 5andr = 3, wehavep < (1 + +/145)/6 = 2.17 --- .
Thus the only finite polytopes {p, g, r} are Schlifli’s
{3,3,3}, {4,3,3}, {53,383}, {3,3,4}, {3,4,3}, {3,3,5}.
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A connection with group-theory is seen in Todd’s observation that the direct
symmetry-operations of the polytope {p, ¢, r} constitute a group of order %g
for which the relations 1.2 provide an abstract definition. In fact,

R=R1R2, S=R2R3, T=R3R4,

where R, , R,, R;, R, are the reflections in the faces Py Py P3, Py P; Py.
P; Py Py, Py Py P; of the characteristic tetrahedron.

7. A statistical honeycomb

As we remarked in §3, the closest packing of equal circles in the Euclidean
plane is provided by the incircles of the cells of the regular tessellation of
hexagons {6, 3}. In fact, three equal circles are packed as closely as possible
when they all touch one another, and the two-dimensional packing problem is
easy because any number of further circles can be added in such a way as to
continue the pattern systematically over the whole plane.

Analogously, four equal spheres are packed as closely as possible when they
all touch one another, and some further spheres can be added so as to form
the beginning of a pattern apparently consisting of the inspheres of the cells of
a regular honeycomb {p, 3, 3}. This beginning can be continued for spheres
of a suitable size in spherical (or elliptic) space with p = 5, and again in
hyperbolic space with p = 6 [10, p. 159]; [6, p. 266]. The conclusion is
inescapable that a compressed close-packing of equal lead shot, or a froth of
equal bubbles, is trying to approximate to a Euclidean honeycomb {p, 3, 3} in
which p lies between 5 and 6. The fractional value of p means that this
“honeycomb’’ exists only in a statistical sense, but the agreement with experi-
ment is striking.

Setting ¢ = r = 3 in the equation

7.1 pP—(12—2¢—r+4/r)p—4=0

(cf. 6.2), we obtain
p — (13/3)p —4 =0,
whence _
p = (13 + +/313)/6 = 5.115 - - - |

in agreement with Matzke’s observation that pentagons are prevalent (es-
pecially in froth) while hexagons are more frequent than quadrangles.
The cell {p, 3} has an average of F faces, E edges, and V vertices, where,
by 2.1,
Fo 12 _ 234 /313
6—p 3
E-= 6_6-_1) = 17+ /313 = 3469 ---,

= 13.56 ---,

and V = 2F =23.13 --- .
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In conclusion, I wish to thank Michael Goldberg and John Satterly for
drawing my attention to the experimental work of Matzke, whose estimate

F =13.70

(see §4) motivated my choice of the equation 7.1 in place of the equally plaus-
ible equation
sin(w/p) sin(w/r) = cos(r/q),
from which the substitution ¢ = r = 3 yields p = 7/« in the notation of [5,
p. 293], whence
12

6—p

That other approach has been extended to n dimensions by Rogers [22a].

= 13398 - -, G‘LT”p=22.796---.

Note added in proof. Professor Bernal [1a] has used two independent ex-
periments to obtain for F the approximate values 13.6 and 13.3 He refers to
Meijering [17a, p. 282], who applied statistical methods of an entirely different
kind to the so-called “Johnson-Mehl model,”” obtaining

V = 22.56.
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