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This paper is a sequel to an earlier one entitled The Coding of messages sub-
jec o chance errors (Illinois Journal of Mathematics, vol. 1 (1957), pp. 591-
606), and should be regarded as the ninth section of the latter. The previous
notation, definitions, and list of references remain in force, except that it is
convenient to replace p() by p(1 I) and (1 p(a)) by p(0 a). The pur-
pose of the present paper is to state and prove Theorem 4, which, for any
memory m, gives an upper bound on the length of an error correcting code
for which the probability of transmitting any word incorrectly is -< k,
0 =< k 1. In Theorem 2 of the earlier paper we gave such an upper bound
for the case m 0. It will be shown at the end of the proof of Theorem 4
that the latter implies Theorem 2. The discussion after the proof will show
how it is possible greatly to simplify the computation of the constant J0 in
the upper bound.

Let the 2+ -sequences be numbered, in some fixed manner, from 1 to
2+. Any x-sequence can be written as a sequence of (n m) -sequences,
namely, the a-sequence of its first (m 1) elements, followed by the a-se-
quence of its 2e, 3, (m - 2)n elements, etc. Replacing each -se-
quence by its serial number, we obtain that any x-sequence can be written
as a sequence of (n m) elements, each element one of 1, 2+. Hence-
forth we consider each x-sequence to be written in this manner. :Not every
sequence of (n m) elements, each of which is one of 1, 2+, is an
x-sequence. For example, if m 1, the serial number of the a-sequence
(0, 0) cannot in an x-sequence, be followed by the serial number of the
-sequence (1, 0). Let i j be, respectively, the serial numbers of -sequences
which are related so that the a-sequence i can be followed, in an x-sequence,
by the -sequence j; we shall say then that j can be a successor of i.
Let A be a subset of the integers 1,... 2+, and M(A) an irreducible

([6], p. 318) stationary transition matrix of a Markov chain whose states are
the set A; say M(A) I’}, i, j A. We shall always require that t. 0
if j cannot be a successor of i. Let T be the stationary absolute probability
of the it state, i.e., the T, i e A, are the unique ([6], p. 325) solutions of the
system
(9.1) T ,, T. t. i e A

which satisfy T 1. Define (for M(A))

(9.2) u(i) . T p(i j), i O, 1
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(9.3) H(M(A)) --o u(i) log u(i),

(9.4) H.(M(A)) --o T p(j i) log p(j i)

(recall the definition of H(Y) in Section 4), and

(9.5) J0- sup [H(M(A)) H(M(A))].
A,M(A)

Our object will now be to prove the following

THEOREM 4. Let , 0 <= < 1, be any given number. There exists a K > 0
such that, for any n, any code with the property that the probability of trans-
mitting any word incorrectly is <-_ , cannot have a length greater than 2+.

Let x be any x-sequence (written as a sequence of a-sequences). Let t
be the number of times the sequence i is followed by the sequence j in x; for
this purpose we count the first element (sequence) in x as if it followed the
last element. Let A be the totality of sequences from among 1,...,
2+ which occur in x. Write n’ n m and, for i, j A,

n’T ,t, t t/n Ti.

Clearly, {t} is a stochastic matrix. From its construction it is irreducible.
Moreover, the quantities n’T satisfy, for i cA,

n’T n’T t
which is the same system as (9.1). Since T 1 it follows that the T
are the stationary absolute probabilities of the matrix {t}. The sequence
x will be said to be a member of the domain of {t}.
We note here a fact which will be of importance later" Since the t. are all

integers, it follows that the number of matrices {t} which can be obtained
in this manner is O(n), where a 2+.

Let x be any x-sequence, and M(A) {t} the matrix of whose domain
x is a member. Let B’ be any set of y-sequences generated by x such that
P{Y(x) e B’} > (1 ),)/2. Then it follows from (3.8) that there exists a
positive constant K which does not depend on M(A) or the sequence x,
such that the number of sequences in B’ is greater than

2 H2(M(A))--K2 $2n’ 112.
Let y be any y-sequence generated by x. Then y contains at most

V n’u(1) -F- n’/ [T p(1 i)p(Oli)]

elements one, and at most

Vo n’u(O) - . n’/ _, IT, p(1 i)p(Oli)]

elements zero. We shall now obtain an upper bound on the number of y-se-
quences which contain at most V elements one and V0 elements zero. For
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this purpose suppose Z (Z1, Z,) is a sequence of independent, identi-
cally distributed chance variables such that

P ZI i} u(i), i O, 1.

If y contains at most V1 ones and V0 zeros, then

log P{Z y} > -n’ H(M(A))

(9.6) + .n"( [T p(1 ]i)p(Oli)]") log (u(1) u(0))

> -n’HI(M(A)) g2 n’/,
where K is a positive constant which does not depend on A or M(A). It
follows that the number of y-sequences generated by all x-sequences in the
domain of M(A) is less than

2’(M))+
with K an absolute constant.
Now let (x, A), (x, A) be any code such that
(a) x, ..., x are x-sequences which are all members of the domain of

the same matrix M(A),
(b) P{Y(x,) eA,} > (1 X)/2,
(c) A, i 1, w, consists only of y-sequences generated by x,: (for

some fixed, sufficiently large, ).
Since (x, A), (x, A) is a code, the A are all disjoint. Hence the

total number of y-sequences in A u A u u A is at least

W" 2n’CMCA))-n

However, the total number of y-sequences generated by all x in the domain of
M(A) is less than

2n’ M())+’ n’

Hence
(9.7) w

Now let (xl, A),

2n’

(xN, AN) be any code whatever such that

P{ Y(z,) e A} >= 1 X, i 1, N.

Choose i. so large that, for any x,

(9.8) P{ Y(x) is a sequence generated by x} > 1 (1 h)/2.

Delete from each As those y-sequences not generated by x call the residue
A’. In view of (9.8) we have

(9.9) P{ Y(x,)e A} > (1 h)/2.

The code (xx, A,), (xN, A) may be divided into subcodes according to
the matrix to whose domain the x-sequences belong; the x-sequences of a
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subcode belong to the domain of the same matrix, two x-sequences which do
not belong to the same subcode belong to the domains of different mtrices.
The number of such subcodes is O(n), the number of matrices M(A). The
length of any one subcode is by (9.7) less than

(9.10)
Hence
(9.11)

K2n;0+$2(K+ 2)n11.

N < [0(?’)]2n’r+$<:’+l’2)nl,
from which Theorem 4 follows at once.
H(M(A)) H2(M(A)) is of course a continuous function of the T, and a

function of M(A) only through the T. It appeared in the course of the
preceding proof that the T were the stationary absolute probabilities of an
irreducible matrix because they were the proportions in which the various a-

sequences appeared in some x-sequence. From the strong law of large
numbers for Markov chains it follows that the converse is essentially true,
i.e., that there exist x-sequences in which the proportion of the various
elements is within ( > 0 arbitrary) of the stationary absolute probabilities
of any irreducible matrix of transition probabilities (for n sufficiently large).
To see that Theorem 4 implies Theorem 2 (when m 0) we have only to

note that then T and T may be any (positive) pair such that T + To 1.
This follows either from the fact that any such pair is the stationary absolute
probability vector of an irreducible transition mutrix with two states, or else
from the fact that any such pair may be the vector of proportions of zeros und
ones in an x-sequence.
Suppose m 1. Let us number the a-sequences: (0, 0), 1; (0, 1), 2; (1, 0),

3; (1, 1), 4. Obviously, in any x-sequence, nT nT. There are clearly
no restrictions on T and T except the trivial ones. We conclude that the
totality of vectors (T, T, T, T) is the totality of vectors (b, b, b., b)
withb, b, b > 0, and b + 2b + ba 1. There are also the obvious
vectors which correspond to sets A which are proper subsets of {1, 2, 3, 4}.
The above characterization of the possible vectors {T} for the case m 1

greutly reduces the lubor of computing J0, so that it becomes of interest to do
this for general m. This is easy to do, but it will be less burdensome for
reader and writer to do it for the case m 2; the procedure in the general case
will be readily apparent.
We number the a-sequences (say):

(0 0 O) 1 (1 0 O) 5
(0 0 1) 2 (1 0 1) 6
(0 1 O) 3 (1 1 O) 7
(0 1 1) 4 (1 1 1) 8.

Only the following t cun be different from zero" t, t12, t2a, $24, taa, t6, t47 t48,
t, t2, t6, t64, t, t6, ts, tss. Consider the system (9.1) for A 1, 8},
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and add the equations in the proper pairs.

Hence

We obtain

T+ T. T+ Ta,
Ta+ T T+ T,
T+ Ts T+ Ts.

To. Ts, T4 T, T6 Ta + T4- To..

We have therefore that (T1, T8) must be of the form

(9.12) (51, bo., ba, 54, 53, (ba + 54 bo.), 54, 55)

with all elements positive and summing to unity. It is easy to verify that
these necessary conditions are sufficient, i.e., that for any vector (9.12) there
exists an 8 X 8 matrix {ti} with all possible ti (enumerated earlier in this
paragraph) positive (hence {t} is irreducible) such that this vector is a
solution of the system (9.1). The vectors which correspond to the A which
are proper subsets of {1, 8} are characterized similarly.
Added in proof. By using the methods of the present paper, the constant

J0 in the upper bound can in general be reduced when m > 0. A paper which
describes this is in preparation.
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