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Introduction
The concept of repartition, systematically used by Chevalley in his exposi-

tion of the algebraic geometry on a curve (see [10] of the bibliography at the
end of this paper), has proved particularly fruitful in that subiect: besides
offering a direct approach to the theorem of Riemann-Roch (Weil’s proof),
it throws light on the nature of the differentials on a curve; a differential can
be considered s such, that is, as mpping of the set of the deriwtions into
the field of the rational functions on the curve, or as a "differential map-
ping," namely a mapping of the set of the repartitions into the field of con-
stants. The main advantage of the second interpretation lies ia the possi-
bility of defining the trace of a differential from a field to its ph power, if
p 0 is the characteristic of the field of constants. The lack of such trace
is the basic reason for which the earliest abstract treatment of algebraic cor-
respondences between curves [11] was limited to the consideration of "sepa-
rable" correspondences.

For these and other reasons, it is desirable to extend the concept of re-
partition to higher dimensional varieties; in the present paper we propose a
definition, not of the repartitions, but of certain classes of repartitions, and
proceed to show that they are reasonably adequate for abelian varieties; they
do, for instance, provide a tool for the completion of the main result of [11]
mentioned above (see results 4.2 and 4.3 of this paper), although this is more
in the nature of a by-product. More interesting results are those which relate
the repartitions on a curve to the invariant derivations on its jacobian, and
the repartition classes on an abelian variety to the differentials of the second
kind; also, results 3.3 and 3.4, which relate Severi’s base number p, for an
abelian variety, to Picard’s number p, connected to the logarithmic singu-
larities of the differentials of the third kind. The differential class dX de-
fined in section 3 provides a matrix, modulo p, which appears to be the first
approximation to a p-adic matrix attached to the divisor X; the p-adic matrix
would complete the set of the Eq(X) of [13] and the E(X) of [9].
Although no knowledge of the theory of sheaves is assumed on the part of

the reader, the classes of repartitions studied here fit naturally in that theory
(for a brief description of it one can consult the report by Zariski in the Bull.
Amer. Math. Soc., vol. 62 (1956), pp. 117-141): if V is a locally normal
irreducible variety over the algebraically closed field , let us denote by (C)
and the algebraic sheaves on V defined by setting, respectively, (C)p
Q(P/V) and p k(V) for any P V (here (C)p and p denote stalks). The
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sequence 0 -- -- /) --+ 0 is exact, and the associated exact co-
homology sequence is 0 -- H(V, )) -+ H(V, ) --* H(V, /)) --Hi(V, 3) Hi(V, ) -- .... Since H(V, )) /, it is easily verified
that 6(V), as defined in section 1, is isomorphic to H(V, /(C)), and that in
this isomorphism 6e(V) maps onto H(V, )//; since, on the other hand,
HI(V, ) O, we conclude that 6(V)/6e(V) H(V, (C)); and the study
of 6(V)/6(V) forms the main subject of this paper.

Actually, the contents of the present paper can be considered as the case
r 1 in the investigation of the structure of the group of factor sets
r(A, V)/ro(A, V), A and V being, respectively, an abelian variety and an
r-dimensional periodic group-variety of period pr (see [4]); it is the case which
presents almost all the main obstacles, but not all the results. The case
r > 1 can be studied by means of hyperclasses of height r, these being defined
as almost everywhere finite mappings of the set of the irreducible divisors on
A into additive Witt vectors of length r with components in/c(A), modulo
everywhere finite mappings; when this is done, the operation
introduced in section 4 is susceptible of a very "natural" interpretation;
also, for r --+ oo, one can replace the differential class dX, or the matrix modulo
p related to it, by a linear mapping of certain "vectors" (D1, Dp, D, ...)
of invariant hyperderivations on A into hyperclasses of height o, or respec-
tively by a p-adic matrix; this is the matrix to which we alluded before.

In establishing properties of the classes of repartitions on an abelian variety
we have made use of previously acquired results on the differentials of the
second kind, for the case of characteristic zero (see [6]), or on the invariant
hyperderivations, for the case of positive characteristic [8]; the process could
be reversed, up to a point, thus making the consideration of the differentials
of the second kind unnecessary also in the case of characteristic zero, as it is
in the case of positive characteristic.

Since the word "variety" has acquired a number of related but inequiva-
lent meanings, it is perhaps not out of place to remind the reader that the
word "variety", as used in the present work, means "algebraic subvariety of
a projective space", that is, the set of all the points of a projective space over
field/c, whose coordinates satisfy a finite number of algebraic homogeneous
equations with coefficients in

1. Classes of repartitions
Let V be a locally normal irreducible n-dimensional variety over the field

/, and assume/c to be algebraically closed in/c(V); by locally normal we mean
that Q(X/V) is integrally closed for each irreducible subvariety X of V.
For each (n 1)-dimensional irreducible subvariety X of V, let x(X) be an
element of/(V); the mapping such that bX x(X) - Q(X/V) is called

Witt vectors are used extensively in J-P. Serre’s Bur la topologie des varidtds algd-
briques en caractdristique p (mimeographed address, Symposium on Algebraic Topology,
Mexico, Summer 1956).
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a class of repartitions, or simply a class, on V, if x(X) Q(X/V) for all, but
finitely many, X’s; the X’s for which x(X) Q(X/V) are called the poles of
5. If x k(V), there exists a unique class 5 such that 5X x Q(X/V)
for each X; such 5 is called the class of x on V, and denoted by clv x, or simply
cl x if no confusion may arise. The classes of the type cl x are called exact
classes. If a, b are classes on V, and a 1, the classes a -t- , a5 Ia are
defined by (a + 5)X aX - bX, (ab)X a(bX) - Q(X/V); it is under-
stood that the sums and products are to be interpreted elementwise. The
set of the classes on V thus becomes a It-module, whose zero is 0 cl 0;
this is the only class without poles; it is easily seen that cl x 0 if and only
if x e k. Two classes a, b are (linearly) equivalent, in symbols a 5, if a
is exact. We shall occasionally need the following definition: if y is an ele-
ment of k(V), none of whose poles is a pole of the class b, the class y5 by
is defined by (yb)X Q(X/V) if X is not a pole of b, and (yb)X yx +
Q(X/V) if X is a pole of b and 5X x + Q(X/V);if ya and y5 exist, then
y(a - b) exists and equals ya W yb; if y5 and z5 exist, then (y W z)b exists,
and equals yb -t- zS. If b is a class on V, and ] has positive characteristic
p, the class b is defined by bX x + Q(X/V) if bX x - Q(X/V).

Let W be an irreducible subvariety of V, and let b be a class on V; we shall
say that b is (locally) closed at W if there exists a class a b none of whose
poles contains W, or, equivalently, if there exists an x e/c(V) such that bX
x + Q(X/V) for each X containing W; any such x is called a representative
of b at W; any two representatives of b at W differ by an element of Q(W/V).
If b is closed at W, and U is an irreducible subvariety of V containing W,
b is also closed at U; if dim W n 1, each class is closed at W; if W is
not a subvariety of a pole of b, 5 is closed at W. We shall say that the class
b is closed if it is closed at each P e V, hence at each nonempty irreducible
subvariety of V; every exact class is closed, and every class is closed if n 1.
The k-module of the closed classes on V will be denoted by (B(V), and the
module of the exact classes on V will be denoted by (Be(V); if n 1, (B(V)
is isomorphic to 5/(’, where (, (R’ are the/c-modules of, respectively, the re-
partitions on V, and the repartitions without poles on V (see [10]); conse-
quently, in this case, (B(V)/(B(V) is a free -module of order equal to the
genus of V.

Quite in general, let b be a class on V, and let W be a locally normal m-
dimensional irreducible subvariety of V; assume that none of the poles of
contains W; for each (m 1)-dimensional irreducible subvariety U of W,
let b be closed at U, and let x(U) be a representative of b at U; then
x(U) e Q(W/V), so that, if denotes the homomorphic mapping of Q(W/V)
onto k(W) whose kernel is (W/V), the expression vx(U) denotes an element
of ]c(W). The set -x(U) - -Q(U/V) rx(U) - Q(u/w) is independent
of the choice of x(U), and consequently there exists a class 5’ on W such that,
for each U, b’U rx(U) - Q(U/W); the class b’ is denoted by b n W or
W n b, and called the intersection of W and b. If b is closed, so is 5 n W;
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if b is exact, so is b n W; if Y is an irreducible subvariety of W, and 5 is closed
at Y, b n W is also closed at Y; moreover, if Y b and W b exist, then
Y (W b) exists and equals Y n 5. If W is as before, for each closed
class b on V there exists an a 5 such that a n W exists; hence, the mapping
b--’.. W n b induces a homomorphism of 5(V)/e(V) into (W)/5e(W).
Let F be another locally normal irreducible variety over k, of dimension

r, and assume F X V to be locally normal (this being the case, for instance,
if ] is algebraically closed). If 5 is a class on V, the class b X F F X b
on V X F is defined by ( X F) (X X F) bX + Q(X X F/V X F)
for each (n 1)-dimensional irreducible subvariety X of V, and (b X F)Y
Q(Y/V X F) for each (r + n- 1)-dimensional irreducible subvariety Y
of V X F, not of the type X X F. The mapping b--b X F is an iso-
morphism of It-modules; also, b F is closed, or exact, if and only if b is,
respectively, closed or exact.

If k is algebraically closed, and b is a class on V, the extension bK of b over
the extension K of k is defined by bKX bX - Q(X/V) for each (n 1)-
dimensional irreducible subvariety X of V, and b Y Q(Y/V) for each
(n- 1)-dimensional irreducible subvariety Y of V not of the type XK;
again, the mapping b -+ b is an isomorphism of -modules; also, b is closed,
or exact, if and only if b is, respectively, closed or exact.

If F has the previous meaning, let b be a class on V X F; the V-component
of b is the class a on V F such that aY bY if Y is not of the type V X X
with X c F, while aY Q(Y/V X F) otherwise; on the other hand, if
K It(F), b{F} shall denote the class ! on V such that !(Y{F}) bY
for each Y not of the type V X X; here, Y{F} has a meaning since Y is an
algebraic correspondence between F and V (see section 1 of [1]); we thus have
b{F} a{F}. If b is closed or exact, so is b{F}, although the converse is
false; also, given a class ! on V, there is a uaique class b on V F which
coincides with its own V-component, and is such that ! b{F}. If ! is
exact, b differs from an exact class by a class whose poles are all of the type
V X, with X F.
Let ] be arbitrary again, and let U be another locally normal irreducible

variety over k, of dimension m; let be a rational mapping of U onto V,
without fundamental points on U. If b is a class on V, its extension or cotrace
on U, in symbols T-lb, is the class ! on U defined, when possible, in the
following manner" for each (m- 1)-dimensional irreducible subvariety Y
of U, set X ), Y, and let x be a representative of b at X; set then !Y x W
Q(Y/U). Since Q(X/V) Q(Y/U), ! is defined if and only if b is closed at
each component of the fundamental locus of on V; in particular, it is de-
fined when b is closed, in which case ! is also closed; if b is exact, so is ! (but
the converse is generally false). An equivalent definition, if U X V is lo-
cally normal, is the following’ if the rational mapping h of U onto V is con-
sidered as a subvariety of U X V, is the unique class on U for which
(f X V) ), (b X U) a ),; this will be taken as definition of Tlb when
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k is into V rather than onto V. We may remark that, in this case, T15
T1(5 n kU) when kU is locally normal.
Assume now k to be onto V, and m n, so that/c(U) is a finite extension

of/c(V); if is a class on U, its trace Tx 3 on V is the class 5 on V defined
as follows: for each (n 1)-dimensional irreducible subvariety X of V, let
Y1,’" Yr be the distinct irreducible subvarieties of U on which k IX}
operates; then each Y has dimension n 1, and X kY let x be a repre-
sentative of 3 at each Y such x exists by Krull’s theorem on the independ-
ence of valuations. Set then 5X Tx + Q(X/V), where T denotes the
usual trace from/c(U) to/c(V); it is clear that 5 does not depend on the choice
of x. If 3 is exact, so is 5; if !3 has the property that for any finite set S
of points of U, there exists an [ none of whose poles contains any point
of S, and if in addition no pole of 5 intersects the fundamental locus of k on
V, 5 is closed. Finally, if a is a class on V and T-a exists, we have
TxTla [/c(U):/c(V)]a. These definitions are in agreement with those
given in [10] for the repartitions.

If V has the usual meaning, and k is algebraically closed, we shall say that
a set {5, 52, of elements of (B(V) is a set of representatives of an ab-
solute basis of (B(V)/(Be(V) if the 5 are linearly independent over k,
mod (Be(V), and if, in addition, for each extension K of k, each element of
B(VK) is equivalent to a linear combination, with coefficients in K, of (fi-
nitely many) elements (5)K.

1.1. THEOREM. Let U, V be locally normal irreducible varieties over the
algebraically closed field , of dimensions 1 and n respectively; assume that
there exists a set of representatives of an absolute basis of (B(V)/(Be(V). If
F U X V, there exists a set of representatives of an absolute basis
of (B(F)/(Be(F); moreover, for each b e (B(F), there exist elements c, b of (B(U),
(B(V) respectively, unique mod (Be(U) and mod (Be(V) respectively, such thai
l--c V+ U b.

Proof. Set H k(U), K lc(V); it is well known [10] that if X
is a nonspecial cycle on U (where the X are distinct points of U), a set of
representatives of an absolute basis of 6(U)/e(U) is given by the
set {u, u }, u being the class on U whose only pole is X, and such
that u X x-( + Q(X/U), for a given regular parameter x of Q(X/U).
Let then {, 2, be a set of representatives of an absolute basis of
6t(V)/(Be(V); for a b e (B(F), set * b{V}; then, for a suitable e k(F), we
have b* cl*t zi(u), where z e K, and cl* means class on U.
But then, b cly zi(tt X V) + a, where a is a class on F whose
poles are all of the type U X Y, with Y V; as a consequence,

+ el’ t’.
t’ k(F), and the summation is extendedwhere z e H, cl’ means class on Vn, e

over finitely many i’s. Since has, on Vn, only poles of the type Yn,
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with Y c V, it belongs to the direct product H X K over k; it follows that
each pole of 5’ is either of the type Xt V, in which case we shall say that
it is of the first type, or of the type U Y, with Y c V, in which case we
shall say that it is of the second type; and it also follows that a representa-
tive of 5’ at Xt X V is x-(lzt, while at a pole of the second type 5’ can be
represented by an element of H X K. We intend to prove that z e for
each i, and that a representative of b’ at a pole of the second type can be
selected in K.

Quite in general, let X be a point of U, Y an (n 1)-dimensional irre-
ducible subvariety of V, and let x, y be regular parameters of, respectively,
Q(X/U), Q(Y/V); let ab, c _,1 at bt, with a, at e H, b, 5i e K, be repre-
sentatives of b’ at, respectively, X X U and V X Y; assume also that h is
the smallest integer for which such a representative exists. Set

(C) Q(X Y/F), 9 Q(X/U), Q(Y/V),

and let *, 9*, * be their completions, so that (C)* k(Y){x, y], 9*

* /(Y){y]; let , , be the fields of quotients of, respectively, )*, *,
*; we shall identify ](F) with a subfield of ; notice that the smallest sub-
ring of containing and is their direct product 9 X over ]. We
shall also denote by u, v the normalized valuations of, respectively, H, K
over , whose centers on U, V are respectively X, Y; u and v shall also de-
note the extensions of u, v to ]c(F) (or to ) over, respectively, K, H (or,
respectively, , ).

Consider the case in which -r min[u(a), u(al), u(ah)] < 0 and
-s mia Iv(b), v(bl), v(bh)] < 0. Since 5’ is closed, there exists an
element e ](F), with no other poles containing X Y but, at most, X X V
and U Y, and such that

f- abQ(X X V/F), g cQ(U X Y/F);

we have u(q) >- -r, v(q) >= -s, v(f) >- -s, u(g) >- -r, so that

xyf e x, xyg e y.
The previous two relations give then

When the elements a and at of are written as power series in x, let a
be the "principal parts" of such series, that is, the parts involving only nega-
tive exponents; let b’, b be similarly related to b, bt e ; then the previous

a’b .,t at b The fol-relation implies x"y’(a’b’ t at bt) O, or
lowing two statements are consequences of this equality"

1.2. If Y is a pole of b, sothatb 0, andifX Visapoleofb,so
that a 0, then as b 0 for some i; hence, by the minimal property of
h, ’ has a pole at U X Y, and some as has a pole at X.
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1.3. If U X Y is a pole of 5’, so that, by the minimal property of h, the
b’ are linearly independent over (C), and if X is a pole of some a, say al, so
that a’l O, then a’ 0 and b’ O, so that 5’ has a pole at X X V, and
b a pole at Y; moreover, b’ is linearly dependent on b’l, b over , hence
over k, so that there are elements 71, 7 e k such that b’ b

arbut then, by the linear independence of the b’, we have a , for each
i, al "1 a’, O, so that a has, at X, a pole of the same order as al.

We can now apply these results to the case at hand; assume, for instance,
zl not to belong to k; if we take X X, Y a pole of z on V, 1.2 says
that U X Y is a pole of ; also, if a representative of 5 at U >( Y is-a b, where h has the minimal property, some a has a pole at
but, by 1.3, any pole of a is an X., and each a has at each X. a pole of order
at most 1. This contradicts the fact that X is a nonspecial divisor; we
conclude that zl, hence each z, belongs to k; but then 1.3 implies that either
5 has no pole of the second type, or that if it does, at each one of them it is
possible to select a representative of 5’ which belongs to K. We have thus
proved our contention, an immediate consequence of which is that

b’ c V+ Ub,

where c, b are classes on U, V respectively; hence, b e X V q- U b.
The classes and b are certainly closed since, for instance,

cXP= b’n (U X P)

for a genetic P e V; this also proves that c and b are unique mod (B,(U) or
,(V) respectively, Q.E.D.

1.4. LEMMA. Let U, V be locally normal irreducible varieties over k, of the
same dimension, and let k be a rational mapping of U onto V, without funda-
mental points on U; assume k(V) k(U) as prescribed by k. IJ there exists a
class b on V which is not exact, but such that Tlb is exact, k has characteristic
p O, and [k(U):k(V)] is divisible by p. If, in addition, k(U) is a normal
separable extension of k(V), with Galois group G, there exists an invariant
proper subgroup N of G such that GIN is a direct product of cyclic groups of
order p.

Proof. We have Tx Tb [k(U):k(V)]5; thus, [k(U):k(V)]b is exact,
hence 0, since b is not exact; this proves that [k(U):k(V)], as an element
of k, is zero, and also proves the first two statements. Assume now k(U)
to be separable normal over k(V), and set TIb clv x. For each g e G
we must have clv x clv gx, so that gx x -q- h(g), h(g) k’ algebraic
closure of k in k(U). The mapping g -- h(g) is an additive character of G
into k’, and is not principal since x k(V); the existence of N follows immedi-
ately, Q.E.D.
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2. Classes on abelian varieties

From now on, will denote an algebraically closed field, of characteristic
p>-O.

Let A be a nonsingular abelian variety over , and let b be a class on A;
for P e A, ap b is defined by (zp b)X ae [SzlX] (see [3] for the definition
of a); is invariant if ae 5 for each P, and semi-invariant if ze 5 5
for ea0ch P; the only invariant class is the class 0; any semi-invariant class
is closed. If D is an invariant hyperderivation on A (see [8]), the class D5
is defined by (Db)X Dx + Q(X/A) if bX x + Q(X/A); since D ap-
plies Q(X/A) into itself (this was shown in the course of the proof of 2.1
of [6] if D is a derivation, and can be shown in the same manner, as a con-
sequence of 1.5 of [8], if D is a hyperderivation), this definition is independent
of the choice of x. If 5 is, respectively, closed, exact, or semi-invariant, Db
has the same property.

2.1. LEMMA. Let C be an irreducible curve over , without singularities, of
genus n; let J be the jacobian, supposed nonsingular, of C. Then the k-module
(J)/5(J) has order <=n if p 2 or n < 2, and order <-n + l if p 2
andn >- 2.

Proof. For n 0, the result is trivially true; for n 1, it is known (see
[10]) that 5(C)/(C) has order 1. Suppose then n => 2, and let C1
C, C2, C be copies of C; set V C X X C" then [13] (J) is
the set of the elements of #(V) which are invariant under each element of
the group G of the n! permutations among the C’s. Let (I, be the rational
mapping of V onto J generated by this embedding; then has no funda-
mental point on V, by Theorem 6 of [13]. Let b e (J), and set ! T5,
so that ! e (V); by 1.1, is equivalent to a class of the type

C X X C_ X X C+ X X C,,

where ai e ((C) is unique but for equivalence. Since ! is invariant for
each element of G, the a can be selected to be the copies, on C, of a same
class a on C; the correspondence 5 --+ a establishes a homomorphism * of
(B(J)/(B(J) into 5(C)/(C).

Let b be such that b 5(J) belongs to the kernel of *; this is so if and
only if is exact; 1.4 implies then that, if p 0, b itself must be exact.
If p 0, b may not be exact, again by 1.4, only if G contains an invariant
subgroup N of index p; now, the only proper subgroup N of G such that
GIN is commutative is the alternating group on n elements, which has index
2; thus, unlessp 2, b must be exact. Ifp 2, each b such that!is
exact defines, according to the proof of 1.4, an additive character h h of
G, and h is the principal character if and only if b e (J); also, the kernel
of h is either G or N. For any two elements a 5(J), b W 5(J) of the
kernel of q*, and for a g e G N, set h,(g) a, h(g) b, where a, b
if c b W aS, we have h(g) O, so that he is the principal character, and
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c e (B(J). This proves that in this case the kernel of * has order at most
1; therefore, ord (B(J)/(B(J) <= ord (B(C)/((C) - ord (lernel of *), and
this equals n if p 2, or not more than n W 1 if p 2, Q.E.D.
Remark. If [; C1X P.X XP, J] is the restriction of to

C P2 P, where P e C, it is easily verified that

Tlb *(b -t- (B(J)) X P X X P,

when this exists.

2.2. LEMMA. Let A be a nonsingular abelian variety over k; if there exists
an integer N such that, for any algebraically closed extension K of 1,
((AK)/(B(AK) is a K-module of order <=N, each closed class on A is semi-invar-
iant. In particular, each closed class on a nonsingular jacobian variety is
semi-invariant.

Proof. The last statement follows from the main statement and from 2.1.
In order to prove the main statement, we shall remark first that, for some
K, the order of (B(AK)/6(AK) will reach a maximum, which we may as-
sume to be N; if we then prove that each closed class on A is semi-invariant,
the same will be true of the closed classes on A. We shall therefore assume
that the maximum N is already reached on A, so that there exists a set of
representatives {51,’", 5N} of an absolute basis of B(A)/cB(A). Let
A1 be a copy of A; if {x} is a n.h.g.p. (nonhomogeneous general point) of A,
let /Y} be its copy in/c(A); set H k(A), and let X be the rational point
of AH at which the x acquire the values y. Then x(b)H " z (b),
where the z. are uniquely determined elements of H. Denote by Z the
matrix (z), and by the one-column matrix of the 5; the previous rela-
tion can be written xt Z.

For a generic P e A, let Z(P) be obtained from Z by replacing each z. by
the value it acquires at the copy P of P on A then e Z(P). If
Q is another generic point of A, we have e ! Z(PQ), but also

z(P) z(P)Z(),

so that Z(PQ) Z(P)Z(Q). Hence, and by Lemma 2.3 of [4], the embed-
ding k(z) k(A ) establishes a homomorphism of A onto the Vessiot variety
V whose n.h.g.p, is {z}, and whose law of composition is the multiplication
of matrices; since A is abelian, V must reduce to a point, or z (Kro-
necker’s delta), or finally ze for each P e A, Q.E.D.
We now introduce the/-module X(A, a) already used in section 3 of [8]:

if a is a homomorphism of the nonsingular abelian variety A onto an abelian
variety B, X(A, a) is the set of the x e/(A) such that ze x x e ](B) for
each P e A; notice that now we do not require a to have positive degree.
For the meaning of ,(A), (A), which we shall need in the following
proof, see section 2 of [8]. We have:
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2.3. THEOREM. Let A, B be nonsingular abelian varieties over t, and let a be
a homomorphism of A onto B; write a .y, where has positive degree, and

" is such that its inseparability is 1, and its kernel is irreducible; set C .A,
and assume k(B) t(C) l(A) as prescribed by and % so that k(C)
is the algebraic closure of to(B) in /c(A); select C to be nonsingular. Then
X(A, a) X(C, fl); also, x e X(A, a) if and only if r x x Ic for each P
of the kernel of a, and Dx e t for each D of the nucleus of a (see section 2 of
[8]). The free It-module X(A, a)/tc(B) has order 0 if p O, and order <-, if
p 0 and p is the largest power of p which divides the degree of . For each
x e X(A, a) there is a semi-invariant b e6(B) such that T-5 =cl x; con-
versely, if b 6(B) and Tb cl y for a y e(A), then y X(A, a). The
correspondence x -- b generates an isomorphism of X(A, a)/lc(B) into
6(B)/6(B).

Proof. IfxeX(A, a), for eachPeA we have ze x x h(P) e k(B)
if also Q eA, we have h(PQ) , x x , ( x x) - r, x x, h(Q) h(P). If P belongs to the kernel L of a, this gives h(PQ)
h(Q) + h(P); on the other hand, h(PQ) h(QP) h(P) - h(Q), so that
(r h(P) h(P), which implies that h(P) , as claimed. If now also Q e L,
we see that the mapping P -- h(P) is a homomorphism of the group of the
points of L into the additive group /; if P is restricted to the component
L0 of the identity in L, it is easily verified that the mapping h is also a homo-
morphism of L0 into a 1-dimensional vector variety over/; this proves that
h(P) 0 for each P L0, so that x /(C). It is thus proved that

X(A, ) X(C, ).
If D is an invariant hyperderivation on A belonging to the nucleus N of

a, we have ae Dx Dx 0 for each P e A, so that Dx , as claimed. Con-
versely, assume (re x x h(P)e l for each P e L, and Dx k for each
DeN; for each QeA set h(Q) (rx x. Then, for PeL, r,h(Q), x , x p x x (, x x) h(PQ) h(P)
h(QP) r h(P) zex- x- z (zex- x) zx x h(Q), so
that, by Lemma 2.1 of [4], h(Q) is purely inseparable over/(B). But we
also have Dh(Q) 0 if DeN, so that, by 2.3 of [8], h(Q) ek(B), and
x e X(A, a), as claimed.
Now, let L’ be the kernel of/, and for each x X(A, a) X(C, ), and

each P e L’, set l(P, x) e x x e/; for a fixed x, is a homomorphic
mapping of L’ into/; since L’ is finite, this implies that, if p O, l(P, x) O,
or x e/(B); hence, in this case, X(A, a)/(B) is a/-module of order 0. If
p 0, the kernel L’ is the direct product of a group L1, whose order is prime
to p, and a group L whose order is a power of p; accordingly, we can write

/ tl, where the kernel of/1 is L (and tl is separable), while the kernel
of fl. is t L. L. Set F / C; if x X(C, ) and P e L, we see again
that l(P, x) O, so that x X(F, ). Now, if P1, P8 are the gener-
ators of tl L, for each x X(F, ) set l(x) z x x e/; then x is purely
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inseparable over ](B) if and only if l(x) 0 for each i. Write

where i" is separable, each is purely inseparable, and [k(F)] k( F),
[lc(+ ,. E)]v = k(_ ,. F) for each i => 1 and =<r; for i
0, 1, r 1, let {D, D,} be a set of elements of N n )(F) which
induce in k(+ , F) a k-independent basis of
being the nucleus of i’; let also {Dx, D,,} be a It-independent basis
of N n 0 (F). Then the mapping

x -* {/(), ,/,(x); D0 x, ..., D0,0 x; D
induces an isomorphism of X(F, fl)/lc(B) into a k-module of order s + so +
s + + s, ;this sum, by 2.3 of [8], is _-< v, as claimed.

Given a b e 5(B) such that TXb cl x, we have, for P e L,

cl (ax x) T(a b b) 0,

or a x x k; also, cla Dx T*Db 0 if D N; thus, x X(A, a). Con-
versely, if x X(A, a), for each irreducible subvariety Y of B, of dimension
equal to dimB 1, set bY x- ’, x + Q(Y/B), where P A is selected
in such a way that no componen of a-*Y is a pole of a x. Then b (B(B),
and T*b cl x; we have b e 5,(B) if and only if x ]c(B). Finally, for
any such b, and for any Q A, we have, after setting P

T( ) cl ( x

as a x x y e k(B), this implies ae b b cl, y, so that b is semi-
invariant, Q.E.D.

2.4. COROLRY. Let A be a nonsingular abelian variety over k; then:
(1) 5(A)/5,(A) is a finite free k-module, and there exists an integer N such
that 5(A)/5(A) has order <=N for each algebraically closed extension
K of/c; (2) a class on A is closed if and only if it is semi-invariant.

Proof. It is known that A is the homomorphic image, in a homomor-
phism a, of a jacobian J; we shall use the letter a also to denote the exten-
sion a of a to a homomorphism of J onto A. If denotes the K-
module of the 5(A) such that T-,b e(B,(J), by 2.3 there exists an
integer , independent of K, such that ord /,(A:) __< ; on the other
hand, T induces a homomorphism of (B(A:)/(B,(A:) into (J:)/5(J.),
whose kernel is :/(B(A:). Since, by 2.1, ord
dim J, we conclude that ord (B(A:)/(B(A.) =< 1 -t- - dim J, and this
proves statement (1). Statement (2) is a consequence of this, and of 2.2,
Q.E.D.

2.5 LEMMA. Let A be a nonsingular abelian variety over l, and let A A,
Aa be copies of A; let D be the rational mapping of A X A onto Aa which gives



54 IACOPO BARSOTTI

the law of composition on A, and assume k(As) k(A1 As)as prescribed
by D. For a closed class 5 on A, let b be its copy on As. Then

Proof. Let {x} be a n.h.g.p, of A1, {y} the copy of {x} ia k(A.); set
K k(As), and let X be the point of (A1) at which each x acquires the
value y; then alx, is the copy of x ia k(As). Therefore, after setting
! Tlba, we have !{As} a(b), so that, by 2.4, !{A.} (bl)-b
cl* t, where e/(A X As), and cl* means class on (A) notice here that
2.4 only assures that belongs to L((A)L) for some finite extension L of
K, but that a simple argument, based on the consideration of a K-basis of
L, shows that will also belong to K((A)) t(A As). Set

where cl means class on A X A.; then !{A} 0, so that !’ has only
poles of the type A1 X Y, with Y c As. Moreover,
where H k(A), e k(A X As), and cl means class on (As). thus,
has only, on A As, poles of the type A X Y with Y
with Y A, and consequently it belongs to the direct product H X K
over/. If then A Y is a pole of !, a representative of f at A X Y
can be written in the form

_
as b, where a e H and b e K; if h is the

smallest integer for which this is true, an argument similar to the one used
in the proof of 1.1 shows that must have a pole at each Y X A. such
that Y is a pole of some a on A1. As ! has no pole of this kind, we con-
clude that as e/ for each i, so that f A X c for a c e (B(A); but then
we can select t’ in K, hence f A X b. -b cl , or finally
A X b -k cl (t -k t), Q.E.D.

2.6. THEOREM. Let V be an irreducible variety over l, without singularities,
and let A be a nonsingular abelian variety over t; let ), be rational mappings
of V into A, and set ) -b . For a 5 6(A) we have

Proof. Let A, A, As be copies of A, and let D be the rational mapping
of A X A. onto A which gives the law of composition on A; thus, D is an
irreducible subvariety of A X A X An. Let , , Ps be the copies of,
respectively, ),, , which apply V into, respectively, A, As, As. Result
2.5 can now be written"

(btXAXAa+ bXAXAa- baXAxXA,.)nD--,0;

moreover, W (hi X A. X An) n (#,. X A X As) n (gs X A1 X A,) is an
irreducible subvariety of D X V which, considered as an algebraic corre-
spondence between V and D, is a rational mapping of V into D. Thus:
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[(T’b + Tb TT*b) X A X A X Aa] n W

{[(T-15 X A1)n ),11 X A2 X Aa} n W

--I- {[(T;I X A.) n ] X A, X Aa} n W

{[(TTb X Aa) n a] X A1 X As} n W

{[(V X 51) nX,] XA.XAa} nW

+ {[(V X b.)n ,] X A X A} n W

{[(V X 5)n ,] X A. X A.} n W

[V X (blXAsXA4- b:XA1XAa- 5aXAXAs)]nW

[V X ("’)]n(V XD) nW /VX [(’")nD]} nW,--..,0.

Since W operates on the whole V, and is birationally regularly equivalent
to V, this means T[b + T-15 TTb 0, Q.E.D.

2.7. THEOREM. Let A be an n-dimensional nonsingular abelian variety
over to; then (B(A)/(B,(A) is a free k-module of order n, and there exists a set of
representatives of an absolute basis of it.

2.8. COROLLARY. Result 1.1 remains true when
abelian varieties over It, of arbitrary dimensions.

U, V are nonsingular

Proof. The corollary is an immediate consequence of the theorem, and
the second statement of the theorem is an immediate consequence of the
first. We shall therefore concentrate on proving the first statement.
Assume first p 0; iterated application of 2.6 to the identity homo-

morphism of A onto A shows that, if a p, T5 0 for each 5 e 5(A)"
2.3 implies then that 5(A)/5,(A) --- X(A, a)/Ic(aA); and this is a It-module
of order n, by 3.3 of [8].
Assume now p 0, and let (A), (A) denote, as usual, the k-modules

of, respectively, the closed differentials of the i kind on A, for i 1, 2,
and the exact differentials on A. If e .(A), for each (n 1)-dimen-
sional irreducible subvariety X of A there exists an x e ](A) such that o

d x does not have a pole at X; the class such that bX x Q(X/A)
depends only on , by 1.4 of [6]; also, b e (A), since for each P e A there
exists an x e ]c(A) such that no pole of d x contains P. Consequently,
the mapping o -+ b establishes an isomorphism of h(A)/h(A) into ((A),
and also of ).(A)/h(A) + )(A) into (A)/,(A); hence by 2.8 of [6],
d(A)/(A) has order >= n. Now, A is a homomorphic image of some non-
singular jacobian variety J over ], and therefore J is isogenous to A X B,
for a suitable m-dimensional nonsingular abelian variety B over ]; ((J)/5,(J)
contains a submodule isomorphic to the complementary sum of 5(A)/(A)
and ((B)/5(B), which have orders >__n.and >-m respectively; but, by 2.1,
5(J)/5(J) has order -<m + n, so that 5(A)/5(A) has order n, Q.E.D.
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3. The differential classes

Let A be n n-dimensional nonsingulr belin vriety over /; the
modules 53(A), 53(A) have been defined in the course of the proof of 2.7.
We shall define a differential class on A to be a linear mapping of 0(A)
(= k-module of the invariant derivations on A) into 6(A); in particular,
we have proved at the beginning of section 2 that if e 6(A), there exists a
differential class, to be denoted by db, such that (db)D Db; differential
classes of this type are called exact; a differential class ft is closed if DftA
AftD for any D, A e 0(A). If 0 is a differential on A, there exists a dif-
ferential class, to be denoted by cl , such that (cl )D cl (D) for each
D e 0(A); differential classes of this type are said to be principal; if is
closed, so is cl . Finally, a differential class ft is principal if and only if ftD
is exact for each D e 0(A); and the such that ft cl is unique but for
an additive differential of the first kind.
The structure of the k-modules )(A), 532(A) has considerable impor-

tance if p 0, as shown in [6]; not so if p 0; concerning these two cases,
the following results have been proved in [6]: (1) a differential on A is of the
first kind if and only if it is invariant; (2) a differential of the first kind on
A is necessarily closed; (3) any semi-invariant differential on A is of the
second kind; (4) if p 0, any closed differential of the second kind on A is
semi-invariant; (5) (A) has order n; (6) 5).(A)/(A) has order 2n if
p 0. The following result gives a link between closed classes on A and
differentials on A, and incidentally brings the following improvement to
results (1) (6): (7) if p 0, any differential of the second kind on A is
closed, hence semi-invariant. We do not pursue the investigation of the
still open questions concerning the case p 0.

Before proceeding, we shall introduce a new operation in (A), when
p 0, in the following manner: if D e (A), D(/) will be the element A of
(A) such that, for any x e k(A), (nx) D(x); we have

(D())= (D)()

also, D 0 if and only if D belongs to the nucleus of the homomorphism
a such that p . a (see section 1 and result 2.5 of [8]); dually
D() 0 if and only if D belongs to the nucleus of , and (D)(/) 0
if and only if D belongs to the nucleus of p. According to 3.2 of [8] and
its proof, and in the present notations, the subset X’ of X(A, a), consisting
of the elements x which are purely inseparable over k(aA), is such that
X’/t(aA) is dual to the/c-module R/S, where R is the set of the D e (A)
with D 0, and S is the subset of R consisting of the D for which Dx 0
for each x e X’. The operations D --* D() x --* x induce dual operations
in R/S, X’/I(aA) respectively; this implies, in particular, that if x e X’
and Dx 0 for each D e )0(A) such that D 0, then x y e k(aA) for
a suitable y e X’.
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3.1. THEOREM. Let A be an n-dimensional nonsingular abelian variety
over k; for each exact differential class db ( e (A)) on A, there exists a semi-
invariant o )(A), unique but for an additive element of h(A), such that
db cl ; the mapping b -+ induces a homomorphism of the k-module 5(A)
into the It-module ).(A)/)I(A), which is onto if p O, and whose kernel is
0 if p O, or [(A)] if p 0; also, h(A) - )(A) if and only if b 0
when p O, or b a for some a e5(A) when p O. If p O, each dif-
ferential of the second kind on A is closed.

Proof. Assume first p 0, and denote temporarily by ’ the/c-module
of the (not necessarily closed) differentials of the second kind on A. The
reasoning used in the proof of 2.7 can be applied to any o e r; the b e (B(A)
which corresponds to a given has the property that db cl ; the mapping
0 -- b establishes an isomorphism of )’/h(A) + )e(A) into (A)/e(A),
so that, by 2.7, the former has order -<n; but it contains

)(A)/(A) + h(A),

which has order n by Theorems 2.8 and 2.1 of [6]. This proves, at the
same time, that ’ .(A), and that for any b es(A), db cl for
some e .(A). This concludes the case p 0.
Assume now p 0, and let B be a copy of A such that ]c(A) /c(B) as

prescribed by a p.. Result 2.7 and its proof show that for any b e 5(A)
there exists an x X(B, a) such that T15 cl, x; for any element D of a
/Mndependent basis of 0(A), let D’ be an element of )(B) which induces
D in/(A); such D exists by 2.2 and 2.3 of [8]. If A belongs to the nucleus
of a, we have AD’ x D’ Ax 0, since Axe ] by 2.3; also, if P belongs to
the kernel of a, we have aeD x D x D (aex x) 0, again by
2.3; thus D x e ]c(A), and there exists a differential on A such that

oD D’ x

for each i; o is obviously closed, and also semi-invariant, since, for P A,
(ae )D D D ( x x), if Q e a-P; as x x y e/c(A), we
have ae d y. Thus, is semi-ivariant and belongs to (A),
and db cl ; if also db cl ’, then cl ( o’) 0, or e(A).
We must now investigate the kernel of the mapping 5 - -t- (A); if
e (A), that is, if d5 0, in the previous notation we have D x e k for

each i, or also Ax e/ for each A e (B) such that AT e 0(B), since, by
[8], A induces a derivation in ]c(A) if and only if A is a derivation. But
then, since each element of 0(B) is the pt power of some element of )(B),
we have Dx 0 for each D e 0(B). Now, according to the proof of 3.3
of [8], we can write x x’ + x, where x and x" are elements of X(B, ),
respectively purely inseparable and separable over k(A); we have Dx 0
for each D e o(B) for which D 0; hence Dx’ 0 for any such D. But
then, as we saw at the beginning of this section, x y e k(A) for a suitable
y X(B, a); since any x’ of X(B, ), separable over ]c(A), satisfies a similar
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relation, x itself must satisfy a relation of this kind. Therefore, b ap W
cl z for some z e/(A); but then d5 0 implies cl dz O, or d,z I(A);
we claim that this, in turn, implies that cl z e [(A)]. And in fact, after
setting til., we see, by 2.3, that there exists a c’ e (A) such that
Tlc cl z; and this is the same as saying that cl z P for a c e (B(A).
Thus, d5 0 implies b (a -t- c), as claimed.

Finally, if 5 is such that the corresponding o belongs to (A) -[- )e(A),
that is, if d5 cl d x for some x e/c(A), we have d( cl x) 0, or b a
for some a e (B(A), Q.E.D.

3.2. THEOREM. Let A be an n-dimensional nonsingular abelian variety
over t, and let X be an (n 1)-dimensional unmixed cycle on A. Let X

aX be a minimal representation of X; if v is the normalized valuation of
k(A) over ]c whose center on A is X, let x ]c(A) be such that v(x) a for
each i. For each invariant derivation D on A, define the class b b(D) by
setting bX x-Dx - Q(X/A) for each i, and bX Q(X/A) if X is not
one of the X’s. Then" (1) b is a closed class, and the differential class dX
such that, for each D, (dX)D b(D), is independent of the choice of x; (2)
d(X - Y) dX + dY; (3) dX is a closed differential class; (4) if p O,
(dX)(D) [(dX)D]’ for any D.

Proof. Let z be another element of/(A) such that v(z) a for each i;
then z xu, where v(u) 0 for each i; hence, z-IDz x-Dx u-Du,
and v(u-Du) >= 0 for each i. This proves that b is independent of the
choice of x.
Now, let P e rad X, and let, for instance, X, X be those, among

the X’s, which contain P; let x be a generator of the ideal a Q(P/A),
for i 1, .-., r, and set y II x.; then y-Dy represents b at P, and
this proves that b is closed, hence that dX is a differential class, independent
of the choice of x. If on the other hand, for each i, x is such that v(x)
t (Kronecker symbol), and if y II x., then y-Dy represents b at each

-DX, while x x represents (dX)D at each X.. Since

--1y-Dy a x Dx
we conclude that dX a dX, from which (2) follows immediately.

If D, 5 o(A), A(dX)D is represented at each X by

A(x-IDx) x-ADx x-(Dx)(Ax);

this also represents D(dX)A, and this equality proves (3).
We shall now assume p 0, and proceed to prove (4). If x has the same

meaning as in the definition of b, we want to compute
p p pD-(x-Dx) x- D (x -Dx);
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Leibnitz formula (the classical case) gives

DV-l(x-lDx) _x-
where is extended to all the nonnegative values of the ir for which

r ir p. In this summation, the coefficient of x(Dx)1 (Dx) (where
c, >= O, rc c, p) turns out to be

p
c0! c1! c!(2!)(3!)3 (p!)’’

where it is understood that the result must be interpreted mod p, after all
possible simplifications. But then this coefficient is 0 only in the cases
Co "--p- 1, cl c_ 0, c 1, in which case the coefficient is
-1, and co O, c p, c c. 0, in which case it is 1. We
conclude that D-(x-Dx) -x-[-x-IDx + (Dx)] x-Dx
(x-Dx). It follows that (dX)(D) [(dX)D] D-(dX) D qt(A), by
3.1, Q.E.D.

In the following result, will denote the type of equivalence, between
divisors on an abelian variety, which was introduced in [13]; by (16) of [5]
(see also the Appendix at the end of this paper), it coincides with arithmetical
equivalence; and by (19) of [5] and 4.3 of [8], it also coincides with algebraic
equivalence. We have the following two results, which are special cases of
famous results due to Picard and Severi in the classical case.

3.3 THEOREM. Let A be a nonsingular n-dimensional abelian variety over
let X be an (n 1)-dimensional cycle on A. If X - O, there exists a closed
differential o on A such that dX cl o. If p O, the converse is true in the
following form" if dX is a principal differential class, then X - O.

Proof. Let A1, A be copies of A over/, and assume/(A.) k(A A1)
as prescribed by the rational mapping D of A X A1 onto A. which gives the
law of composition on A. Let X, X be the copies of X on A1, A. respec-
tively, and set X’ N-X. (see section 3 of [9] for the definition of N-l).
According to Theorem 4.1 of [4], and its proof, if X 0 there is an element

k(A X A1) such that the divisor of on A X A is X A1
A X X X’; the method of section 7 of [4] shows then that there exists a
closed differential on A such that, if is its copy on A, and ’ is the exten-

-dt XA-PA X 1 ’ if d means con-sion of on A X A,
struction of differential on A X A. Now, is related to X X A W
A X X X’ as x is to X in 3.2; therefore, dX X A A X dX dX’
cl - dt cl X A1 A X cl 1 el ’; this gives dX el , as claimed.
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Suppose now p 0, and dX cl for some differential on A. Let C
be an irreducible curve on A such that, for each irreducible component vari-
ety X of X, (1) the intersection (C n X, A) exists and, if not empty, has
only components with multiplicity 1, (2) C n X and C X. have no points
in common if i j, and (3) each component of each (7 X is simple on C;
if a preassigned C does not have these properties, e C will, for a suitable P e A.
By 1.3 of [6], C exists, since the poles of are among the X if P e X C,
let x be an element of Q(P/A) which generates the ideal ?(X/A) Q(P/A);
if denotes reduction mod ?(C/A), x is a regular parameter of Q(P/C), by
Theorem 5.8 of [2]. If as e/c is the multiplicity of X in X, the fact that
dX cl implies that a x-1 dx o does not have a pole at X it does
not have a pole at P either, since no other pole of x, or x-1, or contains P;
therefore a (vx)- dc x C does not have a pole at P, by 1.5 of [6],
so that a i(P, C X, A) is the residue of C at P. Since the sum of
the residues of C is 0, by the corollary to Theorem 3, Chapter III of [10],
we conclude that (C n X, A) has order zero; but then (16) of [5] states that
X 0, Q.E.D.
The previous result, and (15) of [5], imply:

3.4. COROLLARY. Let A be as in 3.3, and assume p 0; let p be the base
number of A, that is, the number of generators of the group of the (n 1)-dimen-
sional cycles on A, modulo the group of those arithmetically equivalent to zero.
Then p 1 is the smallest integer m having the following property: for any
m (n 1)-dimensional (integral virtual) cycles X, Xm of A, there exist
m integers a, am, not all zero, such that a dX is a principal dif-
ferential class.

The last two results indicate the importance of the additive group
where denotes the additive group of the dX, and ( the additive group of
those dX which are principal; if p 0, (/( is isomorphic to the additive
group of the (n 1)-dimensional cycles on A; if p 0, it is only a homomor-
phic image of it. The elements of G/(P can be interpreted as homomorphisms
of the k-module 0(A) into the /-module 5(A)/5(A), and can therefore
be represented by square matrices of order n with elements in k. We shall
prove the following result:

3.5. THEOREM. Let J be the jacobian, assumed nonsingular, of a curve C of
genus n, without singularities, over l, and let 0 be the (n- 1)-dimensional
cycle on J defined in section 41 of [13]; then dO maps any k-independent basis of
0(J) onto a set of representatives of an absolute basis of 5(J)/5(J).

Proof. Let V, be related to J and C as in the proof of 2.1; let be a
canonical rational mapping of C into J; then O is the set of the IIP(i),
for points P(1), P(n 1) of C. According to section 37 of [13], and

are related by [Q(1) X X Q,(n)] QII Q(i), for any set
{Q(1), Q(n)} of points of C, Q being a fixed point of J, and Q(i) being
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the copy of Q(i) on C we shall select in such a manner that Q Ej

identity of J. Then, for a QeC, aO [Q1 >< C2 >< >< C]
[C1 >< X C_)< Q >< C+1 >< >< C] for anyi. LetR beapoint

of J such that R(IIi qKi) -1 does not belong to W_., in the sense of Propo-
sition 16 of [13], K being a canonical divisor on C; this means that the
points Q(i) of C (i 1, n) such that R II Q(i) are uniquely deter-
mined; we may also, and do, require R to be such that the Q(i) are mutually
distinct; then, R belongs to the intersection of the Q() 0 O, but not to
any a O if Q is not one of the Q(i).
By Proposition 18 of [13], R is simple on each 0; let x be an element of

Q(R/J) such that x Q(R/J) Q(R/J)n 3(O/J). The conditions on the
Q(i) imply easily that R is a component variety of the intersection of the
0, so that {xl, x.} is a set of parameters of Q(R/J). Let Qj(i) denote
the copy of Q(i) on C-, and set S(i,..., i,) Q(iI) X >< Q,,(i,,),
for any permutation {i, is} of {1, n}; then R S(i, i,),
and the S(i, i,,) are all the component varieties of [R], since R is not
fundamental for ; thus, by the ramification theorem for geometric domains
(Lemma 2.2 of [1]), we have

e(Q(S(i i,,)/V) ;x) n! e(Q(R/J) x),
if Y’ is extended to all the permutations. But also, for the same reason,
and by Proposition 15 of [13]"

(n 1)! e(Q(Oii/V); x) n! e(Q(o/J); x) n!,

where 0 C >< >< Cj-1 X Q(i) >< C.+1 >< >< C. thus, x is a
regular parameter of each Q(O/V). Now, S(i,..., i,,) is a component
variety of the intersection (O O;, V), and appears in it with mul-
tiplicity 1, so that, by Theorem 5.8 of [2] and Theorem 2.1 of [1],

e(Q(S(i,..., i,)/V);)x 1;

the previous relation gives then e(Q(R/J); x) 1.
Now, let 0 D e 0(J), and assume (dO)D e ,(J), say (dO)D clj y;

if y e/c, this implies (dOi)D 0 for each i, or x-[1Dx e Q(O/J), Dx e 3(R/J)
for each i. As this contradicts Lemma 5.2 of [4], we conclude that y
so that the divisor of y on J is of the form tb’ O, O’ being an effective cycle
on A, no component of which is O. For a generic P e J we have then
a O’ n C p ( n C onC; but, for a generic P, 0 n C and 0 n C
do not have points in common, and the latter is a nonspecial divisor on C,
by Theorem 20 of [13]. Thus, for any D e 0(J), not zero, (dO)D is not
exact, Q.E.D.
Now, let A be an n-dimensional nonsingular abelian variety over k, and let

B be an m-dimensional abelian subvariety of A; then B is also nonsingular,
by Lemma 1.3 of [4]. Let x, x be elements of Q(E./A) whose images
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mod (B/A) form a regular set of parameters of Q(E/B), and let
xm+l, x} be a regular set of parameters of Q(Ec/C), if C A/B; then
{xl, x} is a regular set of parameters of Q(EA/A), and {xm+, x}
of Q(B/A). Let D (i 1,..., n) be the elements of )0(A) related to
x, x by the relation D x. . (mod (EA/A)); then D, D
are regular at B (see section 1 of [6]), and induce on B a/-basis {zi, ,/x}
of 0(B). Now, if 2 is a differential class on A, by t n B B n t we shall
denote the differential class on B, when it exists, such that A B D.
Let A’ be a nonsingular abelian variety over It, and let be a homomorphism
of A’ into A; the cotrace T-lt is defined, when it exists, as the differential
class on A’ such that (T-)D [(/A’) 2]D’, if D’ is the invariant deriva-
tion induced by D in ](A’), when/(/A’) /c(A’) as prescribed by #. We
have the following result, whose easy proof we omit:

3.6. LEMMA. Let be a homomorphism of the nonsingular abelian variety
B over t into the nonsingular abelian variety A over ]; if X is a cycle on A, we
have T-(dX) dN-X, the conorm N being defined as in section 3 of [9],
provided these expressions are meaningful.

4. Jacobian varieties
We shall proceed to establish a few elementary properties of curves, and

to see how they are reflected on their iacobians. If
curve C over/c, without singularities, the corresponding differential mapping
(called a differential in [10]) will still be denoted by . If is a rational
mapping of C into another curve C’ without singularities, the trace T, of
differential mapping on C, or of a repartition on C, and the cotrace T
differential mapping on C, or of a repartition on C’, are defined in [10]. If
p 0, and c is a differential mapping on C, we can consider the differential
mapping c0 defined as follows" for any repartition/ on C, cot (ct).
If r is the rational mapping of C onto C generated by the embedding/c(C)
[/c(C)], can be interpreted in the following manner" set first
then, if y dc x, set co ydc x. The mapping -- / satisfies
the relations (a) al if a [/c(C)], and
the previous interpretation of provides a formula for its computation"
let x e ;(C) be such that ;(C) is a finite separable extension of ;c(x), and write
co ydcx, y k(C); the set {1, x, x, x-} is a k(C)-independent
basis of /c(C), so that y ’=0 a x, a e /(C). But then, if z- (i -{-1)-a x+ x--0 we also havec dcz a_l dx; from the
definition of T follows readily that T dc z 0, and that

T, av_ xp- dc x am- x’T, x- dc x a x’x-pd,, c x,
so that T a_ dc x, and / a_l/ dc x.

This definition is the one used in the work quoted in footnote 1; the mspping
c -- l/ is there cslled "operstion of Csrtier nd Tste", in recognition of the use msde
of it by these suthors.
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We have l/p 0 if and only if o is exact, and o
1/p

o if and only if
--1y de y for some y e/(C). Moreover, given o, there exists a differential
mapping such that b/ " if dc z ax-1 dc x, with a e k(C), all
the ’s with this property differ by an exact differential from z- dc z
ax- de x. If is of the first kind, so is /; if is of the second kind,
is of the first kind; in fact, for any P e C, let y be such that d c y is regu-
lar at P; then ( dc y)/ / is regular at P; conversely, if / is of
the first kind, is of the second kind" in fact, if P is a pole of , and x is a
regular parameter of Q(P/C), write dc z ax- dc x, a e k(C); then
lp alx- do x; as this does not have a pole at P, we must have

a/*x- e Q(P/C), hence a e [(P/C)], so that ax- do x is regular at P;
this proves that is of the second kind. If {, } is a k-independent
basis for (C), and if is such that* , then {, } is a set
of representatives of a -basis for (C)/(C), so that this -module has
order n, as already proved in [12].
We shall now define a similar operation for differentials of the first kind

on a nonsingular abelian variety A over lc, again under the assumption p 0.
If is a differential of the first kind on A, * shall be the derential of the
first kind on A defined by /*D (D*)* for any D e 0 (A); the rela-
tions ( +) +, (a)/ a//, for a e , are satisfied;
also, /* 0 if and only if D* 0 for each D; and this is the case, by 4.4
of [8], if and only if is exact. 0n the other hand, /* if and only if
D* (D) for each D e 0 (A); this implies D 0 if D* 0 for some
i, so that belongs to the k-module fi of 4.3 of [8]; if D, Dz are the in-
dependent elements of 0 (A) with the property D D, the previous rela-
tion implies D (D)*, so that D eo prime field of , and
--1y d y for some y lc(A); conversely, any of this type satisfies the relation
l/p .

If, in particular, A has dimension 1, it is easily verified that the two defini-
tions of / coincide; in fact, in this case a differential of the first kind on A
is either exact, in which case / 0 in both senses, or of the type ay- d y,
a e k, in which case / al/y- d y in both senses. We intend to inves-
tigate the relation between these two operations for any value of the genus.

4.1. LEMMA. Let J be the jacobian, assumed nonsingular, of a curve C over
without singularities, and let be a canonical rational mapping of C into J;
then the mapping b Tb, for b (J), induces an isomorphism * of
(J)/(J) onto (C)/(C).

Proof. If p 2, this is an immediate consequence of the proof of 2.1,
and of 2.7. If p 2, the result will be proved if we can prove that the ker-
nel of * is 0. According to the proof of 2.1, if this kernel is not 0, it has order
1; let then b be an element of (J), not exact, but such that Tb is exact;
we may assume that no pole of b contains E. Then, in the notations of the
proof of 2.1, T5 cl. x, for an element x of k(V), but not of k(J); we also
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have T;’b clvx2, and 52a5 for a suitable ae/. Ifa 0, this gives
52 clj y, for a y e k(J), so that clv y cl x2, x y , x2e k(J), which
contradicts the known fact that k(V) is a separable extension of ](J). If
a 0, from 52 -t- ab e e(J) follows x + ax z e lc(J). After replacing
b with a-lb, we may assume a 1, so that z x -t- x.
Let J1, J. be copies of J, and assume/(J2) k(J X J) as prescribed by

the rational mapping D of J X J1 onto J2 which gives the law of composi-
tion on J. We have, by 2.5, 5 X Jl-t- J X 51+ T-152 CbxJt for a
suitable e/c(J X J1); hence,

-1(52 + b) J1 -[- J (b + 51) + TD (52 + 52) cbl (t + t);

but the same expression also equals cbz (z + zl + z2), ,so that -- --z-t-zl + z. e k. Since is determined but for an additive element of
it can be selected in such a manner that -t- z + z + z2. Now, set
K k(J)(x), K1 k(J1)(xl) copy of K. The field of quotients of the
direct product K K1 over/ contains/(J J1), hence ](J.), as prescribed
by D; it also contains the element x. x + x -t- t. We have x2 -[- x.
x -- x + x -t- x -t- -- z + z -t- -t- z., so that K2
lc(J2)(x.) is isomorphic to K. If F is a variety over k such that ](F) K, the
embedding/(F) k(F F1) establishes a normal law of composition on F"
to prove this, it suffices to prove the associativity, and in order to do that we
must prove that, for a generic set of points {P, Q, R} of J, we have (with
obvious meaning of the symbols) t(P X Q1) + t(PQ R) + t(Q R1)
t(P X Q1 R1) 0; now, this relation is true if is replaced by + z
zl z2 consequently the above expression equals either 0 or 1; but it equals
0 if P E, hence also for generic P. Thus, by the main result of [3], F
may be selected to be a group-variety, hence an abelian variety; the em-
beddings ](J) k(F) /(V) generate a rational mapping b of C into F,
and a rational mapping of F onto J, which will necessarily be of the form
f Pa, for a P e J and a homomorphism a of F onto J; we also have

fh Pa. But on the other hand, by Theorem 21 of [13], there exist a
homomorphism /of J into F, and a Q e F, such that b Q,, from which it
follows that Pa(Q), or that qR P(aQ) (a,pR) for any R e C. This
implies P(aQ)= E. and a, j; as a has degree 2, this is impossible.
Hence the class 5 cannot exist, Q.E.D.

4.2. THEOREM. Let J, C, q be as in 4.1, and let 0 be as in 3.5; for any
(J), let oo* be the element of h(C) such that (* X J) q

(C X co) . Let ReJ be such that qC is not a subvariety of (rO 0".
Then, for any D )o(J), we have

o*T-(dO*)D coD;
in particular, the mapping co-- co* is an isomorphism of )l(J) onto (C);
and if p O, we have

(co:)I/p
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In the previous statement, for any co*e )I(C), and each class on C,
o*b means o*, being any repartition such that P - Q(P/C) bP for
all P e C.

Proof. We shall assume the genus n of C, which equals dim J, to be > 1,
as otherwise the proof is trivial. We shall see first how the second and third
statements follow from the first. The mapping o -+ co* is a homomorphism
of )l(J) into )I(C); if co belongs to its kernel, that is, if o* 0, the first
statement implies coD 0 for each D, hence co 0; the homomorphism is
thus an isomorphism, and it must be onto, since l(J) and 1(C) have
the same order n. We also have, if p O, (o*)/T-(dO*)D
co.[T-(dO.)n]}/ co*Ti[(dO*)D]p /p [co*T(dO*)n’]/ (con’)/’
co/D (co1/)*T-(dO*)D by 3.2; hence (co*)/ (co/)* by 3.5 and 4.1.
We shall now proceed to prove the first statement.

In order to do so, we shall, first of all, select in such a manner that, if

’K is a canonical divisor on C, the relation IK E is satisfied; in
the second place, we shall identify C with C. Moreover, we shall select a
nonspecial divisor

__
Q(i) on C, with the Q(i) mutually distinct, and take

R II Q(i); this R satisfies the condition stated in the theorem, by Theorem
20 and Proposition 16 of [13]; the choice of R is immaterial, since the (dO*)D,
for all admissible R’s, are equivalent to each other. Theorem 20 of [13]
also implies that (0" c, C, J)

_
Q(i). In the course of the proof of 3.5

we found that R is a simple component of the intersection ((1)0 a
n Q()0, J). Set P(i) R(Q(i))-1= Ii Q(j); it is easily verified that

-1 J) By Theorem(ji Q()O, J) p() C, so that C ([’) p()()O,
20 of [13], the cycle ae O contains C if and only if P e W_. the previous
result tells us that one can find n 1 among these cycles in such a man-
ner that their intersection is precisely C, with multiplicity 1; it also tells
us that these n 1 cycles can be found by first fixing an arbitrary i, and
then taking for P all the points P IIy#.r (Q(j))-I, when r ranges over
the numbers 1,... i 1, i W 1,... n; we shall set 0 a O.
The homomorphism -/b is such that -/t P p-1 for each P e J; for any

set A of points of J, A will denote -/b A; also, -/i induces an automor-
phism of k(J) over ]; for any x ]c(J), x’ will denote its correspondent in this
automorphism. Our choice of implies, by Proposition 19 of [13], that
O O. If P e J, andX is an (n 1)-dimensional irreducible subvariety of J
containing P, we shall say that the element x k(J) represents X at P if
xQ(P/J)- Q(P/J) (X/J). It is possible to select a e(J) which
represents 0 at all the (P(i))-, and all the Pi (Q(j))-I, for mutually dis-
tinct j, i, r. Then x at represents O* at all the (P(i))-R Q(i); also,
x a represents O’r at all the Q(j). By what precedes, for each i
the set {x, x,_, x,+, x, x} is a regular set of parameters of
each Q(Q(j)/J); if is the homomorphic mapping of Q(C/J) onto It(C)
whose kernel is (C/J), rx is a regular parameter of each Q(Q(j)/C). For a
D e 0(J), a representative of TI(dO*)D C (dO*)D at each of its pos-
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sible poles, that is, at each Q(j), is (rx)-lrDx; let h(D) be the element of
k to which .Dx is congruent rood (Q(i)/C), or also to which Dx is congruent
mod (Q(i)/J). The mapping D-- {hi(D), ..., h.(D)} is a homomor-
phism of k-modules; if hi(D) 0 for each i, it is known that C n (dO*)D 0;
in this case, by 4.1, (dO*)D O, and finally, by 3.5, D 0; thus, the previous
homomorphism is an isomorphism onto.
We claim that if h(D) 0 for all values of j except one, say j m, then

Dx,r (Q(m)/J) for each r m. And in fact, the condition implies that
D(R e (Q(j)/J) for j m, or that Dte ((p(j))-l/j) for j m, so that
Dr’ -(Dt)’e (P(j)/J) for j m, or finally Dx, (Q(m)/J) if j m,
as claimed.
Now, given o e l(J), we have * o n C; given the previous D, write

o m y djx - y,, djx; then y e Q(Q(j)/J) for any j, o*
(rym) d c rx, and *[C (dO*)D] sum of the elements of tc to which
(ry,)Dx is congruent, mod ?(Q(j)/C), for j 1, n; this is also the sum
of the elements of ]c to which y, Dx is congruent rood (Q(j)/J). Since
h(D) 0 for j m, that sum reduces to h,(D), y,, if vm denotes reduc-
tion of Q(Q(m)/J) mod (Q(m)/J). Thus, *T(dO*)D-- h,,(D)v, y,.
On the other hand, D, being an element of ], equals ,,, (,, y),, Dx,
h,(D)r,,y, but we have proved that Dx, O, so that D
h,(D),y, *T-(dO*)D. The first statement of the theorem is thus
proved for any D of the previous type. Since we have seen that 0(J) has a
k-basis consisting of such D’s, the statement is proved for any D, Q.E.D.

Remar]c. If A, X’, , R, S have the same meanings as in the paragraph
preceding 3.1, and if A is assumed to be the jacobian of a curve, by 3.5, 3.2,
and 2.3,. X/k(aA) is isomorphic to the k-module of the D e 0(A) such
that D 0 for some positive integer i; .hence R/S is isomorphic to the
module of the o e 2)(A1/) such that /* 0 for some positive integer i.
Moreover, this isomorphism is such that if D -t- S and correspond to each
other, so do D(/) W S and 1.

Result 4.2 allows us to reiistablish in general a classical formula which
shows the effect on the differentials of an algebraic correspondence between
curves; the formula was given in [11] for the differentials of the first kind, and
for "separable" algebraic correspondences; it was reiistablished in [6] (for-
mula 2.10) for differentials of the second kind, in the case of characteristic
zero; we shall now extend it to the differentials of the first kind, for any alge-
braic correspondence.

If is a rational mapping of a curve C over k, without singularities, into a
nonsingular abelian variety A, for any e (A) we shall denote by T
the element o* e (C) such that (* X A) (C X ); thus, the

* of 4.2 would be denoted by T. On the other hand, let M be an al-

In formulae 2.9 and 2.10 of [6], the symbol should be replaced by ; the same
applies to the formulae found in lines 19 and 20 on the same page 102. The r found
on line 12 should be a II.
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gebraic correspondence between two curves C, C1 over k, without singu-
larities, every component of which has dimension 1, and write

M a Ms
where each M is irreducible, and the ai are rational integers. Each M
is an algebraic correspondence between C and C1 if it operates on the whole
C and the whole C1, we may assume k(C), k(C) to be subfields of k(Mi)
as prescribed by Mi in this case, for any e 1(C), let ’ be the cotrace of
from k(C) to k(M), and denote by i the trace of ’ from k(Mi) to k(C);

if M does not operate on the whole C and the whole C, set 0; we shall
define then M*() to be ’ ai i. We have the following result:

4.3. THEOREM. Let C, C be irreducible curves over k, without singular
points; let J, J be their respective jacobians, assumed nonsingular, and let
q be canonical rational mappings of C, CI into J, J respectively. Let M be an
algebraic correspondence between C and C every component of which has dimen-
sion 1, and let be the homomorphism of J into J related to M as in Theorem

--122 of [13]. Then, for any o e h(J), we have To M*(T-o).
Proof. If M ’ aM as before, and if # is related to M as g is to

M, we have g ai g in the additive notation; the reasoning which pre-
cedes 2.5 of [6] can be repeated, and shows that TI i a T;- ; on
the other hand M*( -1 . -1TI) aM (TI) by the definition of M*.
Thus, the result will be true if it is true for each M. We can accordingly
assume M to be irreducible. If M does not operate on the whole C and the

--1whole C, we have g 0, T; 0, and M*(To) O, so that the result
is true in this case. We now claim that the result is true for an irreducible M
which operates on the whole C and the whole C1, if it is true in the special
cases k(M) k(C) and k(M) k(C). And in fact, let R, S be the rational
mappings of M onto, respectively, C and C1, generated by the embeddings
k(C) k(M) and k(C) k(M) respectively, prescribed by M; let p, a be
related to R (from C to M), S (from M to C) as g is to M, and let A, be
respectively the jacobian of M, assumed nonsingular, and a canonical rational
mapping of M into A. Then g ap, TI T-()0 T-’, if ’ is
the extension of aA to k(A) when k(aA) k(A) as prescribed by
since the result is assumed to be true for R and S, we also have T10
R*(TX’) R*(T-) R*S*(T) M*(T-), as claimed. We have
therefore reduced the proof to proving the theorem in each of the following
two cases:

Case 1. M is generated by an embedding k(C1) k(C). In this case,
Tlo Tlo/, if ’ is the extension of #J to k(J) when
as prescribed by ; and it is readily verified that M*(To) is the extension
of T-[ to k(C) (when T- is considered as a differential, not a differential
mapping), and that consequently T0 M*(T).

Case 2. M is generated by an embedding It(C) k(C). If p 0, we
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can then write It(C) k(Cr) (C1) for a suitable nonnegatLre integer
r, the first extension being separable; then, by the same argument used before,
the result is true in Case 2 if it is true in each of following two subcases"

Subcase 1. ](C) k(C) again, the result is true for any r if it is true
for r 1; assume then r 1. In this case, any entity al related to C has a
"replica" a related to C, which is obtained by the substitution x-- xp for
any x e/c(C). The homomorphism of J onto J is such that ti.jl pb,
and we also have J J’; we shall extend to J and J1 the notion of replica.
If o is now denoted by o, since it is related to J1, let 2 be the extension of
0 to ](J), when (J) ](J) as prescribed by . If D e 0(J), D induces
D in ]c(J), by [8]; hence, 2D olD, so that 2 oIp, being the replica
of ol therefore, Tol- Ti/p. On the other hand, M*(T-o) is the
trace, from ]c(C) to It(C), of T-, and this coincides with b/, if is the
replica of T-o] now, h is necessarily T-o, and 4.2 asserts that (To)p
T-o1/, as claimed.

Subcase 2. r 0, that is, (C1) is a separable extension of k(C). Let K
be the smallest normal separable extension of k(C) which contains a subfield,
over ](C), isomorphic to ](C1) over It(C), and let B be a model of K over
without singularities. Then M{C} is a point A of (C)k(c), whose extension
A over K is the sum of finitely many distinct rational points A, A,
of (C1) let M be the rational mapping of B onto C such that M{B} A,
and set b M, so that is a rational mapping of B into J. Then

T TI w, where T indicates cotrace from
k(C) to K ](B) when ]c(C) K as prescribed by M. Now, b[B}
[(){C}], so that h D, if D is the rational mapping of B onto C gener-
ated by the embedding It(C) K; therefore, To is the extension to K of
TI, while Z TTT- is the extension to K of M*(T[o). Since these
extensions coincide, and K is separable over ](C), we must have To
M*(T;:), Q.E.D.

Results 4.2 and 4.3 could be the starting point for extensive developments
of this section; we shall only mention the possibility of defining a "conucleus"
of each purely inseparable homomorphism, constructed with the closed
classes as the nucleus is with the invariant derivations; one could show that,
on a jacobian variety, the interchange of the nucleus with the conucleus cor-
responds to the Rosati involution.

Appendix

Result (16) of [5] reads"

THEOnEM. Let A be a nonsingular n-dimensional abelian variety over the
algebraically closed field ]c, and let X be an (n 1)-dimensional cycle on A;
then X =- 0 if and only if ord (X C, A) 0 for each irreducible curve C on A
for which (X C, A) exists.
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This means also that the equivalence --, on an abelian variety, coincides
with arithmetical equivalence. The proof given in [5] utilizes the fact that
p(X) 0 implies h 0, in the notation of section 72 of [13]; as this result
is valid only when A is simple, the proof given in [5] applies only to this case;
it was remarked in footnote 6 of [7] that a standard method shows that if
the result is true when A is simple, it is true for any A. Actually, it is simpler
to give a direct proof valid for any A, and we shall proceed to do so now.
The condition X --- 0 implies h 0 for any curve F on/c, without singulari-
ties, and any homomorphism h of the jacobian Jr of 1 into A, by Corollary
1 to Theorem 30 of [13]; h 0 implies, in turn, T(hh) 0, if T (replacing
the of [13]) denotes construction of trace in the semisimple algebra of the
endomorphisms of Jr, according to a certain faithful representation. From
this, and by Theorem 31 of [13], follows d(h, X) 0, or also

ord(CnX, A) 0,

if F is taken to be birationally equivalent to a given C, and h is the linear
extension, from Jr to A, of the birational mapping of F onto C.

Conversely, assume (C n X, A) to have order zero whenever it exists; let
A be the homomorphic image, in a homomorphism h, of the jacobian J of a
curve F on/c, without singularities, and let be a canonical rational mapping
of F into J; can be selected in such a manner that (hF n X, A) exists, in

Twhich case it must have order zero; this implies d(h, X) 0, hence (hxh) 0
by Theorem 31 of [13]. If a is any endomorphism of J, set ha; we must
have again d(, X) d(h , X) 0, so that, by Proposition 20 of [4],
T(h) 0, or T(hxha) 0. Thus, h is an element of a semisimple al-
gebra, whose product on the right by any other element has zero trace, ac-
cording to a certain faithful representation; by a wellknown result, this im-
plies hh 0, or hhJ Ej; since hJ A, this means hA Ej, or
h 0. Theorem 30 of [13] shows then that X 0, Q.E.D.
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