
ON SUBDETERMINANT$ OF DOUBLY STOCHASTIC MATRICES

BY MARVIN MARCUS

In this note we obtain an inequality for the euclidean norm of an n-square
complex matrix A (A), (Theorem 1). This is used to give lower bounds
for the rank of A and in particular for the rank of a doubly stochastic matrix.
We then distinguish (Theorems 2 and 3) a certain simple set of matrices
among all doubly stochastic matrices in terms of possible values for the sub-
determinants. In particular a characterization of the permutation matrices
as a subclass of doubly stochastic matrices is given in terms of bounds on the
subdeterminnts.
We proceed to describe some notation to be used throughout. A typical

r-squre subdeterminnt of A will be denoted by d(A), det A will be the de-
terminant of A. The sum over ll () choices of some function of the d
will be denoted by

(d(A)),

and the norm of A is given by

A d(A) , A .
The ith row vector of A is A(), nd the j column vector is A (). The rnk
of A is p(A); I is the k-squre identity mtrix; 0 is the -squre mtrix of
zeros; A B is the direct sum of A nd B; nd the conjugate transpose of
A is A*. A doubly stochustic (d.s.) mtrix A is one which stisfies

A 1, i 1, ...,n

A= 1, j 1,...,n
i=l

A O, i,j 1, ..., n.

The rt symmetric function of the letters a, a, is E,(a, a,).
In [4] H. Richter proved for n rbitrry n-squre complex mtrix A that

(1) (det A) A- ]]2 n-(-)j[ A []2(n--1)
with equality if and only if AA* is a scalar matrix.
The first result is an extension of (1).
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TEOREM1. If p(A) k, then for l < r <=
(2) d(A) 12

_
()l-r]! A

with equality if and only if A 0 or

(3) A V(h O,_,)W,

where a > 0 and W and V are unitary.

Proof. The case r 1 of (2) is obviously equality and is hence excluded
from the proof. Let Cr(A) denote the rh compounded matrix of A. Then
the elements of Cr(A) are the numbers d(A) arranged in doubly lexicographic
ordering according to row and column selections of the subdeterminants.
The eigenvalues of Cr(A) are the () products of the eigenvalues of A taken r
at a time [5; p. 67]. Let the eigenvalues of AA* be

2
a => a_ >= a>O a+ a,,, [ k<-n._

We compute that

Y d(A ldt(C,(A))[ 1[ C,(A)I!
trace C,(A)C* (A) trace C,(AA*)

(4) S,(a, ,a) E,(a[, ...,
k_-< ()/ Et(,, a) ()/c (trace AA

()/-]] A ]].
The inequality sign in (4) is strict unless [3; p. 52]

O/1 O/k

By the polar factorization theorem and the spectral theorem for [-Iermitian

matrices, we conclude that

A (A*A)lIU V(alk 40-k)V-IU V(aI - O,_k)W,

where W and V are unitary.
On the other hand if (3) holds, then AA* has eigenvalues a

0, and the inequality in the sequence (4) isO/k 0/ Ok+l
equality.

ConoAnV 1. If 1 < r <= n, then

(5) ldr(A) <-_ ()n-r[[ A :,
with equality if and only if either A 0 or there exists an a > 0 such that
a-A is unitary.

Proof. Let p(A) lc, and note that lc < n and r -<_ k imply that

(6) ()/c < ()n-r.
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If r > k, the left side of (5) is 0, and the inequality is strict unless A 0.
The weak form of (5) then always follows from (2) and (6). If we have equal-
ity in (5), then

ldr(A) 12 (:)n-rll A 2r (r)--rll A 112r
->_ [dr(A) 2.

Hence k n, and by (3) we conclude that

AA* I.
Richter’s result follows immediately from Corollary 1 upon setting

r n 1. Of course, if A 0 is singular, then Theorem 1 implies the gen-
erally sharper estimate (since n-(n-2) > (n 1)-(n-l) for n >- 3)"

d,-l(A) "<- (n 1)-(n-1)11 A (-1),
with equality if and only if p(A n 1 and AA* has n 1 equal positive
eigenvalues and one zero eigenvalue.

CO.ROLLAnY 2. p(A >= (1 211 AII-4’ d2(A 12)-1.

Proof. Ifp(A) 1, thend2(A) 0. Ifp(A) __> 2, then setr-- 2in(2).
We next state and prove two elementary results that will be used to obtain

a characterization of a certain class of d.s. matrices (Theorem 2) by means of
inequalities on the subdeterminants.

LEMMA
then
(7)

If S is a d.s. n-square matrix and T is an r-square submatrix of S,

(det T) =< 1.

Proof. Let 7(T) denote the sum of the elements in the ith row of T. It is
known that max 7(T) 7 is a bound for the absolute values of the eigen-
values of T. It follows from the definition of T that , =< 1, and hence (7)
is proved.
The question then arises: precisely how many r-square submatrices of a

d.s. matrix can satisfy the equality in (7)? Before considering this we prove
one further elementary fact.

LEMMA 2. If S is an m-square d.s. matrix and p(S) 1, then S m-lJ,
where ,1 is the m-square matrix all of whose entries are 1.

Proof. If p(S) 1, then every column is a scalar multiple of the first
column of S

S() a;S(1), j 1,...,m.
But then

Hence
i=1

j l,...,m,
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and

(8) Y’ S mS 1.

The result follows from (8).

THEOREM 2. Let A be an n-square d.s. matrix with p(A) k. Then for
every r, 1

(9) d(A) <= ().
The equality in (9) holds for some r if and only if A is of the form

A P n J)Q,ne J
where P and Q are permutation matrices and n n > 0 are integers
satisfying

Proof. Set T AA’.
eigenvalue c of T satisfies

n=n.
Now T is d.s., and it is known [1; p. 75] that any

a<l.=

The inequality (9) then follows from (2) since p(T) p(A) lc implies that
only/c of the o are different from zero;

’ d(A) <= ()- A ()- a ().

Now suppose equality holds in (9). If 0 < < 1 for some , we conclude
that

and hence that
() di(A) < ().

Thus the/c nonzero eigenvalues of T are 1. Now if/ 1, then by Lemma 2
A n-lJ, and the proof is complete. Now assume ]s > 1. Then the
dominant eigenvalue, 1, of T has multiplicity greater than 1, and by a theo-
rem of Frobenius [2], proved in a simplified manner by Wielandt [6], T must
be decomposable. That is, there exists a permutation matrix P1 for which

The author is indebted to Dr. Morris Newman and Dr. Olg Taussky-Todd for
several valuable conversations concerning this result.
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where T is n-square indecomposable, nl => >- nk, and the elements in
the lower triangle of P1TP, not in any T, are zero. But the symmetry of
T implies from (10) that

(11) PITP’I PAA’P; T14 T24 4 Tk.

Since the eigenvalues of each T are 1 or 0, and since each T is indecompos-
,able, it follows that p(T) 1 for 1, ..., k. Hence by Lemma 2

Thus (11) becomes

(12) nk J,,n2

where we set PIA S, and S is d.s. since A is. We next show that the equa-
tion (12) can be satisfied for a d.s. matrix S if and only if

(13) P:(n J n J)Q:,

where P and Q are permutation matrices. We proceed by induction on k.
We assume the result true for 1. Let r be the largest integer m for which
there exist m nonzero elements occurring in one of the first n rows of S.
Let row l, 1 l n, have r nonzero elements, and by permuting the
columns of S (multiplying S on the right by a permutation matrix P) we
may assume that row l of SP has its first r entries positive and every entry
thereafter 0. Now choose Q, a permutation matrix, so that QSP has the
l row of SP as its first row and Q affects only the first n rows of SP. How-
ever

(QSP)(QSP)’ QSPPaS Qa QSS Qa

Q(nJ n J)Q.

But Qa affects only the first n rows, and Q’a ffects only the first n columns,
both of which operations leave Jni invariant. Hence QSP satisfies (12).
Consider the form of Q3SP3

811 812 81rl 0 0
821 822 82rl 82(r1-1) 82n

8nll 8nlrl 8nl(rl+l)l
(14) QaSP3

We assert first that the elements in rows n - j, j __> 1, and columns 1, 2,

We remark that although the first row of (14) has the largest number of nonzero
elements among the first nl rows, it does not immediately follow from this alone that
the upper right block in (14) is zero. As the proof shows, however, this is the case.
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r of QaSP are 0. For, from the choice of rl we see that

((QaSPa)(QaSPa)’) lnl+j) (SS’) 1(1+

=0

81t 8(niTj)t

and sit > 0 for 1,...., rl. Hence s(.l+.)t 0 for 1 -_< t-<_ rl and
j => 1, and the lower left block in (14) is 0. We next assert that nl rl
for since QaSPa is d.s.,

nl >-_ si, si 1 rl.

On the other hand, since the 1, 1 element of SS’ is l/n1, it follows that

( ) s1 s <= rl
\a=l =I

nd hence n ft. Moreover we claim that s=t 0 for 1-< a__< n,
> rl. For suppose not. Then for t least one , I __< -< nl,itfollows

that
’1

and hence
nl

i-----1

Thus we see that the elements beyond the rl n column and in rows
1, nl must be zero.
Now let T be the hi-square d.s. upper left block in (14), and let R be the

d.s. lower right block. Then

(15)

Hence
(16)
and

SS’ (QSP)(QaSP)’ (T 4 R)(T’ - R’) TT’ 4 RR’

--1 --1
nl Jn -- nk

nl Jnl

(17) RR’ -1 -
As above in the case k 1, we conclude from (16) that

(18) T -1
nl Jnl.

Now by induction we obtain from (17) that

(19) R -1 -P(n Jn n Jn)Q,
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where P4 and Q4 are (n nl)-square permutation matrices. Thus

Q3SPa T - R nIJ,l P(nJn - nk-lJ,,)Q

(I,1 P)(n-[J,l nlJ,. - n-IJ,)(I, Q).
Hence

(20) A P(n-[1J,l 4"" -nJ)Q
It is clear from (20) that since P and Q are permutation matrices, we may
conclude

(21) --1 --1d(A) d(n J 4 - n J)

Now if T is an r-square submatrix of -1
nl J -1

nk J, then if
det (T) 0, we must conclude that T TI - Tit, where T, is a
submatrix of J(). It is also clear that if T, is a 2- or more-square matrix,
then det (T) 0, and if T is a single element then T (nT). Hence

det (T) IX n-,
and there are precisely nl.., n such determinants possible.

(22) d(A) E (n...n,) (n-2. -2n,) E_
i<...< ir <=k

_
i<...< irk

and the equality in (9) holds. This completes the proof.

COROLLARY 3. If A is d.s., then

(23) p(A) >- 1/2 - 1/2{1 q- 8[ d(A)}/.
Proof. If p(A) 1, then d.(A) 0 and it is clear that (23) is equality.

In general let p(A) /c. We conclude from Theorem 2 that

d(A) <- (),
or

Set
-2 )>__o.d(A

z ),d (A
with roots a < .
(z) < 0 in (a, ).

So

Then if a < 2 -< /, we can conclude that / => / since
But

d(A) < 2.

1/2+1/2{l+S )}d(A
THEOREM 3. Let A be an n-square d.s. matrix with p(A) tc. Then for

any r, 1 <- r <= tc, A has at most () r-square subdeterminants of value 2=1.
There exists an r for which A has () r-square subdeterminants of value 2= 1 if
and only if n and A is a permutation matrix.
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Proof. From the inequality (9) it is clear thut d,(A) =El can hold for
at most () r-square subdeterminants of A. On the other hand if the equality
holds for () values for some r, then by Theorem 2

(24) A P(n-[J 4 " - > > > > O,n J)Q; n n n
P and Q peuation matrices. It is clear from (24) that if there are to be
any r-square subdeterminants of A with value 1, we must have

where 7 r- 1 and 7 - 1. Now if 7 k- 1, then -7 1,
and hence n, in which case we are finished. So assume < k- 1.
Now there are precisely () r-square subdeterminants of value 1 in

nJ
and every other one is strictly less than 1. But < k- 1, and hence
() < (), a contradiction. Hence k n, and the proof is complete.

Added in proof. Professor Ky Fan communicated the following result to the
author while the present paper was in press. It constitutes an extension of
Theorem 2 above.

Let A be a nonnegative rectangular matrix of ran k 1. Then AA’ h
no dgenvalue different from 0 or 1 if and only if, after deleting all entically
vanishing rows and columns of A, the remaining submatrix B can be brought by
permutation of rows and columns to the form

B B B,
where each B is a rectangular positive matrix of ran 1 and norm 1.

We wish to thank Professor Fan for permission to publish this result here.
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