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Abstract Westudymoduli spaces of sheaves over nonprojectiveK3 surfaces.More pre-

cisely, letω be aKähler class on aK3 surfaceS, let r ≥ 2be an integer, and let v = (r, ξ, a)

be aMukai vector on S.We show that if themoduli spaceM of μω-stable vector bundles

with associated Mukai vector v is compact, thenM is an irreducible holomorphic sym-

plectic manifold which is deformation equivalent to a Hilbert scheme of points on a K3

surface. Moreover, we show that there is a Hodge isometry between v⊥ and H2(M,Z)

and thatM is projective if and only if S is projective.

1. Introduction

Moduli spaces of sheaves on projective K3 surfaces have been studied since the

1980s. Fujiki [9] considered the Hilbert scheme Hilb2(S) of two points on a K3 sur-

face S. His result was widely generalized by Beauville [4], who studied Hilbn(S)

for any n ∈ N, showing that it is an irreducible hyper-Kähler manifold; that is,

a compact Kähler manifold which is simply connected, is holomorphically sym-

plectic, and has h2,0 = 1.

Moduli spaces of μ-stable sheaves are a generalization of Hilbert schemes

of points, and they have been extensively studied when the base surface S is

a projective K3 surface. Mukai [28] showed that, on the moduli space M of

simple sheaves of Mukai vector v = (r, c1(L), a) (i.e., of rank r, determinant L,

and second Chern character a − r), there is a natural holomorphic symplectic

form associated to the one on S. This moduli space M is a nonseparated scheme

containing as a smooth open subset the moduli space Mμ
v (S,H) of μH -stable

sheaves (with respect to some ample line bundle H on S) of Mukai vector v;

Mukai’s construction thus produces a holomorphic symplectic form on Mμ
v (S,ω).

If H is generic and r and L are prime to each other, then Mμ
v (S,H) is a

projective holomorphically symplectic manifold. Moreover, it is an irreducible

hyper-Kähler manifold deformation equivalent to a Hilbert scheme of points on

S (see [30], [43]).

If S is a nonprojective K3 surface and ω is a Kähler class on it, one still

defines the notion of μω-stable sheaf and constructs the moduli space Mμ
v (S,ω)
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of μω-stable sheaves of Mukai vector v. In [36] it was shown that Mμ
v (S,ω) is

a smooth complex manifold carrying a holomorphic symplectic form. If ω is

generic and r is prime to c1(L), then Mμ
v (S,ω) is even compact (see Section 2.2

for the precise notion of genericity we use for Kähler classes, called v-genericity

in analogy to the projective case).

It is natural to ask if Mμ
v (S,ω) is irreducible symplectic and, in this case,

what its deformation class is. We first show the following.

THEOREM 1.1

Let S be a K3 surface, and let v = (r, ξ, a) ∈H∗(S,Z), where ξ ∈ NS (S), r > 1

prime to ξ, and v2 ≥ 0. Suppose ω to be v-generic.

(1) The moduli space Mμ
v (S,ω) is a compact, connected complex manifold of

dimension v2+2 which is holomorphically symplectic and deformation equivalent

to a Hilbert scheme of points on a projective K3 surface.

(2) On H2(Mμ
v (S,ω),Z) there is a nondegenerate quadratic form, and there

is an isometry between H2(Mμ
v ,Z) and v⊥ if v2 > 0 (resp., v⊥/Zv if v2 = 0).

The condition v2 ≥ 0 implies that Mμ
v (S,ω) �= ∅ (see [2], [33], [23]). As recalled

above, if S is projective and ω = c1(H) for a generic ample line bundle H , we even

know that Mμ
v (S,ω) is an irreducible symplectic manifold. To prove Theorem 1.1,

we study the two remaining cases: S is projective and ω /∈ NS (S); and S is

nonprojective.

When S is projective and ω is not the first Chern class of an ample line bun-

dle, we show that there is a v-generic ample line bundle H such that Mμ
v (S,ω) =

Mμ
v (S,H). This is done by showing that the v-chamber in which ω lies intersects

the ample cone and that moving the polarization inside a v-chamber does not

affect the moduli space. When S is nonprojective, the strategy to prove Theo-

rem 1.1 is to deform Mμ
v (S,ω) along the twistor family X −→ P1 of (S,ω): even

if the sheaves in Mμ
v (S,ω) do not necessarily deform along such a twistor family,

we can still deform them as twisted sheaves.

We then provide a construction of a relative moduli space of stable twisted

sheaves extending Yoshioka’s construction [42] to nonprojective base manifolds,

and we show that we can connect the K3 surface S to a projective K3 surface S′

only by means of twistor lines, in such a way thatMμ
v (S,ω) deforms toMμ

v (S
′, ω′)

for some v-generic polarization ω′ on S′. Theorem 1.1 holds true even if we replace

Mμ
v (S,ω) with a moduli space of stable twisted sheaves.

The nondegenerate quadratic form on H2(Mμ
v (S,ω),Z) is defined as a qua-

dratic form on the second complex cohomology by using the same definition of

the Beauville form, the only difference being that we have to fix one holomorphic

symplectic form to define it, because a priori we have h2,0 ≥ 1. We then show

that it is nondegenerate. The construction of the isometry with v⊥ is standard

and uses the same strategy as in the projective case.

As one might see from the statement on Theorem 1.1, there is only one

missing property for Mμ
v (S,ω) to be an irreducible symplectic manifold; namely,
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we do not know if Mμ
v (S,ω) is Kähler. This is a long-standing problem: on the

open subset Mμ−lf
v (S,ω) of Mμ

v (S,ω) parameterizing locally free sheaves, we

have a natural Kähler metric, the Weil–Petersson metric (see [19], [20]), but at

present nothing is known about how this metric could extend to a Kähler metric

on the whole Mμ
v (S,ω).

The strategy to prove Theorem 1.1 together with [13, Theorem 3.3] may

be employed to obtain another proof of the existence of a Kähler metric on

Mμ−lf
v (S,ω) and of a description of a twistor family for such a hyper-Kähler

metric. However, as pointed out to us by Daniel Huybrechts, this strategy does

not allow one to show that Mμ
v (S,ω) carries a Kähler metric too. Let us remark,

however, that there are choices of Mukai vectors for which Mμ
v (S,ω) coincides

with Mμ−lf
v (S,ω) and is therefore a compact irreducible hyper-Kähler manifold.

Moreover, such compact moduli spaces of stable locally free sheaves may acquire

any positive even complex dimension (see Proposition 4.27).

As an application of the previous result, we will show the following projec-

tivity criterion for the moduli spaces of slope-stable sheaves on a K3 surface.

THEOREM 1.2

Let S be a K3 surface, and let v = (r, ξ, a) ∈H2∗(S,Z), where ξ ∈NS (S), r ≥ 2,

(r, ξ) = 1, and v2 ≥ 0. If ω is a v-generic polarization, then the moduli space

Mμ
v (S,ω) is projective if and only if S is projective.

2. Moduli spaces of stable sheaves

In the following, S will be a K3 surface, possibly nonprojective. If F is a coherent

sheaf on S, we let the Mukai vector of F be

v(F ) := ch(F ) ·
√

td(S) ∈H2∗(S,Z).

If vi is the component of v(F ) in H2i(S,Z), we have v0 = rk(F ), v1 = c1(F ),

and v2 = ch2(F ) + rk(F ) = 1
2c

2
1(F )− c2(F ) + rk(F ), which will be viewed as

an integer (i.e., we fix an isomorphism H4(S,Z)� Z).

We recall that on H2∗(S,Z) we have a pure weight-two Hodge structure and

a lattice structure with respect to the Mukai pairing (see [15, Definitions 6.1.5,

6.1.11]): the obtained lattice will be referred to as the Mukai lattice, and we

will write v2 for the square of v ∈H2∗(S,Z) with respect to the Mukai pairing.

Explicitly, v2 = v21 − 2v0v2.

When v0 �= 0 we define the discriminant of v, or, respectively, of F in the

case in which v = v(F ), as

Δ(v) :=
1

2v20
v2 + 1.

This coincides with the definition of [2] for instance, where

Δ(F ) =Δ
(
v(F )

)
=

1

rk(F )

(
c2(F )− rk(F )− 1

2 rk(F )
c21(F )

)
.
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2.1. The stability condition
Let g be a Kähler metric on S, and let ω be the associated Kähler class, which

will be called a polarization on S. If F ∈ Coh(S) has positive rank, then the

slope of F with respect to ω is

μω(F ) :=
c1(F ) · ω
rk(F )

.

DEFINITION 2.1

A torsion-free coherent sheaf F is μω-stable if for every coherent subsheaf E ⊆ F

such that 0< rk(E )< rk(F ) we have μω(E )< μω(F ). If μω(E )≤ μω(F ) for all

such subsheaves E , then we say that F is μω-semistable.

The family of μω-stable sheaves of Mukai vector v admits a moduli space

Mμ
v (S,ω). If S is projective and ω is the first Chern class of an ample line

bundle H , then Mμ
v (S,ω) is the moduli space Mμ

v (S,H) of μH -stable sheaves on

S with Mukai vector v. We have the following proposition dealing also with the

nonprojective case (see [36]).

PROPOSITION 2.2

Let S be a K3 surface, let v ∈H2∗(S,Z) be a Mukai vector, and let ω be a polariza-

tion on S. The moduli space Mμ
v (S,ω) is a smooth, holomorphically symplectic

manifold (possibly noncompact), and if it is not empty, then its dimension is

v2 + 2.

In the following we will restrict to the case of thoseMμ
v (S,ω)’s which are nonempty

and compact. We introduce in the next section some hypotheses on v and ω

under which Mμ
v (S,ω) is compact. We now present a condition which guarantees

its nonemptiness and even the existence of a stable vector bundle with respect

to any polarization.

Recall that over any nonalgebraic surface there exist nonfilterable holomor-

phic rank two vector bundles (see [2], [34, p. 18]). By definition they do not

admit coherent subsheaves of rank one; hence, they are stable with respect to

any polarization.

We now extend this type of result to arbitrary rank in the case of Kähler

surfaces. Following [2] we say that a coherent sheaf on the surface S is irreducible

if its only coherent subsheaf of lower rank is the zero sheaf. In particular, an

irreducible sheaf is stable with respect to any polarization. We have the following

result about the existence of locally free irreducible vector bundles.

PROPOSITION 2.3

Let S be a Kähler nonalgebraic compact complex surface, let r be a positive inte-

ger, and let ξ ∈NS (S). Then there exists a bound b := b(r, ξ) ∈ Z depending on r

and on ξ such that for any integer c≥ b there is on S an irreducible locally free

sheaf F of rank r, c1(F ) = ξ, and c2(F ) = c.



Moduli spaces of bundles over nonprojective K3 surfaces 111

Proof

For r = 2, a statement of this type was proved in [2] and in [34] without the Kähler

assumption. The idea there was to look at the versal deformation space of a rather

arbitrary coherent sheaf F and show that if c2 
 0, then the deformation of F

must contain irreducible objects. For r > 2 we will this time consider deformations

of suitably chosen coherent sheaves and make essential use of the fact that S is

Kähler. In this way, we reduce our argument to one used by Bănică and Le Potier

in the case in which the algebraic dimension of S is zero (see [2, Théorème 5.3]).

We proceed by induction on r. The statement is trivial for r = 1 and already

proven for r = 2. Let then r ≥ 3, and suppose that the statement is true for rank

r− 1. Take an irreducible locally free sheaf E on S of rank r− 1, c1(E ) = ξ, and

c2(E ) = c. Consider an irreducible component B of the versal deformation space

of F0 :=OS ⊕E and the corresponding family F of coherent sheaves over S×B.

We will check that if c
 0, then the relative Douady space D(X×B)/B(F , k)

of flat quotients of rank k of F over B does not cover B for 1≤ k ≤ r − 1. Let

b :D(X×B)/B(F , k)→B be the natural morphism, and let Q⊂B be a relatively

compact subdomain of B containing the origin 0 ∈B. Fujiki [10] proved that any

irreducible component of b−1(Q) is proper over Q. By another result of Fujiki

[8], there are countably many such components.

The idea is to show by a dimension count that very general neighbors of F0

are not in the image of D(X×B)/B(F , k) for 2≤ k ≤ r− 2. We remark that if Fb

is such a neighbor sitting in a short exact sequence

0→ F ′ → Fb → F ′′ → 0

with F ′′ torsion-free, then F ′ and F ′′ are irreducible of different ranks; hence,

Hom(F ′, F ′′) = 0 = Hom(F ′′, F ′). This remark makes the arguments in the

proof of [2, Théorème 5.3] work by replacing the corresponding inequality in

[2, Lemme 5.12]. Hence, we have the statement. �

2.2. The v-genericity for Kähler forms
Let S be a K3 surface, and let KS be its Kähler cone, which is an open and convex

cone in H1,1(S). For v = (r, ξ, a) with r ≥ 2 and ξ ∈NS (S), we define a system of

hyperplanes in H1,1(S), which is locally finite in KS and has the property that,

for any ω ∈ KS not lying on such hyperplanes, a torsion-free sheaf F on S with

v(F ) = v is μω-stable if and only if it is μω-semistable. Polarizations verifying

this will be called v-generic.

2.2.1. The notion of v-genericity

To start, let S be any compact Kähler surface, fix r, c2 ∈ Z, fix c1 ∈ NS (S),

and suppose r > 0. We let τ := (r, c1, c2), and if F ∈ Coh(S) of rank r and

Chern classes c1 and c2, we call τ the topological type of F . If S is a K3 surface

and F ∈Coh(S) has Mukai vector v = (r, ξ, a), then its topological type is τv =

(r, ξ, ξ2/2 + r− a).
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Note that the discriminant Δ(F ) only depends on the topological type of F .

Hence, we can talk about the discriminant Δ(τ) of τ : more precisely, if τ =

(r, c1, c2), then

Δ(τ) =
1

r

(
c2 −

r− 1

2r
c21

)
.

We set

Wτ :=
{
D ∈NS (S)

∣∣∣ −r4

2
Δ(τ)≤D2 < 0

}
,

and for every α ∈H1,1(S), we write

α⊥ :=
{
β ∈H1,1(S)

∣∣ α · β = 0
}
.

When α �= 0, the set α⊥ is a hyperplane in H1,1(S). Using the same argument

of [15, Lemma 4.C.2], one shows that if β ∈ H1,1(S), then there is an open

neighborhood U of β in H1,1(S) such that U ∩ D⊥ �= ∅ for at most a finite

number of D ∈Wτ . If the surface S is K3, we will use the notation Wv for Wτv .

DEFINITION 2.4

For every D ∈Wτ , the hyperplane D⊥ ∩KS will be called a τ -wall in the Kähler

cone of S. A connected component of KS \
⋃

D∈Wτ
D⊥ is an open convex cone

called a τ -chamber in the Kähler cone of S. A Kähler class in a τ -chamber of

KS is called a τ -generic polarization.

If S is a K3 surface and v is a Mukai vector, we will call a v-wall in the Kähler

cone (resp., a v-chamber in the Kähler cone, v-generic polarization) a τv-wall in

the Kähler cone (resp., a τv-chamber in the Kähler cone, τv-generic polarization).

Recall that the ample cone of S is Amp(S) = KS∩NSR(S) (where NSR(S) =

NS (S)⊗ R). If S is a projective K3 surface and C ⊆ KS is a v-chamber in the

Kähler cone of S, then C ∩NSR(S) is a v-chamber in the ample cone of S in the

usual terminology. If H is an ample line bundle on S, then c1(H) is a v-generic

polarization if and only if H is v-generic as in [15].

2.2.2. Compactness of Mμ
v (S,ω) when ω is v-generic

Using the same proof as in the projective case (see [15, Theorem 4.C.3]), we

show that v-generic polarizations enjoy the above-stated property concerning

the existence of properly semistable sheaves.

LEMMA 2.5

Let ω be a Kähler class on a compact Kähler surface S, and let F be a μω-

semistable sheaf of topological type τ = (r, ξ, c2). Suppose that there is E ⊆ F

of rank 0 < s < r, first Chern class ζ, and such that μω(E ) = μω(F ). Then

D := rζ − sξ is such that

−r4

2
Δ(τ)≤D2 ≤ 0,

and D2 = 0 if and only if D = 0.
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Proof

We can suppose that E is saturated, so that G := F/E is torsion-free, μω-

semistable, and of rank r− s. Notice that, as μω(E ) = μω(F ), we have D ·ω = 0.

As ω is a Kähler class, from the Hodge index theorem we then have D2 ≤ 0, and

D2 = 0 if and only if D = 0. We then just need to show that D2 ≥− r4

2 Δ(τ).

By the definition of the discriminant, it follows that

Δ(F )− s

r
Δ(E )− r− s

r
Δ(G ) =− D2

2s(r− s)r2
.

Now, recall that the Bogomolov inequality is surely satisfied by E and G , so that

Δ(E ),Δ(G )≥ 0. But this implies that

−D2 ≤ 2s(r− s)r2Δ(F )

= 2s(r− s)r2Δ(τ)≤ r4

2
Δ(τ),

and we are done. �

Using the main result of [36] we then get the following result.

PROPOSITION 2.6

Let S be a K3 surface, let r ≥ 2 be an integer, and let ξ ∈ NS (S) be such that

(r, ξ) = 1. Let a ∈ Z, let v := (r, ξ, a), and let ω be a v-generic polarization. If

Mμ
v (S,ω) �= ∅, then it is a smooth, compact, holomorphically symplectic mani-

fold.

Proof

The statement follows from the main result of [36] if S is nonalgebraic. When

S is projective, we will show in Section 3.1 that there exists some integer ample

class H in the same v-chamber as ω. The (semi)stability with respect to ω or

with respect to H will then come down to the same thing, and Mμ
v (S,ω) will

coincide with the Gieseker moduli spaceMv(S,H) ofH-semistable sheaves, which

is known to be smooth, projective, and holomorphically symplectic (see [15]). �

3. Projective K3 surfaces with nonample polarizations

In this section we prove that if S is a projective K3 surface, v = (r, ξ, a) is a

Mukai vector with (r, ξ) = 1, and ω is a v-generic polarization, then Mμ
v (S,ω) is

an irreducible holomorphically symplectic manifold, deformation equivalent to a

Hilbert scheme of points on S.

3.1. Changing polarization in a chamber
We first show that changing polarization inside a chamber does not affect the

moduli space. The following adaptation of [15, Lemma 4.C.5] to the case of Kähler

polarizations works also on Kähler manifolds (see [11, Lemma 6.2]).
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LEMMA 3.1

Let ω, ω′ be two Kähler classes on a compact Kähler manifold X, and let F be

a torsion-free sheaf on X which is μω-stable but not μω′ -stable. Denote by

[ω,ω′] :=
{
ωt := tω′ + (1− t)ω

∣∣ t ∈ [0,1]
}

the segment from ω to ω′.Then there is a Kähler class ωt ∈ [ω,ω′] such that F

is properly μωt -semistable.

As a consequence of this, changing the polarization inside a chamber does not

affect the moduli space. This is well known for v-generic ample line bundles

and requires the same proof. We let Mμ
τ (S,ω) be the moduli space of μω-stable

sheaves whose topological type is τ . If S is a K3 surface, then Mμ
τv (S,ω) =

Mμ
v (S,ω).

PROPOSITION 3.2

Let S be a smooth projective surface, and let τ = (r, ξ, c2) be such that r ≥ 2 and

ξ ∈NS (S). Let C be a τ -chamber in the Kähler cone of S, and let ω,ω′ ∈ C. Then
Mμ

τ (S,ω) =Mμ
τ (S,ω

′).

Proof

We show that if F is a μω-stable sheaf of topological type τ , then it is μω′ -stable

as well. Indeed, suppose that F is not μω′ -stable. By Lemma 3.1 this implies

that there is ωt ∈ [ω,ω′] such that F is properly μωt -semistable. Hence, there is

E ⊆ F of rank 0< s< r and first Chern class ζ such that μωt(E ) = μωt(F ).

LetD := rζ−sξ. Hence,D ·ωt = 0, and by Lemma 2.5, we haveD ∈Wτ ∪{0}.
Note that, as F is μω-stable, we have D ·ω < 0, so that D ∈Wτ . It follows that

ωt /∈ C, which is not possible as C is convex. In conclusion, F is μω′ -stable. �

3.2. Conclusion for projective K3 surfaces
We first introduce some notation. If S is a projective surface, we let NSR(S) be

the real Néron–Severi space of S, which is a linear subspace of H1,1(S). Recall

that on H1,1(S) we have a nondegenerate intersection product whose restriction

to NSR(S) remains nondegenerate. Let TR(S) be the orthogonal of NSR(S) in

H1,1(S), so that we have H1,1(S) =NSR(S)⊕ TR(S).

Finally, for every α ∈ H1,1(S) we let pNS : H1,1(S) −→ NSR(S) and pT :

H1,1(S) −→ TR(S) be the two projections. Moreover, for every α ∈H1,1(S) we

let αNS := pNS (α) and αT := pT (α).

The first result we show is the following.

LEMMA 3.3

Let S be a projective surface, and let ω be a Kähler class on S.

(1) The class ωNS is an ample class on S.

(2) For every ξ ∈NSR(S) we have ξ · ω = ξ · ωNS .
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Proof

Recall that ω = ωNS + ωT . It follows that for every nonzero effective curve class

C we have

ωNS ·C = ω ·C − ωT ·C = ω ·C > 0,

since ωT is orthogonal to NSR(S) (where C lies), and ω is a Kähler class. This

implies that ωNS is a nef class on S.

In particular, this means that ωNS is a class in the closure of the ample cone

of S. Now, recall that the projection pNS is an open map; moreover, the previous

part of the proof shows that the image of the Kähler cone of S under pNS is

contained in the nef cone of S. As the Kähler cone is open in H1,1(S) and the

interior of the nef cone is the ample cone, it follows that the image of the Kähler

cone by projection is contained in the ample cone.

The last point of the statement is simply the fact that ωT is orthogonal to

NSR(S). �

Using the previous lemma, we can finally prove the following, which shows The-

orem 1.1(1).

THEOREM 3.4

Let S be a projective K3 surface, and let v = (r, ξ, a) ∈H2∗(S,Z) such that r ≥ 2,

ξ ∈NS (S), and (r, ξ) = 1. If ω is v-generic and Mμ
v (S,ω) �= ∅, then Mμ

v (S,ω) is a

projective irreducible hyper-Kähler manifold deformation equivalent to a Hilbert

scheme of points on S.

Proof

The class ωNS is ample by Lemma 3.3, and ωNS · ξ = ω · ξ for every ξ ∈NSR(S).

It follows that for every F ∈ Coh(S) we have μω(F ) = μωNS (F ). In particular,

a coherent sheaf is μω-stable if and only if it is μωNS -stable, so that Mμ
v (S,ω) =

Mμ
v (S,ωNS ).

Moreover, if D ∈Wv , then ωNS ·D = ω ·D. As ω is v-generic, it follows that

ωNS is v-generic. Let C be the v-chamber of the ample cone where ωNS lies. As

C is open in Amp(S), there is ε > 0 such that the ball Bε(ωNS ) ⊆ Amp(S) of

ray ε and centered at ωNS is contained in C. Let ω′ ∈ Bε(ωNS ) ∩H2(S,Q). By

Proposition 3.2, we have Mμ
v (S,ωNS ) =Mμ

v (S,ω
′).

As ω′ ∈H2(S,Q)∩H1,1(S), there are p ∈N and H ∈ Pic(S) such that pω′ =

c1(H). As ω′ ∈ C and C is a cone, we have c1(H) ∈ C. Hence, H is a v-generic

ample line bundle, and Mμ
v (S,ω

′) =Mμ
v (S,H). By [30] and [43], Mμ

v (S,H) is an

irreducible hyper-Kähler manifold deformation equivalent to a Hilbert scheme of

points, and we are done. �

REMARK 3.5

A useful corollary of Lemma 3.3 is that if C is a v-chamber in the Kähler cone of

S, then C intersects the ample cone (and the intersection is clearly a v-chamber
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in the ample cone of S). Indeed, consider the segment [ω,ωNS ]. As the projec-

tion pNS is a linear map, we have that [ω,ωNS ] ∩ NSR(S) = {ωNS} and that

pNS ([ω,ωNS ]) = {ωNS}.
We show that ωNS ∈ C (showing that C intersects the ample cone by Lem-

ma 3.3). Indeed, suppose that ωNS does not lie in C. It follows that there is

ω′ ∈ [ω,ωNS ] lying on a v-wall. This means that there is D ∈ Wv such that

ω′ ·D = 0. But as pNS (ω
′) = pNS (ω) = ωNS , it follows that ω ·D = 0, which is

not possible.

4. Moduli spaces of stable twisted sheaves

In this section we recall the notion of twisted sheaf on a complex manifold,

and we introduce the notion of stability for coherent twisted sheaves. We will

then construct (relative) moduli spaces of stable twisted sheaves on a K3 surface

(not necessarily projective). They will be used to show that the moduli spaces

Mμ
v (S,ω) of μω-stable sheaves with Mukai vector v = (r, ξ, a) such that r and ξ are

prime to each other are compact, connected, simply connected, and deformation

equivalent to a Hilbert scheme of points on a projective K3 surface (whenever

the polarization ω is v-generic).

4.1. Twisted sheaves and stability
We recall some basic facts about twisted sheaves on a complex manifold X . (We

refer the interested reader to [6] or [25] for more details.)

There are several definitions of twisted sheaves giving equivalent categories.

We use three of them: the first one is due to Căldăraru [6] and presents twisted

sheaves as a twisted gluing of local coherent sheaves on X ; the second one (found

again in [6]) presents twisted sheaves as modules over an Azumaya algebra on X ;

the last one, due to Yoshioka [42], presents twisted sheaves as a full subcategory

of the category of coherent sheaves on some projective bundle over X .

We begin by recalling these definitions. As our aims are moduli spaces of

stable twisted sheaves, we need to introduce several notions. First, we recall the

Chern character and the slope of a twisted sheaf. (For projective manifolds, this

was done in [18] and [42].) We then introduce μω-stability for twisted sheaves

(with respect to a Kähler form ω).

4.1.1. Twisted sheaves following Căldăraru

Let U = {Ui}i∈I be an open covering of X , and let Uij := Ui ∩ Uj and Uijk :=

Ui ∩ Uj ∩Uk. Choose a 2-cocyle {αijk}, where αijk ∈ O∗
X(Uijk), defining a class

α ∈H2(X,O∗
X). An {αijk}-twisted coherent sheaf is a collection F = {Fi, φij},

where Fi ∈Coh(Ui) for every i ∈ I , and for every i, j ∈ I , φij : Fj|Uij
−→ Fi|Uij

is an isomorphism in Coh(Uij) such that

(1) φii = idFi for every i ∈ I ;

(2) φij = φ−1
ji for every i, j ∈ I ;

(3) φij ◦ φjk ◦ φki = αijk · id for every i, j, k ∈ I .
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By a morphism of {αijk}-twisted sheaves

f : F = {Fi, φij} −→ G = {Gi, ψij}

we mean a collection f = {fi} of morphisms fi : Fi −→ Gi of OUi -modules such

that ψij ◦ fj = fi ◦ φij for every i, j ∈ I .

The {αijk}-twisted coherent sheaves form an abelian category Coh(X,{αijk}).
If {αijk} and {α′

ijk} are two representatives of the same class α ∈H2(X,O∗
X),

then there is an equivalence between Coh(X,{αijk}) and Coh(X,{α′
ijk}), so

that we can speak of the category Coh(X,α) of coherent α-twisted sheaves. If

F ∈ Coh(X,α) and G ∈ Coh(X,β), we can define in a natural way F ⊗ G and

H om(F ,G ): the first one is a coherent αβ-twisted sheaf, while the second is a

coherent α−1β-twisted sheaf.

We now recall an important definition: a sheaf A of OX -modules is said to

be an Azumaya algebra if it is a sheaf of OX -algebras whose generic fiber is a

central simple algebra. Equivalence classes of Azumaya algebras form a group

Br(X), the Brauer group of X , which has an injection into H2(X,O∗
X). One of

the main properties we will use is the following (see [6, Theorem 1.3.5]).

PROPOSITION 4.1

Let X be a complex manifold, and let α ∈Br(X). Then there exists a locally free

α-twisted sheaf on X.

For the rest of this section, we suppose α ∈Br(X) and define the twisted Chern

character and twisted Mukai vector for α-twisted sheaves. More precisely, let

F be an α-twisted coherent sheaf on X , and let E be a locally free α-twisted

coherent sheaf. The Chern character of F with respect to E is

chE(F ) :=
ch(F ⊗E∨)√
ch(E ⊗E∨)

.

The Mukai vector of F with respect to E is

vE(F ) := chE(F ) ·
√
td(X).

The slope of a torsion-free α-twisted sheaf F with respect to E and to a Kähler

class ω is

μE,ω(F ) :=
cE,1(F ) · ω

rk(F )
,

where cE,1(F ) is the component of chE(F ) lying in H2(S,Q).

We collect some explicit formulas when X = S is a K3 surface. Let r :=

rk(F ), s := rk(E), ξ := c1(F ⊗E∨), a := ch2(F ⊗E∨), and b := ch2(E ⊗E∨).

Then

chE(F ) =
(
r, ξ/s, (2as− rb)/2s2

)
,

vE(F ) =
(
r, ξ/s, r+ (2as− rb)/2s2

)
,
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so that

(1) μE,ω(F ) =
ξ · ω
rs

=
c1(F ⊗E∨) · ω
rk(F ) rk(E)

= μω(F ⊗E∨)

and

(2) v2E(F ) =
ξ2

s2
− 2ra

s
+

r2b

s2
− 2r2.

If α= 0, then one easily sees that μE,ω(F ) = μω(F )− μω(E) and that

(3) v2E(F ) = v2(F ).

If F is a torsion-free α-twisted sheaf on S, we let

chα(F ) := chF∨∨(F ), vα(F ) := vF∨∨(F ),

which we call the twisted Chern character and twisted Mukai vector of F , respec-

tively. The twisted slope of F with respect to ω is

μα,ω(F ) :=
cα,1(F ) · ω

rk(F )
,

where cα,1(F ) is the component of chα(F ) in H2(S,Q).

Using twisted slopes, we introduce the notion of stability for twisted sheaves.

Fix α ∈Br(X), and let E be an α-twisted locally free sheaf.

DEFINITION 4.2

We say that a torsion-free F ∈ Coh(X,α) is μE,ω-stable if for every α-twisted

coherent subsheaf E ⊆ F such that 0 < rk(E ) < rk(F ) we have μE,ω(E ) <

μE,ω(F ). If μE,ω(E )≤ μE,ω(F ) for every such subsheaf, we say that F is μE,ω-

semistable. A μF∨∨,ω-(semi)stable sheaf will be called μα,ω-(semi)stable.

To conclude this section, we show that the μE,ω-stability does not depend on E.

LEMMA 4.3

Let α ∈Br(S), F ∈Coh(S,α), and ω ∈ KS . If E
′,E ∈Coh(S,α) are locally free,

then F is μE,ω-stable if and only if it is μE′,ω-stable. In particular, F is μE,ω-

stable if and only if it is μα,ω-stable. If α= 0, then the sheaf F is μ0,ω-stable if

and only if it is μω-stable.

Proof

Let F ∈Coh(S,α), let G be an α-twisted coherent subsheaf of F , and let H be

a locally free α-twisted coherent sheaf. Then

rk(H) rk(F )c1(G ⊗H∨)− rk(H) rk(G )c1(F ⊗H∨)

= c1(G ⊗F∨ ⊗H ⊗H∨) = rk2(H)c1(G ⊗F∨).
(4)

Suppose now that F is μE,ω-stable but not μE′,ω-stable. Hence, there is an

α-twisted coherent subsheaf G of F of rank 0< s< rk(F ) such that μE′,ω(G )≥
μE′,ω(F ). By the μE,ω-stability of F , we even have μE,ω(G )< μE,ω(F ). Writing
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these two inequalities explicitly, we have

ω ·
(
rk(E′)rc1

(
G ⊗ (E′)∨

)
− rk(E′)sc1

(
F ⊗ (E′)∨

))
≥ 0,(5)

ω ·
(
rk(E)rc1(G ⊗E∨)− rk(E)sc1(F ⊗E∨)

)
< 0.(6)

By using (4) for H =E′, (5) becomes ω ·c1(G ⊗F∨)≥ 0. By using (4) for H =E,

(6) becomes ω · c1(G ⊗F∨)< 0, giving a contradiction. �

4.1.2. Twisted sheaves as A-modules

Again, let X be a complex manifold, and let A be an Azumaya algebra on X .

We let Coh(X,A) be the abelian category of coherent sheaves on X having the

structure of an A-module. The following is [6, Proposition 1.3.6].

PROPOSITION 4.4

Let X be a complex manifold, let A be an Azumaya algebra on X, and let α

be its class in Br(X). If E is a locally free α-twisted coherent sheaf such that

E nd(E)�A, then we have an equivalence

Coh(X,α)−→Coh(X,A), F �→ F ⊗E∨.

We now define Chern characters, Mukai vectors, and slopes for the objects of

Coh(X,A), which allow us to define a notion of stability. For F ∈Coh(X,A) we

define

chA(F ) :=
ch(F )√
ch(A)

,

vA(F ) := chA(F ) ·
√
td(X),

and if ω is a Kähler class and F is torsion-free, we let

μA,ω(F ) :=
cA,1(F ) · ω

rk(F )
,

where cA,1(F ) is the component of chA(F ) in H2(S,Q). We now introduce the

notion of stability for A-modules.

DEFINITION 4.5

A torsion-free F ∈ Coh(X,A) is μA,ω-stable if, for every E ⊆ F in Coh(X,A)

such that 0< rk(E )< rk(F ), we have μA,ω(E )< μA,ω(F ). If μA,ω(E )≤ μA,ω(F )

for every such subobject, we say that F is μA,ω-semistable.

We note that if G ∈Coh(X,α) and E is a locally free α-twisted sheaf such that

E nd(E)�A, then chE(G ) = chA(G ⊗E∨). It follows that

vE(G ) = vA(G ⊗E∨), μE,ω(G ) = μA,ω(G ⊗E∨),

so that F ∈Coh(X,α) is μE,ω-stable if and only if F ⊗E∨ is μA,ω-stable.
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REMARK 4.6

We note that Λ := (OX ,A) is a sheaf of rings of differential operators following

the definition from [32] and that Coh(X,A) is the category of Λ-modules (always

in the sense of [32]). Moreover, μA,ω-stable A-modules are exactly μ-stable Λ-

modules (always in the sense of [32]). Even though the definitions from [32] are

given only for projective manifolds, they can immediately be extended to compact

complex manifolds.

4.1.3. Twisted sheaves following Yoshioka

Yoshioka [42] introduced twisted sheaves as a full subcategory of the category

of coherent sheaves on a projective bundle. More precisely, let X be a complex

manifold, let α ∈Br(X), and let E be a locally free α-twisted sheaf. On an open

cover U = {Ui}i∈I we represent E by {Ei, φij}i,j∈I . Let Pi := P(Ei), together

with the map πi : Pi −→ Ui. The twisted gluing data φij turn to gluing data ϕij

of the Pi’s and of the πi’s, giving a projective bundle π : P−→X (whose class in

Br(X) is α).

As shown in [42, Lemma 1.1], we have Ext1(TP/X ,OP) = C. Hence, up to

scalars, there is a unique nontrivial extension

0−→OP −→G−→ TP/X −→ 0.

The vector bundle G can be described in another way. Fix a tautological line

bundle O(λi) over Pi, so that the twisted gluing data φij give isomorphisms

ψij : O(λi) −→ O(λj), and L := {O(λi), ψij} is an π∗(α−1)-twisted line bundle

on P. Then the vector bundles π∗
i Ei(λi) glue together to give a locally free sheaf

which is isomorphic to G.

DEFINITION 4.7

A coherent sheaf F on P is called P-sheaf if the canonical morphism π∗π∗(G
∨⊗

F )−→G∨ ⊗F is an isomorphism. We let Coh(P,X) be the full subcategory of

Coh(P) given by P-sheaves.

Lemma 1.5 of [42] shows that F ∈Coh(P,X) if and only if F|Pi
� π∗E|Ui

⊗O(λi)

for some E ∈Coh(Ui). Using this, one shows the following result.

PROPOSITION 4.8

Let X be a complex manifold, and let π : P−→X be a projective bundle whose

class in Br(X) is α. Then there is an equivalence of categories

P : Coh(P,X)−→Coh(X,α), P (F ) := π∗(F ⊗L∨).

Following Yoshioka, we have a definition of the Chern character, Mukai vector,

and slope of a P-sheaf F . More precisely, we have

chP(F ) :=
ch(π∗(G

∨ ⊗F ))√
ch(π∗(G∨ ⊗G))

,
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so that

vP(F ) = chP(F ) ·
√

td(S), μP,ω(F ) :=
cP,1(F ) · ω
rk(F )

,

where cP,1(F ) is the component of chP(F ) in H2(S,Q). We now introduce the

notion of stability for P-sheaves.

DEFINITION 4.9

We say that a torsion-free F ∈ Coh(P,X) is μP,ω-stable if, for every subob-

ject E of F in Coh(P,X) such that 0 < rk(E ) < rk(F ), we have μP,ω(E ) <

μP,ω(F ). If μP,ω(E )≤ μP,ω(F ) for every such subobject, we say that F is μP,ω-

semistable.

If P= P(E) for some locally free α-twisted sheaf E, the equivalence P gives

chP(F ) = chE
(
P (F )

)
, vP(F ) = vE

(
P (F )

)
,

μP,ω(F ) = μE,ω

(
P (F )

)
.

It follows that F ∈Coh(P,X) is μP,ω-stable if and only if P (F ) is μE,ω-stable.

If F is a μP,ω-stable P-sheaf, as Coh(P, S) is a full subcategory of Coh(P)

and as the functor P is an equivalence, we have that

Ext1Coh(P,S)(F ,F )� Ext1Coh(S,α)

(
P (F ), P (F )

)
and

Ext2Coh(P,S)(F ,F )� Ext2Coh(S,α)

(
P (F ), P (F )

)
.

4.1.4. Chern classes following Huybrechts and Stellari

If we consider twisted sheaves following Căldăraru, there is another possible

definition of their Chern classes and characters, introduced by Huybrechts and

Stellari [17], which we recall here.

Consider a complex manifoldX and α ∈H2(X,O∗
X), and fix a Čech 2-cocycle

{αijk} representing α on an open covering {Ui}i∈I of X . Moreover, choose a Čech

2-cocyle {Bijk}, where Bijk ∈ Γ(Uijk,Q), such that αijk = exp(Bijk) (viewed as

local sections of R/Z= U(1)⊆O∗
X).

As the sheaf C∞
X of C∞-functions on X is acyclic, up to supposing the cov-

ering {Ui}i∈I is sufficiently fine, there are aij ∈ Γ(Uij ,C
∞) such that

Bijk =−aij + aik − ajk.

Now, let us consider an α-twisted sheaf given by F = {Fi, φij}, and let

ψij := φij · exp(aij),

which is clearly an isomorphism between the restrictions of Fi and Fj to Uij .

It is, moreover, easy to show that

ψij ◦ ψjk ◦ψki = id.
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Hence, the sheaf FB = {Fi, ψij}i,j∈I is an untwisted sheaf. We then let

chB(F ) := ch(FB).

The definition given in this way depends only on B.

The relation between chB and the previous Chern characters is explained

in [18] and goes as follows, supposing that α ∈ Br(X). Let E be a locally free

α-twisted sheaf, and let

BE :=
cB1 (E)

rk(E)
,

where cB1 (E) is the degree two part of chB(E). Then we have

chB(F ) = chE(F ) · exp(BE).

4.2. Genericity for polarizations
We now extend the notion of genericity for polarization to the twisted case. As we

did in Section 2.2, we first introduce a notion of discriminant for twisted sheaves,

which depends on the choice of a locally free E ∈Coh(S,α).

4.2.1. Discriminant of a twisted sheaf

If F is an α-twisted coherent sheaf, we call the discriminant of F with respect

to E the number

ΔE(F ) :=
1

2 rk2(F )
v2E(F ) + 1.

If α = 0, this is just Δ(F ) by (3). More generally, the discriminant does not

depend on E, as shown in the following result.

LEMMA 4.10

Let α ∈ Br(S) and F ∈ Coh(S,α). If E1,E2 ∈ Coh(S,α) are locally free, then

ΔE1(F ) =ΔE2(F ).

Proof

Let E ∈Coh(S,α) be locally free of rank s, and set r := rk(F ), ξ := c1(F ⊗E∨),

a := ch2(F ⊗E∨), and b := ch2(E ⊗E∨). By (2) we have

ΔE(F ) =
1

2r2

(ξ2

s2
− 2ra

s
+

r2b

s2
− 2r2

)
+ 1.

An easy computation shows that

ξ2

s
− 2ra

s
+

r2b

s2
= −ch2(F ⊗F∨ ⊗E ⊗E∨)

s2
+

r2 ch2(E ⊗E∨)

2s2

= − ch2(F ⊗F∨),

so that

(7) ΔE(F ) =
1

2r2
(
− ch2(F ⊗F∨)− 2r2

)
+ 1,

which does not depend on E, implying the statement. �
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For v ∈H2∗(S,Q) and α ∈Br(S), we let

Δα(v) := ΔF∨∨(F ),

where F ∈Coh(S,α) is torsion-free and vα(F ) = v. By Lemma 4.10 this is well

defined, and if α = 0, then Δ0(v) = Δ(v). We now prove a generalization to

twisted sheaves of the Bogomolov inequality.

PROPOSITION 4.11

Let α ∈ Br(S), let F ∈ Coh(S,α), and let ω be a Kähler class on S. If F is

μα,ω-semistable, then Δα(F )≥ 0.

Proof

It is easy to see that F is μα,ω-semistable if and only if F∨ is μα−1,ω-semistable.

In particular, this implies that F is μα,ω-semistable if and only if F∨∨ is μα,ω-

semistable.

Now, note that F∨∨ ⊗ F∨ = (F ⊗ F∨)∨∨. Hence, if l is the length of the

singular locus of F ⊗F∨, it follows that

ch2(F
∨∨ ⊗F∨) = ch2(F ⊗F∨) + l.

By (2), it then follows that

v2α(F
∨∨) = v2α(F )− 2l≤ v2α(F ).

As rk(F ) = rk(F∨∨) it follows that Δα(F )≥Δα(F∨∨). Hence, we just need to

show the statement for F∨∨.

Now let F := F∨∨, which is locally free and μα,ω-semistable. By the

Kobayashi–Hitchin correspondence for twisted sheaves as proved by Wang [41],

the sheaf E nd(F ) = F ⊗ F∨ is μω-polystable, so that Δ(F ⊗ F∨) ≥ 0 by the

Bogomolov inequality.

Choose now a locally free E ∈Coh(S,α) of rank s, and let b := ch2(E⊗E∨).

By Lemma 4.10 we have Δ(F ⊗ F∨) = ΔE⊗E∨(F ⊗ F∨), so that ΔE⊗E∨(F ⊗
F∨)≥ 0. If ξ = c1(F ⊗E∨) and a= ch2(F ⊗E∨), it follows from (2) that

v2E⊗E∨(F ⊗ F∨) =
2r2ξ2

s2
− 4r3a

s
+

2r2b

s2
− 2r4 = 2r2v2E(F ) + 2r4.

Hence,

0≤ΔE⊗E∨(F ⊗ F∨) =
1

2r4
v2E⊗E∨(F ⊗ F∨) + 1 = 2ΔE(F ).

Hence, Δα(F ) =ΔE(F )≥ 0, and we are done. �

4.2.2. Walls and chambers

Now, let

Wα,v :=
{
D ∈NS (S)

∣∣∣ −r4

2
Δα(v)≤D2 < 0

}
.

If α= 0, then we have W0,v =Wv .
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DEFINITION 4.12

For D ∈Wα,v , we call the hyperplane D
⊥ an (α,v)-wall. A connected component

of KS \
⋃

D∈Wα,v
D⊥ is called an (α,v)-chamber. A polarization ω ∈ KS is (α,v)-

generic if it lies in an (α,v)-chamber.

A polarization ω is (0, v)-generic if and only if it is v-generic. We are now ready

to prove one of the main results of this section about changing polarization inside

a chamber. The argument is the same as that for untwisted sheaves, here adapted

to the twisted case.

PROPOSITION 4.13

Let α ∈Br(S), let v ∈H2∗(S,Q), and let ω,ω′ be two (α,v)-generic polarizations

lying in the same (α,v)-chamber. If F ∈ Coh(S,α) is a torsion-free sheaf such

that vα(F ) = v, then F is μα,ω-stable if and only if it is μα,ω′ -stable.

Proof

The proof is divided into two steps.

Step 1. Choose an α-twisted locally free sheaf E, and let r := rk(F ), ξ :=

c1(F ⊗E∨), a := ch2(F ⊗E∨), s := rk(E), and b := ch2(E ⊗E∨). Let ω be any

polarization, and suppose that F is properly μα,ω-semistable. Hence, there is

an α-twisted subsheaf E ⊆ F such that μE,ω(E ) = μE,ω(F ). We let r′ := rk(E ),

ξ′ := c1(E ⊗E∨), and a′ := ch2(E ⊗E∨), where 0< r′ < r and ξ′ ∈ NS (S)⊗Q.

Moreover, let

D := r
ξ′

s
− r′

ξ

s
,

so that D · ω = 0. Hence, D2 ≤ 0, as ω is a Kähler form.

Now, let G := F/E , and we suppose without loss of generality that E is

saturated and that E and G are μα,ω-semistable. Moreover, let r′′ := rk(G ),

ξ′′ := c1(G ⊗E∨), and a′′ := ch2(G ⊗E∨), so that r′′ = r − r′, ξ′′ = ξ − ξ′, and

a′′ = a− a′. Finally, let

K :=
v2α(F )

r
− v2α(E )

r′
− v2α(G )

r′′
.

We note that as E and G are μα,ω-semistable, by Proposition 4.11 we have

Δα(E ),Δα(G ) ≥ 0, meaning v2α(E ) ≥ −2(r′)2 and v2α(G ) ≥ −2(r′′)2. Hence, we

get

(8) K ≤ v2α(F )

r
+ 2r.

On the other hand, by (2) we have

K =
ξ2

rs2
− (ξ′)2

r′s2
− (ξ′′)2

r′′s2
=−r2(ξ′)2 + (r′)2ξ2 − 2rr′ξξ′

s2rr′r′′
.

By the definition of D we have

D2 =
r2(ξ′)2 + (r′)2ξ2 − 2rr′ξξ′

s2
,
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so that (8) implies

D2 =−rr′r′′K ≥−r′(r− r′)v2α(F )− 2r2r′(r− r′).

But as r′(r− r′)≤ r2/4, we finally get

D2 ≥−r2

4
v2α(F )− r4

2
=−r4

2
Δα(F ) =−r4

2
Δα(v).

In conclusion, D ∈Wα,v ∪ {0}.
Step 2. Suppose that F is μα,ω-stable but not μα,ω′ -stable. Let

[ω,ω′] :=
{
ωt := tω′ + (1− t)ω

∣∣ t ∈ [0,1]
}

be the segment from ω to ω′, and let Bα be the family of subsheaves of F whose

slope with respect to E and ω′ is bounded from below.

If E ∈Bα, then E ⊗E∨ is a subsheaf of F ⊗E∨, and μE,ω(E ) = μω(E ⊗E∨).

This implies that E ⊗E∨ is in the family B of subsheaves of F ⊗E∨ whose slope

with respect to ω is bounded from below. As the family B is bounded, it follows

that the family Bα is bounded. Using the same argument as in the proof of

Lemma 3.1, one can then conclude that there is t ∈ ] 0,1] such that F is properly

μα,ωt -semistable.

Hence, there is a subsheaf E of F of rank 0 < s < r such that μE,ωt(E ) =

μE,ωt(F ). If D = rcE,1(E )− scE,1(F ), it follows that D · ωt = 0. As D · ω �= 0,

we have D �= 0. Hence, D2 < 0. But as F is μE,ωt -semistable, Step 1 implies that

D ∈Wα,v , which is not possible as ωt is in the same (α,v)-chamber as ω and ω′.

In conclusion, the sheaf F has to be μE,ω′ -stable, and we are done. �

4.3. Moduli space of stable twisted sheaves
We now introduce (relative) moduli spaces of stable twisted sheaves. On projec-

tive manifolds these were constructed by Yoshioka [42] (viewing twisted sheaves

as P-sheaves and using a geometric invariant theory construction) and by Lieblich

[25] (viewing twisted sheaves as sheaves on some O∗-gerbe).

Here we first provide a relative moduli space of simple twisted sheaves by

viewing them as simple P-sheaves. The relative moduli space of stable sheaves

will then be an open subset of it.

4.3.1. The relative moduli space of simple twisted sheaves

Consider a smooth and proper morphism π : X −→ T such that for every t ∈ T

the fiber Xt over t is a K3 surface. We assume for simplicity that T is a complex

manifold, although the constructions work over complex spaces as well.

Suppose, moreover, that we are given a complex manifold P together with

a morphism f : P −→ X of T -complex spaces such that, for every t ∈ T , the

morphism ft : Pt −→Xt is a projective bundle, where Pt = f−1(Xt). For every

t ∈ T the projective bundle Pt −→ Xt defines a class αt in the Brauer group

Br(Xt).
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Now, let f ′ := π ◦f , so that we get a map f ′ : P −→ T . By [22, Theorem 6.4],

there is a complex space M (P/T ) together with a holomorphic surjective map

φ : M (P/T )−→ T

which is a relative moduli space of simple coherent sheaves on P . For every t ∈ T

the fiber Mt of φ over t is the moduli space of simple coherent sheaves on Pt.

Now, F ∈Coh(Pt) is simple if and only if End(F )�C. As Coh(Pt,Xt) is a

full subcategory of Coh(Pt), a Pt-sheaf F is simple in Coh(Pt,Xt) if and only

if it is simple in Coh(Pt). Hence, simple Pt-sheaves form a subset M s(P/T ) of

M (P/T ).

As the condition defining P-sheaves is open (see [42, Lemma 1.5]), it follows

that M s(P/T ) is open in M (P/T ). Hence, it is a complex space together with

a holomorphic map ψ : M s(P/T ) −→ T . This is the relative moduli space of

simple P-sheaves on X .

The relative projective bundle f : P −→ X corresponds to the existence of

a relative Azumaya algebra A on X . For every t ∈ T , we have Pt = P(Et) for

some locally free αt-twisted sheaf on Xt, and we let At :=Et⊗E∨
t . The previous

equivalence of categories of twisted sheaves then shows that M s(P/T ) is the

relative moduli space of simple A-modules on X or, equivalently, the relative

moduli space of simple twisted sheaves on X .

4.3.2. The relative moduli space of stable twisted sheaves

We now produce out of ψ : M s(P/T ) −→ T the relative moduli space of sta-

ble twisted sheaves. Choose v = (v0, v1, v2) ∈H2∗(S,Q) such that v1 ∈NS (St) for

every t ∈ T and v0 ≥ 2. We let M s
v (P/T ) be the component of M s(P/T ) param-

eterizing simple P-sheaves of Mukai vector v, and we write ψv : M s
v (P/T )−→ T

for ψ|Ms
v (P/T ).

In order to define the moduli space of stable twisted sheaves of Mukai vector

v, we need a section ω̃ ∈R2π∗C such that ωt := ω̃|Xt
is a Kähler class for every

t ∈ T , which is used to define stability on every fiber. As stable twisted sheaves

are simple, we let M μ
v (P/T, ω̃) be the subset of M s

v (P/T ) whose fiber over

t ∈ T is given by the simple Pt-sheaves which are μPt,ωt -stable and whose Mukai

vector is v. We then have a natural map (of sets)

p : M μ
v (P/T, ω̃)−→ T.

The main result of this section is the following.

PROPOSITION 4.14

Let π : X −→ T , f : P −→ X , v, and ω̃ be as before. Then M μ
v (P/T, ω̃) is an

open subset of M s
v (P/T ). Hence, it is a complex manifold, and the map p is

holomorphic.

Proof

By Remark 4.6, the openness can be proved as in [32, Lemma 3.7]. Indeed, if

F ∈ Coh(P, S) and F := P (F )∨∨, then F is μP,ω-stable if and only if P (F )⊗
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P (F )∨ is μA,ω-stable in Coh(S,A), where A = P (F ) ⊗ P (F )∨. Moreover, the

openness of stability in the analytic case may be proved in the usual way, by

using boundedness results which are contained in [37] and [38]. The separat-

edness follows from [22, Proposition 6.6] since the parameterized sheaves are

stable. �

Standard deformation arguments following [5] allow us to show that if p : M :=

M μ
v (P/X , ω̃)−→ T is the relative moduli space of twisted stable sheaves, then

for every t ∈ T and for every F ∈ p−1(t) =Mt we have

T[F ]Mt � Ext1Coh(Xt,αt)

(
P (F ), P (F )

)
,

that the obstruction for the existence of deformations of F lives in

Ext2Coh(Xt,αt)

(
P (F ), P (F )

)
,

and that we have an exact sequence

Ext1Coh(Xt,αt)

(
P (F ), P (F )

)
−→ T[F ]M

−→ TtT −→ Ext2Coh(Xt,αt)

(
P (F ), P (F )

)
0
.

(9)

It follows, from this exact sequence and by the previous discussion, that the

morphism p : M −→ T is smooth.

If T is reduced to a point, then X is just a K3 surface S and P −→ S

is a projective bundle whose class in Br(S) is α. The moduli space of μα,ω-

stable α-twisted sheaves of twisted Mukai vector v on S will then be denoted

Mμ
α,v(S,ω).

REMARK 4.15

Suppose that α= 0, and let

γ :=
ch(F∨)√

ch(F ⊗F∨)

for F ∈ Mμ
0,v(S,ω). Then v0(F ) = v if and only if v(F ) = v/γ, so that

Mμ
0,v(S,ω) � Mμ

v/γ(S,ω). We even notice that ω is (0, v)-generic if and only if

it is v/γ-generic.

4.3.3. Moduli spaces of stable twisted sheaves over projective K3 surfaces

If the base K3 surface S is projective, from [42] we have some more information

about the moduli spaces of stable twisted sheaves. We make use of the following

notation: let α ∈Br(S), and let F be a torsion-free α-twisted sheaf whose twisted

Mukai vector is w = (r,0, a).

We let F be a locally free α-twisted sheaf and ξ be a representative of the

class of P(E) in H2(S,Z). We let eξ/r := (1, ξ/r, ξ2/2r2) and wξ := eξ/r · w, so

that

wξ = (r, ξ, a+ ξ2/2r).
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It is worth noting that there is a topological vector bundle Eξ on S such that

v(Eξ) = wξ . As shown in [42], we have wξ ∈H2(S,Z) (while in general we have

w ∈H2(S,Q)).

REMARK 4.16

If α = 0 and F is a μω-stable sheaf whose Mukai vector is v = (r, ξ, a), write

a = c + r, where c = ch2(F ). The 0-twisted Mukai vector of F is then w =

(r,0, r + a′/2r), where a′ = ch2(F ⊗ F∨∨). We note that a′ = 2rc− ξ2. Hence,

w = (r,0, r+ c− ξ2/2r). A representative of the class of P(E) in this case can be

chosen to be ξ itself. Hence, we have

wξ = eξ/rw = (r, ξ, r+ c) = v.

The following is [42, Theorem 3.16].

THEOREM 4.17

Let S be a projective K3 surface, let w = (r, ζ, b) ∈H2(S,Q), and let α ∈ Br(S).

Choose a representative ξ of α in H2(S,Z), and suppose that wξ is primitive.

Moreover, let H be an (α,w)-generic ample line bundle on S. Then the mod-

uli space Ms
α,w(S,H) is an irreducible symplectic manifold which is deformation

equivalent to a Hilbert scheme of points on S.

We have the following result, which is the twisted version of Theorem 3.4.

PROPOSITION 4.18

Let S be a projective K3 surface, let w = (r, ζ, b) be a Mukai vector, and let

α ∈ Br(S). Choose ξ to be a representative of α in H2(S,Z), and suppose that

r and ξ are prime to each other. If ω is an (α,w)-generic polarization, then

Mμ
α,w(S,ω) is an irreducible symplectic manifold which is deformation equivalent

to a Hilbert scheme of points on S.

Proof

By Lemma 3.3 and Proposition 4.13 and following the proof of Theorem 3.4, we

see that there is an ample line bundle H such that Mμ
α,w(S,ω) =Mμ

α,w(S,H).

This last moduli space is an irreducible symplectic manifold which is deformation

equivalent to a Hilbert scheme of points on S by Theorem 4.17. �

4.3.4. Quasi-universal families

We conclude this section with the following result about the existence of a quasi-

universal family (see [1] for the absolute untwisted case).

PROPOSITION 4.19

Let π : X −→ T , f : P −→ X , v = (v0, v1, v2), and ω̃ be as before. Let A be a

relative Azumaya algebra corresponding to P, and for every t ∈ T let αt ∈Br(Xt)

be the class of At. Suppose that there is a locally free A-module V verifying the
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following two properties for every t ∈ T :

(1) the restriction Vt of V to Xt is μαt,ωt -stable;

(2) the twisted Mukai vector of Vt is (v0, v1,w2), where w2 < v2.

Then there is a quasi-universal family on M μ
v (P/T, ω̃)×T X .

Proof

Let M := M μ
ṽ (P/T, ω̃). As for stable coherent sheaves, there is an open cov-

ering U = {Ui}i∈I of M given by analytic subsets endowed with universal A-

modules Fi.

Let pi : Ui×T X → Ui and qi : Ui×T X → X denote the two projections. We

put Ei := Fi⊗q∗i A q∗i V∨. By the choice of V we have R0pi,∗Ei = 0=R2pi,∗Ei, and

Wi :=R1pi,∗Ei is a nontrivial locally free OUi -module whose rank is independent

of i. It is easy to check now that the A-modules Fi ⊗O p∗iW
∨
i glue together to

give the desired quasi-universal family. �

4.4. Deformation of stable twisted sheaves along twistor lines
In this section we describe and generalize a construction used by several authors

in the case of stable locally free sheaves of slope zero (see [35], [39], [40], [27]).

Let (S, I,ω) be a polarized K3 surface, and let π : Z(S)−→ P1 be its twistor

family. We suppose that the fiber over 0 is S0 = (S, I), and we write St = (S, It)

for the fiber over t. Here I = I0 and It denote the complex structures on S. With

this convention we have S∞ = (S, I∞) = (S,−I). Recall that the choice of ω on

(S, I) is equivalent to the choice of a Riemannian metric g which is compatible

with I and whose associated Kähler class is ω. Along the twistor line the metric

g remains compatible with It, the associated class ωt is Kähler, and we get a

section ω̃ of R2π∗C which is ωt on St. Slope stability on St will be considered

with respect to ωt.

Before we introduce deformations of sheaves along twistor lines, we make an

observation about (1,1)-forms on the twistor space of S. Recall that, as a differ-

entiable manifold, Z(S) is the product S×P1, which is endowed with a complex

structure in the following way (see [13]). Cover P1 by two charts (each isomorphic

to C), and take ζ as the complex coordinate function on one of them and ζ−1 as

that on the other. Further, let I, J,K be the complex structures on S which make

it into a hyper-Kähler manifold. Denoting by IP1 the complex structure on P1, put

the following complex structure to act on the tangent space TS × TP1 of S × P1:

I :=
(1− ζζ̄

1 + ζζ̄
I +

ζ + ζ̄

1 + ζζ̄
J + i

ζ − ζ̄

1 + ζζ̄
K, IP1

)
.

With respect to this complex structure the projection q : S×P1 → S is not holo-

morphic but only C∞.

LEMMA 4.20

Let ψ be a (1,1)-form on (S, I,ω). Its pullback q∗ψ is a (1,1)-form on Z(S) if

and only if ψ is anti-self-dual on (S, I,ω).
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Proof

Let Ψ := q∗ψ. It is a 2-form on Z(S), so it is of type (1,1) if and only if

Ψ(Iv,Iw) = Ψ(v,w) for any pair (v,w) of real tangent vectors at a point of

Z(S). As I preserves the horizontal and the vertical directions on Z(S) = S×P1

and as Ψ(v,w) = 0 if one of the tangent vectors v or w is horizontal, it suffices

to check that Ψ(Iv,Iw) = Ψ(v,w) only on vertical vectors, meaning that the

restrictions of Ψ to the fibers of π : Z(S)−→ P1 are of type (1,1).

Suppose that ψ is anti-self-dual. This property only depends on g and on the

orientation of S. As g is compatible with each complex structure It, it follows

that the restriction of Ψ to each fiber of π is then anti-self-dual. In particular, it

is of type (1,1). Hence, Ψ is also of type (1,1) on Z(S).

Conversely, if ψ is not anti-self-dual, then it decomposes as ψ = ψSD+ψASD,

where the self-dual part is of the form ψSD = fωI for some nonzero function f .

But ωI is not of type (1,1) with respect to J so neither will be Ψ. �

We now turn to deformations of sheaves along the twistor line.

4.4.1. Deformation of a locally free polystable sheaf with trivial slope

Let E0 be a polystable vector bundle on S0 whose slope is zero, and denote by E∞

the C∞-vector bundle underlying E0. The Kobayashi–Hitchin correspondence

provides E∞ with an anti-self-dual connection. By Lemma 4.20, the curvature

of the connection is of (1,1)-type on each St. We therefore obtain holomorphic

structures Et on E∞ over each St, induced by the structure E0 in a canonical

way. In fact, we even get a holomorphic structure on q∗E∞. Denote by Ẽ the

corresponding sheaf of holomorphic sections over Z(S). As Et is holomorphic and

carries an anti-self-dual connection, it is polystable for every t ∈ P1. It is easy to

see that if E0 is stable, then Et is stable for every t ∈ P1.

4.4.2. Deformation of an Azumaya algebra

Let now A0 be an Azumaya algebra on S0, and let α0 be its class in Br(S0).

Choose a locally free α0-twisted sheaf E0 such that A0 � E nd(E0). We will

suppose that E0 is μα0,ω0 -stable.

The Kobayashi–Hitchin correspondence for twisted sheaves established by

Wang [41] shows that A0 is μω0 -polystable. Note that μω0(A0) = 0. Hence, by

Section 4.4.1 the vector bundle A := q∗A0 carries a holomorphic structure, and

for every t ∈ P1 its restriction At to the fiber St is a μωt -polystable vector bundle

with trivial slope. We need to show that At is an Azumaya algebra.

To do so, we argue as in the proof of [27, Lemma 6.5(3)]. The Azumaya

algebra structure on A0 is given by a holomorphic map m0 : A0 ⊗ A0 −→ A0

verifying some identities among holomorphic sections. This means that m0 is a

holomorphic section of the vector bundle H om(A0 ⊗A0,A0). But this is μω0 -

polystable as A0 is; hence, it carries an anti-self-dual connection, and m0 is

parallel with respect to it.
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As a consequence, m0 defines a parallel section of H om(At ⊗At,At) and,

hence, a holomorphic map mt :At ⊗At −→At. Hence, At is an OSt -algebra. As

the same identities among sections which are verified on A0 are verified even on

At, it follows that At is an Azumaya algebra.1

4.4.3. Deformation of a stable twisted vector bundle

Let α0 ∈ Br(S0), and let F0 be an α0-twisted locally free sheaf which is μα0,ω0 -

stable. Choose an α0-twisted locally free sheaf E0 which is μα0,ω0 -stable in such

a way that cE0,1(F0) = 0.

We let G0 := F0 ⊗ E∨
0 and A0 := E0 ⊗ E∨

0 . Then A0 is an Azumaya alge-

bra, and as we saw in Section 4.4.2, it is a polystable sheaf. Moreover, G0 is a

locally free sheaf of trivial slope, and it has the structure of an A0-module. The

Kobayashi–Hitchin correspondence for twisted sheaves in [41] shows that G0 is

a polystable sheaf.

Following Section 4.4.2, q∗A0 is a holomorphic vector bundle, and for every

t ∈ P1 its restriction At to St is a polystable sheaf having the structure of an

Azumaya algebra. We let αt be its class in Br(St).

By Section 4.4.2 the polystable sheaf G0 gives rise, for every t ∈ P1, to a

polystable sheaf Gt with trivial slope. The same argument used in Section 4.4.2

to show that At is an Azumaya algebra, applied this time to mt :At⊗Gt −→Gt,

shows that the sheaf Gt has the structure of an At-module.

As Gt is an At-module, it corresponds to an αt-twisted locally free sheaf Ft

on St. In particular, E0 gives rise to an αt-twisted locally free sheaf Et on St

such that E nd(Et)�At and Ft ⊗E∨
t �Gt.

LEMMA 4.21

The sheaves Ft and Et are μαt,ωt -stable.

Proof

We show that Et is μαt,ωt -stable. The proof for Ft is similar. Suppose that Et

is not μαt,ωt -stable, and let Et ⊆Et in Coh(St, αt) with μEt,ωt(Et)≥ μEt,ωt(Et).

We suppose that Et is μαt,ωt -stable.

We let Ht := Et ⊗ E∨
t , which is an At-module, and we have Ht ⊆ At. The

inequality μEt,ωt(Et) ≥ μEt,ωt(Et) gives μAt,ωt(Ht) ≥ μAt,ωt(At), so that

1If E0 is an untwisted sheaf, we can give a more direct proof. The multiplication of two holo-

morphic sections φ1, φ2 of At remains holomorphic. (Hence, At is a sheaf of algebras on St.)

This is a consequence of the formula D̂(φ1 ◦ φ2) = D̂φ1 ◦ φ2 + φ1 ◦ D̂φ2, where D̂ is the con-

nection induced by D on A0.
By [6, Theorem 1.1.6], we just need to show that At is locally of the form E nd(F ) for some

locally free sheaf F of OSt -modules. To do so, consider the self-dual part RSD of the curva-
ture R of D. We have that RSD = c · Id · ω0 for a suitable constant c. By solving the equation

ddcφ=− c
r
ω0 on an open subset U , we find a holomorphic Hermitian line bundle (L,h) on U

whose curvature is − c
r
ω0. Hence, F∞ :=E0⊗L is a rank r vector bundle on U with a Hermite–

Einstein connection, and A∞ ∼= E nd∞(F∞) as anti-self-dual vector bundles. Hence, on F∞ we

have a holomorphic structure Ft compatible with the corresponding It, and At
∼= E nd(Ft).
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μωt(Ht) ≥ μωt(At) = 0. As At is μωt -polystable, this implies that μωt(Ht) = 0

and that it is a direct summand of At. In particular, it is μωt -polystable.

By using the same argument given before, the sheaf Ht gives rise to a μω0 -

polystable sheaf H0 on S0, which is contained in A0 and has the structure of an

A0-module, and μω0(H0) = μω0(A0) = 0. The equivalence between Coh(S0, α0)

and Coh(S0,A0) given by tensoring with E∨
0 then produces a subsheaf E0 of E0

such that μE0,ω0(E0) = μE0,ω0(E0). But this is not possible as E0 is μα0,ω0 -stable.

In conclusion, the sheaf Et is μαt,ωt -stable. �

4.5. Relative moduli space of twisted sheaves on twistor lines
In this section we show that the relative moduli space of stable twisted sheaves

gives us a way to deform the moduli spaces Mμ
α,w(S,ω) to an irreducible sym-

plectic manifold (which is moreover deformation equivalent to a Hilbert scheme

of points on a projective K3 surface).

We let S be a K3 surface, w = (r,0, a) ∈H2∗(S,Z) with r ≥ 2, α ∈Br(S), and

ω be an (α,w)-generic polarization. The Kähler class ω corresponds to the choice

of a Riemannian metric g which is compatible with the complex structure I of S

and whose associated Kähler class is ω. Let π : Z(S)−→ P1 be the twistor family

of g. We denote by St the fiber of π over t, which corresponds to a complex

structure It on S associated with t. The metric g is compatible with It, the

associated class ωt is Kähler, and w is a Mukai vector on St for every t ∈ P1.

Choose now a μα,ω-stable α-twisted sheaf E on S of rank r, and let

E := E ∨∨. This is a μα,ω-stable α-twisted vector bundle of rank r, and we

let A0 := E nd(E) be the corresponding Azumaya algebra. We suppose that

vE(E ) = w. By Section 4.4.2, there is a holomorphic vector bundle A on Z(S)

whose restriction At to St is an Azumaya algebra on St for every t ∈ P1. We let

αt ∈ Br(St) be its class and At � E nd(Et), where Et is the deformation of E

along the twistor line (see Section 4.4.3).

By Section 4.3.2 there is then a relative moduli space of stable twisted sheaves

p : M −→ P1 such that for every t ∈ P1 the fiber over t is the moduli space

Mμ
αt,w(St, ωt) of μαt,ωt -stable αt-twisted sheaves whose twisted Mukai vector

with respect to Et is w.

REMARK 4.22

On M ×P1 Z(S) we have a quasi-universal family. For F ∈Mμ
α,w(S,ω), let F :=

F∨∨ and V0 := F ⊗E∨. We let V in Proposition 4.19 be V := q∗V0.

We first prove some geometric properties of the relative moduli space p :

M −→ P1.

PROPOSITION 4.23

Let S be a K3 surface, let w = (r,0, a) ∈H2∗(S,Z) with r ≥ 2, α ∈ Br(S), and

let ω be an (α,w)-generic polarization. The relative moduli space p : M −→ P1

of stable twisted sheaves verifies the following properties:
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(1) the morphism p is submersive;

(2) if T ∗
p denotes the relative cotangent bundle of p, then there is a holomor-

phic global section of ∧2T ∗
p ⊗OP1(2) whose restriction to any fiber is a holomor-

phic symplectic form.

Proof

We divide the proof into several parts.

Step 1: Submersivity. As every E ∈ Mt is simple and the canonical bundle of

a K3 surface is trivial, we have Ext2(E ,E )0 = 0. The exact sequence (9) implies

then that the map p is submersive, so that condition (1) of the statement is

proved.

Step 2: Section through locally free sheaves. Let t0 ∈ P1, and choose F ∈
Mμ

αt0 ,w
(St0 , ωt0) a locally free sheaf. As we saw in Section 4.4.3, the sheaf F

gives rise to a sheaf Ft ∈Mμ
αt,w(St, ωt) for every t ∈ P1. This produces a section

sF : P1 −→ M , sF (t) := Ft

of p, which is holomorphic. If we let Et be the αt-twisted μαt,ωt -stable sheaf such

that At = E nd(Et) (an Azumaya algebra on St whose class in Br(St) is αt), and

Gt := Ft ⊗E∨
t , we let G := q∗Gt, which is a holomorphic vector bundle on Z(S).

The restriction of the relative tangent bundle Tp of p to the section s is

s∗Tp �R1π∗ E nd(G).

Step 3: Relative symplectic form. We prove that condition (2) is fulfilled. We

first note that for every t ∈ P1 the restriction Tp|t of Tp to Mt is the tangent

bundle of Mμ
αt,w(St, ωt), and similarly, the restriction (T ∗

p )|t of T ∗
p to Mt is the

cotangent bundle of Mμ
αt,w(St, ωt). As on Mμ

αt,w(St, ωt) we have a holomorphic

symplectic form (if St is projective, this is done in [42]; the proof in the general

case is similar), so we get an isomorphism Tp|t � (T ∗
p )t.

This implies the existence of a line bundle OP1(d) for some d ∈ Z together

with an isomorphism Tp −→ T ∗
p ⊗ p∗OP1(d). We then just need to show that

d= 2. To do so, consider a locally free sheaf F ∈ M0. As seen in Step 2 we have

a holomorphic section s : P1 −→ M of p, and

s∗Tp �R1p∗ E nd(G),

where G = q∗(F ⊗E∨
0 ). By the relative Serre duality we get

R1p∗ E nd(G)�
(
R1p∗ E nd(G)∗ ⊗Kπ

)∗
,

where Kπ is the relative canonical bundle of π : Z(S)−→ P1.

Now, as G is locally free, we have E nd(G) � E nd(G)∗. Moreover, Kπ �
OP1(−2) (see [13]). Hence,

R1p∗ E nd(G)�R1p∗ E nd(G)∗ ⊗OP1(2).

In conclusion,

s∗Tp � s∗T ∗
p ⊗OP1(2).
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As s∗Tp � s∗T ∗
p ⊗OP1(d), it follows that d= 2. This shows that condition (2) is

fulfilled. �

We now prove some geometric properties of the moduli spaces of stable twisted

sheaves we are considering. In particular, we show that they are all compact and

connected.

PROPOSITION 4.24

Let S be a K3 surface, let w = (r,0, a) ∈H2∗(S,Z) with r ≥ 2, α ∈ Br(S), and

let ω be an (α,w)-generic polarization. Moreover, let ξ be a representative of

α in H2(S,Z) which is prime to r. The moduli space Mμ
α,w(S,ω) is a compact,

connected manifold.

Proof

The compactness of Mμ
α,w(S,ω) is well known when S is projective, and a proof

in the nonprojective and nontwisted case has been given in [36]. This proof uses

in an essential way the comparison map from the moduli space of stable sheaves

to the corresponding Donaldson–Uhlenbeck compactification of the moduli space

of anti-self-dual connections in a Hermitian vector bundle on S. These arguments

may be extended to the twisted case. We refer the reader to [36] and [41] for the

ingredients.

To show that Mμ
α,w(S,ω) is connected, we will follow the strategy used by

Mukai and by Kaledin, Lehn, and Sorger to prove the analogous result when S

is projective, ω is the first Chern class of an ample line bundle, and the sheaves

are untwisted (see the proof of [21, Theorem 4.1]).

We first suppose that the moduli space Mμ
α,w(S,ω) is not connected, and we

choose a connected component Y . Moreover, we fix a sheaf F ∈ Y and a sheaf

G ∈Mμ
α,w(S,ω) \ Y .

Let p : Y ×S −→ Y and q : Y ×S −→ S be the two projections, and consider

a p∗β · q∗α-twisted universal family F on Y × S. We then define two complexes

K•
F := E xt•p(q

∗F,F ), K•
G := E xt•p(q

∗G,F )

of β-twisted sheaves on Y .

As the sheaves F and G have the same topological invariants (since their

Mukai vectors are equal), by the Grothendieck–Riemann–Roch theorem and let-

ting d := dim(Y ), we have cBd (K
•
F ) = cBd (K

•
G), where cBd is the component of

degree 2d of cB (for some B-field giving the twist β). We now compute more

explicitly these twisted Chern classes, and we start from K•
G. We note that if

E ∈ Y , then E is a stable twisted sheaf having the same slope as G, but which

is not isomorphic to G. It follows that

Ext0(G,F ) = Ext2(G,F ) = 0.

As

E xtjp(q
∗G,F )E � Extj(G,E),
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it follows that

E xtjp(q
∗G,F ) = 0

if j = 0,2, and that E xt1p(q
∗G,F ) is a locally free β-twisted sheaf whose rank is

d− 2.

As a consequence we have

cBd (K
•
G) =−cBd

(
E xt1p(q

∗G,F )
)
= 0,

as E xt1p(q
∗G,F ) is a locally free β-twisted vector bundle of rank d−2< d. Recall

that cB of E xt1p(q
∗G,F ) is defined as the Chern class of some untwisted vector

bundle of the same rank. Hence, as this rank is smaller than the dimension of Y ,

the dth B-twisted Chern class is trivial.

We now need to compute cBd (K
•
F ). To do so, we first recall that by [3] there

is locally on Y a complex

A• = · · · a−1−→A0 a0−→A1 a1−→A2 −→ 0

of free sheaves such that for every σ : Y ′ −→ Y and for every j ∈ Z we have

E xtjp′
(
σ∗(q′)∗F,σ∗F

)
�Hj(σ∗A•),

where p′ : Y ′ ×S −→ Y ′ and q′ : Y ′×S −→ S are the two projections, and where

Hj denotes the jth cohomology of the complex.

Let us now cover Y with open subsets Ui so that F is contained in only

one of them, and let us moreover suppose that the previous complex A• exists

over Ui. If E ∈ Ui and E is not F , then Hj(A•)E = 0. Hence, the rank of each

map ai of the complex A• is constant on Y \ {F}. But we have

H0(A•)F �H0(A•)F �C.

Hence, the rank of a0 and a1 at F drops by 1, while the rank of ai is constant on

Y for i≤−1. The same proof as that of [21, Lemma 4.3] shows that the degen-

eracy locus of a0 and a1 is the reduced point F , while ai does not degenerate if

i≤−1.

Let us now consider the blowup σ : Z −→ Y of Y at F with reduced structure,

and let D be the exceptional divisor on Z. Consider the complex

σ∗A• = · · · σ
∗a−1−→ σ∗A0 σ∗a0−→ σ∗A1 σ∗a1−→ σ∗A2 −→ 0.

The degeneracy locus of σ∗a0 and σ∗a1 is then the exceptional divisor D with

reduced structure, while the σ∗ai’s do not degenerate on Z for i≤−1.

The maps σ∗a0 and σ∗a1 hence factor through

(A′)0
a′
0−→ σ∗A1 a′

1−→ (A′)2,

where σ∗A0 ⊆ (A′)0, (A′)2 ⊆ σ∗A2, and the sheaves

M := (A′)0/σ∗A0, L := σ∗A2/(A′)2
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are supported on D. As in the proof of [21, Theorem 4.1, Step 4], the sheaves L

and M are characterized by canonical isomorphisms

L⊗OD � Ext2(F,F )⊗OD, TorOD
1 (M,OD)�Hom(F,F )⊗OD.

Here the computation is done in a neighborhood of the divisor D.

As in [21], it follows from this that

E xt0p′(σ∗q∗F,σ∗F )�OD(D), E xt2p′(σ∗q∗F,σ∗F )�OD,

viewed as σ∗β-twisted sheaves, and that E xt1p′(σ∗q∗F,σ∗F ) is a locally free σ∗β-

twisted sheaf of rank d− 2. It follows that

cBd (σ
∗K•

F ) =Dd =−1.

But note that

cBd (σ
∗K•

F ) = σ∗cBd (K
•
F ) = σ∗cB(K•

G) = 0,

giving a contradiction. In conclusion, the moduli space Mμ
α,w(S,ω) has to be

connected. �

We can now prove the following result, which is the main result of this section

and which concludes the proof of Theorem 1.1(1).

PROPOSITION 4.25

Let S be a K3 surface, let w = (r,0, a) ∈H2∗(S,Z) with r ≥ 2, α ∈Br(S), and let

ω be an (α,w)-generic polarization. Moreover, let ξ be a representative of α in

H2(S,Z) which is prime to r. Consider the relative moduli space of stable twisted

sheaves p : M −→ P1 along the twistor family of (S,ω).

(1) There is a t ∈ P1 such that Mt is an irreducible symplectic manifold

which is deformation equivalent to a Hilbert scheme of points on a projective K3

surface S.

(2) The moduli space Mμ
α,w(S,ω) is a compact, connected complex manifold

which is simply connected and carries a holomorphic symplectic form.

Proof

We let π : Z(S)−→ P1 be the twistor family of (S,ω). By [16, Lemma 2.1] there is

a t such that St is a projective K3 surface. The polarization ωt is (αt,w)-generic,

and wξ = v(Eξ) for some topological vector bundle Eξ. Such a topological vector

bundle remains constant along P1. Hence, wξ = (r, ξ, b), where r and ξ are prime

to each other. It follows from Proposition 4.18 that Mμ
αt,w

(St, ωt) is an irreducible

symplectic manifold which is deformation equivalent to a Hilbert scheme of points

on St.

By Proposition 4.24, all the fibers are compact, connected manifolds, and

by Proposition 4.23(a) the morphism p is submersive. By [7, the proposition in

Section 1], it follows that p is a smooth and proper morphism. Hence, it is a

deformation of Mμ
α,w(S,ω), and we are done. �
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4.6. Moduli spaces of locally free sheaves
The previous results can be largely improved if we suppose something more on

Mμ
v (S,ω), namely, that it parameterizes only locally free sheaves. However, this

case has already been considered by differential geometers. We therefore only

state the following result and refer the reader to [19] and [20] for the proof.

PROPOSITION 4.26

Let S be a K3 surface, let v = (r, ξ, a) be a Mukai vector such that r and ξ

are prime to each other, and let ω be a v-generic polarization. Then the open

part M lf of the relative moduli space p : M −→ P1 along the twistor family of

(S,ω), parameterizing locally free sheaves, is the twistor family of the moduli

space Mμ−lf
v (S,ω) of ω-stable locally free sheaves with Mukai vector v on S.

If moreover v2 = 0, then a standard argument shows that every sheaf in Mμ
v (S,ω)

is locally free (see [15, Remark 6.1.9]), and thus, the previous proposition applies

to Mμ
v (S,ω), which is moreover compact. The next proposition shows that com-

pact moduli spaces of stable locally free sheaves as above may attain any even

complex dimension.

PROPOSITION 4.27

Let r be a positive integer, let d ∈ [0,2r − 2] be an even integer, and let g be

an integer such that g ≤ −(r2 − 1)(r − 1) and g is congruent to d
2 modulo r.

Then there exists a K3 surface X with NS (X) generated by one element ξ such

that ξ2 = 2g − 2, and there exist torsion-free coherent sheaves E on X of rank

r, c1(E) = ξ, and such that 2r2Δ(E)− 2(r2 − 1) = d. Moreover, all such sheaves

are locally free and irreducible. In particular, they are stable with respect to any

polarization on X, and their moduli space is a compact irreducible holomorphic

symplectic manifold of dimension d.

Proof

The existence of K3 surfaces X with cyclic Néron–Severi groups was proved in

[24], whereas the existence of torsion-free sheaves E with the above invariants

follows from [23, Theorem 2.7]. We will check that such sheaves are irreducible

and locally free. Suppose that 0→E1 →E →E2 → 0 is an exact sequence with Ei

coherent sheaves without torsion on X of ranks ri and with c1(Ei) = ξi (i= 1,2).

Then ξ1 + ξ2 = ξ, r1 + r2 = r, and we directly compute

Δ(E) =
1

2r

(ξ2

r
− ξ21

r1
− ξ22

r2

)
+

r1
r
Δ(E1) +

r2
r
Δ(E2).

Since g ≤ 0, X is nonalgebraic. Hence, Δ(Ei)≥ 0 and thus

Δ(E) ≥ 1

2r

(ξ2

r
− ξ21

r1
− ξ22

r2

)
=− 1

2r1r2

(r2ξ

r
− ξ2

)2

≥ − ξ2

2r2(r− 1)
=

1− g

(r− 1)r2
>

r2 − 1

r2
= 1− 1

r2
.
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But this implies that d > 2r2, which contradicts our choice of d. Hence, E is

irreducible. If E were not locally free, then an easy computation would imply

that the discriminant of its double dual would be negative: a contradiction to

the nonalgebraicity of X . �

5. The second integral cohomology

We now study the second integral cohomology of Mμ
v (S,ω). We will show that it

carries a nondegenerate quadratic form of signature (3,20) and that we have an

isometry between H2(Mμ
v ,Z) and v⊥. If Mμ

v (S,ω) is Kähler, it is even a Hodge

isometry. As a consequence, we will show that the moduli space is projective if

and only if S is projective.

5.1. The quadratic form
Throughout this section we will let X :=Mμ

v (S,ω) for a choice of a K3 surface S,

a Mukai vector v = (r, ξ, a) with r and ξ prime to each other, and a v-generic

polarization ω. We let 2n be its complex dimension. We start by defining a

quadratic form on H2(X,C) for every holomorphic symplectic form σ on X , by

using the same formula as that of the Beauville form of an irreducible symplectic

manifold. For every α ∈H2(X,C), we let

qσ(α) :=
n

2

∫
X

α2 ∧ σn−1 ∧ σn−1

∫
X

σn ∧ σn

+ (1− n)

∫
X

α∧ σn ∧ σn−1

∫
X

α∧ σn−1 ∧ σn.

Note that the symplectic form is always supposed to be closed, so the above

definition does not depend on representatives. Note also that qσ(σ+σ) = (
∫
X
σn∧

σn)2 �= 0, so qσ is nontrivial.

Recall next the definition of the topological quadratic form

q̃X(α) := cn

∫
X

α2
√

td(X),

where cn is a constant depending only on n chosen so that the form becomes

integral on H2(X,Z) (see [12, Part III, Definition 26.19]). It is known that qσ
and q̃X are proportional when X is moreover supposed to be Kähler.

We finally define H̃2,0 := Im({τ ∈ H0(Ω2) | dτ = 0} → H2(X,C)) and

h̃2,0(X) := dim H̃2,0(X). We first prove the following.

PROPOSITION 5.1

Let p :X →C be a proper submersion of relative dimension 2n over a connected

curve C such that there exists a point 0 ∈ C with X0 := p−1(0) irreducible holo-

morphic symplectic. Suppose, moreover, that there exists a relative nondegenerate

symplectic form σ ∈H0(X,Ω2
X/C ⊗ p∗L) with values in a line bundle L over C.

Let qt := qσt be the quadratic form defined by σ on H2(Xt,C) for each t ∈ C.
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Then for all t ∈C the quadratic form qt is a positive multiple of q̃X0 . In partic-

ular, qt is nondegenerate of signature (3, b2(X)− 3) and h̃2,0(Xt) = 1.

Proof

We may suppose that L is the trivial line bundle on C. Indeed, for the general

case it will suffice to take trivializations of L over Zariski-open subsets of C

containing 0.

Fix some α ∈H2(Xt,C), and define for t1, t2 ∈C

qt1,t2(α) :=
n

2

∫
X

α2 ∧ σn−1
t1 ∧ σn−1

t2

∫
X

σn
t1 ∧ σn

t2

+ (1− n)

∫
X

α∧ σn
t1 ∧ σn−1

t2

∫
X

α∧ σn−1
t1 ∧ σn

t2 .

(Note again that the above formula does not depend on representatives since the

symplectic forms σt1 , σt2 are closed.) This defines a complex function on C ×C

which is holomorphic in t1 and antiholomorphic in t2. It becomes holomorphic on

C×C−, where C− denotes the curve C with the opposite complex structure. Over

an analytical open neighborhood U of 0 in C, all fibers Xt are Kähler. Hence,

for t ∈ U the quadratic form qt is proportional to q̃. Take now α,α′ ∈H2(X0,C)

such that q0(α) �= 0. Then the meromorphic function

(t1, t2) �→
qt1,t2(α

′)

qt1,t2(α)

on C × C− is constant on the diagonal ΔU ⊂ U × U− ⊂ C × C−. But ΔU is

Zariski-dense in C × C−. To see this, consider the system of local holomorphic

curves Ct on C ×C− given as images of the maps z �→ (t+ z, t+ z̄). Each curve

Ct passes through the reference point (t, t) ∈ΔU but its intersection with ΔU is

a piece of a real line. Hence, by the principle of isolated zeros, any holomorphic

function vanishing locally on ΔU will also vanish on the curves Ct and thus

also vanish on the three-dimensional real submanifold of C × C− they cover.

Therefore, the function (t1, t2) �→ qt1,t2 (α
′)

qt1,t2 (α)
is constant on C × C−. From this it

follows that qt is proportional to q̃ for any t ∈C.

It remains to check that h̃2,0(Xt) = 1 for all t ∈C. For this we will show that

the kernel K of the linear map{
τ ∈H0(Xt,Ω

2)
∣∣ dτ = 0

}
→H0(Xt,KXt), τ �→ τ ∧ σn−1,

consists of d-exact forms only. Let bt be the bilinear form associated to qt. Then

for any τ ∈K and α ∈H2(Xt,C) we have

bt(τ,α) =
n

2

∫
X

τ ∧ α∧ σn−1
t ∧ σn−1

t

∫
X

σn
t ∧ σn

t

+
1− n

2

∫
X

τ ∧ σn
t ∧ σn−1

t

∫
X

α∧ σn−1
t ∧ σn

t

+
1− n

2

∫
X

α∧ σn
t ∧ σn−1

t

∫
X

τ ∧ σn−1
t ∧ σn

t = 0,

and our assertion follows since qt is nondegenerate. �
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5.2. Isometry with v⊥

We now show that there is an isometry between H2(Mμ
v (S,ω),Z) and v⊥ if

v2 > 0, and with v⊥/Z ·v if v2 = 0. We introduce some notation. If v ∈H2∗(S,Z),

then we let v⊥ be the orthogonal of v with respect to the Mukai pairing. If v =

(r, ξ, a) and ξ ∈NS (S), then the pure weight-two Hodge structure on H2∗(S,Z)

induces a pure weight-two Hodge structure on v⊥: namely, a class α = (α0, α1,

α2) ∈ v⊥ is of (1,1)-type if and only if α1 ∈NS (S).

If α = (α0, α1, α2) ∈ H2∗(S,Q), then we write α∨ := (α0,−α1, α2). If α =

ch(F ) for some locally free sheaf F , then α∨ = ch(F∨). It is immediate to see

that if α,β ∈H2∗(S,Q), then (α · β)∨ = α∨ · β∨. In particular, this implies that

(β/α)∨ = β∨/α∨ and (
√
α)∨ =

√
α∨ whenever these expressions make sense.

We now introduce a morphism associating to any class in v⊥ a rational coho-

mology class on the moduli space of stable (twisted) sheaves. The construction

is inspired from the similar morphism which is used in the projective case (see

[30], [43], [26], [31]). Let α ∈ Br(S), let w ∈H2∗(S,Q) be a Mukai vector, and

let ω be a w-generic polarization. Suppose moreover that Mμ
α,w(S,ω) is compact,

and let p :Mμ
α,w(S,ω)× S −→Mμ

α,w(S,ω) and q :Mμ
α,w(S,ω)× S −→ S be the

projections.

Choosing a quasi-universal family E on Mμ
α,w(S,ω)×S of similitude ρ (which

exists by Remark 4.22), we define a morphism

λS,α,w :w⊥ −→H2
(
Mμ

α,w(S,ω),Q
)

by letting

λS,α,w(β) :=
1

ρ

[
p∗

(
q∗

(
β∨ ·

√
td(S)

)
· ch(E )

)]
1
,

where [·]1 is the part lying in H2(Mμ
α,w(S,ω),Q). As β ∈w⊥, the class λS,α,w(β)

does not depend on the chosen quasi-universal family. If α= 0, we simply write

λS,w for λS,0,w.

We now show the following, which is a generalization of known results in the

projective case (see [29], [30], [43]).

PROPOSITION 5.2

Let S be a K3 surface, and let v = (r, ξ, a) ∈H2∗(S,Z), where r ≥ 2, ξ ∈NS (S),

(r, ξ) = 1, and v2 ≥ 0. Moreover, let ω be a v-generic polarization. Then the image

of λS,v is contained in H2(Mμ
v (S,ω),Z), and

(1) if v2 = 0, then λS,v defines an isometry

λS,v : v
⊥/Z · v −→H2

(
Mμ

v (S,ω),Z
)
;

(2) if v2 > 0, then λS,v is an isometry.

Proof

If v2 > 0, we just need to show the following properties:

(a) the image of λS,v is contained in H2(Mμ
v (S,ω),Z);
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(b) the morphism λS,v is bijective;

(c) the morphism λS,v is an isometry.

Let E be a quasi-universal family of similitude ρ on Mμ
v (S,ω) × S, and fix a

locally free μω-stable vector bundle F of Mukai vector v. Let w := vF (F ) =

(r,0, a− ξ2/2r), and let

f :Mμ
v (S,ω)−→Mμ

0,w(S,ω), f(F ) := F ⊗ F∨,

which is an isomorphism (see Remark 4.15).

We let q :Mμ
0,w(S,ω)× S −→ S be the projection, and we let

E ′ := (f × idS)∗E ⊗ q∗F∨,

which is a quasi-universal family of similitude ρ on Mμ
0,w(S,ω)×S. Moreover, as

f is an isomorphism, the morphism

f∗ :H
2
(
Mμ

v (S,ω),Z
)
−→H2

(
Mμ

0,w(S,ω),Z
)

is easily checked to be an isometry.

Now, we let

h :H2∗(S,Z)−→H2∗(S,Q), h(β) :=
β · ch(F∨)√
ch(F ⊗ F∨)

.

We let (·, ·)S be the Mukai pairing on S, and we let [·]2 be the part lying in

H4(S,Q). If β ∈ v⊥, we have

(
h(β),w

)
S
= −

[ β∨ · ch(F )√
ch(F ⊗ F∨)

· vF (F )
]
2

= −
[
β∨ · ch(F ) ·

√
td(S)

]
2
= (β, v)S = 0,

so that

h : v⊥ −→w⊥.

The same argument shows that it is an isometry. We even have f∗(λS,v(β)) =

λS,w(h(β)). Indeed,

f∗
(
λS,v(β)

)
=

1

ρ

[
f∗p∗

(
q∗

(
β∨√

td(S)
)
ch(E )

)]
1

=
1

ρ

[
p∗

(
(f × idS)∗q

∗(β∨√
td(S)

)
ch(E ′)

)]
1

=
1

ρ

[
p∗

(
q∗

(
h(β)∨

√
td(S)

)
ch(E ′)

)]
1
= λS,w

(
h(β)

)
.

In conclusion, we see that λS,v verifies properties (a), (b), and (c) above if and

only if λS,w verifies them.

Now, consider the twistor line of (S,ω), and let p : M −→ P1 be the associated

relative moduli space. As we can define λS,v in a relative way using relative quasi-

universal families (which exist by Remark 4.22), properties (a), (b), and (c) above

are verified on a fiber if and only if they are verified all along the twistor line. It
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follows that λS,w verifies (a), (b), and (c) if and only if λSt,wt verifies them for

some t ∈ P1.

As we saw before, there is t such that St is projective, and in this case λSt,wt

is an isometry by [42]. Hence, we are done. If v2 = 0, the proof is similar: the

only difference is about the fact that Z · v is the kernel of λS,v , which holds in

the general case as it holds over a projective K3 surface (see [29]). �

An immediate corollary of the previous proposition is the following result.

COROLLARY 5.3

Let S be a K3 surface, v = (r, ξ, a) ∈H2∗(S,Z) where ξ ∈NS (S), r ≥ 2, (r, ξ) = 1,

and v2 ≥ 0. If ω is a v-generic polarization and Mμ
v (S,ω) is Kähler, then the

morphism λv is a Hodge isometry.

Theorem 1.2 can now be seen as a corollary of the previous results.

COROLLARY 5.4

Let S be a K3 surface, and let v = (r, ξ, a) ∈H2∗(S,Z), where ξ ∈NS (S), r ≥ 2,

(r, ξ) = 1, and v2 ≥ 0. If ω is a v-generic polarization, then Mμ
v (S,ω) is projective

if and only if S is projective.

Proof

First, note that if S is projective, then Mμ
v (S,ω) is projective by Theorem 3.4.

Suppose now that S is not projective; we want to prove that Mμ
v (S,ω) is not

projective as well. Suppose that Mμ
v (S,ω) is projective: in particular, this implies

that it is Kähler. Hence, by Theorem 1.1(1) it follows that it is an irreducible

symplectic manifold.

Recall that an irreducible symplectic manifold X is projective if and only

if there is a line bundle L on X such that q(L) > 0, where q is the Beauville

form of X (see [14]). Hence, there is a line bundle L on Mμ
v (S,ω) such that

q(L) > 0, where q is the Beauville form on Mμ
v (S,ω), which coincides with the

nondegenerate quadratic form we defined in the previous section.

Moreover, by Corollary 5.3, as Mμ
v (S,ω) is Kähler we have that λv is a Hodge

isometry. There is then α ∈ v⊥ of type (1,1) (with respect to the Hodge structure

on v⊥) such that λv(α) = c1(L), and (α,α)S > 0.

Let us now describe v⊥⊗Q. First, an element (0, ζ, b) ∈ H̃(S,Q) is in v⊥⊗Q

if and only if b= ζ · ξ. As (0, ζ, ζ · ξ) = eξ/r · (0, ζ,0), we have

eξ/r ·H2(S,Q)⊆ v⊥.

It is easy to see that eξ/r · (2r2,0, v2) ∈ v⊥ ⊗Q. Hence,

eξ/r ·Q(2r2,0, v2)⊆ v⊥ ⊗Q.

This implies that

v⊥ ⊗Q= eξ/r ·
(
H2(S,Q)⊕Q(2r2,0, v2)

)
,
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so that the (1,1)-part (v⊥)1,1 of v⊥ ⊗Q is

(v⊥)1,1 = eξ/r ·
(
NSQ(S)⊕Q(2r2,0, v2)

)
,

where NSQ(S) :=NS (S)⊗Q.

The direct sum is orthogonal with respect to the Mukai pairing, and it is

easy to see that (
eξ/r(2r2,0, v2)

)2
=−4r2v2 ≤ 0,

as v2 ≥ 0. Moreover, as S is nonprojective, the lattice eξ/rNSQ(S) is negative

semidefinite. It follows that (v⊥)1,1 is negative semidefinite. Hence, for every

α ∈ (v⊥)1,1 we have (α,α)S ≤ 0, which is not possible. In conclusion, if S is not

projective, then the moduli space cannot be projective, and we are done. �
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