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Abstract Consider A an abelian variety of dimension r defined over Q. Assume that

rankQA ≥ g, where g ≥ 0 is an integer, and let a1, . . . , ag ∈ A(Q) be linearly indepen-

dent points. (So, in particular, a1, . . . , ag have infinite order, and if g = 0, then the set

{a1, . . . , ag} is empty.) For p a rational prime of good reduction forA, let Ā be the reduc-

tion ofA at p, let āi for i= 1, . . . , g be the reduction of ai (modulo p), and let 〈ā1, . . . , āg〉
be the subgroup of Ā(Fp) generated by ā1, . . . , āg . Assume that Q(A[2]) = Q and

Q(A[2],2−1a1, . . . ,2−1ag) �= Q. (Note that this particular assumption Q(A[2]) = Q

forces the inequality g ≥ 1, butwe can take care of the case g = 0, under the right assump-

tions, also.) Then in this article, in particular, we show that the number of primes p for

which
Ā(Fp)

〈ā1,...,āg〉 has at most (2r − 1) cyclic components is infinite. This result is the

right generalization of the classical Artin’s primitive root conjecture in the context of

general abelian varieties; that is, this result is an unconditional proof of Artin’s conjec-

ture for abelian varieties. Artin’s primitive root conjecture (1927) states that, for any

integer a �= ±1 or a perfect square, there are infinitely many primes p for which a is a

primitive root (modp). (This conjecture is not known for any specific a.)

1. Introduction

Let A be an abelian variety defined over Q, of conductor N , and of dimension r,

where r ≥ 1 is an integer. Let PA be the set of rational primes p of good reduction

for A (i.e., (p,N) = 1). For p ∈ PA, we denote by Ā the reduction of A at p.

We have that Ā(Fp)⊆ Ā[m](F̄p)⊆ (Z/mZ)2r for any positive integer m sat-

isfying |Ā(Fp)| |m. Hence,

(1.1) Ā(Fp)� Z/m1Z×Z/m2Z× · · · ×Z/msZ,

where s≤ 2r, mi ∈ Z≥2, and mi |mi+1 for 1≤ i≤ s− 1. Each Z/miZ is called a

cyclic component of Ā(Fp). If s < 2r, then we say that Ā(Fp) has at most (2r−1)

cyclic components. (Thus, if r = 1, then this means that Ā(Fp) is cyclic.)

Assume that rankQA ≥ g, where g ≥ 0 is an integer, and let a1, . . . , ag ∈
A(Q) be linearly independent points. (So, in particular, ai for i = 1, . . . , g has

infinite order.) Let āi, for i = 1, . . . , g, be the reduction of ai (modulo p), and

let 〈ā1, . . . , āg〉 be the subgroup of Ā(Fp) generated by ā1, . . . , āg . From above we
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know that
Ā(Fp)

〈ā1,...,āg〉 has at most 2r cyclic components. We call a := (a1, . . . , ag) a

primitive-cyclic tuple for p if
Ā(Fp)

〈ā1,...,āg〉 has at most (2r− 1) cyclic components.

For x ∈R, define

fA,a,Q(x) =
∣∣∣
{
p ∈ PA

∣∣∣ p≤ x,
Ā(Fp)

〈ā1, . . . , āg〉
has at most (2r− 1)

cyclic components
}∣∣∣.

In this article, in particular, we prove the following result.

THEOREM 1.1

Let A be an abelian variety over Q. Assume that rankQA ≥ g, where g ≥ 0 is

an integer, and let a1, . . . , ag ∈A(Q) be linearly independent points. Assume that

Q(A[2]) =Q and that Q(A[2],2−1a1, . . . ,2
−1ag) 	=Q. Then we have

fA,a,Q(x)

x

(logx)2
.

We remark that the assumption Q(A[2]) = Q in Theorem 1.1 corresponds to

the trivial fact Q(±1) = Q from the classical Artin’s primitive root conjecture,

and that the assumption that a1, . . . , ag ∈ A(Q) are linearly independent and

Q(A[2],2−1a1, . . . ,2
−1ag) 	=Q corresponds exactly to the assumption that “a 	=

±1 or a perfect square” or to the equivalent assumption that a 	=±1 and “Q(±1,√
a) 	=Q” from the classical Artin’s primitive root conjecture. (Actually in Theo-

rem 1.1 one does not necessarily have to assume that Q(A[2]) =Q (see Remark 3.1

below), but we prefer to leave Theorem 1.1 in this classical form.) Theorem 1.1

is the right generalization of the classical Artin’s primitive root conjecture in

the context of abelian varieties. (The fields Q(A[q], q−1a), for q rational prime,

that appear in the statements of Lemmas 2.2 and 2.3 below are the analogues

of the splitting fields Q( q
√
1, q
√
a) of xq − a = 0 which occur in the classical

Artin’s conjecture (see [6] for details).) We remark that in 1977 Lang and Trot-

ter [8] formulated an analogous conjecture for elliptic curves, but that is not

Artin’s conjecture for elliptic curves as some people, including the authors of

[4], believe. We remark that if Q(A[2],2−1a1, . . . ,2
−1ag) = Q, then, for all odd

rational primes p of good reduction for A, we have Ā[2](F̄p) ⊂ Ā(Fp)
〈ā1,...,āg〉 and

Ā[2](F̄p) � (Z/2Z)2r, and thus, in this case fA,a,Q(x) is finite. Therefore, the

condition Q(A[2],2−1a1, . . . ,2
−1ag) 	=Q imposed in Theorem 1.1 is necessary.

2. General abelian varieties

Let GQ := Gal(Q̄/Q). Let A be an abelian variety over Q, of dimension r ≥ 1,

and of conductor N . Let PA be the set of rational primes p of good reduction

for A (i.e., (p,N) = 1). For m≥ 1 an integer, let A[m] be the m-division points of

A in Q̄. Assume that rankQA≥ g, where g ≥ 0 is an integer, and let a1, . . . , ag ∈
A(Q) be linearly independent points. Throughout this article we denote a :=
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(a1, . . . , ag), and Q(A[m],m−1a) :=Q(A[m],m−1a1, . . . ,m
−1ag). We have

A[m]� (Z/mZ)2r.

If Q(A[m]) is the field obtained by adjoining to Q the coordinates of the elements

of A[m], then we have a natural injection

Φm : Gal
(
Q

(
A[m]

)
/Q

)
↪→Aut

(
A[m]

)
�GL2r(Z/mZ).

For a rational prime l, let

Tl(A) = lim←−
n

A[ln],

and let Vl(A) = Tl(A)⊗Q. The Galois group GQ acts on

Tl(A)� Z2r
l ,

where Zl is the l-adic completion of Z at l, and also on Vl(A) � Q2r
l , and we

obtain a representation

ρA,l := lim←−
n

Φln :GQ →Aut
(
Tl(A)

)
�GL2r(Zl)⊂Aut

(
Vl(A)

)
�GL2r(Ql),

which is unramified outside lN . If p ∈ PA, then let σp be the Artin symbol

of p in GQ, and let l be a rational prime satisfying (l, p) = 1. We denote by

PA,p(X) =X2r+a1,A(p)X
2r−1+ · · ·+a2r−1,A(p)X+pr ∈ Z[X] the characteristic

polynomial of σp on Tl(A). Then PA,p(X) is independent of l. We know (Riemann

hypothesis) that PA,p(X) = (X − x1,p)(X − x̄1,p) · · · (X − xr,p)(X − x̄r,p), where

|xi,p|= p1/2, for i= 1, . . . , r. One can identify Tl(A) with Tl(Ā), where Ā is the

reduction of A at p, and the action of σp on Tl(A) is the same as the action of

the Frobenius πp of Ā on Tl(Ā).

We know (see, e.g., [7, Proposition 9], [1, Lemma 1], [2, Chapter III, Lemma 4

and its corollary], [10], and [3]) the following.

LEMMA 2.1

Let A be an abelian variety defined over Q, of dimension r, and of conductor N ,

and let m be a positive integer. Assume that rankQA≥ g, where g ≥ 0 is an inte-

ger, and let a1, . . . , ag ∈A(Q) be linearly independent points. Let a := (a1, . . . , ag).

Then the following statements hold:

1. the extensions Q(A[m])/Q and Q(A[m],m−1a)/Q are ramified only at

places dividing mN ;

2. Q(ζm) ⊆ Q(A[m]), and hence, if a rational prime p splits completely in

Q(A[m]), then m | p− 1.

LEMMA 2.2

Let A be an abelian variety over Q, of dimension r, and of conductor N . Assume

that rankQA≥ g, where g ≥ 0 is an integer, let a1, . . . , ag ∈A(Q) be linearly inde-

pendent points, and let a := (a1, . . . , ag). Let p ∈ PA, and let q 	= p be a rational

prime. Then
Ā(Fp)

〈ā1,...,āg〉 contains a (q, . . . , q)-type subgroup (q appears 2r times),
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that is, a subgroup isomorphic to Z/qZ× · · · ×Z/qZ, if and only if p splits com-

pletely in Q(A[q], q−1a).

Proof

Since (p,Nq) = 1, from Lemma 2.1 we know that p is unramified in Q(A[q], q−1a).

Then when

πp : Ā(F̄p)→ Ā(F̄p)

is the Frobenius endomorphism, we have that

Ker(πp − 1) = Ā(Fp).

But
Ā(Fp)

〈ā1,...,āg〉 contains a (q, . . . , q)-type subgroup if and only if Ā(F̄p)[q]⊂ Ā(Fp),

and there exists a b̄i ∈ Ā(Fp), for i = 1, . . . , g, such that q · b̄i = āi. Hence, we

get that
Ā(Fp)

〈ā1,...,āg〉 contains a (q, . . . , q)-type subgroup if and only if Ā(F̄p)[q] ⊂
Ker(πp− 1) and p has a first-degree factor in Q(q−1a), which is equivalent to the

splitting of p in Q(A[q], q−1a). �

LEMMA 2.3

Let A be an abelian variety over Q, of dimension r, and of conductor N . Assume

that rankQA ≥ g, where g ≥ 0 is an integer, let a1, . . . , ag ∈ A(Q) be linearly

independent points, and let a := (a1, . . . , ag). Let p ∈ PA. Then
Ā(Fp)

〈ā1,...,āg〉 contains

at most (2r − 1) cyclic components if and only if p does not split completely in

Q(A[q], q−1a) for any rational prime q 	= p.

Proof

We know that Ā(Fp)⊆ Ā(F̄p)[m]⊆ Z/mZ×· · ·×Z/mZ (Z/mZ appears 2r times)

for any positive integer m such that |Ā(Fp)| | m. But the p-primary part of

Ā(F̄p)[m] has at most (2r − 1) cyclic components (actually at most r cyclic

components; see, e.g., [9, Chapter II, Section 4]). Hence, we get that
Ā(Fp)

〈ā1,...,āg〉
has at most (2r − 1) cyclic components if and only if it does not contain a

(q, . . . , q)-type (q appears 2r times) subgroup for any rational prime q 	= p. From

Lemma 2.2, we deduce that this is equivalent to the fact that p does not split

completely in Q(A[q], q−1a) for any rational prime q 	= p. �

LEMMA 2.4

Let A be an abelian variety over Q, of dimension r, and of conductor N . Let

p ∈ PA, and let q 	= p be a rational prime. If p splits completely in Q(A[q]), then
xi,p−1

q is an algebraic integer for any i= 1, . . . , r.

Proof

Since p splits completely in Q(A[q]), we know that Ā(F̄p)[q]⊂Ker(πp−1). There-

fore, we have that ρA,q(σp) = I2r + qBq , where Bq ∈ M2r(Zq). Thus, (qX −
(x1,p−1))(qX− (x̄1,p−1)) · · · (qX− (xr,p−1))(qX− (x̄r,p−1)) = PA,p(qX+1) =

det((qX + 1)I2r − ρA,q(σp)) = det(qXI2r − qBq), and we get trivially that (X −
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(
x1,p−1

q ))(X − (
x̄1,p−1

q )) · · · (X − (
xr,p−1

q ))(X − (
x̄r,p−1

q )) ∈ Z[X]. Hence,
xi,p−1

q is

an algebraic integer for any i= 1, . . . , r. �

We define yi,p :=
xi,p−1

q , for i = 1, . . . , r. Then, when p splits completely in

Q(A[q]), from the proof of Lemma 2.4 we know that (X−y1,p)(X− ȳ1,p) · · · (X−
yr,p)(X − ȳr,p) ∈ Z[X]. Hence, p = xi,px̄i,p = (1 + qyi,p)(1 + qȳi,p) = 1 + q(yi,p +

ȳi,p) + q2yi,pȳi,p. Thus,

rp= r+ qb1,A(p)q + q2b2,A(p)q,

where b1,A(p)q :=
∑r

i=1(yi,p + ȳi,p) ∈ Z and b2,A(p)q :=
∑r

i=1 yi,pȳi,p ∈ Z.

LEMMA 2.5

With the same notation as in Lemma 2.4, if p splits completely in Q(A[q]), then

we have

q2 | rp+ a1,A(p) + r.

Proof

From above we know that

q2 | rp− r− qb1,A(p)q = rp+ a1,A(p) + r. �

LEMMA 2.6

We have
∣∣a1,A(p)

∣∣ ≤ 2rp1/2.

Proof

Since a1,A(p) =−
∑r

i=1(xi,p+ x̄i,p) and |xi,p|= p1/2, for i= 1, . . . , r, we are done.

�

LEMMA 2.7

Let A be an abelian variety over Q. Let Sε(x) be the set of primes p ∈ PA such

that p≤ x, all odd prime divisors of p− 1 are distinct and greater than or equal

to x1/4+ε, and p does not split completely in Q(A[2],2−1a). If Q(A[2]) =Q and

Q(A[2],2−1a) 	=Q, then there exists an ε > 0 such that
∣∣Sε(x)

∣∣ 
 x

(logx)2
.

Proof

Since Q(A[2]) =Q and Q(A[2],2−1a) 	=Q, we have that the field Q(A[2],2−1a)

is a nontrivial abelian extension of Q. Hence, the same proof as that for [5,

Lemma 3] goes through. �
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3. The proof of Theorem 1.1

Let ε > 0 satisfy Lemma 2.7. For each c ∈ Z such that |c| ≤ 2rx1/2, we define

Sε,c(x) :=
{
p ∈ Sε(x)

∣∣ a1,A(p) = c
}
.

From Lemma 2.6, we know that |a1,A(p)| ≤ 2rx1/2, and thus, Sε(x) is a disjoint

union of Sε,c(x). For each c as above, we want to count the number of p ∈ Sε,c(x)

for which
Ā(Fp)

〈ā1,...,āg〉 does not have at most (2r−1) cyclic components. If
Ā(Fp)

〈ā1,...,āg〉

does not have at most (2r− 1) cyclic components, then (Z/qZ)2r ⊂ Ā(Fp)
〈ā1,...,āg〉 for

some prime q, and from Lemma 2.2 and from the definition of Sε(x), we deduce

that q is odd and p splits completely in Q(A[q], q−1a). From Lemma 2.1, we get

that

q | p− 1,

and from Lemma 2.5, we know that

q2 | rp+ a1,A(p) + r = rp+ c+ r.

Thus, q | c + 2r. We have that c 	= −2r, because otherwise q2 | r(p − 1). (We

already know that q | p− 1, and from the definition of Sε(x), for x large enough

one can assume that (q, r) = 1, and hence q2 | r(p−1) would imply that q2 | p−1,

which is a contradiction with the definition of Sε(x).) Since q ≥ x1/4+ε and |c| ≤
2rx1/2, for x sufficiently large, q is determined by c. If p ∈ Sε,c(x) is such that

Ā(Fp)
〈ā1,...,āg〉 does not have at most (2r− 1) cyclic components, then from above we

get that

rp≡−c− rmod q2.

Hence, the number of such p’s is less than

x

q2
+O(1)� x1/2−2ε.

Thus, we proved that the number of p ∈ Sε(x) for which
Ā(Fp)

〈ā1,...,āg〉 does not have

at most (2r− 1) cyclic components is

x1/2−2εx1/2 = o
( x

(logx)2

)
.

This completes the proof of Theorem 1.1. �

REMARK 3.1

We remark that Theorem 1.1 and Lemma 2.7 are true if one replaces the assump-

tion “Q(A[2]) =Q and Q(A[2],2−1a) 	=Q” by the assumption “Q(A[2],2−1a) 	=Q

contains a nontrivial abelian extension of Q” (which is satisfied, for example,

when A is an elliptic curve over Q).
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