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Abstract Adetailed study of the characters ofS∞(T ), the wreath product of compact

group T with the infinite symmetric group S∞, is indispensable for harmonic analysis

on this big group. In preceding works, we investigated limiting behavior of characters of

thefinitewreathproductSn(T )asn→∞and its connectionwith characters ofS∞(T ).

This paper takes a dual approach to these problems. We study harmonic functions on

Y(T̂ ), the branching graph of the inductive system ofSn(T )’s, and give a classification

of the minimal nonnegative harmonic functions on it. This immediately implies a clas-

sification of the characters ofS∞(T ), which is a logically independent proof of the one

obtained in earlierworks.Weobtain explicit formulas forminimal nonnegativeharmonic

functions on Y(T̂ ) and Martin integral expressions for harmonic functions.

0. Introduction

Let Sn(T ) and S∞(T ) denote the wreath products of a compact group T with

the symmetric group Sn of the nth degree and the infinite symmetric group

S∞, respectively. The present paper constitutes a part of our project on harmonic

analysis of S∞(T ). It is closely related to our previous works [7] and [9] published

jointly with E. Hirai, in which asymptotic behavior of characters of Sn(T ) and its

connection with characters of S∞(T ) are analyzed in detail from different points

of view. The present paper thus cuts a clearer figure when it is put together with

[7] and [9]. However, we keep it self-contained and feature independent results

and approach. Let us explain the problems we treat as well as how they are

related to [7] and [9]. Several notions freely used in this section are defined and

explained in appropriate places of later sections.

Let D∞(T ) denote the restricted direct product of T . Then, S∞ canonically

acts on D∞(T ) (see (1.13) and (1.14)), and S∞(T ) is the semidirect product of

D∞(T ) and S∞ under this action. We equip S∞(T ) with the inductive limit

topology. The following problems are fundamental in the harmonic analysis of

S∞(T ):

(a) classification of the finite factorial (or primary) unitary representations;
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(b) canonical direct integral decomposition of a finite unitary representation

into factorial ones.

One knows that (b) is solved in an abstract sense as the central decomposition

by virtue of von Neumann’s reduction theory. We then get a measure for the

superposition on the classification space of (a). Concrete computation of this

measure remains as an independent and difficult problem. Concerning (a), we

recall that the following four objects are equivalent. In other words, there exists

a bijective correspondence between one another:

(a.1) the quasiequivalence classes of finite factorial unitary representations

of S∞(T );

(a.2) the extremal points of

K
(
S∞(T )

)
=

{
f :S∞(T )−→C

∣∣
(0.1)

f is continuous, positive definite, central, and normalized
}
;

(a.3) the extremal points of

H
(
Y(T̂ )

)
=

{
ϕ :Y(T̂ )−→C

∣∣
(0.2)

ϕ is harmonic, nonnegative, and normalized
}
;

(a.4) the extremal points of

(0.3) M
(
T(T̂ )

)
=

{
central probabilities on T(T̂ )

}
.

Let us explain the notation used above. Let Y(T̂ ) denote the vertices of the

branching graph for the Sn(T )’s (see (1.16)). The harmonicity of ϕ is defined

in (1.18). The term “normalized” means that f(e) = 1 in (0.1) and ϕ(∅) = 1

in (0.2). Let T(T̂ ) denote the set of infinite paths from ∅ on the branching

graph. The centrality of a measure in (0.3) is defined in (3.1). The correspondence

between (a.1) and (a.2) is described in [3]. Explicit realizations of finite factorial

unitary representations of S∞(T ) in terms of the classifying parameters are given

in [6]. We refer to [9] for the bijections between (0.1), (0.2), and (0.3). Later in

Section 4, we review these bijections in a slightly wider context, namely, in the

case of a general inductive system of compact groups. Furthermore, relations

between their topologies are also discussed. An extremal point of (0.1) is called

a character of S∞(T ). The second author and E. Hirai published several papers

on the determination of the set of all characters of S∞(T ). A final form is given

in [4] and [5]. The main purpose of the series of works that includes [7], [9], and

the present paper is to understand the above four objects (a.1)–(a.4) for S∞(T )

through limiting procedures from the inductive system of Sn(T )’s and thereby

to give a sufficiently concrete answer to the fundamental problem of (a). These

three papers take different approaches and methods. The present paper takes

an approach from the viewpoint of (a.3). In contrast with this, [7] and [9] have

(a.2) and (a.4), respectively, as their main targets. In the case where T is a finite

group, such a character theory was developed in [2].
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We give a characterization of (a.3) by computing the Martin boundary ∂Y(T̂ )
of the branching graph Y(T̂ ). This approach is strongly motivated by works

treating the Young graph and its variations such as [17], [12], [14], [1], [13],

and [15]. It turns out that the minimal Martin boundary ∂mY(T̂ ) is a proper

noncompact subset of ∂Y(T̂ ) if and only if the compact group T is continuous. As

an alternative answer to problem (b), we show the Martin integral representation

for any element ϕ in (0.2) as

(0.4) ϕ(Λ) =

∫
Δ

ϕω(Λ)Q(dω),

in which Δ realizing ∂mY(T̂ ) and the kernel function ϕω(Λ) are explicitly given

together with the manner of obtaining probability Q from ϕ. In general, Cho-

quet’s theorem enables us to have an abstract framework in which any element

of a compact convex subset of a locally convex space is expressed as an inte-

gral over the extremal points. While Choquet’s theorem is quite powerful, the

superposition measure (namely, probability Q in (0.4)) is highly unclear since it

is obtained in a transcendental manner. We prove (0.4) by using a constructive

method as an analogue of the ‘radial limit’ for a harmonic function on the unit

disk of C (see [12] for the Young graph), without relying on Choquet’s theorem.

This paper is organized as follows. In Section 1, we review necessary facts

about representations of wreath product groups Sn(T ) and their branching

graph Y(T̂ ). Irreducible character formulas for Sn(T ) are discussed in some

detail since their asymptotic behavior is crucial for our purpose. In particular, we

need to formulate the expressions from which we can read out the asymptotics as

n→∞. The branching graph is constructed from the branching rule for Sn(T )’s.

We recall several notions in the theory of Markov chains on graphs. Since there

may be some differences in the terminology of Martin boundaries between prob-

abilistic contexts and representation-theoretical ones, we give a brief account in

Appendix A. Section 2 is devoted to the computation of the Martin boundary of

Y(T̂ ) by using irreducible characters of Sn(T ). In Section 3, we prove an integral

representation formula for harmonic functions on Y(T̂ ). Combining the integral

representation with the results in Section 2, we obtain a complete characteriza-

tion of the minimal Martin boundary of Y(T̂ ). The aim of Section 4 is to explain

the relations between (0.1)–(0.3) from a general viewpoint with emphasis on their

topologies.

1. Preliminaries about wreath product groups and branching graphs

Throughout the present paper, let T be a compact group with identity ele-

ment eT . Let [T ] and T̂ denote the set of conjugacy classes of T and the set of

equivalence classes of continuous irreducible unitary representations of T , respec-

tively. The group T may be noncommutative and continuous. For technical sim-

plicity, however, we assume that T̂ is at most countable. In this section, we recall

necessary notions and some known results on wreath products of a compact group
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and associated branching graphs. In what follows, continuous unitary represen-

tation is referred to as UR for short. Similarly, irreducible UR is abbreviated to

IUR. For n ∈N= {1,2,3, . . .}, Sn denotes the symmetric group of degree n, and

Yn denotes the set of Young diagrams of size n. Set Y=
⊔∞

n=0Yn, the totality

of all Young diagrams, where Y0 = {∅}. We use the following (conventional)

notation and terminologies for Young diagrams. For λ ∈Yn,

• λj is the length of the jth row where λ1 � λ2 � · · · ;
• mi(λ) is the number of rows of length i contained in λ;

• l(λ) =
∑∞

i=1mi(λ) is the number of rows of λ;

• |λ|=
∑l(λ)

j=1 λj =
∑∞

i=1 imi(λ) = n is the size of λ;

• πλ is an IUR of Sn labeled by λ;

• χλ = trπλ is the associated irreducible character of Sn.

Note that we use ‘tr’ for the nonnormalized trace.

1.1. Wreath product of T
For n ∈ N, Sn canonically acts on Tn, the n-fold direct product of T : σ ∈Sn,

t= (t1, . . . , tn) ∈ Tn,

σ(t) = (tσ−1(1), . . . , tσ−1(n)).

This action gives the semidirect product Tn�Sn, which is denoted bySn(T ) and

called the wreath product of T with Sn. We have S1(T ) = T from the definition,

and set S0(T ) = {e} for notational convenience.

1.2. Standard decomposition into basic elements
Any nontrivial element g = (t, σ) in Sn(T ), where t ∈ Tn and σ ∈Sn, has the

standard decomposition

(1.1) g = ξq1 · · · ξqrg1 · · ·gm
into two kinds of basic elements ξqi and gj as follows. For each q ∈ {1,2, . . . , n},
ξq in (1.1) denotes an element in Tn with nontrivial tq �= eT only at the qth entry:

ξq = (eT , . . . , eT , tq, eT , . . . , eT ), tq ∈ T,

where {q} is referred to as supp ξq (= support of ξq). We use the notation as

ξq = (tq, (q)) for ξq above. Each gj in (1.1) has the form (tj , σj) in which σj is a

cycle permutation in Sn and tj holds possibly nontrivial elements in T only at

the positions of suppσj . Here suppσj denotes the set of letters in {1,2, . . . , n} of

which the cycle σj consists. Set suppgj = suppσj . Moreover, all the supports

supp ξq1 , . . . , supp ξqr , suppg1, . . . , suppgm

are taken to be disjoint in (1.1). Since g = (t, σ) is nontrivial in Sn(T ), the

union of these supports is nonempty. It follows from (1.1) that σ = σ1 · · ·σm is a

cycle decomposition in Sn. The standard decomposition of g in (1.1) is uniquely

determined up to the orders of ξqi ’s and gj ’s.
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1.3. The conjugacy classes of Sn(T )

It is immediate that

(1.2) σ
(
t, (q)

)
σ−1 =

(
t, σ(q)

)
for σ ∈Sn, q ∈ {1,2, . . . , n}, t ∈ T . For the basic element (t, σ), σ = (i1i2 · · · il),
let t hold tij ∈ T at the position ij , that is,

t=

l∏
j=1

(
tij , (ij)

)
.

Using (1.2) also, we have(
ti1 , (i1)

)−1
tσ

(
ti1 , (i1)

)
=

(
t−1
i1

, (i1)
)
tσ

(
ti1 , (i1)

)
σ−1σ

=
( l∏
j=2

(
tij , (ij)

))(
ti1 , (i2)

)
σ

=
(
ti2ti1 , (i2)

)( l∏
j=3

(
tij , (ij)

))
σ.

Repeating these conjugations, we see that (t, σ) is conjugate to

(1.3)
((
tiltil−1

· · · ti2ti1 , (il)
)
, (i1i2 · · · il−1il)

)
.

Moreover, in (1.3), conjugacy class [til · · · ti2ti1 ] of T is well defined since it is

independent of the cyclic order of ti1 , . . . , til . A conjugacy class of T and a 1-row

Young diagram (corresponding to the conjugacy class of l-cycles in Sn) are thus

assigned to the basic element (t, σ). In the expression of (1.1), we can add the

product of (
eT , (q)

)
, q /∈

r⊔
i=1

supp ξqi �
m⊔
j=1

suppgj ,

without affecting anything. Furthermore, this yields the expression (1.1) even

for the identity element e in Sn(T ). We hence see that the conjugacy classes of

Sn(T ) are parameterized by

(1.4) Yn

(
[T ]

)
=

{
P= (ρθ)θ∈[T ]

∣∣∣ ρθ ∈Y,
∑
θ∈[T ]

|ρθ|= n
}
.

Let CP denote the conjugacy class of Sn(T ) labeled by P ∈Yn([T ]).

1.4. The equivalence classes of IURs of Sn(T )

By virtue of a standard inducing-up method, the equivalence classes of IURs of

Sn(T ) are parameterized by

(1.5) Yn(T̂ ) =
{
Λ= (λζ)ζ∈T̂

∣∣∣ λζ ∈Y,
∑
ζ∈T̂

|λζ |= n
}
.

In fact, IUR πΛ of Sn(T ) labeled by Λ = (λζ)ζ∈T̂ ∈ Yn(T̂ ) is constructed as

shown in [7, Section 3] (see also [9, Section 1.1]). For the case where T is finite,
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we refer also to [11, Chapter 4]. To recall the construction, picking a partition of

{1,2, . . . , n} into |λζ |-blocks:

{1,2, . . . , n}=
⊔
ζ∈T̂

In,ζ , |In,ζ |= |λζ |,

we define IUR η of Tn by

η =�ζ∈T̂ (�i∈In,ζ
πζi), πζi ∈ ζi ∈ T̂ , ζi ≡ ζ (i ∈ In,ζ).

Here � denotes the outer tensor product of representations. We note, however,

that the expression may not reflect the order of outer tensor products for sim-

plicity of the notation. To be precise, taking distinct ζ ′, ζ ′′, ζ ′′′ ∈ T̂ , let

Λ = (λζ)ζ∈T̂ ∈Y5(T̂ ), λζ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2), ζ = ζ ′,

(1,1), ζ = ζ ′′,

(1), ζ = ζ ′′′,

∅, otherwise,

for example. Assume that we take a partition of {1,2,3,4,5} as

{1,4} � {2,5} � {3}, I5,ζ′ = {1,4}, I5,ζ′′ = {2,5}, I5,ζ′′′ = {3}.

Then, we have η = πζ′ � πζ′′ � πζ′′′ � πζ′ � πζ′′
by definition. Under the action

of σ ∈Sn on T̂n by

ση(t) = η
(
σ−1(t)

)
, σ−1(t) = (tσ(i))

(
t= (ti) ∈ Tn

)
,

the stationary subgroup Sη = {σ ∈Sn | ση ∼= η} is isomorphic to
∏

ζ∈T̂ SIn,ζ
∼=∏

ζ∈T̂ S|λζ |. Set

Hn = Tn � Sη ∼=
∏
ζ∈T̂

S|λζ |(T ).

Define IUR ρζ of S|λζ |(T ) by

ρζ(t, σ) = (πζ)�|λζ |(t)I(σ) (t ∈ T |λζ |, σ ∈S|λζ |),

where I(σ)(
⊗

i vi) =
⊗

i vσ−1(i) on (V ζ)⊗|λζ |, the representation space of

(πζ)�|λζ |. The ρζ ’s give an IUR of Hn on the representation space of η, V η ∼=⊗
ζ∈T̂ (V

ζ)⊗|λζ |, as ρη = �ζ∈T̂ ρ
ζ . On the other hand, we have ξη = �ζ∈T̂π

λζ

as

an IUR of Sη , where ξη is regarded as an IUR of Hn by considering trivial actions

of Tn. We see that ρη ⊗ ξη is an IUR of Hn. Then, π
Λ is given by the induced

representation

πΛ = Ind
Sn(T )
Hn

ρη ⊗ ξη.

1.5. Branching rule for Sn(T )’s
If k < n, then canonical inclusion ιn,k :Sk(T )−→Sn(T ) is defined as ιn,k(t, σ) =

(t̃, σ̃), where

t̃= (t, eT , . . . , eT ) ∈ T k × Tn−k = Tn, σ̃ = σ(k+ 1)(k+ 2) · · · (n) ∈Sn.
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Under the inclusion ιn,k, Sk(T ) is regarded as a subgroup of Sn(T ). If Λ ∈Yn(T̂ )

is obtained by adding a box at an entry of M ∈Yn−1(T̂ ), we say that Λ is adjacent

to M and write M↗ Λ. In this situation, since the entry of M at which a box

is put is uniquely determined, we denote it by ζM,Λ ∈ T̂ . For Λ ∈Yn(T̂ ) and the

corresponding IUR πΛ of Sn(T ), the restriction of πΛ to subgroup Sn−1(T ),

denoted by Res
Sn(T )
Sn−1(T ) π

Λ, has the following irreducible decomposition:

(1.6) Res
Sn(T )
Sn−1(T ) π

Λ ∼=
⊕

M∈Yn−1(T̂ ):M↗Λ

[dim ζM,Λ]π
M.

1.6. Irreducible character formula for Sn(T )

For Λ ∈Yn(T̂ ), let

(1.7) χΛ(g) = trπΛ(g), g ∈Sn(T ),

be the character value of IUR πΛ at g. A formula for computing the value of

(1.7) was given in [7, Theorem 4.5] (see also [9, Section 1.2]). For the purpose

of this paper, we need to know the asymptotic behavior of irreducible characters

of Sn(T ) along with a fixed conjugacy class type and growing IURs. Taking this

situation into account, we recall the formula as follows. Let g ∈Sk(T ) have the

standard decomposition like (1.1), where ξq may be (eT , (q)). If n � k, then g

considered as an element of Sn(T ) under the inclusion ιn,k :Sk(T ) −→Sn(T )

has the same standard decomposition as (1.1). As shown in [7, Theorem 4.5], we

have, for Λ ∈Yn(T̂ ),

χΛ(g) =
∑
Q,J

(n− |Q| −
∑

j∈J |σj |)!∏
ζ∈T̂ (|λζ | − |Qζ | −

∑
j∈Jζ

|σj |)!
∏
ζ∈T̂

{
(dim ζ)

|λζ |−|Qζ |−
∑

j∈Jζ
|σj |

(1.8)
×

( ∏
q∈Qζ

χζ(tq)
)( ∏

j∈Jζ

χζ
(
Pσj (tj)

))
χλζ

(|σj |)j∈Jζ
�(1

|λζ |−
∑

j∈Jζ
|σj |

)

}
,

where g = (t, σ), σ = σ1 · · ·σm, gj = (tj , σj) (j ∈ {1,2, . . . ,m}), |σj |= | suppσj |,

Pσj (tj) = tiltil−1
· · · ti1 , σj = (i1i2 · · · il), tj = (ti)i∈suppσj ,

χζ = trπζ (irreducible character) for ζ ∈ T̂ , (|σj |)j∈Jζ
is a Young diagram of size∑

j∈Jζ
|σj |, and Q= (Qζ)ζ∈T̂ and J = (Jζ)ζ∈T̂ are partitions of Q= {q1, . . . , qr}

and J = {1,2, . . . ,m}, respectively. We note that (1.8) is valid either if ξq might

be (eT , (q)) in the standard decomposition of g ∈Sk(T ) or if not. In other words,

we can take either of the following (i) or (ii) in the expression of the right-hand

side of (1.8):

(i) Q= {q1, q2, . . . , qr}, where tqi �= eT (i= 1,2, . . . , r),

(ii) Q= {1,2, . . . , k} \
⊔m

j=1 suppσj .

The verification reduces to the obvious identity: for a, b ∈ N and ai ∈ N ∪ {0}
(i= 1, . . . , p) such that b � a and a1 + · · ·+ ap = a,
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a!

a1! · · ·ap!
=

∑
Δ=(Δi)

p
i=1: partition of {1,...,b}

(a− b)!

(a1 − |Δ1|)! · · · (ap − |Δp|)!

with the convention 1/(−n)! = 0 if ai < |Δi|. (Imagine dividing an a-set consisting

of b whites and a − b blacks into a1-set, . . . , ap-set.) The formula (1.8) can be

expressed also by using the notation for a conjugacy class of Sk(T ) as (1.4). Let

g ∈ CP ⊂Sk(T ), where P = (ρθ)θ∈[T ]. Picking up nontrivial ρθ ’s (i.e., not equal

to ∅), we write P = (ρθi)i=1,...,l. Then the standard decomposition (1.1) of g has

the form of

(1.9) g = ξ
q
(θ1)
1

· · · ξ
q
(θ1)

r(θ1)

g
(θ1)
1 · · ·g(θ1)m(θ1)

· · · ξ
q
(θl)
1

· · · ξ
q
(θl)

r(θl)

g
(θl)
1 · · ·g(θl)m(θl)

,

where r(θi) =m1(ρθi), m(θi) =m2(ρθi) +m3(ρθi) + · · · , and

ξ
q
(θi)
h

=
(
t
q
(θi)
h

, (q
(θi)
h )

)
, g

(θi)
j = (t

(θi)
j , σ

(θi)
j ), θi = [t

q
(θi)
h

] =
[
P
σ
(θi)
j

(t
(θi)
j )

]
for h ∈ {1,2, . . . , r(θi)}, j ∈ {1,2, . . . ,m(θi)}. Note that

k =
∑
θ∈[T ]

|ρθ|=
l∑

i=1

(
r(θi) +

m(θi)∑
j=1

|σ(θi)
j |

)
.

Let (ρθi)
∗
j denote the jth row of ρθi . The length of (ρθi)

∗
j is (ρθi)j . We distinguish

(ρθi)
∗
j from (ρθi′ )

∗
j′ even if they have the same length (i.e., if (ρθi)j = (ρθi′ )j′).

Decomposing each ρθi into rows, consider the set of the rows of P:

rows(P) =
{
(ρθ1)

∗
1, . . . , (ρθ1)

∗
l(ρθ1

), . . . , (ρθl)
∗
1, . . . , (ρθl)

∗
l(ρθl

)

}
.

When (1.8) is applied to g ∈Sk(T ) decomposed as (1.9), Q= (Qζ)ζ∈T̂ and J =

(Jζ)ζ∈T̂ are partitions of

{q(θ1)1 , . . . , q
(θ1)
r(θ1)

, . . . , q
(θl)
1 , . . . , q

(θl)
r(θl)

} and

{g(θ1)1 , . . . , g
(θ1)
m(θ1)

, . . . , g
(θl)
1 , . . . , g

(θl)
m(θl)

},

respectively. It is immediate that there exists a bijective correspondence between

(1.10) partition (Q,J ) ←→ map : rows(P)−→ T̂ .

In other words, partition (Q,J ) is equivalent to giving the rows of P a T̂ -labeling.

Since πΛ (where Λ = (λζ)ζ∈T̂ ∈Yn(T̂ )) is given as an induced representation from

subgroup Hn = Tn�
∏

ζ∈T̂ S|λζ | of Sn(T ), χ
Λ(g) is nonzero only if g is conjugate

to an element of Hn. This condition for g is rephrased in terms of conjugacy class

CP containing g as: there exists a map r : rows(P)−→ T̂ such that

(1.11)
∑

(ρθi
)∗j :r((ρθi

)∗j )=ζ

(ρθi)j � |λζ |, ζ ∈ T̂ .

(Namely, the sum of the length of the rows labeled by ζ does not exceed |λζ |
for any ζ .) In the case of n = k, (1.11) is equivalent to the condition with =

replacing �. The Young diagram consisting of the rows in r−1(ζ) is denoted by

the same notation r−1(ζ). Similarly, the Young diagram consisting of the rows
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both in r−1(ζ) and ρθ is denoted by r−1(ζ) ∩ ρθ. Under the correspondence of

(1.10), we have (
|σj |

)
j∈Jζ

� (1|Qζ |) = r−1(ζ), ζ ∈ T̂ .

Furthermore, we have, for ζ ∈ T̂ ,( ∏
q∈Qζ

χζ(tq)
)( ∏

j∈Jζ

χζ
(
Pσj (tj)

))
=

∏
θ∈[T ]

(χζ
θ)

l(r−1(ζ)∩ρθ),

χλζ

(|σj |)j∈Jζ
�(1

|λζ |−
∑

j∈Jζ
|σj |

)
= χλζ

r−1(ζ)�(1|λζ |−|r−1(ζ)|)
.

Here a character is denoted by the notation χ with the upper and lower indices

expressing the labels of a UR and a conjugacy class, respectively. Namely, χζ
θ is

the value at θ of the irreducible character χζ = trπζ of T . In (1.8), we can assume

that |Q| +
∑

j∈J |σj | = k by putting elements of the form ξq = (eT , (q)) in the

standard decomposition of g ∈Sk(T ) if necessary (see the note following (1.8)).

For P = (ρθ)θ∈[T ] ∈ Yk([T ]), let us glue n− k 1-box rows to ρ{eT }, the diagram

at the {eT }-entry of P, and let ιn,k(P) denote the resulting element of Yn([T ]),

that is, ιn,k(P) = (ρ̃θ)θ∈[T ], where

ρ̃θ =

{
ρθ, θ �= {eT },
ρ{eT } � (1n−k), θ = {eT }.

Then, we have that Cιn,k(P) ∩Sk(T ) = CP under the inclusion Sk(T )⊂Sn(T )

by ιn,k. After these preparations, we get an alternative expression of (1.8) as

χΛ
ιn,k(P) =

∑
r satisfying (1.11)

(n− k)!∏
ζ∈T̂ (|λζ | − |r−1(ζ)|)!

×
∏
ζ∈T̂

{
(dim ζ)|λ

ζ |−|r−1(ζ)|(1.12)

×
( ∏
θ∈[T ]

(χζ
θ)

l(r−1(ζ)∩ρθ)
)
χλζ

r−1(ζ)�(1|λζ |−|r−1(ζ)|)

}
for P ∈Yk([T ]) and Λ ∈Yn(T̂ ) with k � n. If k = n, (1.12) has a simpler expres-

sion since r satisfying (1.11) (necessarily = instead of �) yields |λζ | = |r−1(ζ)|
for any ζ ∈ T̂ .

1.7. Infinite wreath product
Here, S∞ denotes the infinite symmetric group, the set of all finite permutations

of N, and S∞ acts on the restricted direct product of T

(1.13) D∞(T ) =
{
t= (t1, t2, . . . ) ∈ T∞ ∣∣ tj = eT except finitely many j’s

}
canonically by

(1.14) σ(t) = (tσ−1(1), tσ−1(2), . . . ), σ ∈S∞, t ∈D∞(T ).
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The semidirect productD∞(T )�S∞ generated by this action is called the wreath

product of T with S∞ and is denoted by S∞(T ). The canonical inclusion ιn :

Sn(T )−→S∞(T ) satisfies ιn ◦ ιn,k = ιk for k < n. Under this inclusion map, we

regard S∞(T ) as
⋃∞

n=0Sn(T ). Since the standard decomposition (1.1) is stable

for n’s large enough, we get the standard decomposition into basic elements for

each element in S∞(T ). The conjugacy classes of S∞(T ) are then parameterized

by

(1.15) Y
(
[T ]

)
=

{
P= (ρθ)θ∈[T ]

∣∣ ρθ ∈Y,m1(ρ{eT }) = 0
}
.

In (1.15), the trivial cycles are omitted; for example, the trivial conjugacy class

{e} of S∞(T ) corresponds to P = (ρθ) with ρθ = ∅ for any θ ∈ [T ] (instead of

ρ{eT } = (1∞)). Note that ∅ satisfies m1(∅) = 0.

1.8. Branching graph
Considering Yn(T̂ ) in (1.5), set

(1.16) Y(T̂ ) =
∞⊔

n=0

Yn(T̂ ),

where Y0(T̂ ) is by definition the singleton set {∅}. Note that Y1(T̂ ) = T̂ . Among

the vertices Y(T̂ ), let us define the edge structure by taking the branching rule

(1.6) into account. Namely, Λ ∈ Yn(T̂ ) and M ∈ Yn+1(T̂ ) are joined by an edge

if and only if Λ↗M. Moreover, we put multiplicity

(1.17) κ(Λ,M)= dim ζΛ,M

on the edge Λ↗M.

EXAMPLE 1.1

Let T be S3, the symmetric group of degree 3; Ŝ3 consists of ζ1 (equal to 1),

ζ2 (equal to sgn), and ζ3 where dim ζ3 = 2. According to this order, an element

of Y(Ŝ3) is expressed as (λ1, λ2, λ3) with λj ∈ Y. The very beginning of the

branching graph Y(Ŝ3) is as drawn in Figure 1.

Figure 1. Branching graph Y(Ŝ3).
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1.9. Harmonic function
Let us give the precise definition of (0.2). A C-valued function ϕ on Y(T̂ ) is said
to be harmonic if

(1.18) ϕ(Λ) =
∑

M:Λ↗M

κ(Λ,M)ϕ(M), Λ ∈Y(T̂ ),

holds. If ϕ(∅) = 1 holds, then ϕ is said to be normalized. Since (1.18) reflects

directly the branching rule (1.6), or equivalently,

(1.19) Ind
Sn+1(T )
Sn(T ) πΛ ∼=

⊕
M:Λ↗M

[dim ζΛ,M]πM,

defining harmonicity through (1.18) is canonical from the viewpoint of repre-

sentation theory. On the other hand, (1.18) seems to be noncanonical from the

viewpoint of probability theory or (discrete) potential theory since harmonicity

is usually defined by using a transition probability as

(1.20) ϕ(Λ) =
∑
M

p(Λ,M)ϕ(M),

where p(Λ,M) � 0 and
∑

M p(Λ,M)= 1. For example, a constant function is not

harmonic according to (1.18). We review basic definitions and necessary proper-

ties of the Martin boundary in Appendix A. As noted there, Martin boundary

theories are equivalent based on either (1.18) or (1.20) by virtue of what is called

the ‘h-transform’ method. Let us proceed with (1.18).

1.10. Dimension function
On the branching graph Y(T̂ ), a path u joining Λ ∈Yl(T̂ ) to M ∈Ym(T̂ ), where

l <m, is expressed as

u=
(
u(l)↗ u(l+ 1)↗ · · · ↗ u(m− 1)↗ u(m)

)
, u(l) = Λ, u(m) =M.

We set

(1.21) wu =

m−1∏
i=l

κ
(
u(i), u(i+ 1)

)
,

and we call wu the weight of path u. Set also

(1.22) d(Λ,M)=
∑

path u:Λ↗···↗M

wu,

which means the number of weighted paths from Λ to M. In particular, set

(1.23) d(Λ) = d(∅,Λ) = dimπΛ, Λ ∈Y(T̂ ).

The second equality of (1.23) follows from iterating (1.6) and then using (1.22).

The functions d in (1.22) and (1.23) are called dimension functions on Y(T̂ ).
Although dimension functions are defined on a general branching through weights

of paths as (1.22), we see that, in the case of branching graph Y(T̂ ) for wreath

product groups, weight wu in (1.21) depends only on the initial Λ = (λζ) and
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terminal M= (μζ), and is expressed as

(1.24) wu =
∏
ζ∈T̂

(dim ζ)|μ
ζ |−|λζ |,

which is directly seen from the branching rule (1.6). Hence (1.22) is reduced to

the case of a simple (i.e., multiplicity-free) branching graph. Boyer [2] pointed

out this phenomenon and applied it to develop character theory of the infinite

wreath product of a finite group. According to the cardinality |T | of compact

group T , set

(1.25) T 
 =

{
T (torus∼= S1), |T |=∞,

Z/pZ, |T |= p <∞.

Here, d
 denotes the dimension function on the branching graph for Sn(T

)’s.

Putting (1.24) into (1.22), we have

d(Λ,M) =
∏
ζ∈T̂

(dim ζ)|μ
ζ |−|λζ |

∑
path u:Λ↗···↗M

1

(1.26)
=

∏
ζ∈T̂

(dim ζ)|μ
ζ |−|λζ |d
(Λ,M).

1.11. Martin kernel
We set

(1.27) K(Λ,M)=
d(Λ,M)

d(M)
, Λ,M ∈Y(T̂ ),

under the convention that d(Λ,M)= 0 if there are no paths from Λ to M on Y(T̂ ).
The equation in (1.27) agrees with a common terminology in Markov chain theory

in which a Martin kernel is defined as a ratio of potential kernels (see Appen-

dix A). Letting K
 denote the Martin kernel in accordance with (1.25) and (1.26)

yields

(1.28) K(Λ,M)=
∏
ζ∈T̂

1

(dim ζ)λζ |K

(Λ,M).

We introduce a distance on Y(T̂ ) by

D(Λ,M)=
∑

N∈Y(T̂ )

CN

(∣∣K(N,Λ)−K(N,M)
∣∣+ |δN,Λ − δN,M|

)
,

(1.29)
Λ,M ∈Y(T̂ ),

where CN is an appropriately chosen positive coefficient. Then, as noted in

Appendix A, the following conditions (i) and (ii) are equivalent for the sequence{
M(n) = (μ(n)ζ)ζ∈T̂

}
n∈N

in Y(T̂ ).

(i) {M(n)}n∈N is a Cauchy sequence with respect to D.
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(ii) Either there exists M ∈Y(T̂ ) such that

(1.30) M(n) =M for sufficiently large n,

or else

|M(n)|=
∑
ζ∈T̂

|μ(n)ζ | −−−−→
n→∞

∞ and(1.31)

{
K(Λ,M(n))

}
n∈N

is a Cauchy sequence in R for any Λ ∈Y(T̂ ).(1.32)

We obtain the Martin compactification Y(T̂ ) by taking the completion of Y(T̂ )
with respect to the distance D. As seen from (1.30) and (1.31), Y(T̂ ) is an open

subset of Y(T̂ ) on which the relative topology is discrete.

1.12. Martin boundary of Y(T̂ )

The compact set Y(T̂ ) \ Y(T̂ ) is called the Martin boundary of Y(T̂ ) and is

denoted by ∂Y(T̂ ) in this paper. The Martin kernel K in (1.27) is extended as a

continuous function on Y(T̂ )×Y(T̂ ):

(1.33) K(Λ, ω) = lim
n→∞

K(Λ,M(n)), (Λ, ω) ∈Y(T̂ )×Y(T̂ ),

along with M(n) ∈ Y(T̂ )−−−−→
n→∞

ω ∈ Y(T̂ ), which is again called a Martin kernel.

We have

(1.34) K(∅, ω) = 1, K(Λ, ω)� 0.

Consider the minimal Martin boundary of Y(T̂ )

∂mY(T̂ ) =
{
ω ∈ ∂Y(T̂ )

∣∣
(1.35)

K(·, ω) is a minimal harmonic function on Y(T̂ )
}
.

Note that the Martin kernel K(·, ω) is not necessarily harmonic on Y(T̂ ) for

ω ∈ ∂Y(T̂ ) as we actually see later in the case of continuous T . Here a nonnegative

harmonic function ϕ is said to be minimal if harmonic ψ such that 0� ψ � ϕ is

necessarily a constant multiple of ϕ. Under the definition of (0.2), ϕ ∈H(Y(T̂ ))
is extremal if and only if it is minimal. In fact, extremality of ϕ implies

0 � ψ � ϕ =⇒ ϕ= ψ(∅) · ψ

ψ(∅)
+

(
1−ψ(∅)

) ϕ−ψ

1−ψ(∅)

=⇒ ϕ=
ψ

ψ(∅)
⇐⇒ ψ = ψ(∅)ϕ.

Conversely, minimality of ϕ implies that

ϕ= αψ1 + (1− α)ψ2, 0 � α � 1, ψ1, ψ2 ∈H
(
Y(T̂ )

)
=⇒ αψ1 = const ·ϕ, (1− α)ψ2 = const · ϕ

=⇒ ψ1 = ψ2 = ϕ.
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Comparing (0.2) and (1.35), we hence have that{
K(·, ω)

∣∣ ω ∈ ∂mY(T̂ )
}
⊂ the extremal points of H

(
Y(T̂ )

)
.

Actually, we will see that the equality holds (see Theorem 3.3).

2. Computation of the Martin boundary of Y(T̂ )

In order to compute the Martin boundary of Y(T̂ ), we need a formula for the

Martin kernel K(Λ,M) from which its asymptotic behavior can be read out effi-

ciently. Let us set some further notation on characters ofSn. The normalized irre-

ducible character of Sn corresponding to λ ∈ Yn is denoted by χ̃λ = χλ/dimλ.

For ρ,λ ∈Y, set

(2.1) Σρ(λ) =

{
|λ|↓|ρ|χ̃λ

(ρ,1|λ|−|ρ|)
, |ρ| � |λ|,

0, |ρ|> |λ|,

where n↓k = n(n− 1) · · · (n− k+1) is a descending power for n,k ∈N, k � n. We

use a conventional notation

(2.2) zρ =

∞∏
i=1

imi(ρ)mi(ρ)!, ρ= (1m1(ρ)2m2(ρ) · · · ) ∈Y.

THEOREM 2.1

Let k,n ∈N, and let k � n. For Λ= (λζ)ζ∈T̂ ∈Yk(T̂ ) and M= (μζ)ζ∈T̂ ∈Yn(T̂ ),

the Martin kernel is expressed as

(2.3) K(Λ,M)=
nk

n↓k

∏
ζ∈T̂

{ 1

(dim ζ)|λζ |

∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

n|λζ |Σρ(μ
ζ)
}
.

Proof

Note that the right-hand side of (2.3) is actually a finite product since λζ = ∅
holds except for a finite number of ζ ’s. If no paths connect Λ to M, there exists

ζ ∈ T̂ such that |λζ | > |μζ |. Then, Σρ(μ
ζ) = 0 holds for any ρ ∈ Y|λζ | by (2.1),

and hence both sides of (2.3) are 0. Assuming that |λζ | � |μζ | holds for any ζ ∈ T̂ ,

we deduce (2.3) by combining the character formula for Sk(T ) and the Fourier

inversion on Sk(T ). Recall (1.28) with (1.25). Then, it suffices to show (2.3) for

the case of T 
:

K
(Λ,M)=
nk

n↓k

∏
ζ∈T̂ �

( ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

n|λζ |Σρ(μ
ζ)
)
.

In this proof below, we write T,d, k instead of T 
, d
,K
 for simplicity. For the

basic element (t, σ) = tσ, where σ = (i1i2 · · · il), and ζ ∈ T̂ (= T̂ 
), we simply write

ζ(t) = ζ(til · · · ti1).

Since T (= T 
) is commutative, the order of the product of tij ’s is not involved.



Harmonic functions on branching graphs 789

Step 1. Using

1

d(M)
χM

∣∣∣
Sk(T )

=
∑

N∈Yk(T̂ )

d(N,M)

d(M)
χN

and the complete orthonormality of the irreducible characters with respect to

the normalized Haar measure dg on Sk(T ), we have that

d(Λ,M)

d(M)
=

∫
Sk(T )

1

d(M)
χM(g)χΛ(g)dg

(2.4)

=
∑
σ∈Sk

1

k!

∫
Tk

1

d(M)
χM(tσ)χΛ(tσ)dt,

where t = (t1, . . . , tk), dt = dt1 · · ·dtk, and dt is the normalized Haar measure

on T . Let σ ∈Sk be fixed (until the end of Step 3) to have cycle decomposition

σ = σ1 · · ·σl. Decompose t ∈ T k as t = t0t1 · · · tl so that supp tj = suppσj (j =

1, . . . , l) and supp t0 = {1, . . . , k} \
⊔l

j=1 supp tj . If σ = eSk
, we simply set t0 = t.

Letting t0, t1, . . . , tl vary independently, we compute the integral over T k for each

fixed σ ∈Sk in (2.4).

Step 2. Applying (1.8) to Λ = (λζ)ζ∈T̂ ∈Yk(T̂ ) and g = tσ, we have

(2.5) χΛ(tσ) =
∑
Q,J

∏
ζ∈T̂

{( ∏
q∈Qζ

ζ(tq)
)( ∏

j∈Jζ

ζ(tj)
)
χλζ

(|σj |)j∈Jζ
�(1|Qζ |)

}
,

where (Q,J ) satisfies

(2.6) |λζ |= |Qζ |+
∑
j∈Jζ

|σj |, ζ ∈ T̂ .

Note that partitions Q of Q and J of J vary independently of t in (2.5). This

ensures that integration in t over T k and summation in Q,J commute. Applying

(1.8) (with the note following the equation) again to M = (μζ)ζ∈T̂ ∈ Yn(T̂ ), we

have

χM|Sk(T )(tσ) =
∑
Q,J

(n− k)!∏
ζ∈T̂ (|μζ | − |Qζ | −

∑
j∈Jζ

|σj |)!
(2.7)

×
∏
ζ∈T̂

{( ∏
q∈Qζ

ζ(tq)
)( ∏

j∈Jζ

ζ(tj)
)
χμζ

(|σj |)j∈Jζ
�(1

|μζ |−
∑

j∈Jζ
|σj |

)

}
,

where (Q,J ) satisfies

(2.8) |μζ | � |Qζ |+
∑
j∈Jζ

|σj |, ζ ∈ T̂ .

The (Q,J )’s in (2.5) and (2.7) are partitions of the same object determined by

σ with constraints of (2.6) and (2.8), respectively. Since |λζ | � |μζ | for any ζ ∈ T̂ ,

(2.6) is stronger. Combining (2.5) with (2.7) and taking integration over T k, we

write
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∫
Tk

χM(tσ)χΛ(tσ)dt

=
∑
Q,J

∑
Q′,J ′

(n− k)!∏
ζ∈T̂ (|μζ | − |Qζ | −

∑
j∈Jζ

|σj |)!
(2.9)

×
∏
ζ∈T̂

χμζ

(|σj |)j∈Jζ
�(1

|μζ |−
∑

j∈Jζ
|σj |

)
χλζ

(|σj |)j∈J′
ζ
�(1

|Q′
ζ
|
)

×
∫
Tk

∏
ζ∈T̂

{( ∏
q∈Qζ

ζ(tq)
)( ∏

q∈Q′
ζ

ζ(tq)
)( ∏

j∈Jζ

ζ(tj)
)( ∏

j∈J ′
ζ

ζ(tj)
)}

dt.

Step 3. We verify that the integral on the right-hand side of (2.9), temporarily

labeled by (∗) here, is equal to δ(Q,J ),(Q′,J ′). Recall that we are considering a

partition induced by σ. Both Q and Q′ give T̂ -labeling to the singleton blocks,

while J and J ′ give T̂ -labeling to the other blocks. If Q �=Q′, then there exists

a block {q} given distinct labels, say, ζ1 and ζ2, by Q and Q′, respectively. When

we compute (∗) by using Fubini’s theorem, we find∫
T

ζ1(tq)ζ2(tq)dtq, ζ1 �= ζ2,

inside the integral, which vanishes by the orthogonality of (irreducible) characters

of T . If J �= J ′, then there exists a block {i1, i2, . . . , ip} with distinct T̂ -labeling

by J and J ′. Letting σj = (i1i2 · · · ip) and dtj = dti1 · · ·dtip , we have∫
Tp

ζ1(tj)ζ2(tj)dtj , ζ1 �= ζ2,

inside the integral, which vanishes also. If (Q,J ) = (Q′,J ′), then we get

(∗) =
∏
ζ∈T̂

{ ∏
q∈Qζ

(∫
T

ζ(tq)ζ(tq)dtq

) ∏
j∈Jζ

(∫
T |σj |

ζ(tj)ζ(tj)dtj

)}
= 1.

Moreover, (2.6) with (Q′,J ′) yields

|λζ |= |Q′
ζ |+

∑
j∈J ′

ζ

|σj |= |Qζ |+
∑
j∈Jζ

|σj |.

Hence (2.9) now implies that∫
Tk

χM(tσ)χΛ(tσ)dt =
∑
Q,J

(n− k)!∏
ζ∈T̂ (|μζ | − |λζ |)!

(2.10)
×

∏
ζ∈T̂

χμζ

(|σj |)j∈Jζ
�(1|Qζ |)�(1|μζ |−|λζ |)

χλζ

(|σj |)j∈Jζ
�(1|Qζ |)

.

Step 4. Combine (2.4) and (2.10) with

d(M) = dimπM =
n!∏

ζ∈T̂ |μζ |!
∏
ζ∈T̂

dimμζ , M ∈Yn(T̂ ).
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We write Qσ,J σ for partitions in (2.10) since they depend on σ. Then, we see

that

K(Λ,M) =
1

k!n↓k

∑
σ∈Sk

∑
Qσ,J σ

∏
ζ∈T̂

{ |μζ |!
(|μζ | − |λζ |)!

(2.11)

× 1

dimμζ
χμζ

(|σj |)j∈Jσ
ζ
�(1

|Qσ
ζ
|
)�(1|μζ |−|λζ |)

χλζ

(|σj |)j∈Jσ
ζ
�(1

|Qσ
ζ
|
)

}
.

Note that
∑

Qσ,J σ · · · in (2.11) actually depends only on the conjugacy class

of σ. We hence continue (2.11) as

K(Λ,M) =
1

k!n↓k

∑
ρ∈Yk

k!

zρ

∑
Qσ,J σ

∏
ζ∈T̂

{ |μζ |!
(|μζ | − |λζ |)!

(2.12)

× 1

dimμζ
χμζ

(|σj |)j∈Jσ
ζ
�(1

|Qσ
ζ
|
)�(1|μζ |−|λζ |)

χλζ

(|σj |)j∈Jσ
ζ
�(1

|Qσ
ζ
|
)

}
,

where, in the inner sum for each ρ ∈Yk, σ is a fixed representative in the conju-

gacy class Cρ ⊂Sk. Recall (2.2) for zρ.

Step 5. Let {λζ1 , . . . , λζp} be the set of nontrivial (i.e., not equal to ∅) entries

of Λ. We have
∑p

i=1 |λζi |= k. Considering the cycles (including trivial ones) of

representative σ in conjugacy class Cρ labeled by ζ1, . . . , ζp ∈ T̂ (where the cycles

are all distinguished), we associate to each ζi Young diagram

(2.13) ρ(i) ∈Y|λζi | such that ρ(1) � · · · � ρ(p) = ρ.

Namely, labeling which destroys (2.13) is not allowed because of (2.6). Set φ :

Y|λζ1 | × · · · ×Y|λζp | −→Yk by

φ(ρ(1), . . . , ρ(p)) = ρ(1) � · · · � ρ(p).

It suffices to collect ρ’s belonging to the range of φ in the sum
∑

ρ∈Yk
in (2.12).

The inner sum
∑

Qσ,J σ in (2.12) is divided into partial sums according to the

points of fiber φ−1(ρ), where it is obvious that different points in fiber φ−1(ρ)

never admit a common partition (Qσ,J σ). Rearranging the right-hand side of

(2.12), we have

(2.14)
∑
ρ∈Yk

1

zρ

∑
Qσ,J σ

· · ·=
∑

(ρ(1),...,ρ(p))∈Y|λζ1 |×···×Y|λζp |

∑
(Q,J ):(∗∗)

(∗ ∗ ∗),

where the range (∗∗) over which partition (Q,J ) runs depends on (ρ(1), . . . , ρ(p)).

On the other hand, (∗ ∗ ∗) does not depend on (Q,J ) in (∗∗) once (ρ(1), . . . , ρ(p))
is chosen, which is equal to

1∏∞
j=1 j

mj(ρ(1))+···+mj(ρ(p))(mj(ρ(1)) + · · ·+mj(ρ(p)))!
(2.15)

·
p∏

i=1

{ |μζi |!
(|μζi | − |λζi |)!

1

dimμζi
χμζi

ρ(i)�(1|μ
ζi |−|λζi |)

χλζi

ρ(i)

}
.
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The cardinality of the range (∗∗) for a given (ρ(1), . . . , ρ(p)) is

(2.16)

∞∏
j=1

(mj(ρ
(1)) + · · ·+mj(ρ

(p)))!

mj(ρ(1))! · · ·mj(ρ(p))!
,

since the cycles of length j admit labeling by ζ1, . . . , ζp in the jth factor ways in

(2.16).

Step 6. Combining (2.12) with (2.14)–(2.16), we have

K(Λ,M) =
1

n↓k

∑
(ρ(1),...,ρ(p))∈Y|λζ1 |×···×Y|λζp |

1

zρ(1) · · ·zρ(p)

(2.17)

×
p∏

i=1

{ |μζi |!
(|μζi | − |λζi |)!

1

dimμζi
χμζi

ρ(i)�(1|μ
ζi |−|λζi |)

χλζi

ρ(i)

}
;

then, by using the notation of (2.1) and noting that k =
∑p

i=1 |λζi |, we continue

(2.17) as

=
nk

n↓k

∑
(ρ(1),...,ρ(p))∈Y|λζ1 |×···×Y|λζp |

1

zρ(1) · · ·zρ(p)

p∏
i=1

{Σρ(i)(μζi)

n|λζi | χλζi

ρ(i)

}

=
nk

n↓k

p∏
i=1

( ∑
ρ∈Y|λζi |

1

zρ

Σρ(μ
ζi)

n|λζi | χλζi

ρ

)
=

nk

n↓k

∏
ζ∈T̂

( ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

Σρ(μ
ζ)

n|λζ |

)
.

This completes the proof of (2.3). �

We investigate the asymptotic behavior of (2.3) with k = |Λ|=
∑

ζ∈T̂ |λζ | fixed
as n= |M|=

∑
ζ∈T̂ |μζ | tends to ∞. A suitable framework for the analysis of the

function n−|λζ |Σρ(μ
ζ) is given by the Kerov–Olshanski algebra A consisting of

polynomial functions of Young diagrams, which we briefly review now.

We set the Frobenius coordinates of μ= (μ1 � μ2 � · · · ) ∈Y by

(2.18) ai(μ) = μi − i+
1

2
, bi(μ) = μ′

i − i+
1

2
, i= 1, . . . , d(μ),

where d = d(μ) is the diagonal length (number of boxes) of μ, and write them

as μ= (ai(μ) | bi(μ))i=1,...,d. For k ∈N, the (supersymmetric) power sum in μ is

defined by

(2.19) pk = pk(μ) =
d∑

i=1

ai(μ)
k + (−1)k−1bi(μ)

k, μ ∈Y,

and by

(2.20) pρ = pρ(μ) = pρ1(μ)pρ2(μ) · · ·pρl
(μ), μ ∈Y,

for arbitrary ρ ∈ Y with l = l(ρ). Power sums {pk}k∈N, regarded as functions

in μ, are algebraically independent over R. The algebra generated by {pk}k∈N

is called the Kerov–Olshanski algebra and is denoted by A. Declaring pk to be

homogeneous of degree k, written as deg pk = k, we equip A with the canonical
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filtration. The canonical degree of any element f ∈ A is also denoted by deg f .

For example, deg pρ = ρ1 + · · ·+ ρl = |ρ| for ρ ∈Y. We have that Σρ in (2.1) also

belongs to A. It is related to a power sum as follows.

PROPOSITION 2.2

For any ρ ∈Y, there exists Rρ ∈A such that

(2.21) Σρ = pρ +Rρ, degRρ < |ρ|

hold in A.

We refer to [10, Sections 3 and 4] for the proof of Proposition 2.2.

The expressions from (2.21) combined with (2.19) and (2.20) suggest that

the convergence of K(Λ,M) in (2.3) as n = |M| → ∞ is characterized by the

asymptotics of rescaled Frobenius coordinates

ai(μ
ζ)

n
,

bi(μ
ζ)

n
, ζ ∈ T̂ , i ∈N.

We are thus in a position to get a concrete expression of the Martin boundary

and the Martin kernels (1.33) of the branching graph Y(T̂ ). Set

Δ̃ =
{
(α,β, c)

∣∣∣ α= (αζ,i)ζ∈T̂ ,i∈N
, β = (βζ,i)ζ∈T̂ ,i∈N

, c= (cζ)ζ∈T̂ ;

αζ,1 � αζ,2 � · · ·� 0, βζ,1 � βζ,2 � · · · � 0, cζ � 0,(2.22)

∞∑
i=1

(αζ,i + βζ,i) � cζ for ∀ζ ∈ T̂ ;
∑
ζ∈T̂

cζ � 1
}

and

(2.23) Δ=
{
(α,β, c) ∈ Δ̃

∣∣∣ ∑
ζ∈T̂

cζ = 1
}
.

We have

(2.24) Δ� Δ̃⊂B
(
�1(T̂ ×N)

)2 ×B
(
�1(T̂ )

)
,

where B(·) denotes the closed unit ball with center 0 in an �1-space. The closed

unit balls in the rightmost set of (2.24) are compact with respect to the weak∗

topologies σ(�1, c0), where c0 consists of the sequences converging to 0 at infinity.

In this case, the product of the weak∗ topologies is equivalent to the topology of

pointwise converging on (T̂ ×N)� (T̂ ×N)� T̂ . Since Δ̃ is closed with respect to

this pointwise converging topology as directly seen from the definition (2.22), Δ̃ is

a compact set. On the other hand, we should note that Δ of (2.23) is not closed in

Δ̃ with respect to the given topology if T̂ is an infinite set. As (supersymmetric)

power sums and Schur functions on Δ̃, let us set

pζk(α,β, c) =

{∑∞
i=1(α

k
ζ,i + (−1)k−1βk

ζ,i), k � 2, k ∈N,

cζ , k = 1,
(2.25)

pζρ(α,β, c) = pζρ1
(α,β, c) · · ·pζρl

(α,β, c), ρ= (ρ1 � · · ·� ρl) ∈Y,(2.26)
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with pζ∅(α,β, c) = 1, and

(2.27) sζλ(α,β, c) =
∑

ρ∈Y|λ|

1

zρ
χλ
ρp

ζ
ρ(α,β, c), λ ∈Y,

for ζ ∈ T̂ and (α,β, c) ∈ Δ̃.

The definition of (2.27) obviously comes from the well-known relation (or

Frobenius character formula) between Schur functions and power sums. Note

that

pζ1(α,β, c) �=
∞∑
i=1

(αζ,i + βζ,i)

in general.

LEMMA 2.3

(a) Let T be finite.

(1) pζk ∈C(Δ;R (= {R-valued continuous functions on Δ})). Hence pζρ, s
ζ
λ ∈

C(Δ;R) also.

(2) {pζk | ζ ∈ T̂ , k ∈N} separates two arbitrary points in Δ.

(b) Let T be infinite. Then, (1) and (2) above hold with Δ̃ replacing Δ.

Proof

(a.1) The continuity of pζk with respect to the pointwise converging topology on

Δ is easy to see, which is similar to the well-known argument on the Thoma

simplex (i.e., Δ for T = {e}). (See also [9, Lemma 4.6].)

(a.2) This separation property is also similar to the case of the Thoma sim-

plex. Let (α,β, c), (α′, β′, c′) ∈Δ satisfy

pζk(α,β, c) = pζk(α
′, β′, c′), ζ ∈ T̂ , k ∈N.

Setting k = 1, we have that (cζ)ζ∈T̂ = (c′ζ)ζ∈T̂ . For each ζ ∈ T̂ , {pζk(α,β, c) | k ∈
N} completely determines (αζ,i)i∈N and (βζ,i)i∈N through the equality

exp
{ ∞∑
k=2

pζk(α,β, c)

k
zk

}
= exp

{ ∞∑
k=2

∞∑
i=1

(
αk
ζ,i + (−1)k−1βk

ζ,i

)zk
k

}

= exp
{
−

∞∑
i=1

(αζ,i + βζ,i)z
} ∞∏

i=1

1 + βζ,iz

1− αζ,iz
.

The proof in the case of (b) is quite similar. �

LEMMA 2.4

Let X be a compact set, and let {hα}α∈A ⊂C(X;R) separate two arbitrary points

in X. Then, the topology on X determined by pointwise converging on A through

x(α) = hα(x) coincides with the original one on X.
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Proof

The assertion is immediate from the compactness of X , the continuity of hα, and

the fact that the pointwise converging topology is Hausdorff. �

THEOREM 2.5

A homeomorphic characterization of the Martin boundary ∂Y(T̂ ) of the branching
graph Y(T̂ ) is given by the following:

(a) if T is finite, then ∂Y(T̂ )∼=Δ;

(b) if T is infinite, then ∂Y(T̂ )∼= Δ̃.

The Martin kernel is expressed by using Schur functions (2.27) as

(2.28) K(Λ, ω) =
∏
ζ∈T̂

1

(dim ζ)|λζ | s
ζ
λζ (ω), Λ= (λζ)ζ∈T̂ ∈Y(T̂ ), ω = (α,β, c),

where ω ∈Δ for finite T and ω ∈ Δ̃ for infinite T .

Proof

The right-hand side of (2.28) is actually a finite product by the definitions (2.25)–

(2.27).

Step 1. A point in the Martin boundary ∂Y(T̂ ) is given by an equivalence

class of Cauchy sequences {M(n)}n∈N satisfying (1.31) and (1.32). With k ∈ N
and Λ ∈ Yk(T̂ ) being fixed, let K(Λ,M(n)) converge with m = |M(n)| → ∞ as

n → ∞, where M(n) = (μ(n)ζ)ζ∈T̂ ∈ Ym(T̂ ). In order to simplify the notation,

however, we omit the superscript (n) of M(n) and μ(n)ζ , and consider the limit

with m= |M|=
∑

ζ∈T̂ |μζ | →∞. Theorem 2.1 yields that

(2.29)
∏
ζ∈T̂

{ ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

m|λζ |Σρ(μ
ζ)
}

converges with m→∞. We verify that the expression obtained by replacing Σρ

by pρ in (2.29) also converges as m→∞. Take Rρ ∈A satisfying (2.21) for each

ρ ∈Y, and consider∣∣∣∏
ζ∈T̂

{ ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

m|λζ |
(
pρ(μ

ζ) +Rρ(μ
ζ)
)}

(2.30)

−
∏
ζ∈T̂

{ ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

m|λζ | pρ(μ
ζ)
}∣∣∣.

We have that n−|λζ ||pρ(μζ)| � 1 for ρ ∈ Y|λζ |. For a fixed k ∈ N, the range of

|λζ | and ρ ∈Y|λζ | is a finite set because of k = |Λ|=
∑

ζ∈T̂ |λζ |. Additionally, Rρ

is a linear combination of pσ ’s with |σ| < |ρ| = |λζ |. Hence there exists ck > 0,

independent of ζ ∈ T̂ , such that∣∣∣ ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

m|λζ | pρ(μ
ζ)
∣∣∣ � dimλζ

∑
ρ∈Y|λζ |

1

zρ
� ck,
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∣∣∣ ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

m|λζ |Rρ(μ
ζ)
∣∣∣ � dimλζ

m

∑
ρ∈Y|λζ |

1

zρm|λζ |−1

∣∣Rρ(μ
ζ)
∣∣ � ck

m
.

Taking a constant Ck > 0 depending only on k, we have that

(2.31) (2.30)� 1

m
Ck.

This together with (2.29) implies that

(2.32)
∏
ζ∈T̂

{ ∑
ρ∈Y|λζ |

1

zρ
χλζ

ρ

1

m|λζ | pρ(μ
ζ)
}

converges with m= |M| →∞.

Step 2. Since (2.32) converges with m → ∞ for any k ∈ N and any Λ =

(λζ)ζ∈T̂ ∈Yk(T̂ ), we have, equivalently, the convergence of

1

m
p1(μ

ζ) =
|μζ |
m

,

1

mk
pk(μ

ζ) =

∞∑
i=1

{(ai(μζ)

m

)k

+ (−1)k−1
(bi(μζ)

m

)k}
, k � 2,

with m= |M| →∞. Or, in terms of pζk in (2.25),

pζk

((ai(μη)

m

)
η,i

,
(bi(μη)

m

)
η,i

,
( |μη|

m

)
η

)
converges for any ζ ∈ T̂ and any k ∈N. Lemmas 2.3 and 2.4 then ensure that

(2.33)
((ai(μζ)

m

)
ζ,i
,
(bi(μζ)

m

)
ζ,i
,
( |μζ |

m

)
ζ

)
converges in Δ̃ (resp., Δ) for infinite (resp., finite) T with m= |M| →∞. Set its

limit as ((αζ,i), (βζ,i), (cζ)) ∈ Δ̃ (resp., Δ). We thus obtain a map from ∂Y(T̂ )

into Δ̃ (resp., Δ) which is homeomorphic again by Lemmas 2.3 and 2.4.

Step 3. We show that the map ∂Y(T̂ ) −→ Δ̃ (resp., Δ) defined in Step 2

is surjective. By virtue of Lemmas 2.3 and 2.4, it suffices to verify that, given

(α,β, c) ∈ Δ̃ (resp., Δ) where α= (αζ,i), β = (βζ,i), and c= (cζ), there exists a

sequence (M= (μζ)ζ∈T̂ ), M ∈Yn(T̂ ), satisfying

(2.34) lim
n→∞

((ai(μζ)

n

)
ζ,i
,
(bi(μζ)

n

)
ζ,i
,
( |μζ |

n

)
ζ

)
= (α,β, c).

For simplicity of expressions, we omit precise estimates of the effects caused by

taking integer parts. First, according to cζ , assign ncζ (though it is �ncζ� with

precision) boxes to each ζ ∈ T̂ to construct Young diagram μζ . If T is finite,

then it is easy to handle the noninteger part ncζ − �ncζ�. If T is infinite, there

may remain boxes of order n because of
∑

ζ∈T̂ cζ � 1. To deal with the remain-

ing boxes, assign
√
n order number of boxes to

√
n order number of ζ ’s. Then,

we have |μζ |/n→ cζ as n→∞. For determining ai(μ
ζ) and bi(μ

ζ) to construct
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μζ , we assign nαζ,i and nβζ,i, respectively, to (ζ, i) ∈ T̂ × N by using �ncζ�
boxes assigned to ζ ∈ T̂ above. This can be done since

∑∞
i=1(αζ,i + βζ,i) � cζ

holds. The possible number of remaining boxes at ζ ∈ T̂ is at most of order n.

Again, we consume the remainders by assigning
√
n order boxes to

√
n order i’s.

The construction immediately yields the convergence of (2.34) in Δ̃ (resp., Δ).

This completes the proof of ∂Y(T̂ ) ∼= Δ for finite T and ∂Y(T̂ ) ∼= Δ̃ for infi-

nite T .

Step 4. We deduce (2.28) from (2.3). Since we established a homeomorphic

characterization of ∂Y(T̂ ), it suffices to show that, for Λ = (λζ)ζ∈T̂ ∈ Yk(T̂ )

and ω = (α,β, c) (∈Δ for finite T and ∈ Δ̃ for infinite T ), (2.32) converges to∏
ζ∈T̂ sζ

λζ (α,β, c) under the convergence of (2.34) as m= |M|=
∑

ζ∈T̂ |μζ | →∞.

Recall that

1

m
p1(μ

ζ) =
|μζ |
m

,

1

mk
pk(μ

ζ) =

∞∑
i=1

{(ai(μζ)

m

)k

+ (−1)k−1
(bi(μζ)

m

)k}
, k � 2.

As in the argument in Lemma 2.3(a), (2.34) yields

1

mk
pk(μ

ζ)−→ pζk(α,β, c), k ∈N, ζ ∈ T̂ .

Since the ζ ’s with |λζ |> 0 are finite, the desired convergence then follows from

the definition of sζλ in (2.27). �

REMARK 2.6

If T is a trivial group {eT }, then Δ of (2.23) reduces to the Thoma simplex, which

is homeomorphic to the Martin boundary of the usual Young graph. Theorem 2.5

under the restriction of T = {e} is of course consistent with the well-known result

for the Young graph.

As a standard fact, K(·, ω) satisfies the following superharmonicity property.

LEMMA 2.7

The Martin kernel K(Λ, ω) is superharmonic in Λ:

(2.35) K(Λ, ω)�
∑

N:Λ↗N

κ(Λ,N)K(N, ω), Λ ∈Y(T̂ ), ω ∈ ∂Y(T̂ ).

Proof

We have that

K(Λ, ω) = lim
m→∞

K(Λ,M), Λ ∈Y(T̂ ),

for an appropriate sequence such that M→ ω with m= |M| →∞. Then,
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∑
N:Λ↗N

κ(Λ,N)K(N, ω) =
∑

N:Λ↗N

κ(Λ,N) lim
m→∞

K(N,M)

� lim inf
m→∞

∑
N:Λ↗N

κ(Λ,N)K(N,M)= lim inf
m→∞

K(Λ,M)

=K(Λ, ω). �

LEMMA 2.8

The Martin kernel K(·, ω) is harmonic if and only if ω ∈Δ.

Proof

Definitions (2.25)–(2.27) imply that

sζ∅(ω) = pζ∅(ω) = 1, sζ(1)(ω) = pζ1(ω) = cζ , ω = (α,β, c), c= (cζ)ζ∈T̂ ,

for ζ ∈ T̂ . Moreover, in a similar way to Pieri’s formula for Schur functions, we

have

(2.36) sζ(1)(ω)s
ζ
λ(ω) =

∑
μ∈Y:λ↗μ

sζμ(ω), λ ∈Y,

for ζ ∈ T̂ . First, setting Λ =∅ in (2.28), we have that K(∅, ω) = 1 and∑
N∈Y(T̂ ):∅↗N

κ(∅,N)K(N, ω) =
∑
ζ∈T̂

sζ(1)(ω) =
∑
ζ∈T̂

cζ .

Hence, the harmonicity of K(·, ω) yields ω ∈ Δ in particular. More generally,

setting suppΛ = {ζ ∈ T̂ | λζ �= ∅} for Λ = (λζ)ζ∈T̂ ∈ Y(T̂ ), we see from (2.28)

and (2.36) that∑
N:Λ↗N

κ(Λ,N)K(N, ω)

=
∑

ζ /∈suppΛ

dim ζ
sζ(1)(ω)

dim ζ
K(Λ, ω)

+
∑

ζ∈suppΛ

dim ζ
( ∏
η∈suppΛ\{ζ}

sηλη (ω)

(dimη)|λη|

)( ∑
μ:λζ↗μ

sζμ(ω)

(dim ζ)|μ|

)
=

∑
ζ /∈suppΛ

cζK(Λ, ω)

+
∑

ζ∈suppΛ

1

(dim ζ)|λζ |

( ∏
η∈suppΛ\{ζ}

sηλη (ω)

(dimη)|λη|

) ∑
μ:λζ↗μ

sζμ(ω)

=
∑

ζ /∈suppΛ

cζK(Λ, ω) +
∑

ζ∈suppΛ

cζK(Λ, ω) =K(Λ, ω)
(∑
ζ∈T̂

cζ

)
.

This yields the assertion. �
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The above characterization of the harmonicity of K(·, ω) is used in the proof of

Theorem 3.3.

3. Martin integral on Δ

In this section, we formulate and prove the Martin integral representation (0.4),

and then discuss some resulting facts. Let us begin with recalling the bijective

correspondence between (0.2) and (0.3). A cylindrical subset of T(T̂ ) (= the set

of infinite paths from ∅ on the branching graph Y(T̂ )) is associated with the

finite path u= (u(0)↗ · · · ↗ u(n)) as

Cu =
{
t ∈ T(T̂ )

∣∣ t(k) = u(k), k = 0,1, . . . , n
}
.

Consider the Borel σ-field B generated by the cylindrical subsets of T(T̂ ). Let

P(T(T̂ )) denote the set of probabilities on measurable space (T(T̂ ),B), and M ∈
P(T(T̂ )) is said to be central (as already anticipated in (0.3)) if it satisfies

(3.1) M(Cu)/wu =M(Cv)/wv

for arbitrary finite paths u and v from ∅ whenever they share a common ter-

minating vertex. Recall (1.21) for the definition of weight wu. In the case of a

branching graph for wreath product groups, since (1.24) yields wu =wv for these

u and v, (3.1) simply reduces to

M(Cu) =M(Cv).

Let M(T(T̂ )) denote the set of central probabilities on (T(T̂ ),B) (see (0.3)).

Then, the bijective correspondence between ϕ ∈H(Y(T̂ )) and M ∈M(T(T̂ )) is

given by the equation

(3.2) ϕ(Λ) =
M(Cu)

wu
, u= (∅↗ · · · ↗ Λ).

We refer to [9, Section 2.2] for central probabilities and their correspondence to

harmonic functions on a general branching graph. As noted there, the centrality

of M ∈ P(T(T̂ )) is characterized by a certain invariance of M with respect to a

transformation group on T(T̂ ). Then, the ergodicity of M is naturally considered

with respect to the transformation group,† and M is ergodic if and only if an

invariant subset of T(T̂ ) with respect to the transformation group is either ∅
or T(T̂ ) up to M -measure 0. By a standard argument in measure theory, this is

equivalent to the extremality of M in the set of the central probabilities on T(T̂ )

(see [9, Section 2.2]).

† Allow us to make a correction to [9, Section 2.2] here. In [9, pp. 1200–1201], the transforma-

tion group on T(T̂ ) mentioned above should be written as 〈ST(α) | α ∈G〉, the group generated

by ST(α)’s, instead of
⋃

α∈G
ST(α) since the inclusion ST(α) ⊂ ST(β) does not hold even if

α↗ · · · ↗ β.
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We have that M ∈M(T(T̂ )) yields the nth marginal distribution M (n) on

Yn(T̂ ): for Λ ∈Yn(T̂ ),

M (n)(Λ) =M
({

t ∈ T(T̂ )
∣∣ t(n) = Λ

})
(3.3)

=
∑

finite path u:u(n)=Λ

M(Cu) =
∑
u

wuϕ(Λ) = d(Λ)ϕ(Λ)

by recalling (3.2) and (1.22). Consider the injective map ι(n) : Yn(T̂ ) −→ Δ

defined through the rescaled Frobenius coordinates by

(3.4) Λ = (λζ)ζ∈T̂ ∈Yn(T̂ ) �−→
((ai(λζ)

n

)
ζ,i
,
(bi(λζ)

n

)
ζ,i
,
( |λζ |

n

)
ζ

)
∈Δ.

Recall that +1/2 is added in (2.18), which ensures that the image of ι(n) is

included in Δ.

THEOREM 3.1

Any ϕ ∈H(Y(T̂ )) yields an integral representation

(3.5) ϕ(Λ) =

∫
Δ

K(Λ, ω)Q(dω), Λ ∈Y(T̂ ).

Here kernel K(Λ, ω) is given by (2.28), and Q ∈ P(Δ) is uniquely determined

by ϕ. Taking M ∈M(T(T̂ )) corresponding to ϕ through (3.2), we have that

(3.6) Q= lim
n→∞

ι
(n)
∗ M (n)

as a weakly converging limit in P(Δ).

REMARK 3.2

We have that Δ̃ is equipped with the metrizable topology of the product of the

pointwise converging one mentioned after (2.24), which is separable, and also with

the associated Borel structure. Additionally, Δ is a Borel subset of Δ̃. Recall that

if S is a separable metric space, then P(S) is equipped with a separable metrizable

topology characterized by weak convergence of a sequence of probabilities:

lim
n→∞

∫
S

f(s)μn(ds) =

∫
S

f(s)μ(ds),

for any bounded continuous function f on S. The procedure of (3.6) taking a

weak limit after pushing forward the marginal distribution to the boundary seems

to be analogous to the classical radial limit for a harmonic function on the unit

disk.

Proof

Step 1. First we show the uniqueness of Q ∈ P(Δ) in (3.5). Let S be the set

of R-linear combinations of {K(Λ, ·) | Λ ∈ Y(T̂ )} in (2.28). We verify that S is

dense in C(Δ;R) for finite T and in C(Δ̃;R) for infinite T by using the Stone–

Weierstrass theorem. In fact, S contains the constant 1, which corresponds to

Λ =∅. Lemma 2.3 ensures that the pζk’s and hence the sζλ’s also separate two arbi-
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trary points in Δ or Δ̃. By (2.27), the R-linear combinations of {sζλ}λ∈Y coincide

with those of {pζρ}ρ∈Y, the latter clearly forming an algebra. HenceK(Λ, ·)K(M, ·)
for Λ,M ∈ Y(T̂ ) is linearized and belongs to S . This completes the proof of the

density of S . Then, integration on S determines that on the whole C(Δ;R) or

C(Δ̃;R). Thus, Q ∈ P(Δ) or P(Δ̃) is uniquely determined. Note that if T is infi-

nite, then an element of P(Δ̃) supported by Δ is identified with that of P(Δ).

Step 2. We show that if there exists a limit

Q0 = lim
n→∞

ι
(n)
∗ M (n)

in P(Δ) for finite T or in P(Δ̃) for infinite T , then ϕ is expressed as

(3.7) ϕ(Λ) =

∫
Δ

K(Λ, ω)Q0(dω) or ϕ(Λ) =

∫
Δ̃

K(Λ, ω)Q0(dω)

for Λ ∈ Y(T̂ ). Let T be infinite, since the case of finite T is treated in the same

way. Combining

ϕ(Λ) =
∑

N∈Yn(T̂ )

d(Λ,N)ϕ(N) =
∑

N∈Yn(T̂ )

K(Λ,N)M (n)(N),

which is seen from (3.3), and∫
Δ̃

K(Λ, ω)ι
(n)
∗ M (n)(dω) =

∑
N∈Yn(T̂ )

K(Λ, ι(n)N)M (n)(N),

we write ∣∣∣ϕ(Λ)− ∫
Δ̃

K(Λ, ω)Q0(dω)
∣∣∣

�
∣∣∣ϕ(Λ)− ∫

Δ̃

K(Λ, ω)ι
(n)
∗ M (n)(dω)

∣∣∣
+

∣∣∣∫
Δ̃

K(Λ, ω)ι
(n)
∗ M (n)(dω)−

∫
Δ̃

K(Λ, ω)Q0(dω)
∣∣∣(3.8)

�
∑

N∈Yn(T̂ )

∣∣K(Λ, ω)−K(Λ, ι(n)N)
∣∣M (n)(N)

+
∣∣∣∫

Δ̃

K(Λ, ω)ι
(n)
∗ M (n)(dω)−

∫
Δ̃

K(Λ, ω)Q0(dω)
∣∣∣.

Comparing (2.3) with

K(Λ, ι(n)N) =
∏
ζ∈T̂

1

(dim ζ)|λζ | s
ζ
λζ (ι

(n)N)

=
∏
ζ∈T̂

1

(dim ζ)|λζ |

∑
ρ∈Y|λζ |

1

zρ
χλ
ρp

ζ
ρ

((ai(νζ)
n

)
ζ,i
,
(bi(νζ)

n

)
ζ,i
,
( |νζ |

n

)
ζ

)

=
∏
ζ∈T̂

1

(dim ζ)|λζ |

∑
ρ∈Y|λζ |

1

zρ
χλ
ρ

1

n|ρ| pρ(ν
ζ)
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and using the estimate of (2.31), we have∣∣K(Λ,N)−K(Λ, ι(n)N)
∣∣ � 1

n
Ck, Λ ∈Yk(T̂ ),N ∈Yn(T̂ ).

Hence the first term on the rightmost side of (3.8) is bounded by Ck/n. The sec-

ond term converges to 0 as n→∞ since K(Λ, ·) ∈C(Δ̃;R). We thus obtain (3.7).

Step 3. Since P(Δ) for finite T and P(Δ̃) for infinite T are compact (and

metrizable) with respect to the topology of weak convergence, {ι(n)∗ M (n)}n∈N

contains a converging subsequence. The argument in Step 2 implies that its limit

Q0 satisfies (3.7) and hence is unique. Hence the whole sequence {ι(n)∗ M (n)}n∈N

converges as n → ∞. This completes the proof in the case of finite T . If T is

infinite, then we have

Q= lim
n→∞

ι
(n)
∗ M (n) in P(Δ̃) and ϕ(Λ) =

∫
Δ̃

K(Λ, ω)Q(dω).

Using the harmonicity of ϕ, we have

0 = ϕ(Λ)−
∑

N:Λ↗N

κ(Λ,N)ϕ(N)

=

∫
Δ̃

K(Λ, ω)Q(dω)−
∑

N:Λ↗N

κ(Λ,N)

∫
Δ̃

K(N, ω)Q(dω)

=

∫
Δ̃

(
K(Λ, ω)−

∑
N:Λ↗N

κ(Λ,N)K(N, ω)
)
Q(dω).

The superharmonicity of K(·, ω) (Lemma 2.7) then yields

(3.9) K(Λ, ω) =
∑

N:Λ↗N

κ(Λ,N)K(N, ω), Q-a.e. ω.

Taking a common exceptional set of Q-measure 0 for Λ ∈Y(T̂ ) in (3.9), we ver-

ify that K(·, ω) is harmonic on Y(T̂ ) for almost every ω. In other words, Q is

supported by Δ and regarded as an element of P(Δ). We note that

Q= lim
n→∞

ι
(n)
∗ M (n) in P(Δ̃) and ι

(n)
∗ M (n),Q ∈ P(Δ)

imply the convergence in P(Δ), which is seen, for example, from the character-

ization of weak convergence of probabilities in terms of the convergence on any

Borel set with boundary of probability 0. �

Recall that the minimal Martin boundary is defined in (1.35) as

∂mY(T̂ ) =
{
ω ∈ ∂Y(T̂ )

∣∣K(·, ω) is minimal harmonic
}
.

For ω ∈ ∂Y(T̂ ), K(∅, ω) = 1 and K(Λ, ω) � 0 hold. Letting exC denote the set

of extremal points of convex set C, we always have

(3.10)
{
K(·, ω)

∣∣ ω ∈ ∂mY(T̂ )
}
⊂ exH

(
Y(T̂ )

)
.

On the other hand, the Martin integral representation (Theorem 3.1) ensures

that
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(3.11) exH
(
Y(T̂ )

)
⊂

{
K(·, ω)

∣∣ ω ∈Δ
}
.

Actually, we have equalities in (3.10) and (3.11) as follows.

THEOREM 3.3

An extremal point of H(Y(T̂ )) is exactly a Martin kernel K(·, ω) for ω ∈Δ. The

minimal Martin boundary ∂mY(T̂ ) of the branching graph Y(T̂ ) is homeomor-

phically isomorphic to Δ for any T .

Proof

Let ω ∈ Δ. By Lemma 2.8, K(·, ω) is harmonic. If it is expressed as a convex

combination in H(Y(T̂ )), then

K(·, ω) = cϕ1 + (1− c)ϕ2, ϕ1, ϕ2 ∈H
(
Y(T̂ )

)
,0 � c � 1.

Theorem 3.1 applied to ϕ1 and ϕ2 yields

K(Λ, ω) = c

∫
Δ

K(Λ, ω′)Q1(dω
′) + (1− c)

∫
Δ

K(Λ, ω′)Q2(dω
′), Λ ∈Y(T̂ ),

for Q1,Q2 ∈ P(Δ). The uniqueness part of Theorem 3.1 implies that

δω = cQ1 + (1− c)Q2

holds in P(Δ), which is possible only when c= 0 or c= 1 or Q1 =Q2. This shows

the extremality (= minimality) of K(·, ω) in H(Y(T̂ )); in other words,

(3.12)
{
K(·, ω)

∣∣ ω ∈Δ
}
⊂

{
K(·, ω)

∣∣ ω ∈ ∂mY(T̂ )
}
.

Combining (3.12) with (3.10) and (3.11), we have equality between them. The

homeomorphic property is already shown in Theorem 2.5. �

Combining Theorems 2.5 and 3.3, we can translate the obtained results into

those for the other objects in (a.2)–(a.4) described in the introduction. Recall

the bijective correspondence

f ∈K
(
S∞(T )

)
←→ ϕ ∈H

(
Y(T̂ )

)
given by

(3.13) f |Sk(T ) =
∑

Λ∈Yk(T̂ )

ϕ(Λ)χΛ, k ∈N.

An extremal point of K(S∞(T )) is simply called a character of S∞(T ). It is

known that a character of S∞(T ) is factorizable (or multiplicative) with respect

to the standard decomposition (1.1) into basic elements. After showing such a

factorizability, (3.14) of Theorem 3.4 for a character of S∞(T ) was first obtained

by the second author and E. Hirai (see [4] and [5]). In this paper, however, we

compute a character of S∞(T ) directly by using (2.28) under the correspondence

of Theorem 3.3 without knowing a priori the factorizability. The structure of the

conjugacy classes of S∞(T ) is given by (1.15).
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THEOREM 3.4

Let f be a character of S∞(T ), and let ω ∈Δ be the corresponding parameter in

Theorem 3.3. The value of f = fω at an element in the conjugacy class of S∞(T )

corresponding to P= (ρθ)θ∈[T ] ∈Y([T ]), denoted by fω(P), is given by

(3.14) fω(P) =

∞∏
j=1

∏
θ∈[T ]

(∑
ζ∈T̂

pζj (ω)
χζ
θ

(dim ζ)j

)mj(ρθ)

.

In particular, f is factorizable.

Proof

Take x ∈ CP ⊂S∞(T ), and then take k ∈ N such that x ∈Sk(T ). Let suppP =

{θ1, θ2, . . . , θl}, where suppP denotes the set of θ’s with nontrivial ρθ’s. For com-

puting fω(P) through (3.13), we have formulas for ϕ(Λ) =K(Λ, ω) in (2.28) and

for χΛ in (1.12) (in the case of k = n). Noting that the condition (1.11) reduces to

(3.15)
∑

(ρθi
)∗j :r((ρθi

)∗j )=ζ

(ρθi)j = |λζ |, ζ ∈ T̂ ,

we have

fω(P) =
∑

Λ∈Yk(T̂ )

∑
r satisfying (3.15)

∏
ζ∈T̂

{ 1

(dim ζ)|λζ |

(3.16)

× sζ
λζ (ω)

( l∏
i=1

(χζ
θi
)l(r

−1(ζ)∩ρθi
)
)
χλζ

r−1(ζ)

}
.

In (3.16), let Λ = (λζ)ζ∈T̂ range over Yk(T̂ ) in two stages. First, take the finite

subset F of T̂ as suppΛ, that is, the ζ ’s with nontrivial λζ ’s, and then take

nζ ∈ N for ζ ∈ F as nζ = |λζ |. We necessarily have that
∑

ζ∈F nζ = k. Next, for

each (F, (nζ)ζ∈F ), let Λ ∈Yk(T̂ ) range under the constraint of

(3.17) suppΛ = F and |λζ |= nζ .

For fixed (F, (nζ)ζ∈F ), note that the sum in Λ in the above second stage and the

sum
∑

r in (3.16) commute. Setting the condition

(3.18)
∑

(ρθi
)∗j :r((ρθi

)∗j )=ζ

(ρθi)j = nζ , ζ ∈ T̂ ,

instead of (3.15), we hence continue (3.16) as

(3.16) =
∑

(F,(nζ)ζ∈F )

∑
r : (3.18)

∑
Λ : (3.17)

∏
ζ∈F

{ 1

(dim ζ)nζ

×
( l∏
i=1

(χζ
θi
)l(r

−1(ζ)∩ρθi
)
)
χλζ

r−1(ζ)s
ζ
λζ (ω)

}
(3.19)

=
∑

(F,(nζ)ζ∈F )

∑
r : (3.18)

∏
ζ∈F

{
pζr−1(ζ)

1

(dim ζ)nζ

( l∏
i=1

(χζ
θi
)l(r

−1(ζ)∩ρθi
)
)}
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by using the inversion of (2.27). Let us verify that this expression is equal to

(3.20)

l∏
i=1

∞∏
j=1

(∑
ζ∈T̂

pζj (ω)
1

(dim ζ)j
χζ
θi

)mj(ρθi
)

.

In (3.20), since two kinds of products are finite ones and the infinite sum in ζ

converges absolutely, no problems occur in changing the terms. Let nζ be the

degree of the factors labeled by ζ in each term of the development of (3.20),

where pζj (ω) is regarded to have degree j. We have

∑
ζ∈T̂

nζ =

l∑
i=1

∞∑
j=1

jmj(ρθi) =

l∑
i=1

|ρθi |= k.

For a term in the development of (3.20), let F be the ζ ’s which actually appear,

and let (nζ)ζ∈F be the set of degrees labeled by ζ . Given (F, (nζ)ζ∈F ), the cor-

responding terms in (3.20) are counted by the maps r satisfying (3.18). We then

observe that the term corresponding to (F, (nζ)ζ∈F , r) is expressed in a product

form seen in the rightmost side of (3.19). This completes the proof of (3.14). �

THEOREM 3.5

Any f ∈K(S∞(T )) yields an integral representation

(3.21) f(P) =

∫
Δ

fω(P)Q(dω), P ∈Y
(
[T ]

)
.

Here the character fω is given by (3.14), and Q ∈ P(Δ) is the same as that of

Theorem 3.1 under the correspondence f ∈ K(S∞(T ))↔ ϕ ∈ H(Y(T̂ )) through

(3.13).

Proof

For given P ∈ Y([T ]), take x ∈ CP ⊂S∞(T ), and then take k ∈ N such that x ∈
Sk(T ). The integral representation for an element of H(Y(T̂ )) (see Theorem 3.1)

is easily transformed to the one for the corresponding element of K(S∞(T )).

More precisely, we have

f(x) =
∑

Λ∈Yk(T̂ )

ϕ(Λ)χΛ(x) =
∑

Λ∈Yk(T̂ )

(∫
Δ

K(Λ, ω)Q(dω)
)
χΛ(x)

=

∫
Δ

( ∑
Λ∈Yk(T̂ )

K(Λ, ω)χΛ(x)
)
Q(dω)

=

∫
Δ

fω(P)Q(dω),

where changing the sum and integral is justified by∑
Λ∈Yk(T̂ )

∫
Δ

∣∣K(Λ, ω)χΛ(x)
∣∣Q(dω)�

∑
Λ∈Yk(T̂ )

d(Λ)ϕ(Λ) = 1.
�
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4. Characters, harmonic functions, and central probabilities associated with an
inductive system of compact groups

We note bijective correspondences between the spaces of (0.1)–(0.3) for an induc-

tive system of compact groups instead of restricting to wreath products Sn(T ).

Let us consider a sequence of compact groups

{e}=G0 ⊂G1 ⊂ · · · ⊂Gn−1 ⊂Gn ⊂ · · ·

in which the embedding Gn−1 ⊂Gn is a continuous homomorphism for any n ∈N.
Set G∞ = limn→∞Gn =

⋃∞
n=0Gn (inductive limit group). Letting Ĝn denote

the set of equivalence classes of IURs of Gn, we have a branching graph with

G =
⊔∞

n=0 Ĝn as the vertex set by introducing edge α↗ β and its multiplicity

κ(α,β) for α ∈ Ĝn−1 and β ∈ Ĝn through the irreducible decomposition

ResGn

Gn−1
πβ ∼=

⊕
α∈Ĝn−1:α↗β

κ(α,β)πα, πβ ∈ β.

The case of Gn =Sn(T ) was treated in Section 1.8.

Until the end of the proof of Proposition 4.2, we stop assuming that Ĝn is

countable.

Equipping G∞ with the inductive limit topology, set

K(G∞) =
{
f :G∞ −→C

∣∣
(4.1)

f is continuous, positive definite, and central, f(e) = 1
}
.

We modify (0.2) by adding “countably supported” and set

H(G) =
{
ϕ :G−→C

∣∣ ϕ is harmonic and nonnegative, ϕ(∅) = 1,
(4.2)

suppϕ is an at most countable set
}
.

Here the harmonicity of ϕ is defined by

ϕ(α) =
∑

β:α↗β

κ(α,β)ϕ(β), α ∈G,

similarly to (1.18). If a graph consisting of the subset G0 ⊂ G and the edges

inherited from G satisfies that, for any β ∈ G0, all vertices lying on the finite

paths from ∅ to β belong to G0, then we refer to G0 simply as a subgraph of G.

It is immediate that suppϕ is a subgraph of G for harmonic and nonnegative ϕ.

Let T(G) denote the set of all infinite paths t= (t(0)↗ t(1)↗ t(2)↗ · · · ), t(n) ∈
Ĝn, on branching graph G; T(G) is equipped with the σ-field generated by its

cylindrical subsets. We consider T(G0) also for the subgraph G0 ⊂ G, where

t(n) ∈G0
n =G0 ∩ Ĝn. We modify (0.3) to set

M
(
T(G)

)
=

{
M ∈ P

(
T(G)

) ∣∣M is central and supported by T(G0)
(4.3)

for some countable subgraph G0 ⊂G
}
.

Here the centrality of M is defined similarly to (3.1) by

M(Cu)/wu =M(Cv)/wv
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for finite paths u and v from ∅ terminating at a common vertex, where wu is

the weight of path u defined by (1.21) and Cu is the cylindrical set associated

with u. Note that K(G∞), H(G), and M(T(G)) are all convex sets.

PROPOSITION 4.1

There exist bijective affine maps between K(G∞), H(G), and M(T(G)). In par-

ticular, their extremal points have bijective correspondences.

Proof

Recall that the function a : C1 → C2, where C1 and C2 are convex sets, is said

to be affine if it satisfies a(sx+ (1− s)y) = sa(x) + (1− s)a(y) for any x, y ∈C1

and 0 � s � 1. A bijection between H(G) and M(T(G)) is given in the same way

with (3.2): for ϕ ∈H(G) and M ∈M(T(G)),

(4.4) ϕ(α) =M(Cu)/wu, α ∈G,

where α is the terminal vertex of finite path u. This fact is fully shown in [9,

Lemma 2.9] for a general branching graph.

As noted in (3.13), a bijection between K(G∞) and H(G) is given by using

Fourier expansion on each compact group Gk: for f ∈K(G∞) and ϕ ∈H(G),

(4.5) f |Gk
=

∑
α∈Ĝk

ϕ(α)χα, k ∈N,

where χα denotes the irreducible character for α; χα(x) = trπα(x). This fact is

shown in [9, Theorem 4.2] for Gn =Sn(T ) with an arbitrary compact group T .

No modification is needed in its proof to apply it to general Gn. Either bijection

given by (4.4) or (4.5) is clearly affine. �

The set of extremal elements in K(G∞) is denoted by E(G∞), whose elements are

called characters of G∞. Any character of G∞ is approximated by the irreducible

characters of Gn as will be seen in Proposition 4.2. This implies that not only

the extremal elements of K(G∞) but also the ones of H(G) and M(T(G)) have

approximations by the objects at finite level n.

PROPOSITION 4.2

Let f be a character of G∞, and let M be the corresponding probability in

exM(T(G)) determined in Proposition 4.1. For M -almost sure path t ∈ T(G),

the convergence of the normalized irreducible characters

lim
n→∞

χ̃ t(n) = f

holds uniformly on each Gk, k ∈N.

Proof

This fact is shown in [9, Theorem 4.3] for Gk =Sk(T ) with an arbitrary compact

group T . No modification is needed in its proof to apply it to general Gk. With

ϕ ∈ exH(G) being taken correspondingly, the proof is based on the M -almost
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sure convergence

ϕ(α) = lim
n→∞

K
(
α, t(n)

)
, α ∈ suppϕ (subgraph of G),

which is shown via the martingale convergence theorem in [9, Theorem 3.2]. �

Let us look at the topologies given the convex sets (4.1), (4.2), and (4.3). Hereafter

again, we assume that each Ĝn is at most countable for technical conveniences.

Generally speaking, we consider compact-open topology for a space of functions

and weak convergence topology for a space of probabilities. To deal with K(G∞),

recall that any compact set K of G∞, which is given the inductive limit topology,

is included inGn for sufficiently large n. (See [8, Section 6.3] for this fact and other

properties of an inductive limit topology.) Hence the compact-open topology, or

topology of uniform convergence on every compact set, on K(G∞) admits{{
g ∈K(G∞)

∣∣ max
x∈Gn

∣∣f(x)− g(x)
∣∣< εk

} ∣∣ n,k ∈N
}

as a fundamental system of neighborhoods of f , where εk > 0 and εk ↘ 0 as

k →∞. Since G=
⊔∞

n=0 Ĝn is discrete, the compact-open topology on H(G) is

just the one of pointwise converging on G. The path space T(G) is equipped

with the relative topology of
∏∞

n=0 Ĝn (having the product (or weak) topology

of discrete ones on Ĝn). Since T(G) is a separable metric space, by virtue of the

countability assumption for Ĝn’s, so is P(T(G)) with respect to the topology

of weak convergence of a sequence of probabilities. (Recall Remark 3.2.) The

topology on T(G) is also generated by cylindrical sets {Cu | u : finite path on G}.

LEMMA 4.3

Assume that Ĝn is at most countable for any n ∈N. The bijective map

(4.6) M
(
T(G)

)
−→H(G)

induced by the correspondence through (4.4) between M ∈ M(T(G)) and ϕ ∈
H(G) is a homeomorphism.

Proof

Note that a cylindrical set Cu is open and closed. Then, since 1Cu is a bounded

continuous function on T(G), the weak convergence of {Mn}n∈N toM in P(T(G))

implies convergence on every cylindrical set.

To show continuity of the inverse map H(G) −→M(T(G)), let a sequence

{ϕn} converge to ϕ in H(G). Take Mn ∈ M(T(G)) and M ∈ M(T(G)) cor-

responding to ϕn and ϕ, respectively. Recall the well-known fact that {Mn}
converges weakly to M in M(T(G)) if and only if

(4.7) M(O) � lim inf
n→∞

Mn(O)

holds for any open subset O of T(G). The topology on T(G) yields that, for any

open O ⊂ T(G), there exists a disjoint family of cylindrical sets {Oj} such that

O =
⊔

j Oj . Note that there are only a countable number of cylindrical sets. We
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have M(Oj) = limn→∞Mn(Oj) for j by the assumption of convergence of ϕn

to ϕ. Then, (4.7) follows from

M(O) =
∑
j

M(Oj) =
∑
j

lim
n→∞

Mn(Oj) � lim inf
n→∞

∑
j

Mn(Oj) = lim inf
n→∞

Mn(O).

This completes the proof of continuity. �

REMARK 4.4

The argument in the first paragraph of the above proof yields also that M(T(G))

is a closed subset of P(T(G)).

LEMMA 4.5

Assume that Ĝn is at most countable for any n ∈N. The bijective map

(4.8) K(G∞)−→H(G)

given by the correspondence through (4.5) between f ∈ K(G∞) and ϕ ∈H(G) is

a homeomorphism.

Proof

Let a sequence {fn} converge to f in K(G∞). Here, (4.5) implies that

(4.9) ϕ(α) =

∫
Gk

f(x)χα(x)dx, α ∈ Ĝk,

and also a similar equality for fn and the corresponding ϕn. Then we have for

any k ∈N and any α ∈ Ĝk,∣∣ϕn(α)−ϕ(α)
∣∣ �

∫
Gk

∣∣fn(x)− f(x)
∣∣∣∣χα(x)

∣∣dx
(4.10)

� dimα · max
x∈Gk

∣∣fn(x)− f(x)
∣∣−−−−→

n→∞
0.

This means convergence of {ϕn} to ϕ in H(G).

To show continuity of the inverse map, let a sequence {ϕn} converge to ϕ in

H(G), noting that H(G) obviously enjoys the first countability since G has only

a countable number of finite subsets. Let k ∈ N be fixed, and take an arbitrary

ε > 0. Since ∑
α∈Ĝk

d(α)ϕ(α) = ϕ(∅) = f(e) = 1

holds, there exists a finite subset K1 ⊂ Ĝk such that

0 �
∑

α∈Ĝk\K1

d(α)ϕ(α)< ε.

Moreover, since we have∑
α∈Ĝk\K1

d(α)ϕn(α) = 1−
∑
α∈K1

d(α)ϕn(α)

−−−−→
n→∞

1−
∑
α∈K1

d(α)ϕ(α) =
∑

α∈Ĝk\K1

d(α)ϕ(α),
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there exists n1 ∈N such that

n > n1 =⇒
∑

α∈Ĝk\K1

d(α)ϕn(α)< ε.

Then, letting fn, f ∈K(G∞) correspond to ϕn, ϕ, respectively, we have for x ∈Gk

and n > n1,∣∣fn(x)− f(x)
∣∣

�
∣∣∣ ∑
α∈Ĝk\K1

ϕn(α)χ
α(x)

∣∣∣+ ∣∣∣ ∑
α∈Ĝk\K1

ϕ(α)χα(x)
∣∣∣

+
∣∣∣ ∑
α∈K1

(
ϕn(α)−ϕ(α)

)
χα(x)

∣∣∣(4.11)

�
∑

α∈Ĝk\K1

d(α)ϕn(α) +
∑

α∈Ĝk\K1

d(α)ϕ(α) +
∑
α∈K1

d(α)
∣∣ϕn(α)−ϕ(α)

∣∣
< 2ε+

∑
α∈K1

d(α)
∣∣ϕn(α)−ϕ(α)

∣∣,
which yields

limsup
n→∞

max
x∈Gk

∣∣fn(x)− f(x)
∣∣ � 2ε.

Since ε > 0 is arbitrary, we have uniform convergence of fn to f on Gk. Since

k ∈N is arbitrary, we have that limn→∞ fn = f in K(G∞). �

Let us now return to the case of Gn =Sn(T ), the wreath product of compact

group T with at most countable T̂ .

THEOREM 4.6

We have that exH(Y(T̂ )), exM(T(T̂ )), and exK(S∞(T )) are all homeomor-

phically isomorphic to Δ of (2.23). In particular, they are not compact if T is

infinite.

Proof

We showed in Lemmas 4.3 and 4.5 that the bijective maps between H(Y(T̂ )),
M(T(T̂ )), and K(S∞(T )) are all homeomorphisms. Since these maps are affine,

they give homeomorphic isomorphisms between the sets of extremal points. By

Theorem 3.3 we already know a bijective correspondence between exH(Y(T̂ ))
and Δ. Its homeomorphic property is read out through the explicit formula (2.28)

for K(Λ, ω) in a similar argument to Step 2 of the proof of Theorem 2.5. �

In contrast with Proposition 4.2, we consider the following question.
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QUESTION 4.7

Let the convergence of the normalized irreducible characters

(4.12) lim
n→∞

χ̃α(n)

= f

hold compact-uniformly on G∞ along a sequence (α(n))n=0,1,2,..., α(n) ∈ Ĝn.

Then, is the limit function f a character of G∞?

Note that the limit on the left-hand side of (4.12) is well defined since every

compact subset of G∞ is included in all sufficiently large Gn’s. In the following

statement, the Martin distance on G is given in a similar way to (1.29). (See also

(A.16) in Appendix A.)

LEMMA 4.8

Assume that Ĝn is at most countable for any n ∈ N. For a sequence (α(n))n=0,1,2,...,

α(n) ∈ Ĝn, the following (a) and (b) are equivalent.

(a) There exists ω ∈ ∂G such that

• α(n) converges to ω as n→∞,

• K(·, ω) is harmonic on G.

(b) The normalized irreducible character χ̃α(n)

converges compact-uniformly

on G∞ as n→∞.

Proof

To deduce (b) from (a), we begin with

(4.13) χ̃α(n) |Gk
=

∑
α∈Ĝk

K(α,α(n))χα.

The harmonicity of K(·, ω) ensures that f ∈K(G∞) is well defined by

(4.14) f |Gk
=

∑
α∈Ĝk

K(α,ω)χα.

In (4.13) and (4.14), (a) implies that limn→∞K(α,α(n)) =K(α,ω) exists for any

α ∈G. Then, we estimate the supremum norm ‖f − χ̃α(n)‖ in the same way as

(4.11). This yields (b).

Assuming (b), we have

lim
n→∞

χ̃α(n)

= f ∈K(G∞).

Take ϕ ∈H(G) corresponding to f via Proposition 4.1. Taking Fourier coefficient

(4.9) and following (4.10), we see that

(4.15) K(α,α(n))−−−−→
n→∞

ϕ(α), α ∈G.

Hence (α(n)) converges to a point in the Martin boundary of G, denoted by

ω ∈ ∂G. Furthermore, K(·, ω) = ϕ is harmonic. �
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REMARK 4.9

In Lemma 4.8, if the normalized irreducible characters χ̃α(n)

are assumed to

converge pointwise on G∞ instead of compact-uniformly, the limit function f

is still positive definite, central, and normalized. If we assume further that f is

continuous, then the convergence actually proves to be compact-uniform. Indeed,

taking ϕ ∈H(G) corresponding to f ∈K(G∞), considering the Fourier coefficient

as in (4.9), and then applying Lebesgue’s convergence theorem, we have (4.15).

It remains to repeat the estimate of (4.11) as in the first half of the proof of

Lemma 4.8.

The answer to Question 4.7 is affirmative for our wreath product case.

PROPOSITION 4.10

In the case of Gn =Sn(T ), Lemma 4.8(a) is equivalent to the following.

(a)′ There exists ω ∈ ∂mY(T̂ ) such that α(n) converges to ω as n→∞ (with

respect to the Martin distance (1.29) on Y(T̂ )).

Under (a), (a)′, and/or (b), the limit function

f = lim
n→∞

χ̃α(n)

is a character of S∞(T ). The correspondence f ←→ ω is the one given in Theo-

rems 3.3 and 4.6.

Proof

We check that (a)′ follows from apparently weak (a). Under (a), Lemma 2.8

ensures that ω ∈Δ. Then, ω ∈ ∂mY(T̂ ) follows by Theorem 3.3. �

REMARK 4.11

The answer to Question 4.7 is affirmative in the case of the infinite-dimensional

unitary group U(∞) = limn→∞U(n). (See [15, Proposition 10.9] and the ref-

erences therein.) On the other hand, let each Gn be a finite group in G∞ =

limn→∞Gn. In Lemma 4.8(a), the harmonicity of the Martin kernel K(·, ω)
then follows automatically from the other convergence condition. In [13, Sec-

tion 1.5, Chapter 0], it is suggested that the K(·, ω) obtained here is not neces-

sarily extremal. This implies that the corresponding element in K(G∞), which is

the limit function of χ̃α(n)

in Lemma 4.8(b), need not be a character of G∞.

Appendix A: Markov chain and Martin boundary

This appendix is devoted to a brief review on the Martin boundary associated

with a Markov chain. Such a review is supplied because the definition (1.18) of

harmonicity might seem to be strange from probabilistic viewpoints. As a main

reference, we use [16], which is well written and most suitable for our purpose.

Let S be a countable set. A transition probability on S is by definition a function
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p(x, y) on S × S satisfying p(x, y) � 0 (x, y ∈ S) and
∑

y∈S p(x, y) = 1 (x ∈ S).

Any transition probability induces a random motion on S, called a (temporally

homogeneous) Markov chain on state space S, in which p(x, y) is interpreted as

the probability that the chain moves from x to y by one unit time. We have the

transition matrix P = [p(x, y)]x,y∈S by giving S a total order. For n ∈ N ∪ {0}
and x, y ∈ S, set

pn(x, y) = (Pn)x,y =
∑

z1,...,zn−1∈S

p(x, z1)p(z1, z2) · · ·p(zn−1, y),(A.1)

Gp(x, y) =

∞∑
n=0

pn(x, y).(A.2)

The subscript p indicates dependence on the transition probability p(x, y). Prob-

ability P on S∞ governing the Markov chain (Xn)n=0,1,2,... is constructed via a

well-known extension theorem so that

pn(x, y) = P(Xn = y |X0 = x)

holds. With E denoting the expectation with respect to P,

Gp(x, y) = E
[ ∞∑
n=0

1{Xn=y}

∣∣∣X0 = x
]

is the expected number for the chain to visit y starting from x. Let us assume

that a reference vertex o is fixed and that

(A.3) Gp(o, y)> 0, y ∈ S.

This is the case if the chain starting from o can visit any vertex with positive

probability. Set

(A.4) Kp(x, y) =
Gp(x, y)

Gp(o, y)
, x, y ∈ S,

and call it a Martin kernel. We define a distance on S by

(A.5) Dp(x, y) =
∑
z∈S

C(z)
(∣∣Kp(z,x)−Kp(z, y)

∣∣+ |δz,x − δz,y|
)
, x, y ∈ S,

where C(z) is a positive coefficient for the sake of uniform convergence of the

series in x and y. In more detail, since we easily see that

(A.6) Kp(z,x) � 1

pl(o, z)
, z, x ∈ S,

by using pl(o, z)> 0 for some l, we only have to take C(z)> 0 such that∑
z∈S

C(z)
( 2

pl(o, z)
+ 1

)
<∞.

We can then conclude that a sequence {xn}n∈N in S is Cauchy if and only if

either of the following holds:

xn ≡ x ∈ S for sufficiently large n,(A.7)
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xn →∞ and, for any z ∈ S,
{
Kp(z,xn)

}
n∈N

is a Cauchy sequence in R.(A.8)

Moreover, any sequence in S contains a Cauchy subsequence with respect to Dp,

as seen from property (A.6) and the so-called diagonal argument. This implies

that S is totally bounded. The completion of S with respect to Dp is hence

compact, which is called the Martin compactification of S and is denoted by S.

The construction based on (A.5) ensures that S is an open subset of S and that

the restriction of the topology on S to S is discrete. The compact set S \S = ∂S

is the Martin boundary of S. Martin kernel (A.4) is extended as a continuous

function Kp(x,ω) on S × S.

Let us now assume that the nonnegative function q(x, y) on S × S is

given instead of a transition probability. Provided that there exists a positive

q-harmonic function h on S, that is,

(A.9) h(x)> 0, h(x) =
∑
y∈S

q(x, y)h(y), x ∈ S,

we set a transition probability on S by

(A.10) p(x, y) =
1

h(x)
q(x, y)h(y), x, y ∈ S.

Consider the analogue of (A.1) and (A.2) for q(x, y):

qn(x, y) =
∑

z1,...,zn−1∈S

q(x, z1)q(z1, z2) · · · q(zn−1, y),

(A.11)

Gq(x, y) =
∞∑

n=0

qn(x, y).

Comparing (A.11) with (A.2), we have

(A.12) Gp(x, y) =
1

h(x)
Gq(x, y)h(y), x, y ∈ S.

In particular, (A.3) is equivalent to the analogous condition

(A.13) Gq(o, y)> 0, y ∈ S.

Furthermore, defining a Martin kernel by

(A.14) Kq(x, y) =
Gq(x, y)

Gq(o, y)
, x, y ∈ S,

we have

(A.15) Kp(x, y) =
h(o)

h(x)
Kq(x, y), x, y ∈ S.

Set now as in (A.5)

(A.16) Dq(x, y) =
∑
z∈S

C ′(z)
(∣∣Kq(z,x)−Kq(z, y)

∣∣+ |δz,x − δz,y|
)
, x, y ∈ S,

with positive factor C ′(z) so that the series can converge uniformly in x, y. Obvi-

ously, (A.15) yields that the Cauchy property of a sequence in S is equivalent
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with respect to either Dp or Dq . We thus arrive at the same Martin boundary

theory starting from transition probability p(x, y) or (nontransition probability)

q(x, y) related as (A.10). Note that the function ϕ on S is p-harmonic if and only

if hϕ is q-harmonic.

Let us turn to the branching graph Y(T̂ ). Based on (nontransition probabil-

ity)

(A.17) q(Λ,M)=

{
κ(Λ,M) if Λ↗M,

0 otherwise,
Λ,M ∈Y(T̂ ),

the Martin boundary of Y(T̂ ) is constructed as above. In particular, taking ∅ as

the reference vertex o, we have Gq(∅,M) = d(M)> 0 as (A.13). An example of

a q-harmonic function in (A.9) is given by the special case of ω = (0,0, c) ∈Δ in

(2.28), namely,

(A.18) h(Λ) =
∏
ζ∈T̂

c
|λζ |
ζ dimλζ

(dim ζ)|λζ ||λζ |! , Λ= (λζ)ζ∈T̂ ∈Y(T̂ ).

It is straightforward to verify the q-harmonicity of (A.18) with respect to q

defined by (A.17), with cζ > 0 satisfying
∑

ζ∈T̂ cζ = 1. In the special case where

T is trivial, (A.18) reduces to

(A.19) h(λ) =
dimλ

|λ|! , λ ∈Y,

and hence agrees with the harmonic function on Y corresponding to the Plancherel

measure as well as the regular character of S∞. Applying (A.10) and (A.17) to

(A.19), we have

p(λ,μ) =
1

n+ 1

dimμ

dimλ
, λ ∈Yn ↗ μ ∈Yn+1.

This induces a chain called the Plancherel growth process. If we take h in (A.9) to

be minimal q-harmonic (as is the case of (A.18) under (A.17)), then a bounded

nonnegative p-harmonic function with respect to p in (A.10) is necessarily con-

stant, which follows from the minimality of h as a q-harmonic function.

Martin kernel (A.14) is denoted by K in (1.27). A straightforward translation

of the discussion in this appendix leads to (1.29)–(1.34).

References

[1] A. Borodin and G. Olshanski, Harmonic functions on multiplicative graphs and

interpolation polynomials, Electron. J. Combin. 7 (2000), no. 28. MR 1758654.

[2] R. Boyer, Character theory of infinite wreath products, Int. J. Math. Math. Sci.

9 (2005), 1365–1379. MR 2176493. DOI 10.1155/IJMMS.2005.1365.

[3] T. Hirai and E. Hirai, Positive definite class functions on a topological group

and characters of factor representations, J. Math. Kyoto Univ. 45 (2005),

355–379. MR 2161697.

http://www.ams.org/mathscinet-getitem?mr=1758654
http://www.ams.org/mathscinet-getitem?mr=2176493
http://dx.doi.org/10.1155/IJMMS.2005.1365
http://dx.doi.org/10.1155/IJMMS.2005.1365
http://www.ams.org/mathscinet-getitem?mr=2161697


816 Akihito Hora and Takeshi Hirai

[4] , “Character formula for wreath products of compact groups with the

infinite symmetric group” in Quantum Probability, Banach Center Publ. 73,

Polish Acad. Sci. Inst. Math., Warsaw, 2006, 207–221. MR 2423128.

DOI 10.4064/bc73-0-15.

[5] , Characters of wreath products of compact groups with the infinite

symmetric group and characters of their canonical subgroups, J. Math. Kyoto

Univ. 47 (2007), 269–320. MR 2376958.

[6] T. Hirai, E. Hirai, and A. Hora, Realizations of factor representations of finite

type with emphasis on their characters for wreath products of compact groups

with the infinite symmetric group, J. Math. Kyoto Univ. 46 (2006), 75–106.

MR 2260818.

[7] , Limits of characters of wreath products Sn(T ) of a compact group T

with the symmetric groups and characters of S∞(T ), I, Nagoya Math. J. 193

(2009), 1–93. MR 2502908.

[8] T. Hirai, H. Shimomura, N. Tatsuuma, and E. Hirai, Inductive limits of

topologies, their direct products, and problems related to algebraic structures,

J. Math. Kyoto Univ. 41 (2001), 475–505. MR 1878717.

[9] A. Hora, T. Hirai, and E. Hirai, Limits of characters of wreath products Sn(T )

of a compact group T with the symmetric groups and characters of S∞(T ), II:

From a viewpoint of probability theory, J. Math. Soc. Japan 60 (2008),

1187–1217. MR 2467875.

[10] V. Ivanov and G. Olshanski, “Kerov’s central limit theorem for the Plancherel

measure on Young diagrams” in Symmetric Functions 2001: Surveys of

Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem. 74,

Kluwer, Dordrecht, 2002, 93–151. MR 2059361.

DOI 10.1007/978-94-010-0524-1 3.

[11] G. James and A. Kerber, The Representation Theory of the Symmetric Group,

Encyclopedia Math. Appl. 16, Addison-Wesley, Reading, Mass., 1981.

MR 0644144.

[12] S. Kerov, “The boundary of Young lattice and random Young tableaux” in

Formal Power Series and Algebraic Combinatorics (New Brunswick, N.J.,

1994, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 24, Amer. Math.

Soc., Providence, 1996, 133–158. MR 1363510.

[13] , Asymptotic Representation Theory of the Symmetric Group and Its

Applications in Analysis, Transl. Math. Monogr. 219, Amer. Math. Soc.,

Providence, 2003. MR 1984868.

[14] S. Kerov, A. Okounkov, and G. Olshanski, The boundary of the Young graph

with Jack edge multiplicities, Int. Math. Res. Not. IMRN 1998, no. 4, 173–199.

MR 1609628. DOI 10.1155/S1073792898000154.

[15] G. Olshanski, The problem of harmonic analysis on the infinite-dimensional

unitary group, J. Funct. Anal. 205 (2003), 464–524. MR 2018416.

DOI 10.1016/S0022-1236(02)00022-8.

http://www.ams.org/mathscinet-getitem?mr=2423128
http://dx.doi.org/10.4064/bc73-0-15
http://dx.doi.org/10.4064/bc73-0-15
http://www.ams.org/mathscinet-getitem?mr=2376958
http://www.ams.org/mathscinet-getitem?mr=2260818
http://www.ams.org/mathscinet-getitem?mr=2502908
http://www.ams.org/mathscinet-getitem?mr=1878717
http://www.ams.org/mathscinet-getitem?mr=2467875
http://www.ams.org/mathscinet-getitem?mr=2059361
http://dx.doi.org/10.1007/978-94-010-0524-1_3
http://dx.doi.org/10.1007/978-94-010-0524-1_3
http://www.ams.org/mathscinet-getitem?mr=0644144
http://www.ams.org/mathscinet-getitem?mr=1363510
http://www.ams.org/mathscinet-getitem?mr=1984868
http://www.ams.org/mathscinet-getitem?mr=1609628
http://dx.doi.org/10.1155/S1073792898000154
http://dx.doi.org/10.1155/S1073792898000154
http://www.ams.org/mathscinet-getitem?mr=2018416
http://dx.doi.org/10.1016/S0022-1236(02)00022-8
http://dx.doi.org/10.1016/S0022-1236(02)00022-8


Harmonic functions on branching graphs 817

[16] S. A. Sawyer, “Martin boundaries and random walks” in Harmonic Functions

on Trees and Buildings (New York, 1995), Contemp. Math. 206, Amer. Math.

Soc., Providence, 1997, 17–44. MR 1463727. DOI 10.1090/conm/206/02685.

[17] A. M. Vershik and S. V. Kerov, Asymptotic theory of the characters of the

symmetric group (in Russian), Funktsional. Anal. i Prilozhen. 15, no. 4 (1981),

15–27; English translation in Funct. Anal. Appl. 15 (1982), 246–255.

MR 0639197.

Hora: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan;

hora@math.sci.hokudai.ac.jp

Hirai: 22-8 Nakazaichi-Cho, Iwakura, Sakyo-Ku, Kyoto 606-0027, Japan;

hira.takeshi.24e@st.kyoto-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=1463727
http://dx.doi.org/10.1090/conm/206/02685
http://dx.doi.org/10.1090/conm/206/02685
http://www.ams.org/mathscinet-getitem?mr=0639197
mailto:hora@math.sci.hokudai.ac.jp
mailto:hira.takeshi.24e@st.kyoto-u.ac.jp

	Introduction
	Preliminaries about wreath product groups and branching graphs
	Wreath product of T
	Standard decomposition into basic elements
	The conjugacy classes of Sn(T)
	The equivalence classes of IURs of Sn(T)
	Branching rule for Sn(T)'s
	Irreducible character formula for Sn(T)
	Inﬁnite wreath product
	Branching graph
	Harmonic function
	Dimension function
	Martin kernel
	Martin boundary of Y(T)

	Computation of the Martin boundary of Y(T)
	Martin integral on Delta
	Characters, harmonic functions, and central probabilities associated with an inductive system of compact groups
	Appendix A: Markov chain and Martin boundary
	References
	Author's Addresses

