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Abstract This paper studies precise estimates of integral kernels of some integral oper-
ators on the boundary 8D of bounded and strictly convex domains with sufficiently reg-
ular boundary. Assume that an integral operator K, on 9D has the integral kernel
K, (x,y) with estimate | K, (z,y)| < Cue ##=¥l (z,y € 8D, > 1). Then, from the
Neumann series, the operator K, (I — K,) ™! isalso an integral operator. The problem is
whether the integral kernel of K, (I — K,,)~" can be estimated by the term pe~#1*=¥l up
to a constant or not. If the boundary 9D is strictly convex, such types of estimates hold.

The most important point is that the obtained estimates have the same decaying
behavior as 1 — oo and the same exponential term as for the original kernel K, (z,v).
These advantages are essentially needed to handle some inverse initial boundary value
problems whose governing equation is the heat equation in three dimensions.

1. Introduction

Let D be a bounded domain of R? with C*% (0 < oy < 1) boundary and satisfy
that R\ D is connected. We denote by v, the unit outward normal vectors at
x € 0D on 0D. Given §p > 0 we denote by Cs, the set of all complex numbers A
such that Re A > dp|Im A|. Throughout this paper, we always write = Re A.

Let K (z,y) be a bounded measurable function on 9D x dD with the param-
eter A € Cs,, continuous for all x,y € 0D, x # y and satisfy

(1.1) | Ka(z,y)| < Cope ™ =¥l 4y e dD,\ e Cs,, 1 =Re .

Let Ky (z,y) be a measurable function of (z,y) € dD x D with the parameter
A € Cs,, continuous for all z,y € 0D, x # y and satisfy

Cre M=yl

PRI x,y €0D,x#y,A€Cs,,u=Re.

(1'2> |I~(,\(x,y)| <
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For these functions, we define the integral operators by

Kyh(z) = Ky\(z,y)h(y) dS, and Kyh(z) = Ky (z,y)h(y)dS,.
oD oD
We put Yy = K + K. In potential theory, the exterior problems for Laplacians
with parameter can be reduced to integral equations on the boundary (cf. Sec-
tion 7, and for detail, see Mizohata [3]). Note that the integral operators of these
forms appear in such reduced integral equations.

It is well known that from (1.1) and (1.2) the operators K and Ky are
bounded on C(9D) with bounds | Kx||zc@ap)) + ||I~(>\||B(C(3D)) < C(Re))™!
(A € Cs,). Hence the Neumann series implies that for A € C;, with sufficiently
large © = Re\, the operator I — Y is invertible and the inverse is given by
(I =Ya) "t =20

The purpose of this paper is to give estimates of the integral kernel for the
operator Yy (I —Yy)~! with sufficiently large = Re X\. The main estimate is the
following one.

THEOREM 1.1
Assume that 0D is strictly convex. Then, there exist positive constants C' and
to depending only on Cy in (1.1), Cy in (1.2), and 0D such that for all X € Cs,
and 1> po, Ya(I —Y\)"! has the integral kernel Y (x,y) which is measurable
for (z,y) € 0D x 0D, continuous for x #y, and has the estimate

1
|z —y|

(1.3) ’Y/\OO(x, y)| < C’(u + )e_”lz_yl, x,y € 0D.

The advantage of estimate (1.3) is in the form of the exponential term. Note that
for any fixed § > 0, we can easily obtain the following estimate:

1
|z -yl

(1.4) ‘Y)\OO(%Z/)’ < Cs (M—i— )e_(l_‘s)“lx_y‘, x,y € 0D.

To obtain (1.4) with § > 0, we do not need to assume strict convexity of dD.
To take § =0 in the above, that is, to obtain (1.3), however, we have to put the
assumption that 9D is strictly convex and to give more precise analysis on the
boundary integrals. To compare differences between (1.3) and (1.4), we give a
proof of (1.4) in the appendix.

Estimates of some integral kernels based on (1.3) are essentially needed to
solve an inverse problem for a three-dimensional heat equation in thermal imag-
ing. This is one of applications of Theorem 1.1 and the main motivation why we
need to show Theorem 1.1. In Section 7, we introduce this application briefly and
explain the reason why estimate (1.3) is needed to treat this inverse problem.
The complete treatment about this inverse problem is given in another paper
(cf. [1]).

Theorem 1.1 is also useful to obtain asymptotic behavior of the solution of
the resolvent. Varadhan [4] considered the asymptotic behavior as A — oo of
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the solution of the problem

(A=X)v=0 1inQ,
v=1 on 09,

where Q is a bounded domain. As is shown in Varadhan [4], this asymptotic
behavior is very useful to establish the short time asymptotics of the heat kernel.
When v = 0 in some part of the boundary, for example, when 2 has a cavity (i.e.,
a domain D with D C Q), the asymptotic behavior may change. Theorem 1.1
can be used to obtain the asymptotic behavior of the solution of the following
problem:

(A=X)w=0 inQ\D,
%+p1w=1 on 01, %+p2w20 on 9D,

where p; € C(99) and py € C(9D), respectively. To keep this paper to an appro-
priate length, we only introduce this application here and do not give any detail.
For the precise treatment, see the forthcoming article [2].

2. Properties of the function given by the length of broken paths

In this and following sections we always assume that 9D is of class C%%° with 0 <
ag < 1. We denote by B(z,r) the open ball centered at « with radius r. The aim
of this section is to study the behavior of the function l(, ,)(2) = v — 2| + [z — ¥
with the independent variable z € D and given z,y € 0D. These properties of
l(z,4)(2) are essential to obtain Theorem 1.1.

We start with describing the following well-known facts.

LEMMA 2.1

(i) There exists a positive constant C such that, for all x,y € 0D,
lve — vy < Clz —yl, |Vz-(x—y)‘§0|x—y|2.

(ii) There exists 0 < ro such that, for all x € D, 0D N B(xz,2ry) can be
represented as a graph of a function on the tangent plane of 0D at x; that is, there
exist an open neighborhood U, of (0,0) in R? and a function g = g, € C**°(R?)
with g(0,0) =0 and Vg(0,0) =0 such that the map

Uy, >0=(01,09)—~ 2+ o161 + 0ees — g(01,02)v, € 0D N B(x,2rp)

gives a system of local coordinates around x, where {e1, e} is an orthogonal basis
for T.(0D). Moreover, the norm ||gl|c2.e0(r2) has an upper bound independent
of z€9dD.

In this paper we call this system of coordinates the standard system of local
coordinates around x.

Let 7o be the same constant as Lemma 2.1(ii). From Lemma 2.1(ii) we see
that given x € 9D and y € 9D N B(x,2ry) with y # x, the vectors y — z and v,
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are linearly independent. Thus one can choose {e1,e2} in the standard system of
local coordinates around z in such a way that y — x is perpendicular to es and
(y — x) - €3 > 0. Therefore one can write

Yy=x+ 0'?61 - g(a‘?’ O)Vz
with (69)2 + g(0?,0)? < (2r9)? and o{ > 0.
Let z be an arbitrary point in D N B(x,2rp); z has the expression
z=x+ 0161+ 0262 — g(0)vy

with 0f + 02 + g(0)? < (2r¢)2. In the following proposition we denote by z’ the
point x + o1e1 — g(o)v, which is the orthogonal projection of z onto the plane
passing = and spanned by the vectors y — z and v,,.

PROPOSITION 2.1

Assume that 0D is strictly convex.

(i) For all z€ 0D N B(x,2ry) we have

(2.1) o (2) > |2 —y| + 122
. (LU)Z = |T Yy 2|Z—LL'|

(ii) One can choose o in such a way that there exists 0 <ry < 2rg such that
for all o = (01,02) and 0° = (09,0) with o1 <20%/3, |o| <71, and |0°| <rq,

((o1)*0f +03),

C
(2.2) la(2) = & —y| + —

z|

where cq is a positive constant depending only on 0D.

|z

REMARK 2.2

In this paper, we choose smaller rg > 0 if needed. This is always possibly since
in Lemma 2.1(ii), 9 can be arbitrarily small. Note also that r; > 0 in Proposi-
tion 2.1(ii) is determined by (2.8) in the proof of Proposition 2.1 for sufficiently
small ro > 0.

Proof
First we give a proof of (2.1). Let z # . Since

9 z—x y—x \)2
=2 ={ly—al -z —al (= 2=}
o=zl Ty—a]

_ N2
+|z—x|2{1—<z r. Y x)},
|z —z| |y—z|

it follows that

ly—2l 2 ly—al— |z —al(— ).
=2 |y—al
From this we obtain the estimate
z—T Y-
(2.3) o) (2) 2 |y — 2l + ]z =l (1- = L22)
@) EEENTEE
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Since
2(1__Z_x . y_x>2<1+ z—x )(1 z—x —x)
|z — x| |y—=z| |z — W—x| e—z| y—z
-1 (Z*iL’ Yy — )27 Z—X y—x 2
|z —z| |y—zl =l "y
we have
_ _ 1 _ _ 2
(2.4) o (1o A2 vy HE 0 x o)
el y=al) 72 -ally—a

From z — 2’ = 0geq, it follows that {(z —2’) X (y —x)} - e2 = 0. On the other hand,
y—r=o0%e; — g(c®)v, and 2’ — x = o161 — g(0)v, imply that
(2" —2) x (y —2) = —(019(c°) — 91g(0))er X vy = ey

for some o € R. Hence we have {(z —2') x (y—2)} - {(# —z) x (y—xz)} =0.
Moreover, since z — z’ and y — x are perpendicular to each other, we have
|(z—2") x (y — x)| = |z — 2’||y — z|. Thus this yields
2 2 2
((z=2)x (y—2)|" =[(z=2) x (y—2)] +[(z' —2) x (y —2)|
+2{(z=2)x(y—=x)} - {(z'—2) x (y—2)}
=z =2 Ply—al’ +](z' —2) x (y —2)[* > o3y — 2

Therefore (2.4) gives

z—x y—x) 1 o3
|z =z Jy—=

(2.5) |z—x(1—

Thus from this and (2.3) one gets (2.1).
Let 01 < 209/3. Here we prove another inequality,

z2—x Y-z
(2.6) |Z—x|2(1—m'm> 201(0’?)QO%

Note that (2.3), (2.5), and (2.6) imply (2.2) with ¢o = min{c;/2,1/4}. Hence for
finishing the proof of Proposition 2.1, it suffices to show (2.6).

By Lemma 2.1(ii) one can choose R; > 0 independent of x € 9D in such a
way that

(2.7) |g(rw)| < Ryr?

with arbitrary 7 >0 and unit vector w in R2.

Write (01,02) = (w1, w2) with a unit vector w = (w1, ws) in R? and r = |o].
Define
2’/"0
(2.8) rH=—x<2

1+ R%(2r9)?2

We know from (2.7) that if 7 < rq, then it holds that 72 + g(rw)? < (2r9)? for all
unit vectors w. In this case z = x + rwie; + rwees — g(rw)v, satisfies

r<lz—z|<r\/1+R¥ri=rc; (0<r<r).
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In what follows we will use this inequality without noticing.
Write

g(TUJ) = r_lg(rw), f](a?,O) = (0(1))_19(0(1)70)‘

From (2.7) we have g(rw) = O(r) and §(c?,0) = O(0?) uniformly in x € 9D and
y € 0D N B(x,r1). These yield

r-r o y-w wi +§(rw)g(a?,0)
1

+3(rw)g(e?,0) (1+ 0(r?) (14 0((09)?))

=w1 — %wl (ENI(U?,O)z +f](7"w)2) +§(rw)§(cr(1),0)

4
0 (ahY).
j=0
From this we obtain
_ oz y-w
|z —z| |y -z
= (1) (1 - | LB OB 2y 1 5008,0) ()

1
2 D (T4 wr)

4

(2.9) +> 0 (o))

=0

01,0) — §(rw) ‘2

=(1-w)(1+0((c))?) +0(r?)) + ’g}( 5 (14+w)

4

+ Z O(r4_j (ao)j).

§=0
Let 0 < € < 1. Consider the case when wy > 1 — €. Since D is C%0 and D
is strictly convex, one has the expression
9(0) = go(a) + O(|o[**°),
where
go(0) = ao? + 2boy 09 + cos

with constants a > 0, ¢ > 0, and ac — b*> > 0. Note that a, |b|, ¢ has a positive
upper bound M; independent of z and r¢. Moreover, a has a positive lower bound
M independent of x and rg.

Since 7(1 — €) < rw;y < 209/3, we have O(r) = O(0?). Then one can choose
ro in such a way that

(2.10) 1+0((09)?)+0(?) >0 (0<r<ry,0f <r).
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Further, using |wa| < v2¢, 1 — € <w; <1, and the assumption rw; =01 <
209 /3, we have

9(01,0) = g(rw) = a0t — r(aw; + 2bwiwz + cw3) + O((07) ) + O(r'F20)

2
=g (a + O((J?)O‘O)) —arwy - w1 — 2brwiwse — cm;lﬂ
w1
0 Oyaoyy _ 2 0./2¢ — 0 2€
> i (a+0((c])*)) 3a01 |b| call
M2 2€
2o} (55 + o) U*@Mﬂ“ifﬂﬁﬁi:'
Here we take a smaller ry in such a way that
M. M.
(2.11) 72+O(( 0y )2?2 (0% <r1).
Then we get
M. 4 2
§(09.0) ~ 3lre) > “ 2ot~ SMyofVEe— 2 Mo 2
6 3 1—¢€
Therefore if one chooses a small € in such a way that
M2 4 2¢ M2
—_— - —M M
6 1\/_ 1 24 )
then one gets
(2.12) 3(09,0) = g(rw) > Ca?  (r<ry,of <ri,o0 <209/3)

with C'= M5/24. Note that the choice of € is independent of x and ry. So one
can choose rg satisfying (2.10) and (2.11) in such a way that

(2.13) (%)2(09)2 + io(#—%;}y’) > %(%)2(09)2.
§=0

Hereafter it is easy to see that, from (2.9), (2.10), (2.12), and (2.13) we obtain

z—x y—z

(2.14) c2(07)? 2 ea(07)?wi

Cz—al Jy—al T
with cp = (C/2)?/2.

Fix € above. Thus € is independent of ry. Next consider the case when w; <
1—e.

In this case, from (2.9) we obtain

z—T yYy—

(2.15) >e(1—-0(r3)) + O(r}).

el Ty—al
Thus if one chooses smaller 7y, then one gets from (2.15)

2-% y—zT _¢€ €

2.16 1— . — = —=T
( ) lz—x| |y—z ~ 2 27‘% 28

\/

(09)? >ﬁ(0?)2wrf-

Finally choosing ¢; = min{ca,¢/(2r3)}, from (2.14) and (2.16) we obtain (2.6).
(I
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PROPOSITION 2.2
Assume that 0D is strictly convezr. Given rog > 0 there exists a positive constant
co such that

(i) for all z,y,z € 0D with |x —y| > 1o, |x — 2| >10/2, and |y — z| > ro/2
we have
U,y (2) = |z = y[ + co;
(ii) for all x,y,z € OD with |x —y| > 1o, |z — 2| <ro/2 we have

U ) (2) 2 |2 —y| + o2 — 2.

Proof
First we give a proof of (i). Since 0D is strictly convex, if |x —z|+ |z —y| = |z —y|,
then z=x or z=y. Thus |z — 2| + |2 —y| — |x —y| >0 for all x,y,z € ID with
|z —y| > ro, | —2| >10/2, and |y— z| > r¢/2. Therefore (i) is a consequence of the
compactness of the set {(z,y,2) € D3 ||z —y| > ro, |z — 2| >10/2,|y — 2| > 10/2}
and the continuity of the function (z,y,2) — |z — z| + |z —y| — |z — y|.

Second we give a proof of (ii). From (2.3) we see that it suffices to prove

z—x y—=x

(2.17) sup . <1,
(z,y,2)€X |Z—Jf‘ |y—l‘|

where X = {(z,9,2) € 0D?| |x —y| > 10,0 < |x — 2| <71 /2}.

Assume that (2.17) is not true. Then there exist sequences {z,}, {y»}, and
{zn} with (2, yn,2n) € X such that, as n — oo,
I In Ty,
|20 = Tn|  |Yn — Tnl
Moreover, one may assume that x,, — zo, Yyn — Yo, 2n — 20, (2n — Tn)/|2n —
x| — 9 for a (x9,y0,20) € OD? with |zg — yo| > 70, |20 — 20| < 70/2, and a unit
vector .

Since xg # yo, from (2.18) we have

(2.18)

Yo — o
R T
Yo — ol
and thus this yields ¥ = (yo — x0)/|yo — Zol|. Since 9D is strictly convex, we have

Y- vy <0.

Consider the case when zp = zp. From Lemma 2.1(i) one gets 0 -v,, =0, a
contradiction.

Next consider the case when zy # xg. Then we have (29 — z¢)/|z0 — xo| =
(yo — z0)/|yo — xo|. From this one concludes that zg € D is located on the line
determined by xg and yg. Since 9D is strictly convex, we have zy = yo. However,
we have |yo — 20| > |20 — yo| — |20 — 20| > 7r0/2, a contradiction. O

3. Basic estimates for integrals on the boundary

In this section, we prepare basic estimates for the boundary integrals appearing
in this paper. We start with describing the following lemma.
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LEMMA 3.1
Let ro be same as that of Lemma 2.1(ii). There exists a positive constant C
depending only on 0D such that

(i) forallz€dD, 0<py<rg, p>0,0<k<2,

e—tla—2] c
ds. < min{p >, (p))> "}
/B(w,pf))ﬁ[‘)D |z — 2|k 2—k { 0

(ii) for allz € 0D, un>0,0<k <2,

ele— c s ——
15, < C e (1 B,
/aD |z — z|F _Q—ku + rh

(i) there exists a constant 0 < c <1 such that for all x € 0D, 0 < p, < ro,
>0,

—plo—z| 1
/ G—QdSngmin{logr—O,,—,};
(B(z,m0)\B(z,p})))NdD |z — 2| CPy CPoM

(iv) for allz € 0D, 0 < py <rg, >0, 0<y <1,

—plz—z|
/ ¢ log 1o dsS, < min{C’u‘1 (1+ max{O,logu}),CA,u—H”}.
B(z,p4)N0D

|z — 2]

Lemma 3.1(i) and (ii) have already been given as [1, Lemma 6.1(i), (ii)]. Since
the estimates in Lemma 3.1 frequently appear in this and the following sections,
we present here all the proofs of (i)—(iv).

Proof of Lemma 3.1

Let z = s(0) be the standard system of local coordinates around z with |o|? +
g(0)? < (2r0)%. We have

/ e—mlz—2z] is / e~V 1o?+g(0)? ’V ( )|2d
—dS, = ———1\/1+ |Vg(o o
B(w,ob) jol2+g(0)2<(pp)2 (lo]? + g(0)?)k/2

nop |t — 2|
po 2w e—HT o )
SC/ / - rdrd9§27TC/ e Ml =k dp.
0 0 r 0

Since
Po 06 1\2—k
/ e hrpl=k . S/ P1F gy — (P0)
and
o PG oo 3
/ 67’“")"17k dr = ﬂk72/ 677'7,,171@ dr < /~Lk72/ efrrlfk dr < ,uk:72,
0 0 0 2—k

we get (i). To verify (ii) we compute
—plz—2z| 1
/ 67]6 dSZ S e_m“/ = dSZ S gke—TolL.
OD\B(z,ro) |z — 2| L

From this and (i) for pj, =r¢ we obtain (ii).
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From (2.7), we have |g(c)| < Ry|o|? for |o]? + g(0)? < (2r¢)?. Since pj <
02+ |g(0)|? <ro implies cpf) < |o| <71 with c=1/4/1+ R3r2 (< 1) indepen-

dent of x € 9D, we get
—plo—z| P
/ C __ds.<cC / < ar.
(B(z,70)\B(,p}))NOD |z — 2| ¢

oo T
Note that
T0 e THT o 1 o X T 1
/ drﬁmin{/ r_ldn—, e M dr} Smin{log —0/,—/}.
cpy r cpy CPy cpy CPy CPol

Thus we obtain (iii).
Finally it follows that

’

—plz—2z| Po
/ ¢ log — 2 4s, <C / e~ log 2 dr.
B@%mm>m—z\ |z — 2] 0 r

Since
0< log(%) <logry+ max{0,logu} + |logr| (0<r <rou),
one gets
o PoK
/ e " log LU ot / e " log(w) dr < Cp~ "' (14 max{0,log i}).
0 r 0 r

Noting also that supy~; X ~7log X < oo for each fixed v > 0, we obtain (iv) since

06 r Po PO
/ e *log 2 ar < Cv/ ek (—0) dr < CWM_H"’.
0 r 0

O

r

We choose x, y € 9D arbitrary and set pg = |z —y|. Given € > 0 set S (y) = 9D\
B(y,e€), Sc(y) =0DNB(y,e) and also S (x) = 9D\ B(z,¢€), Sc(x) = 0DNB(x,€).
We consider the following integral:

(3.1) /a e rIm == =uD 4S < Ty (2,y) + I a(x,y) + I (),
D

where

I_1(y) :/ e lle=2l =) gg.
S/;o(x)

() :/ e—lla==l+1z=ul) gg._
S;o(y)

Iy (2,9) :/ e—nlla=2l+lz=u)) gg_
Spo (I)ﬂspo (y)
By Lemma 3.1(ii) for k=0 and x> 1 we have

/ e’“'y’z‘dSZJr/ e Me=zlgs, <op2.
oD oD
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This gives

(3.2) Iy (w,y) <e Hro / e vl s, < Cum2e o,
S;jo (z)

similarly

33 I (o) < Cu-te

Next we estimate I (x,y), which is essential to obtain Theorem 1.1.

PROPOSITION 3.1

Assume that 0D is strictly convex. Then, there exist positive constants rqy > 0
and C >0 depending only on 0D such that, for p > 1, the following estimates
are valid.

(1) For pogrl;

3/2
- . [ Po 1
34 I (z,y) <Ce “pomln{—, }
(3.4) +(z,y) Vi 2
(ii) For po >y,
(3.5) Li(z,y) <Ce tPop=2,
REMARK 3.1

From (3.1)—(3.5), for all z,y € 9D and p > 1 the following estimate is valid:
1
(3.6) / e Hlz=zl+lz=uD) g5 < Cp=2e o (1 + min{(ﬂp0)3/27 —3})
oD Po
Hence noting that 1+ min{a,b} <2max{1,a}, from (3.6) we obtain

(3.7) [ emtestmas, <oute (g zr2)
oD

Proof of Proposition 3.1
For z,y € 9D N B(z,2r) we use the same local coordinates o, 0% with ¢ > 0,
respectively, around x as used in Proposition 2.1 and denote by &, 6% with 59 > 0,
respectively, the local coordinates for z,x € 9D N B(y, 2ry), respectively, obtained
by changing the roles of x and y.
Set
B.(0,207/3) = {oc € R* | |o| < po, 01 < 207 /3},
!

B,
By(0,207/3) = {2 €0D| 0 € B,(0,209/3)},
B,(0,257/3) ={z€0D |5 € B,(0,267/3)}.

)
(0,259/3) = {5 € R? | 5| < po, 51 < 259/3},
)

Let 1 be given by (2.8) in the proof of Proposition 2.1(ii). Here we claim that if
ro is sufficiently small and py <1, then

(3-8) Spo (%) S, (y) € B2(0,207/3) U By (0,257 /3).
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This is proved as follows. Let z € S, (x) NSy, (y). Then we have

() (z=2)-(y—=)/ly—2[<po/2 or
(i) =(z=w)- (y—2)/ly —=[ <po/2-
Consider the case (i). Since (z —z) - (y —z) = 0101 +g(0)g(c?,0) and the strict

convexity of 9D yields g(a)g(a?,0) >0, we get o109 < p2/2. It follows from this,
(2.7), and (2.8) that

0 0 0 2 0
P _o (PO) 0'1{ <9(0’1,0)) } o1 2/ _0\2
< 0 = —1+ < —=(1+R
1= 550 20 2 \oj 2 0'(1) - 2 ( 1) )’

which yields o7 < 09(1 + R?(2r¢)?)/2. Now choose ry in such a way that
R}(2r¢)? < 1/3. Then we get z € B,(0,20%/3). Similarly, for case (ii) we get
z € By(0,69/3). This completes the proof of (3.8).

Now we fix g as above. First we consider the case when pg < r1, where r; >0
is given in Proposition 2.1(ii). Property (3.8) gives

(39) I+(xay) SI+,1($7y)+I+,2($,y),

where

Ioa(ey) :/ e nlz=zl+1==uD) g5,
B, (0,269/3)

1+72(x7y):/ o nlle=z1+z=v) gg.
B, (0,259/3)

For the estimation of I ;(x,y) we introduce the polar coordinates o1 =
rcosf, og = rsinf, r >0, |0 < 7. From (2.7) we have |g(c)| < Ryrr; and

lg(cf,0)] < R1|U(1)|7‘1 These yield
T~ ! 1 ol 1
lz—z[  /1+(g9(0) \/1 (Ry71)? P0 1+ (Rir)?

Thus it follows from Proposition 2.1(ii) that, for all o € B.(0,209/3),

|z — 2]+ |2 — 9] >Po+ (Po‘71 +03),

where ¢; > 0 depends only on 0D.
Noting that

paot + o3 =1%(pg cos® 0 +sin® ) = r? (pg + (1 — pg) sin” )
and
. 2
[sinf| > =f(0), |0|<wm
7r
with
10l if 0] <m/2,
fO)=q|mr—0| ifrn/2<6<m,
|[m+6] if —r<0<—7/2,
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one gets
|z — 2|+ |z — y| > po + car (0§ + £(0)?), o = (rcosf,rsinf) € B.(0,209/3)

provided rq is sufficiently small if necessary. Thus we obtain

PO T ) )
It 1(z,y) < C’e*"po/ / e he2r (o +£ ) g1 4O

P s
(3.10) < Cemheo / " empenrst ( / ehearf (O)° de)rdr
0 -7
Po R /2 R
:406_’“’0/ e He2TPy (/ g Hear? d9>rdr.
0 0
Since
/2
/ ererr® 4 < Sy
0 /car 2\ pcor

it follows from (3.10) that

PO 5 T
Iy (2,y) <2067“p0/ e He2TPo rdr
ucor
*26’1/—6 “po/ e “CQWO\/—dr
He2

PO 5 po 2 o 2
[ et vrar <mind [ vran o [ et as),
0 0 (pe2)32p5 Jo

from (3.11) we obtain

(3.11)

Since

P
N }
We see that I 5(x,y) also has the same estimate as (3.12). Thus from (3.9) one

gets (3.4).
Next consider the case when pg > ry. Set

S1={2€ 85, (2) NSy (y) | |2 — 2| <71/2},
So = {2 € Sy, (x) NSy (y) | 12 =yl <71/2},
S5 = {2 € S0 (@) NS00} | 12— ] > /2,12 — | > /2}.

(3.12) I 1 (x,y) < Ce #ro mm{

Since S, (z) NSy, (y) C S1 U Sz U Ss, we have

3
MERNES Yy
k=1

where

Iy i(z,y) = / o=zt gg,  (k=1,2,3).
Sk
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From Proposition 2.2(ii) with ro =7, and Lemma 3.1(ii) with k£ =0 we obtain

I+71(x,y) < e*llpo/ e—Heolz—z] ds., < CM*Qe*HPO
oD

and also the same estimate for I} o(z,y). For I 3(x,y) we make use of Proposi-
tion 2.2(i) with ro =7 and get

I+73(x, y) < e HPO / e HCco dS, = Cle HPog—Hco
oD

Therefore we obtain (3.5). This completes the proof of Proposition 3.1. |

4. Estimates for repeated integral kernels, |

This and subsequent sections are essential for the study of the integral kernel
of the operator Y)(I —Yy)~! as |\| — oo. Since one has the Neumann series
expansion (I —Yy)™' =37 (Y\)" as |\ — oo, first we study the integral
kernels of (Y\)", n=1,2,..., which are called the repeated integral kernels.
Since it seems to be hard to treat (Yy)" = (K + K))" directly, we first consider
the repeated kernels of K. This is the main subject of this section.

Using K (x,y) in Section 1, we define the functions K/(\”) (z,y), n=1,2,...
by the formula

KSH—D(%?J): Kgn)(xvz)K)\(Zvy)dszv 77,:].,2,...
aD
and
KD (,y) = Kx(2,y).
We see that the integral kernel of the operator K7 is given by function K g\n) (z,y),
that is,

KXh(z) :/8D K" (z,9)h(y)dS,, n=1,2,....

In this section we always assume that 0D is strictly convex and 9D is of
class C%® with 0 < cg < 1. The main result of this section is the following one.

THEOREM 4.1

There exist positive constants C and po depending only on Cy in (1.1) and 0D
such that, for all X € Cy, and > po the operator I — K is invertible and K (I —
K»))7! has an integral kernel K$°(z,y) which is measurable for (z,y) € D x dD,
continuous for x # 1y, and has the estimate

|K5°(2,y)| < Cpe ¥ 2,y eaD.

The estimate given in Theorem 4.1 is crucial for the study of the integral kernel
of Y\ (I —Yy)~t. Note that Theorem 4.1 is immediately obtained by the following
proposition.
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PROPOSITION 4.1

There exist positive constants C' and po depending only on Cqy in (1.1) and 0D
such that, for all A € Cs, with u > po,

1\n
|K/(\n+1)($7y)| Scﬂeiulxiy‘(§> ) x,yG@D,nzO,l,Z,....
The rest of this section is to devoted to obtaining Proposition 4.1.

REMARK 4.1
Using (3.1)—(3.5), we can immediately obtain the following estimates of the

repeated kernel K§\2)(a:, y): there exist 71 > 0 and C > 0 depending only on Cj in
(1.1) and 9D such that, for all A € Cs, with y=ReA>1,

(i) for all z,y € 9D with |z —y| > rq,
K (@, y)] < Cemtiovl;
(ii) for all z,y € D with |z —y| <ry,
e 1/2
|K® (2,9)| < Cem ¥ max {1, pu(pla — y*)/*};
(iii) for all z,y € 0D with |z —y| <ry,

—plo— 1
‘K/(\2)(.f7y)| SC@ wl vl max{l,m}.

However, note that these are not used to show Theorem 1.1.

4.1. Estimation of K\"™(z,y)

It seems to be hard to show Proposition 4.1 directly. In our proof, we need to
divide two steps. In this subsection, as in the first step, we prove the following
estimate of the repeated kernel.

PROPOSITION 4.2
Let K be a bounded measurable function on 0D x 0D with the parameter A € Cs,,
continuous for all x,y € 0D, x # vy, and let it satisfy (1.1). Choose the rq in
Lemma 2.1(i) sufficiently small, and let 0 < ry < 2rg be given by (2.8) in the
proof of Proposition 2.1(ii). Then, there exists a positive constant Co such that,
forall z,y € 0D, A€ Cs, with p=ReA>1, andn=0,1,2,...,

|Kf\"+1)(x,y)| < CSC{)’“u(Z_")/%_”‘I_y"I’ff) (min{|x _ y|3,ri’}),

where

@(n)(a) - Xn: 1 (2_“>pap/27 a>0.

Proof
We employ an induction argument. It suffices to prove the following statement. If
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1) KV (,y)| < CuCoplP=mRemtlela() (jo — y ), |z —y| <r
and

(42) KTV (@y)| < CuCon® WPt ei o), oyl >,
then there exists a positive constant C; independent of n such that

K ()]

(4.3) 3
< CoC, CopPm D2l (| — yP), |z —y| <y,
and
n+2
|K{ ()]
(4.4)

< CC, Cou P~ D2l =le D (1) o —y[ > 4.

The size of 1oy which is independent of n (and z,y € dD) will be clarified in this
induction step. Since @,&0)(&) =1, from (1.1) one can see that for n =0, (4.1) and
(4.2) are satisfied with Cp = 1. Set pp = |x — y|.

4.1.1. The case when pg <r1: Proof of (4.3)
Since Sy, (z) C Sar, (), we have

9D = S, (2) U (S, (x) N S2r, (2)) U (S, (y) N Sary (2)) U (Spo () N Sy ()
From this and the definition of K§n+2)(x, y) we get
1K) (2, ) g/ |K Y (2,2) || Ka(2,)| dS.
(4.5) op
<L+ I+ 1Is+ 1y,

where Iy, I, I3, and I are the integrals of the function |K/(\n+1)(a:,z)\|K,\(z,y)|
over the domains Sy, (z), S, (z) N Sar, (7), S, (y) NS, (x), and Sp, (z) NSy, (y),
respectively.

First we give an estimate for I;. Since |z — x| > 2r; > ry for z € Sy, (), from
(1.1) and (4.2) we get

2r) (z)

I < dncg'u(an)erlq)Etn)(r%)/ e—Hllz—zl+|z—yl) ds.

(4.6)

< G, CRpm /241 2ur () (13) /8 e—Hl==vl 4.
D

Note that

e 2K (I)f") (Tif) < g HT1gTHT 62#7’;’/2/3
" S
< e HPOp—HT +2ury/? /3

and 27“:13/2/3 — 11 =2r1(y/r1 — 3/2)/3. Thus choosing 79 in such a way that

ne ()
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and using Lemma 3.1(ii), from (4.6) one obtains
I < C,C2ouB—m/2H1=2c=1p0 — G G20y ~/2e 1o
4.7
(4.7) — dncgcu(%n*1)/2u*1/26*upo < C«nogcu(?*n*l)/?e*upo_

Second we give an estimate for I;. From (1.1), (4.1), and py <1 we have

143@103”(2%)/%1/ e~ulle==I+==uD () (| — 2[3) dS,
S0 ()1 (1)

08 <O.chry (YY)

X/ @ — 23 2enlla==1+l==u]) gg.
S/Jg (ar)ﬂSpO (y)

Here we claim that

/ (o — 23/ 2enla=zl+lz=uD) g5,
Spo (m)mspo (v)

5 _3/9 _ 21 3(p+1)/2
< 3/2 ,—upo (p+1)/ .
Cu e 311"

This is proved as follows. Recalling the proof of (3.4) and Proposition 2.1(i), for
z=a+ 0161+ 02e3 — g(0)vy € Sy (x) with o = (rcosf,rsind) we have

(4.10) |z — 2|+ |z — y| > po + c|z — 2| f(0)?

(4.9)

provided rq is sufficiently small if necessary. Thus one gets

/ |x_Z|3p/2e—u(\x—2|+|z—y|)dSZ
Spo (m)msm) (v)

< / @ — 237/ 2e=nlle—zl+z=u) g,
Spp (@)

(4.11) o
< é«e—,upo / d@/ e—pc\/r2+g(r0059,rsi110)2f(0)2
-7 0
X (r2 +g(r cos@,rsin9)2)3p/4r dr,
where 7(6) > 0 satisfies pg = \/r r(6) cosd,r(0)sin ).

For each fixed 6 consider the change of variable r —» p:

p=1/r2+g(rcosf,rsinf)?, 0<r<r(f).

Since
dp| 1 _ .
‘d—f‘ = ;|r+g(o)(aglg(a)cosn9 + p,9(0) sinf)| > %(1 —Cr?),
we have
‘ p’ C’r
=
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that is,
(4.12) d—T( < Cr
dp r

provided that r is sufficiently small if necessary. A combination of (4.11) and
(4.12) gives

/ I — 2|3/ 2e—plz=21+1=u]) 4.
Spo (m)mspo (v)

- ™ PO 5
Sceﬂmo/ d@/ e~ tepf(0) p3p/2pdp
— 0

/2
< 4ée—up0 /po p3p/2+1 (/ e—ucp92 de) dp
0 0

/2
<4Cpu—1/? /po (3 H1)/2 (/m o—ct’ d@) dp
0 0

< 4@/00 o cb’ d@,ufl/Q /p0 p(3p+1)/2 dp.
0 0
This yields (4.9). A combination of (4.8) and (4.9) gives
(4.13) 14 < C,CC3pE 1 2emmrog (D) (p3),
Third we give an estimate for I5. Since <I>Ln) is monotone increasing, it follows
from (4.1) and (4.2) that (4.1) is valid for all «,y € 9D. This gives

I, < éanM(Z—n)/2+1
(4.14)

n

PN 3 Jsp @nsa, ()

Here we describe a lemma concerned with the integral in the right-hand side
of (4.14).

LEMMA 4.1
There exists a positive constant C' such that, for allp=0,1,2,..., z,y € dD with
po=lzr—yl<ri and p>0,
() if ppo > p, then
|z — 2P/ 2e— e —=1+12=v) g5,

/9;0 (w)ﬂSZr‘l (w)msp() (U)

~ 1
< Cu71/267upop+ 1pg(:v+1)/2;

(i) if ppo <p, then

/ I — 2|3/ 2e—blz=21+12-u]) g,
S/’_o (w)ﬂSZﬁ (w)mSPO (y)

< ée—/tpou—(p+3/2)p!(23/26)pp(()p+1)/2'

)
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(iii) we have

Spo (£)NS2ry ()NS50 (y)

< C'e*#POM*(:DﬂL?)(p + 1)!(27,1)10/2_

We give the proof of this lemma later and continue to estimate Iy. From (4.14)
and Lemma 4.1 we obtain

5 A n— - Lr2p 1 3(p+1)/2
I, <C, CC (2-n-1)/2+1, upozp'(g) {p+1 o(p )/

4~ PO p1(23/2e)p pP /2 u*(p+3/2)(p+1)!(2r1)p/2}

L. " 1 /2uN\P -
. < 2 ,(2-n—1)/2 ,—ppo R fad K 3(p+1)/2
(4.15) < C,CCiu {E_Op!<3) p+1p0

n 1 2 p
#3055 e el
pl\ 3
p=0
n 1 2# p
—(Z2E2) ,—(+1/2) ! p/2
+Zp!(3> u (p+1)!(2r1) }
p=0
Here we estimate the right-hand side of (4.15) term by term. First we have
n n+1
3 1 (Q_M)p B 3p+1)/2 _ 3 i 1 (Q_M)P 3p/2
o Pt Po 9 . 3 Po

p!
=0 =1
(4.16) 8

w

< S (ph).

2
Second we have

"1 /2u +1)/2 252e\P (p11)/2
ZH(?) . (23/2) (p+1)/ Z( - ) p(()p )/
p=0

p=0
n 25/26\/ﬁ P
(Y
p=0
Thus choosing 7y in such a way that
25/26\/—1 1
4.17 -
(4.17) 5 <73
we obtain
n
1 2:“ p —P1(93/2 ,\P (p+1)/2 3
(4.18) ZH(?) pPpl(27%e)” py SQTQe'
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Third for ry satisfying (4.17) we get

n

> L (3 e e =S ()
=0 2

(4.19)
<4.

Now from (4.15), (4.16), (4.18) and (4.19) we obtain
(4.20) I < C,CCp =1 2emrrog(nth) (5

for r¢ satisfying (4.17).
Finally we estimate I3. Similarly to (4.14) we have

n
5 _n 1 /2u\P
I3 < C,C3pt® )/QHE 7(%)
=0

“ / (@ — 2P/ 2e—nlla=z+l==u]) gg
S;o (y)ms%“l (I)

Since |z —y| > po for z € S, (y), we get

n

5 1 /2uN\P
Iy < CoCRu /2 emrm 5 (%)
p=0""

(4.21)
X / |z — 2|3P/2e~1le==1 48, .
527‘1 ('E)

Here we claim a lemma concerned with an estimate for the integral in
the right-hand side of (4.21). The proof is almost identical with that of Lem-
ma 4.1(iii).

LEMMA 4.2
There exists a positive constant C such that, for allp=0,1,2,..., 2 €9D, a >0,
and p >0,

/ . |z — 2?7/ 2eHle=21 a8, < C(2r )P/ 2= P2 (p 1)1
Sor (z

The proof is given at the end of this subsection, and we continue to estimate I3.
From Lemma 4.2 and (4.21) we get

o n 5372
Iy < G, CC2 2 n=1/2,=1/2—po 2(2 3\/7"71)10(19+ D

p=0
(4.22) < CpaCC2p2—n=1/2 = 1/2c=1po
< (fn4écgu(2—n—1)/2€—upo

provided that r¢ satisfies (4.17). Now from (4.5), (4.7), (4.13), (4.20), and (4.22)
we conclude that (4.3) is valid.
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4.1.2. The case when pg > 11: Proof of (4.4)

Since <I>(n) is monotone increasing, it follows from (4.1) and (4.2) that (4.2) is
valid for all z,y € dD. Since py > r1/2, it follows from the definition of K (n+2)
and (3.7) that

K 0| < G o) [ ettt gs,

< énccgu(%n*l)/2u*1/2€*upo (I)I(JI) (r?)
< C’}C’C’gu(%"*l)/%*”p” ‘I’;(ZLH) (7,:%>

Thus (4.4) is valid. This completes the proof of Proposition 4.2. a

4.1.3. Proof of Lemma 4.1
Set p=|x — z|. Since |z —y| > |z — z| — |x — y|, we have

|z — 2|+ [z — y| 22,0—po=po+2po(pﬁ —1)-
0
A combination of this and (4.10) gives

7 1
o =2l ly =21 > oo +20 (2 1) |+ (o0 + nf(6)7)

(4.23) :
_ rorp ~ 2
—P0+4po(p0 1) +epf(0)=.
Set
s = LA 1.
Po

We have p=pg(1+s), and this together with (4.23) gives

|z — 2|3P/2e=rllm=zl+lz=ul) < p3p/2e*upoe—#§l’o(%—1)675upf(9)2
(4.24)
- efupopgp/Q(l + 8)317/267M%pose*5upf(0)2.
Let z € S, (x) N S, () NSy, (y). Since |z — x| > pg and |z —y| < po, we have
o < p<2pg. Thus s in (4.24) has the bound 0 < s < 1.
First we give a proof of (i). Let pupg > p. Since e” > 1+ for r > 0, we have
+7r e 1 +r)~*/*. Combining this wit .24), we get
1+47)3/2e 57 < (1 /4 Combining this with (4.24

|z — ‘317/2 —p(|lz—2|+]z=yl) < e Mo 3P/2(1_|_S)3upo/26—zupos —Eupf(0)?
— oo 3!’/2( 1+ s) 3/2,-1 )“p" —éupf(6)*
4.25
( ) < emhpo 3!’/2( 1+s) 1/4)“”’6*5#91“(9)2
— e*upong/Q (ﬁ) _“poﬂe*@upf(G)Q.
Po

Using the polar coordinate z = z + rcosfe; + rsinfles — g(rcos6,rsinf)v,, one
gets from (4.25),
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/ |z — 2[3P/2e—#llz=zI+12=vD) g5
Spo ()NS2ry (£)NS 4 (y)

(4.26) S/ e*“Popgp/Q(M)_“po/‘leféu\zfzme)? ds.
S200 (D)\Spo (2) o

T Rap, (0) _
< Ce‘“pOpgp/z/ d9/ A 0)> WOM —eup(rO 1Oy g,
- £0

where p(r,0) = \/r2+ (g(rcos6,rsind))2; p(Ray,(0),0) = 2pp; and p( 00 (0),
0) = po. For each fixed 9 consider the change of variable r — p(r,0), R,,(0) <
r < Ry, (). Using (4.12), we obtain

R, 9) -
po

Ry (0)

2po _ Hpro B
<C d9/ (ﬁ) tem el 07 pdp
—7 po Po

40/07r /pjpo( ) neo/t Eup02pdp
=4C 2p0( ) o/t (/ o~ Cnpt? de)pdp

PO

(4.27)

2p ~ 2
SC’ 0< p) wpo/d p C 3/2 et
Po Po VH \/_ 1
C
<y

f Po

Note that we made use of the estimate
2 2
/ = gt :/ 132 gy < 23/2/ g < 2
1 1 1

Hence for p > 1, a combination of (4.26) and (4.27) gives

27/2
1o

/ |z — 2[3P/2e=#(lz=zI+12=vD) g5
Spo ()NS2ry ()NSq (y)

3/2
_ Py —1/2_—ppo 3(p+1)/21
<Ce upop3p/2 <Cu e=HPo -
O Vikpo 0 p
1
p+ p+1°

For p =0, note that (4.23) implies also that

<20u~ 1/2 g=ppo 3(P+1)/2

—nlle—zl+l2=yl) < o=npoo—nipf(0)*

From this estimate, the same argument as for obtaining (4.26) and (4.27) yields
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/ e—Hle=z1+1z=1) g5
Spo ()NS2ry (£)NS 4 (y)

™ Rap, (0)
SCG_H,JO/ do o e~ HePf(0) . gy

This completes the proof of (i).
Second we give a proof of (ii). Let ppg < p. Since |z — z| + |z — y| > po,
similarly to (4.26) and (4.27), it follows that
/ I — 2P/ mlla—2lt==uD) g,
S0 (@)NSar, (215, (4)

~ ™ 2po 3p/2
SCe_”pOpgp/Q/ d@/ (ﬁ) pdp
-7 0 Po

(4.28) "
Sée—HPOpZFH p/2+1 2>
p+1
o3
< (e~ tpo —(p+1) (p/2+1 _|_1P+1—2 .
< I po(p+1) P

The Stirling formula p! ~ /27ppPeP tells us
(p+ 1) T <Clp+Dip+1)72 p=01,2,....
Applying this to the right-hand side of (4.28), we obtain

/ I — 2|/ 2e=nlz=21+12-v]) g,
Spo (I)ﬁSzrl (w)ﬂSpO (y)

3p

- 2
< Ce Hroy, (p+1)pg/2+1€p+1(p+1)!(p+1)_1/2p%

< ée—upou—(pﬂ)pgﬂﬂ(23/26)pp!p—1/2

< G0 W) /21 (222 (upo) 2

This completes the proof of (ii).
Finally we give a proof of (iii). Since |z —y| > po for z € S, (y), we have
/ @ — 2[3P 2 nlla==+l=u]) gg.
S;o (I)QSQTl (:E)OS;[) (y)

< efﬂﬂop?’]ﬂ/?/ |z — 2| )3p/267”\$*z| ds,
S2r1 w)\sp() ("E) pO

Ror ( 9)
Cle—Hpo 317/2/ d@/ o )3p/2e*up(h9)rd7~
-7 90(0
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_ 2r1 3p/2
< Gemheo gl / (L) e mepdp
Po Po

- ) /2 271
Sce—upopgl’/z(%)p / (ﬁ)pe—uppdp
Po Po Po

- /2 2pur1
SCQ*”POPSP/Z(ﬁ)p 71 5 / sPTle=5ds
Po (1p0)P1? S up,
< CeHpo (er)p/ZM—(pH)(p + 1)

This completes the proof of (iii).
4.2. Proof of Proposition 4.1

Let R > 0. Consider the case when |z —y| <7y and p|z —y|*> < R. From Propo-
sition 4.2 we have

‘K§”+1)(x,y)| < C;zcg+1ﬂ(2fn)/267/i|wfy|(I)ELn) (‘:U _ y|3)

" (CoCo)2N\ (n—p)/21 /2
Scoue—ﬂlx—y;(—( OIuQ) ) ! H<§)p(COCQ)PRP/2.

Thus if u> R(CyCa)?, then one gets

|K/(\"+1)(x,y)| < C’O,ue’”‘“”’y' i(%)(n—p)/:%<§)p(coc,2)pRp/2
p=0 '
< Cope Hz=yl (%)nﬂ zn: Z% (200302]%)1’
p=0
< Colue—u\ﬂc—yl (%)nﬂ eXp(%)-

Set C% = (209C3)/3 and pu1 = (CyC3)? + 1. As a simple consequence of the
argument done above we have the following: if |z —y| <7y, plz—y|> <R, A € Cs,,
uw=ReA>max{uR,1}, and R >0, then

N 1\n/2 .,
(4.29) K +1)(m,y)|§C’0,ue_”‘m_y|<E) R (n=0,1,2,...).

Here we prepare a lemma that covers all the remaining cases for x,y.

LEMMA 4.3

Under all the assumptions made in Theorem 4.1 there exists a positive constant
Cs such that, for all A € Cs, with p> 1R and n=0,1,2,...,

n 1\"/2 o
K (@, y)| < CoCg eV (£ ) e%R, wyeoD R 1.
Choosing R>1 in Lemma 4.3 in such a way that C3/R < 1/4 and setting po =

w1 R, we immediately obtain the desired estimate in Proposition 4.1. Thus in the
following we present a proof of Lemma 4.3.
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Proof of Lemma 4.3

We employ an induction argument. First we prove that one can find a suitable
positive constant C's independent of n, x,y, u, and R such that, if we have, for
all xz,y € 0D,

- 1\ n/2 ,
[KD (@,)] < CoCruppe Izl (E) e h,
(4.30)
AeCs,ReA=p>mR,R>1,

then we have, for all z,y € 0D,

n C ~ ol 1\(r+1)/2 _,
|K§\ +2)($,y)|§0073(1+0n)ﬂe | m(ﬁ) ngR’
(4.31)
AeCs,,ReA=pu>mR,R>1.

We divide the proof into three cases: (a) pg = |z — y| <ry and ppg < R; (b)
po <71 and ppg > R; (c) po =11

Case (a). In this case it follows from (4.29) that
n 1\(@+1)/2 .,
(4.32) |K,(\ @ (z,y)| < Cope ==Yl (}—2) e

Case (b). From the definition of Ki"ﬁ) (x,y) we get
(4.33) \K ) (2,)| < Ty + Jo + s,

where Jy, Ja, and J3 are the integrals of the function |K§\"+1)(x,z)||K,\(z,y)\ in
z over the domains S, (z), Sy, () NS, (y), and Sy, (x) N Sy, (y), respectively.

First we estimate .J1. Since |2 — x| > po for 2 € S, (z), from (1.1) and (4.30)
we obtain

-~ 1 n/2 ’
Ji S/ CoCpeHz ==l (_) eCsRCy e~ 11791 43,
S;o (z) R

_ cgdnec;R(l)”/Quz/ o~ llz=21+z=3l) gg_
R Sio (@)

< ngneCéR<l>n/2M2e—upo / eHl==ulgg._ .
R Sio (@)

From this, Lemma 3.1(ii), u; > 1, and R > 1 one gets

R

I < chéneCéR(%)nhe_”po _ CngneCéRue_”po <l)"/2( 1 )1/2 R;/Z

R
1 )<n+1>/2'

- 1\ (n+1)/2 R1/2 e
= CC3Cre e () R S C03Cue ™ e (g

The estimation for Jp is the same as Jy since Sy, (z) NS, (y) C S, (y).
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Finally we give an estimation for Js. Since pg < 71, one has (3.4). This
together with (1.1) and (4.30) gives

Js < C2C, ue 2 R( 1 )n/Q/ e~ Hllz=zl+l==yl) g
R 00 ()NSpq (y)

U 1\n/2 1 5 o 1\ (n+1)/2
< CC2C, eCaltye=hpo (_) < CC2C, O R o (_)
< CCiChe~2" e 7 g < CC0 e 2 e =
for R > 1. Summing these up, we obtain, for all z,y € D with u|lz —y|> > R and
|z —y| <71,

. . 1\ (D2,
(4.34) ’Ki +2) (x,y)’ < CC2C, pe ==yl (E> eC2F,

Case (c¢). In this case we choose the integral domains of Jy, Jo, and J3 in
(4.33) as Sy, j2(x), Sy, s2(y), and Srl/Q( )N S, /2( ), respectively.

From (4.30) we have

- , n/2
(4.35) Jy < C2C, u2eCs R( ) / e~ rle—=l+1z=y) gg
R S0, /2(@)
Since pg > ry and |z — 2| < r1/2 for z € S, j2(x) it follows from Proposition 2.2(ii)
for the case ro =1y that |z — z| + |2 — y| > po + ¢o|z — z|. A combination of
Lemma 3.1(ii) and (4.35) yields

T < C3C e ()" e / emmeol==1l gg,
R Sry72(@)
n/2

/ .
< G20, 12 R(ll{) e=HPo Gy =2
(n+1)/2 R1/2
o

= CC’QC eC2 R,ue_“po (R)

Combining this with >y R> R > RY2 we get
)(n+1)/

J1<CC’OC eCa R e “pO(R

Similarly, for Jy we get the same estimate.
It follows from (4.30) that

Ty < C2C e CQR( )"/2/ o~ lle=21+z=3) gg._
R 87, 2087, o (0)

From Proposition 2.2(i) for the case ro =r; we have |x — z| + |z — y| > po + ¢o.
This yields

/2

1\n/2 1\7
Jy < CRCu e (L) e mem i laD) < ROt () e ey

~ , (n+1)/2
gccgcne%%e*ﬂﬂo(}l%) I
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In summary,
- 1\ (n+1)/2 _,
(4.36) |K(”+2)(x,y)| < CCEC,, e o (E) eC2ft

for z,y,0D with |x —y| >r; and A € Cs, with ReA=pu> R, R> 1.
From (4.32), (4.34), and (4.36) one concludes that if one chooses

C3 =2max{1,CCy}

in advance, then (4.30) for all z,y € 9D implies (4.31) for all z,y € 9D.
Moreover, define

. C . .
(4.37) Cry1 = 73(1 +Cn), n=0,1,...,Co=1.
Then we obtain, for all A € C5, with 4> 1R and n=0,1,2,...,
~ ]_ n/2 ’
K (@,y)| < CoCope ™o () 6B, 2y e oD, R> 1.

It follows from (4.37) and C3 > 1 that C,, < C%. Thus this completes the proof
of Lemma 4.3. O

5. Estimates for repeated integral kernels, Il

Continuing from Section 4 we give an estimate for another repeated integral
kernel which is necessary for the estimation of the integral kernel of the operator
YA(I =Yy~
For the kernels K (x,y) and K)(z,y) given in Section 1, define
(5.1) La(z,y) = Kx(z,y) + | Kx(x,2)Kx(2,9)dS..
oD

This is the integral kernel of the operator Ly = Ky (I + K)). We introduce the
sequence of functions

L0 () = /8 @ ) dSe, n=12,..

L (2,y) = La(z,y).

This is the integral kernel of the operator (Ly)" = (Kx(I + K)))".

In this section we always assume that 0D is strictly convex and 9D is of
class C>? with 0 < ag <1, and the kernels Ky(z,y) and Ky(z,y) satisfy all
conditions described in Section 1. The main result of this section is the following.

THEOREM 5.1

There exist positive constants C and po > 1 depending only on Cy in (1.1), Cy
in (1.2), and OD such that

i the operator Ly(I — Ly)~" with A € Cs, and Re A\ = > o has an inte-
(i) P 0 =
gral kernel L (z,y);
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ii) the integral kernel L x,y) of the operator L3 (I — L)™' is continuous
A A
on 0D x 0D and satisfies

{iio(x,yﬂ < C’;fQ/g(l + logu)e*”‘c‘”*yl, z,y € 0D, A€ Cs,, 1 =Re A > pp;

(iil) L$°(x,y) in (i) is measurable on 0D x 0D, continuous for (x,y) € 0D x
0D with x # vy, and has the estimate

Cefﬂlziyl

|L)\ (xay)|§ |x—y|

, x,y€dD,x#y, A€ Cs,,u=ReA> pp.

Theorem 5.1 is based on the following estimates for Lg\n) (z,y) as derived in

Section 5.1.

PROPOSITION 5.2

There exists a positive constant C' depending only on 0D, Cy in (1.1), and Cy in
(1.2) such that the following holds for all x,y € 0D with x #y and all X € Cs,
with p=ReA>1:

Cepla—y]
5.2 LY (@ y)| < ——
2) < O Plz—yl T
(5.3) |L3 (z,y)| < Ce <1+max{0,10g EEY })7
(5.4) L3 (@, y)| < O/ (1 + log p)e #1771,

PROPOSITION 5.3

There exists a positive constant C' depending only on 0D, Cy in (1.1), and Cy in
(1.2) such that, for all x,y € 0D with x #y and all A € Cs, with p=ReA>1,

(5.5) |Lg\"+2)(a:,y)} <O+ logp)e PV n=1,2.3,....
The proof of Propositions 5.2 and 5.3 are given in the next subsection.

5.1. Two lemmas and proof of Propositions 5.2 and 5.3
First we describe two lemmas needed for the proof of Propositions 5.2 and 5.3.
In the following we set pg = |z — y|.

LEMMA 5.1
There exists a positive constant C such that the following holds for any pu>1:

e—H(lz—2|+|z—y]) .
(5.6) / ( )—dSZ <Cu ‘e M0 xyedD,
Spo (T

|z — 2]

e—H(lz—z|+|z—yl)
/ —————dS§s,
Spo () |z — 2]|z -yl

7 < CeHpo (1 +max{0,log;—2})7 x,y €0D,x £y,
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o—hllz—z+lz—y]) ~
(5.8) / ——dS.<Cu7lteHro z.yedD,
Spo @S () 1T =7l

o—hllz—z+lz—y])
/ —dS.
(5.9) Spo (2)NS5y (y) |z — 2]|z — vl
< CeHro (1 + max{(),log ;—0}), z,y€ 0D,z #y,
0
e—H(lz—2|+|z—y])
/ e s,
(510) S EPNSn® |z — 2|

~ 1
< Ce™#Po min{—,,u_Q/B}, x,y € 0D,
Hpo

o~ nllz—z+]z—y]) N
(5.11) / - dS.<Ce M,z yedD,x+y.
Spo(@)NSpe () 1% = 2|2 =Yl

LEMMA 5.2
There exists a positive constant C' such that the following holds for all z,y € dD
with x £y and p>1:

—p(lz—z|+]z—yl) -
(5.12) / € log —C—dS, < Cp=2/3eHro,
Spo (2)NSry (y) |z — 2| |z —y

—(le—2l+l2—y)) i
(5.13) / ¢ log — % 4s, < Cu~2/3ereo,
Spo (©)NSpy W)NSre () 17— 2] ER
—u(|z—z|+|z—yl)
/ ¢ log — 2 ds,
(5.14) S ()N g (1)NSrg (4) |z — 2| |z — v

< Cu~?3(1 +log p)e o,
The proofs of those lemmas are given in Sections 5.2 and 5.3.

Proof of Proposition 5.2
From (1.1) and (1.2) we have

—plz—yl —u(lz—z|+]|z—y|)
(1) e H / e
5.15 Ly (z,y)| <Ci|———+C —ds, ).
R S T R M T )
Noting that 0D =5, (2) U (Sy, () NS, () U (Sp, () NSy, (y)) and po < diam D
we obtain from (5.6), (5.8), and (5.10),

—p(lz—z|+|z—yl) - - —1po
(5.16) / 1S, < 2C et 4 e L T
oD |z — 2| 1po ~ f1po

A combination of (5.15) and (5.16) yields (5.2).
From (5.2) we get

e—m(lz—z|+lz—y|)

zZ

(5.17) 1LY (2,y)] < 02/

op T —zllz -yl
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Using the same decomposition of 9D as above, we obtain from (5.7), (5.9), and

(5.11),
—p(|z—z|+|z—yl)
/ ¢ s,
op |z — 2|z =yl
(5.18) §2CE7”W(14—HMX{OJ0gZE})4—@67Mm
Po

< 3Ce HPo (1 + max{()7 log To })
Po

This together with (5.17) gives (5.3).
Using (5.2) and (5.3), we obtain

123 (@, )|
—p(lz—z|+|z—yl)
(5.19) < C(/ ¢ ds,
8D |z —yl

—p(lz—z|+|z—yl)
+/ e—maX{O,log T—O}dSz).
oD |z =yl |z — 2|

It follows from (5.6), (5.8), and (5.10) that, for all x> 1,

—p(lz—z]+[z—yl) ~ ~
/ e|—| dS, <20u~te Hro 4 C,u_2/3e_“p0
z —
(5.20) op Y i
< 30u’2/3e”‘”0.

Noting that log(ro/|x — 2z|) >0 on Sy, (x) and log(ro/|x — z|) < 0 outside S, (z)
and using the decomposition S, (z) = (S, (y) N Sr, (7)) U (Sp,(y) NS, (z) N
Sro () U (Spe (y) N Spy(x) N Sy (x)), we obtain from (5.12)—(5.14) by changing
the roles of x and y therein,

—p(lz—zl+|z—yl)
/ e max{O, log 1o } ds,
ap 12—l |z — 2|

—p(lz—z|+|z—yl)
:/ ¢ log 1o ds,
Sy () |z —y |z — 2|

< Cem o223 4 23 (1 + log ) }.

This together with (5.19) and (5.20) yields (5.4). This completes the proof of
Proposition 5.2. O

Proof of Proposition 5.3

We denote by C4 and C the constants appearing in Proposition 5.2 and Lem-
ma 5.1, respectively. Set C'= C;max{3C,1}. Note that we have (5.20) with the
constant C' in Lemma 5.1. We prove (5.5) by an induction argument. In the case
when n =1 it follows from (5.4) that (5.5) is valid. Assume that (5.5) is valid for
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some n. From (5.2) we get

e—H(lz—z|+|z=yl)

}LyHﬁVmﬁﬂ\S(T%Mu‘””%1+40guX/ ds..

oD |z =yl
This together with (5.20) yields

‘Lg\n+3) (.13, y)| < Cn+1u—2(n+1)/3(1 + logu)e—p\m—m.
This completes the proof of Proposition 5.3. O
5.2. Proof of Lemma 5.1

Proof of (5.6)
Since |z — 2| > pg for 2z € S (z), we have

e—/t(\m—z|+\z—y|) e—#|z_y‘
/ —dszge‘”%/ —FdS,
Spo () |£L’ - Z| Spo () |$ - Z|

_ efﬂlzfy‘
< e Hpo —dS,.
op |z —2|
Note that 0D has the decomposition
(5.22) 0D =51U9s,

(5.21)

where
S1={z2€0D ||z —z[<|y—=z|}, Sy={2€0D ||z —2z|>|y—2|}.
OHSl,

e—blz—yl  o—nulz—yl  o—plr—z|

5.23 < < .
(5:23) v S e—d = o4
On SQ,

e~ Hlz—yl  o—plz—yl
(5.24)

o=z 7 ly—zl

Thus this together with Lemma 3.1(ii) yields

e~ Hlz—yl e~ Hlz—2| e~ Hly—=|
/ 7d5z§/ 4dSZ+/ ———dS,
op |z —2| op |z —2| op |y — 2|

—HMTo
()
To

(5.25)

Now from this and (5.21) we obtain (5.6). O

Proof of (5.7)
We have

e—nllz—zl+|z—g))
/ —————————dS, <e M (I} + I + I3),
S50 ()

|z = 2||z -y
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where p{; = min{pg, 7o} and

e~ Hlz—yl
I :/ —dS,,
S50 ()NS5, () |z — z|[2z — y|

e~ Hlz—yl
I, = / ——dS;,
S0 ()NS5, ) 17— 2[[2 =yl

I / e—Hlz—yl s
3= T 492
Sro (v) |z — z|[z — y|

Since we have

1 —plz—y|
neo [ S tas
Po Js, () |z =yl

it follows from Lemma 3.1(i) that I; <C.
Using the decomposition (5.22) and estimates (5.23) and (5.24), we get

—plr—z|
L < / e s,
S

o ()N (Srg WS, (9))S1 [T — 2]
(5.26) ’ R

e—Hly—=|
+ / - ds..
S0 ()N(Srg (WS, W)NS> 1Y = 2

Note that the sets S, (2) N (Sy, (y) \ Sy (¥)) NSt and S, () N (Sr, (y) \ Spy (y)) N
Sy are contained in the sets Sy, (z) N S, (z) and Sy, (y) N Sy (y), respectively.
Therefore one can apply Lemma 3.1(iii) to the right-hand side of (5.26) and get

I, < C(l +10gr—0,) < C’(l +logr—?> :C'<1 +max{0,logr—0}).
CPo Po Po
Finally, using (5.25) and p > 1, we get
1 —plz—yl 2 1
I < — eidszg—c<1+—).
ro Jop |x— 2| o 70
Summing up the estimates for Iy, Iz, and I3 above, we obtain (5.7). |

Proof of (5.8)
Since [z —y| > po for z € 5,,(x) NS, (y), we have

e—m(lz—z|+]z—yl) e~ Hlz—z|
/ s, < oo / s
Spo ()NS5 () |z — 2| op |T— 2|

From this and Lemma 3.1(ii) we obtain (5.8). O

Proof of (5.9)
Since Sy, () NS, (y) is contained in S, (y) and the integrand of (5.9) is invariant
under the change of the role of x and y, (5.9) is a direct consequence of (5.7). O
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Proof of (5.10)
Let r1 be the same as in Proposition 3.1. For pj, = min{pg,r1} we have

(le—z]+]z—yl)
/ ————dS; < Ji + Jo,
o (2)N1S 0 (1) |z — 2]

where
e—H(lz—z|+|z—yl)
- 0 1 zZ

Ji = /
(Sp0 (NS, /2 (@)NSpe () 1T~ 2]

e~ r(lz—z|+|z=yl)
Jo = / < s
S 2 @NSpw) 1T 2]

Consider first J;. One has
n<l e—lle—zl+lz=v]) gg.
o Spo (£)NS g (1)
Note that if pg <71, then pf, = po and it follows from (3.4) that

3/2
/ —u(\x z|+|z—y|) dS <C —MP(J(pO )8/9( 13)1/9
S ()N (4) VI 1P

= C’e’“ﬂop6#*2/3

and
3/2

/ —nllz=z1+1=y) g5, < Ce~ upo(pO )2/3( 213>1/3
Spo (2)NSpq (y > Vi 1Py

— Ce_“pou_l;

if pg > 71, then p{; =ry and from (3.5) we have

/ e—lz—z]+|z—yl) ds, < ée—upo’u—2 _ C”ve—upo'u—2r_1
Spo (T)mspo (y) 1

< Cryle o ppu2/3,

Thus one gets

2
Ji < =Ce #omin{ut, phu =23} = 2Ce o min{ y ,,u_2/3}
Po 0
/- . 1 —2/3
<C’e “pomm{—,,u }
Kpo
Note that we have used the fact that if pg > rq, then
-1_ -1 -1 -1 -1 -1
(po) ™" =ri" =pg pory < (ry" max |z —yl)pg

Now consider Jo. Recalling the argument in the proof of (3.8), we see that
if po <71, then py = po and S, /2(x) C B, (0, 209 /3). Moreover, in the proof of
Proposition 3.1, we have already known that, for all z =z +o1e1 + o2e2 — g(o)vy
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with o = (rcosf,rsinf) € B.(0,209/3),
lx — 2|+ |z —y| > po +C2T(P(2) +f(9)2)-

Therefore we obtain

_ po T o—pear(pg+f(6))
Jy < ce*m/ / e rdra
0 -7

P /2
(5.27) <20 e 1o / ' / e re2r (05 +0%) iy dp
0 —m/2

Po o—pcarpy

< Ce_””o,u_l/2 —dr.
0 VT

Since
PO ef,u,cz'rpg C/
/ dr <
0 NG VHpPo
and
/Po e—#C2TP(2J 1
——dr <C"\/po,
o VT
we have

PO p—pcarpy

o VT

\//;po’ <¢;po>l/3(‘/p_°)2/3}

_ Cmin{’u—l/zpal’M—l/ﬁ}.

dr <C min{

This together with (5.27) yields
(5.28) Jo < Ce o min{,u_lpgl,,u_z/g}.
If po > r1, then py =r; and from Proposition 2.2(ii) we obtain, for all z €
Spy/2(),
(5= 2]+ 12— 4] > po + colz — 2.
This together with Lemma 3.1(ii) yields

e—Hcolz—z]

Jgge‘“”o/ ——dS,
Sup /() |z — z

e—Hcolz—z|
< e kPO / _ dSZ
oD

|z — 2|
< Cef“p";fl.
Since
1_rm _C
B ppo HPo

and p~!' < p~2/3 for u>1 we conclude that (5.28) is true also in the case when
po > 1. Thus, we have (5.10). O



Estimates of integral kernels arising from inverse problems 35

Proof of (5.11)
Consider first the case when py > r;. We have

o~ nllz—z|+|=—y))
IE/ ———————dS.
Spo (@)NSpe(w) 17— 2|2 =Yl

:/ -sllz=stHz=ub 1,1 ) ds.
S ()N g (1) |z =2 |z—yl/ |z —2[+]z—y
<L e,u(|z,z|+|z,y|)( 1 ;) ds..

PO 80 (2)NS,4 (9) =z |z—y

Then a combination of this and (5.10) ensures that integral I has a bound Ce—Hro,
Now consider the case when py < r;. Decompose

—p(lz—z|+|z—yl)
I= / £ i

Spo ()N(Spe W\Spos2() 1€~ 2l12 =¥l
e h(lz—z|+|z—y])
. T
Spo @S, aly) 17— 212 =l

=h(x,y)+ L(x,y).

ds.,

Using the same local coordinates as in the proof of (4.9), and noting (4.12), we

2 —p(lz—z]+[z—yl)
Ii(z,y) < —/ s,
Spo (@)

obtain

Po |z — 2|

<

N —1po T r(0) —per/r24g(rcos,rsin0)2 f(0)?
Ce / dﬁ/ e
0 —7 0

p V124 g(rcosf,rsing)?

< CeHpo /7r " /Po —e dp < Ce—hoo.
Po -7 0
Since it holds that |z —x| > [2 —y| — |y — 2| > po — po/2 = po/2 for all z € S, /2(y),
we have
e—h(lz—z|+|z=yl)

Iy(z,y) < / —————dS, =1 (y,x) < Ce #r0,
(Spp (2)\S g y2(2)NSpe (v) 1T — 2|2 =Y

Therefore I has a bound Ce 70 also in the case when po < r1. This completes
the proof of (5.11). O

5.3. Proof of Lemma 5.2
Proof of (5.12)
Let S; and Sy be the same as in (5.22). We have S, (y) N S; C Sy, (x) and the
following estimates hold: on S, (y) NSy,
efﬂlzfy‘ 70 efﬂlmfz‘ )

0g < log
lw =zl " Tlz—yl T lw—z[ 7|

;
x—z]
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on Sy, (y) N Sa,

—pl|z—y| —ply—2|
¢ log 1o < ¢ log o
2=yl = ly—2| ly — 2|

|z = 2|

These together with Lemma 3.1(iv) yield
—plz—yl
/ ¢ log 1o ds,
S lT—2 T lz—yl
—plz—yl —plz—yl
_ / ¢ log — % 4. + / ¢ log — 0 4s.
Sro (y)NS1 |z — 2| |z =yl Sro (¥)NS2 |z — 2| |z -yl
e—Hly—=| o

—ule—z] ~
< / ¢ log — 2 ds, + / log s, < Cu~2/3.
Sro(z) |T—2] |z — 2| Sy |y —2| ly — 2|

Now (5.12) is a direct consequence of this and the estimate

—p(e—2l+5—yl)
/ : log — 2 dS.
Spo(@NSroy) 1T 2 ER

—plz—y|
< e~Hpo / ¢ log — 2 ds..
S 1T—2 T lz—yl

Proof of (5.13)
If ro < po, then S,, () NS, (y) NSy, (y) = 0. Thus it suffices to consider only the
case po < ro. Since S, (2) NS, (y) NSy, (y) C Si, we have

—u(lz—z|+|z—yl)
/ ‘ log —2— ds.
Spo (2)NS 5 ()N S g (1) |z — 2| |z =y
~ 2]
< e HPo / © log 1o ds..
Spo () |z — 2| |z — 2|
Now from Lemma 3.1(iv) one gets (5.13). O
Proof of (5.14)
Set pf = min{pg,r0}. Decompose
—p(lz—zl+]z—yl)
/ ‘ log —2— ds.
Spo (2)N1S g (1) Srg (4) |z — 2| |z =y
—p(lz—z|+]z—y])
:/ ¢ log o ds.,
S, ()NS, (y) |z — 2] |z —yl
0 0]
—p(lz—z]+]|z—yl)
+/ ¢ log 1o ds,
(Spo(@N\S,y @DNS,y ) 1T~ 2] |z =l

=J1+ Jo.

Consider first Ja. If pg < 7o, then Jy = 0. If pg > r¢, then pj = ro. In this case
we have
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Ty < & e—nlla=zl+z=u) g 0 4o
= y

(S (2)\Srg (£))N Sy () |z =yl

e~mlle=zl+l2=vl) |5 —y| o

(5.29) = log ds,

/(sp0 (2)\Sry (2))NSrq (v) |z =yl To |z =yl

—p(lz—z|+|z—yl)
<C / ¢ dS, < Ce~hpo =23,
Spo ()NSpq (v) |Z - y|

Note that we made use of the fact sup, x7'logz < oo and (5.10) of Lemma 5.1.
Now consider J;. Using the decomposition S, (r) NSy (y) = (Spé () N
SP6 (y) n Sl) U (SP6 (x) n Sp(/) (y) n SQ), we have

—u(lz—z|+]z—yl)
Jlg/ ¢ log —2 48,
S (2)NS , (y) |z — 2| |z —z|

—p(lz—z|+]|z—yl])
+/ ¢ log — % 4s.,
Sy (2)NS () ly — 2| |z —y|

= Ji(z,y) + J|(y, ).

Thus if we have the estimate

(5.30) Ji(x,y) < Ce #0231 +logp), a,y€dD,

then for J{(y,x), hence, for Jp, the same estimate as (5.30) is also valid. A com-
bination of this and (5.29) yields (5.14).
Estimate (5.30) is proved as follows. We have

—u(lz—z|+|z—yl)
Ji(x,y) = / c log — % 4s,
(S, (DS, /2(2)NS ;. () |z — 2] |z — |
p(lz—z|+|z—yl)
+/ log ro ds,
Sy /2(2)NS 1 (9) |z — 2| |z — x|
=J7+J5.
Consider first J;’. We have
(5.31) T < Zlog 200 e—llo=zl+12=v]) gg
PO o (S g (@\S 1 /2 (2))NS 5y ()

If pg > 7o, then pj =ry and from (3.6) and (5.31) one gets

T < Llog 2’“0/ e—hlla=2l+lz=u]) gg.
To o JoD
(5.32)

1
< Cu—Qe—upo (1 + _3) < Ce HPoy, (1 4 )
Po g

If po < 7o, then pj, = po. Let 1 be the same as in the proof of Proposition 3.1.
We further divide this case into two: (a) pg > r1; (b) po <71.
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Case (a). In this case pj = pg > r1. A combination of (5.31) and (3.5) gives

(5.33) JI < 2 log 2ro e~ rlr—2l+l2—y) gg < Ce Hroy =2,
"L T S0 ()08 (1)
Case (b). From (3.4) and (5.31) one gets
T < Zigg 20 e—lle—zl+l==sl) gg.
PO PO S (S (2)\Spg/2(2))NSp0 (v)
3/2
~ 2 2 1
(5.34) < Ce_”po—logﬂmin{po—,ﬁ}
pPo Po NI

Cle—1po 3/2 1
- min{rO—X_l/Q 1og2X,3—2X410g2X},
To VH Tol

where X =r¢/pp (>1).

Let u (> 1) satisfy ppg < 2% %73, Since €?/2 < (e2/2)u!/? < X and the
function & —s £71/21og2¢ is monotone decreasing on [e?/2,00], it follows from
(5.34) that

_ 3/2
CeHpo 7"0/

To

Jy < X ?log2X

_ 3/2
CeHpo To/

R RV/T)
< C’e_“pou_Q/S(l +log ).

(5.35) ((2/2)') P 1og{2(e? /20 /)

Let p (> 1) satisfy upg > 2%¢~5r3. We have (e2/2)u'/? > X. Since the func-
tion & — £*log 2¢ is monotone increasing on [1, 00|, it follows from (5.34) that
—HKpo
Ce™ 1 yiajpgax

3,2
ro  ToW
Ce HpPo 1

< _

- 1o rpp?
< Ce 1o =2/3(1 4 log ).

Therefore from (5.32), (5.33), (5.35), and (5.36) one gets

(5.37) JI < Cemrro =231 + log ).

T <

(5.36) {(2/2)p13} og2{(¢?/2)p}/*}

Next we consider JJ .
Case (i): po > ro. In this case p{, =1¢. Since |z —y| = po > ro and |z — x| <
ro/2 for z € S, /2(x), using Proposition 2.2(ii), we obtain

e—,uco\z—m| r
Jé/ < e—,upo/ log 0 dSz
Srasa(@)NSrg(v) 1T 2| |2 —a

—pcolz—x|
< g HPO / ¢ log 10 ds..
Sypo () |z — 2| |z — |
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Now Lemma 3.1(iv) yields
(5.38) JY < Cepoy=2/3,

Case (ii): po < ro. In this case, p{, = po. We divide this case into two subcases:
(a) r1 < po; (b) po <ri:
(a) Divide J4 into two parts:

— (=2l +2—y])
Jy = / < log — % ds,
Sry /2 (@IS0 (1) |z — 2| |z — x|

—pllz—z|+|z—yl)
¢ log 1o ds,.
|z — 2|

(5.39)

v/
(Spo/2(@\Sry j2@)NSpe () T =2

One can apply Proposition 2.2(ii) to the first term in the right-hand side of (5.39)
and a similar argument done in case (i) above together with Lemma 3.1(iv) yields
the bound Ce #P0;,~2/3. For the second term in the right-hand of (5.39) we
employ a similar argument done for the derivation of (5.32) and get the same
bound. Thus we obtain Jy < Ce#ro;=2/3,

(b) Since z € S, /2(x) NSy, (y) implies (z —x) - (y — ) /|y — x| < po/2, using
the local coordinates used in the proof of (3.4), we have

- po (T/2 g—pcar(p+0?) o
JY < Ce Hro / / e (log —)rdr do
0 0 r

r

14 /2
= Ce Mo / ’ e~ hearr log To </ g~ Heartd? d9) dr
0 ™ No

2
PO o= pcat Py

<Ce oy =12 [ e D0 gy
< Ce 1 ; NG og——dr
Note that we have
PO o= pe2r Py To po 7 70 ~ 70
T " —drﬁ/ —(10 —)drSC (1+1o 7)
0 VT & r o VT & r Vo gpo
N —-1/2 3
SC’\/;)_()(log?)JrlogT—o) gC’(@) log 210
£o Po Po

and also

/po e—He2rpy o 1 1Py g—car 1p3ro
————log —dr = —/ <log )dr
o VT r Vipo Jo VT r

< %(1 + [log(ppiro)|)

S C/To
Hpo

Therefore setting X =ry/po, we obtain

ro
(1 Flog -+ \10g(up3)!)~

~ 1
(5.40)  Jy < Ce Hro min{/[l/QX_l/2 log3X, =X (1+log X + [log(ppy)|) }
U
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Let p (> 1) satisfy upd < 3%e5rd. Since (e2/3) < (€2/3)u'/? < X and the
function ¢ — £71/21og3¢ is monotone decreasing on [e?/3, 00|, from (5.40) we
obtain

Iy < G 2 (2 /3)0 %)

log(3(¢?/3)u/?) < Ce™7ou=2/3(1 + log ).
Let u (> 1) satisfy ppg > 3¢ 3. Since (¢2/3)p'/? > X > 1 and the function
& — Elog€ is monotone increasing on Je ™!, o0, it follows from (5.40) that

y < Ce‘“”"u( e?/3)ut/3 (1 +log((€?/3)u'/?) + [log(up)|)

< Ce o3 (14 log p),

where we used 33e7673 < upd < prd.
Thus in any subcase of case (ii) we have

Jy < Ceou=(1+logp), p>1.
This together with (5.38) yields that J§ has the same bound as (5.37) for Jy.
This completes the proof of (5.30). O

5.4. Proof of Theorem 5.1
If \ € Cs, satisfies Re A = > 1, then the operator Ly(I — L)~ is given by the
Neumann series

La(I—Ly)~ ZL”
n=1

The integral kernel of the operator LY is given by LE\") (z,y).
Let C' be the constant in Proposition 5.3. Choose pp > 1 in such a way that
max{C, 1}ug 2/3 < 1/2. Let > pp. Then

C\m o C (Iy?
(M2/3> _M2/3 (5)
and from (5.5) we have, for all z,y € 0D with « #y, all A € Cs, with ReA=p >
o and n=1,2,...,

1\n—1
L3 ()| < CM’2/3<5) (14 log e #l=vl,

Therefore the series Y2 o L(An)(x,y) is uniformly convergent and satisfies

Z |Lg\") (l’, y)| < Cuiz/?’(]‘ + logp)g*MW*y\ )
n=3

These yield Theorem 5.1(i) and (ii). Moreover, from this, (5.2), and (5.3) we
obtain

G Cento | omslamsl o

+ Cp~23(1 + log p)e Hle=vl
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w<1+rowmax{o,log 1o }+|$*y‘)
|z —y To |z — v
Ce—Hlz—yl
[z =yl
This gives Theorem 5.1(iii). O

6. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Since Yy = K 4+ K, it follows
that for A € C;s, with sufficiently large i = Re },

(I-Y\)(I—Ky\)'=I—Ky\I—-Ky) "

Set Ly = K\(I — K)~'. The above equality yields

(I-Y) ' =(I-K\) " (I-K\(I-K\) )"

= - K\ (I =Ly,
which implies that
I-Y\)"'={I+K\I-K\) '"H{I+L\I-Ly""}
=1+ K\(I-K\) '+ Ly(I—-Ly)""+K\(I-Ky\) 'La(I-Ly™"
Hence Y, (I —Yy)~! can be represented as

o) VNI =Yyt = E\(I = Kx) '+ La(I = Ly) "
6.1
+ KNI = K)) 7T AT = Ly) ™
Noting that Ly = K\(I — K))~' = K\ + K\K(I — K)~!, from Theorem 4.1
and (5.1), we know that for A € Cs, with sufficiently large = ReA, Ly has an
integral kernel Ly(z,y) given by the formula

L)\(l’,y):K)\(IE,y)‘F RA(I7Z)K)O\O(Zay)dSza
oD

where K§°(z,y) is the integral kernel of K (I — K,)~! in Theorem 4.1.
Choosing larger g if necessary, we conclude from Theorems 4.1 and 5.1 that

for all ;1 > po the operator Ly(I — L)™' has an integral kernel L3°(z,y) that is

measurable on 9D x 0D, continuous for x # y, and satisfies

CeHlz—yl

|z =yl
From (6.1) we know that the integral kernel Y(x,y) of the operator My =
Ya(I —Yy)~!is given by the formula

(6.2) ’Lio(x,y)|§ , x,y€ 0D, e Cs,,up=ReX > pp.

(6.3) Yo (a,y) = KX (@) + LY (2, y) + - KX (2, 2) L5 (2,y) dS-.
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Using Theorem 4.1, (6.2), and (5.16), one gets
‘ Ce—ulw—yl
oD |z =yl
This together with Theorem 4.1, (6.2), and (6.3) yields

K3 (2, 2) LY (2,9) dS2| <

Y (2, y)| < C(w )6’“'“", ,y € OD,\ € Cs,, ju=Re A > p,

|z =y
for some positive constants C' and g depending only on 0D, Cy in (1.1), and
C} in (1.2). This completes the proof of Theorem 1.1. O

Put Ny = K, + (Y))2(I — Yy)~!. We denote the integral kernel of Ny by
Ny (z,y). We can also give estimates of the integral kernel Ny (x,y) which also
we need to study the inverse problem described in Section 1.

THEOREM 6.1

There exist positive constants C' and po > 1 such that for all A € Cs, with p =
Re\ > pg the operator Ny has an integral kernel Ny(z,y) which is measurable
for (z,y) € 0D x 0D, continuous for x #y, and has the estimate

1 . 1/2 1
—l—mln{,u ,ux—y3 , })
|z =yl (= =l") |z —y|?

(6.4) | Na(w,y)| < Ceplz=v] (1 T

REMARK 6.1
Since min{y/a,a~'} <1 for all a > 0, from (6.4) we get

)e—ulx—yl_

6.5 Na(z,y)| <C(p+
(6.5) M@y < (n+ =
Proof of Theorem 6.1

Since Ny = Ky + K)\Y (I —Yy)"! + K, YA(I — Y)) ™!, the integral kernel of N)
is given by the formula

(66)  Na(wy)=K(z,y) + /a (13222 + Fr(0.2) V5 (22 S

Hence from (1.1), (1.2), and Theorem 1.1, and from (3.6), (5.16), and (5.18), it
follows that

‘/ (Kk(x,z)+I~(>\(:c,z))Y>\°°(z,y) ds,
oD

e—m(lz—z|+]z—yl)

<c2{,ﬂ/ e*le*ZHlZ*y‘)dSﬁu/ ———————ds.
N oD oD ly — 2|

e—k(lz—z|+]z—yl) e—m(z—z|+|z—y|)
(6.7) —HL/ ———d&S, —i—/ —dSZ}
oD |z — 2] ap T —2z|lz -yl

1
< CeHlz=l [1+min{(,u|x—y\)3/2, | |3}
=Yy

1
+—+ max{O,log T—OH
|z =yl |z =yl
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Since
max{(),log o } < ¢ )
[z —y[J ~ |z -yl
from (1.2), (6.6), and (6.7) we obtain (6.4). This completes the proof of Theo-
rem 6.1. ]

7. The reason why Theorem 1.1 is needed

For p = p(z) € C%*(9D), we consider the following elliptic problem in the exte-
rior domain R?\ D:
(A=X)w=0 in R*\D,
0
3_15 + p(x)w=g(x) on dD.

It is well known that for any g € C(9D) and \ € C with |arg\| < 7/2, the L*-
solution w(x;A) of (7.1) is given by

(7.1)

w(@; \) =VpN(x)= [ Ex(z,y)¥(y)dS,, x=cR*\dD,
aD
where Ey(x,y) is a fundamental solution of (A, — A\2)Ey(z,y) = —26(z — y) of
the form

67)\‘17'“

i
Ex(z,y) = x;éy,|arg/\\<§.

2|z —y|’

As is in Mizohata [3], for example, this is a famous approach in potential theory.
Problem (7.1) can be reduced to the following equation on the boundary:

(I-Y(\)d=g inC(OD).

In the above, Y()A) is the integral operator on 0D with the integral kernel
Y (x,y;\) defined by

(7.2) Y (z,y;A) = Mo(y, z;A) + M (y, 25 \),
where
A e Vx'(y_x)
) M, )= D AlemylZE W )
(73) O(yaxa ) 2776 |$—y|2
and

- 1 e MNe=vl o (y —2)
(7.4) ﬂﬂ%%kr—ﬂ:miy|(|ximz +mw)
As is described in Section 1, an inverse problem for a three-dimensional
heat equation in thermal imaging is considered in [1]. We recall this problem
briefly. Let € be a bounded domain of R3 with C%° boundary and 0 < o < 1.
Assume that the domain D satisfies D C € and has all the properties described in
Section 1. We take a function f € L?(9€ x ]0,T]) for some fixed T > 0 as an input
datum of the inverse problem. We consider the solution u(z,t) of the following
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problem:

u—Au=0 in (Q\D)x]0,T],
(0, +p)u=0 on 0D x]0,T7,
ou=f on 092 x 10,77,
u(z,0)=0 in Q\ D,

where 0, = v - V,. The original inverse problem studied in [1] is to find informa-
tion of D from the one measurement, that is, a pair of input and output data
(f(x,t),0pu(x,t)) on 02 x10,T7.

For any fixed p € R3\ Q, we put l,,(z,2) = |p— |+ |z — 2| (x € 9D,z € 0Q).
The essential problem of the approach presented in [1] is to obtain the asymptotic
behavior of the following type of integral:

J(\,p) = wwum/eﬂumm@%nnwm
o0 oD

where p(; ) € C(09) is bounded in A € Cs,, p=ReA>1, and
G(z,2,p:\) = a(z, 2) + bz, 2) (Fo(z,p; A) + Fi(z, p; V)

for some continuous functions a(zx, z) and b(x, z) of (z,z) € 9D x 9, and con-
tinuous functions Fj(z,p;A) (j =0,1) of v € 0D with the parameter A. Thus, to
obtain asymptotic behavior of J(\, p) as |A\| = oo, we need to know how F};(x,p; A)
(j =0,1) behave as |A| = 0.

We define My()\) and M(\) by

Mo(Mh(z) = BL)A4b(x,y;A)h(y)d5y
and
SIh) = [ (e ),
Put My () = M)+ (Y (A\)2(I =Y (X)) "', where Y ()\) is the integral operator
defined by

Y (Mh(z) = aDYTyﬂxAVMy)dSy

Asisin [1, (3.18), (3.20), (3.21)], Fj(x,p;A) (j =0,1) are given by

Fy(a,pin) = M=o (34, (ﬂ_{pf' )@, =01

For Fy(z,p;A), it follows that

Folar,pi ) = / e AMa=vltly—pl-lep - @=Y) 1 4q
21 Jop lz—yl* ly—»pl
which implies that Fy(z,p; A) = O(]A]) at worst. Thus we can see that there is no
exponentially growing factor in p = Re\. For Fi(x,p;\), we also have

Filapid) = [ e Moo o) s,

oD ly — pl
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where M (z,y; A) is the integral kernel of M;(\). Hence to obtain the asymptotic
behavior of J(A,p), it is important to determine the exponential term of the
estimate of Mj(z,y;\). From Lemma 2.1(i) and (7.2)—(7.4), 'Y (\) = My(\) +
M ()) satisfies all assumptions in Theorems 1.1 and 6.1. Hence (6.5) implies that

)e—mx—m,

|Mi(z,y; M) SC(/H |

x—y

which yields

1 1
‘Fl(x,p; )\)‘ <C e~ Hlz=yl+ly—pl—lz—pl) (M + )_ ds,.
oD [z =yl/ ly —pl

This implies that F;(z,p; A) does also not contain exponentially growing factors
in 4 =Re\. Thus we can handle the term containing Fi(z,p; A) in the same way
as the other ones. To ensure this, we need to obtain the estimate of the integral
kernel introduced in Theorem 1.1. This is why we have to get Theorem 1.1.

Appendix

Here, we show estimate (1.4) for 6 > 0 when we do not assume that 9D is strictly
convex. In what follows, we assume only that D is a bounded domain of R3 with
C?° (0 < ap < 1)-boundary. Even in this case, Lemma 3.1 holds since in the
proof of Lemma 3.1, the convexity assumption for 9D does not used.

LEMMA A1
There exists a constant C' >0 such that

e—Hlz—yl L
/ 7dSZSCM_ ’ x7y€aD7M>Oa
%]

p lv—2]
and

—nlz—yl -1

ap | — z[ly — 2| |z —yl
Proof
From Lemma 3.1(ii), it follows that
e~ Mzl .

(Al) /aDWdSZSCM_JF, yE@D,u>O,k=O,1

Note that decomposition (5.22) of 0D and estimates (5.23) and (5.24) imply

e—Hlz—yl e—Hlz—x| e—Hlz—yl
/ 7d5’z§/ 7d5'z+/ —F——dS.,.
op |z —2| opns, |z — 2| opns, Y — 2

Combining this estimate with (A.1), we obtain the first estimate of Lemma A.1.
For the second estimate of Lemma A.1, we note that

e—Hlz—yl |z — 2|+ |y — 2| T e—Mz—yl  o—plz—yl

< = + .
—2lly—z| 7 |z —zlly— 2| |z — 2| ly — 2|

(A2) eyl

Combining this estimate with (A.1) and the first estimate of Lemma A.1, we
obtain the second estimate in Lemma A.1. O
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LEMMA A.2

There exists a positive constant C depending only on 0D such that for all p >0
and 0 <0 <1,

/BD e~ rA=0)lz=2]g=plz=y| (w + ﬁ) (5” ” ﬁ> -

<Co Tt <5u+

)6—(176>ulr79\7 x,y€0D,x #y.
|z —y|

Proof
From the fact that
(1=8)z—z+|z—yl=1=08)(|z— 2|+ |2 —y|) + 6]z —y|
> (1=0)|lz -yl + 0]z —yl,
it follows that

/{}D e~ (1=0)ule—z]—plz—yl (5N + | i z|) (M " ly i 2| ) o

< e~ (1=8ulz—yl / e~ onlz—yl ((m + L) ((m + L) ds,.
oD |z — 2| ly — 2

Hence, we obtain Lemma A.2 since Lemma A.1 and (A.1) imply

/(9De_ulz_yl(u+ |xi2|) (u—i— ﬁ) ds. SCu—1<,u+ ‘xiy|)

for all x,y € 0D, z #y, and u > 0. O

As is in the beginning of Section 4, the Neumann series expansion implies Yy (I —
Yy) "t =30 (Y\)", where operators (Y))" are the integral operator with the
integral kernel Y)\(") (z,y) (n=1,2,...) defined by

By = | NV @an ey ds., n=12..

and
YV (z,y) = Kx(2,y) + Kx(z,y)

For the constants Cp and Cy in (1.1) and (1.2), respectively, we put C5 =
max{Cp,C1} > 0. Note that it follows that

|Y/\(1)(x,y)] <Cs <N+ )e—#lx—y\7

|z =yl

x,y €0D,x#y,A€Cs,, it =Re.

(A.3)

Now, we state the following theorem describing (1.4).

THEOREM A.1
Let D be a bounded domain of R® with C*0 (0 < ag <1)-boundary. Then, there
exists a constant po >0 such that A € Cs, with p > po, the operator I —Y) is
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invertible, and Y\(I —Y\)™" has an integral kernel Y.>°(x,y) which is measurable
for (z,y) € 0D x 0D, continuous for x #y, and has the estimate

Vi (w,y)| <2050 (o + ) O=dia=ul,

|z =yl
x,yeaD,x;&yQ\ECgo,u;&Re)\Zé_Qﬂo,

for all 0 < § <1, where Cs is the constant in (A.3).

Proof
We give the following estimates for Y/\(”Jrl)(x, y) (n=0,1,2,...):

}YA(nJrl)(fan)‘ S 055—1(0055—2)nlu—n <6N+ )e—(1—5)ﬂ|l’—y|’

(A4) [z —yl

z,y€ 0D, x#y,Ae€Cs,0< <1,

where the constant C' in the above is just given in Lemma A.2. From (A.3), it
follows that
1

|z —yl

V(@ y)| < Cs0~ (8 + Jerrlel (0<a <),

which means that (A.4) holds for n =0 for 0 < § < 1. Assume that (A.4) holds
for some nonnegative integer n. Then the definition of Y;"H) (x,y) implies that

V"2 (a,)] < /aD V(@) [0 () ds.

(A.5) < Cs6H(CCs562) 6!

o [ ettt (g Y (e LY as.

Combining this estimate with Lemma A.2, we obtain

}Y/\(”+2)(x,y)| < 05671(005572)n+11u7(n+1) (5# + )67(175)ﬂ|w7y|’

[z =yl
that is, (A.4) for n+ 1. Thus, (A.4) holds for any n=0,1,2,....
We put pp =2CC5 > 0. For X € Cs, with pu> 1g6=2, (A.4) implies

|Y)\(n+1)(x,y)| <056t (%)TL(&LH—

r,y€0D,x#y,0<0<1.

)efufwmfy\’
|z =yl

Noting this estimate and [Yy°(z,y)| < Y07, \Y)\(nJrl)(:L‘,y)|7 we obtain the esti-
mate of Y°(z, y) in Theorem A.1, which completes the proof of Theorem A.1. O

As is in Theorem 5.1 and Proposition 5.2, we can expect that Y/\(n) (z,y) (n>2)

are more regular than Yk(l)(x,y). We can also show the following estimates.
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PROPOSITION A.1
Let D be a bounded domain of R® with C?° (0 < ag < 1)-boundary. Then there
exist constants C >0 and po > 0 such that

(1) YA(Q) (z,y) satisfies

0 052000 (3 e 2 )

|z —yl

for all x,y € 0D, v #y, A€ Cs,, u=ReX > 2pg, and 0 <5 < 1;
(ii) the integral kernel Y°(z,y) of the operator Y3(I —Y\)™! is continuous
on 0D x 0D and satisfies

Y (2,y)] < C5 " (1+ [log 8] + log p) e~ (= mlevl
for all z,y €D, x #y, A€ Cs,, p=ReA>d"2pg, and 0 <5 < 1.

Proof
First we show that there exists a constant C' > 0 such that for any p > 0,

67H|z7y| T
(A.6) ————dS, SC’(lerax{O,log }), x,y €0D,x # vy,
op |z — 2|ly — 2| |z —yl
and
—nlz—yl
/ c max{O7 log _To } ds,
(A7) ap |y — 2| |z — 2|

<Cpt (1 + max{0, logﬂ}), x,y € 0D,

where oy > 0 is the constant described in Lemma 2.1.
For z,y € 0D, we put py = |x — y|. First consider the case when pg > 9.
Estimate (A.2) implies that

e—Hlz—yl 1(6**"2’*?/' e”‘lz*y‘) 1( 1 1 )

———— < — + <—(—=+
[z =2y == "o\ fw =z ly—2 /T roMe =z Jy— 2|

which yields (A.6) since [, |z —z|~'dS. < C. For (A.7), since |z — 2| <ro/2 <
po/2 implies that |y — z| > |y — x| — | — 2| = pg — 10/2 > 10 /2, from (A.1) and
the argument of the proof of Lemma 3.1(iv), the integral in (A.7) is estimated
by

—pro/2 —plz—yl
/ ¢ log 1o dSZ—i—logQ/ £ <Cu L.
Sosa(x) T0/2 |z — 2] Sro (@)\Sg/2(z) 1Y — 2l

Next we consider the case of pg <rg. For (A.6), we put D1(z,y) =S, (z),

Do(z,y) = Spo(x) NS, (y), Da(z,y) = Spe(x) N (Spo(y) \ Spys2(y))s Da(z,y) =
Spo (1) NS,y /2(y), and

I(z,y) / s (=1.2.3.4)
j l‘7y = T .] = ) ) ) .
! Dj(z,y) |x—z||y—z| :

To show (A.6), it suffices to give estimates of each I;(z,y).
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Since |z — z| < po < |y — 2| for z € Da(x,y), it follows that

e—Hlz—x|

Blew)< [ S dS. = h(ya),
S0 (¥) |z — 2|y — 2]
Combining this fact with the proof of (5.7), we obtain

;
1(w9) + o0,9) < Tie,y) + 1) < O 1+ max{0,log 2 ).

Since pg > |y — 2| > po/2 and |z — z|/2 < po/2 < |y — 2| for z € D3(z,y), from
Lemma 3.1(i), it follows that

2 e~ Hlz—=z]/2
hay<— [ S as.<c
Po Spo (2) |.13 - Z|

If z € Dy(z,y), it follows that |z — z| > |z —y| — |y — 2| > po — po/2 = po/2. This
fact and Lemma 3.1(i) yields

2 e~ Hly—=|
14(337y)§—/ —dS. <C
PO JS,, 2(y) ly — 2|
Combining all estimates for I;(x,y), we obtain (A.6).
Next we show (A.7) for the case pg < rp. Note that the integral domain of the
integral in (A.7) is S,, (z). From (5.22), (5.23), and the fact that 1 <rg/|x — 2| <
ro/|ly — z| for all z € S, (x) NSy C Sy, (y), the integral in (A.7) is estimated by

—pl|z—x| —ulz—yl
/ ¢ log — % 4s, + / ¢ log — % ds,.
S () |z — 2| |z — 2| Sro(¥) ly — | ly — 2|

Form the above estimate and Lemma 3.1(iv), we obtain (A.7).
Using (A.5) with n =0 and the argument obtaining Lemma A.2, we obtain

V{2 (2,y)| < (C5671)2e~ (1= 0nle—yl

y /E)D R p— ((m F i ZI) ((m 1 i y|) ds..

Hence, the first estimate of Lemma A.l, (A.1), and (A.6) imply Proposi-
tion A.1(i).
For (ii), note that

1755 ()| < /6 )| G| ds.

since Y2(I—Yy)"'=Y2-Ya(I-Yy)"!. For 0<d <1, we put &' =4/4. It yields
that

1=0)|z—z+(1-28)z—yl=(1 —(5)(|a:—z\ + \z—y|) + 20|z — vyl
> (1=9)|z—y| +2|z —yl,

which implies e~ (1=dulz—2le—(1-200ulz=yl < ¢=(1=dulz—ylo=28'ulz=yl  Hence,
from Theorem A.1 and Proposition A.1(i) it follows that
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V20 (z,y)| < 4CC563~ (1-0nla—yl /a 25"l
D

X (1 + Inax{O,log T—_O}) (25’,u + ;> ds.,

|z — 2| Eall
where C' > 0 is the constant in Proposition A.1(i). Noting that
— —
§ e~ Wnlaul <€ e yl,
= 2zl
we obtain

V22 (2,y)| < 8C 503~ (1-0ula—yl

, 1
X / e? “‘Z_yl(1+max{0,logr—0})—dSz.
oD |z —2[)/ |z -y

From the above estimate, (A.7), and Lemma 3.1(ii), the estimate in Proposi-
tion A.1(ii) holds. This completes the proof of Proposition A.1l. O
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