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Abstract This paper studies precise estimates of integral kernels of some integral oper-

ators on the boundary ∂D of bounded and strictly convex domains with sufficiently reg-

ular boundary. Assume that an integral operator Kμ on ∂D has the integral kernel

Kμ(x, y) with estimate |Kμ(x, y)| ≤ Cμe−μ|x−y| (x, y ∈ ∂D,μ � 1). Then, from the

Neumann series, the operatorKμ(I−Kμ)−1 is also an integral operator. The problem is

whether the integral kernel ofKμ(I−Kμ)−1 canbe estimatedby the termμe−μ|x−y| up

to a constant or not. If the boundary ∂D is strictly convex, such types of estimates hold.

The most important point is that the obtained estimates have the same decaying

behavior as μ → ∞ and the same exponential term as for the original kernel Kμ(x, y).

These advantages are essentially needed to handle some inverse initial boundary value

problems whose governing equation is the heat equation in three dimensions.

1. Introduction

Let D be a bounded domain of R3 with C2,α0 (0<α0 ≤ 1) boundary and satisfy

that R3 \D is connected. We denote by νx the unit outward normal vectors at

x ∈ ∂D on ∂D. Given δ0 > 0 we denote by Cδ0 the set of all complex numbers λ

such that Reλ≥ δ0| Imλ|. Throughout this paper, we always write μ=Reλ.

Let Kλ(x, y) be a bounded measurable function on ∂D×∂D with the param-

eter λ ∈Cδ0 , continuous for all x, y ∈ ∂D, x �= y and satisfy

(1.1)
∣∣Kλ(x, y)

∣∣≤C0μe
−μ|x−y|, x, y ∈ ∂D,λ ∈Cδ0 , μ=Reλ.

Let K̃λ(x, y) be a measurable function of (x, y) ∈ ∂D × ∂D with the parameter

λ ∈Cδ0 , continuous for all x, y ∈ ∂D, x �= y and satisfy

(1.2)
∣∣K̃λ(x, y)

∣∣≤ C1e
−μ|x−y|

|x− y| , x, y ∈ ∂D,x �= y,λ ∈Cδ0 , μ=Reλ.
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For these functions, we define the integral operators by

Kλh(x) =

∫
∂D

Kλ(x, y)h(y)dSy and K̃λh(x) =

∫
∂D

K̃λ(x, y)h(y)dSy.

We put Yλ =Kλ + K̃λ. In potential theory, the exterior problems for Laplacians

with parameter can be reduced to integral equations on the boundary (cf. Sec-

tion 7, and for detail, see Mizohata [3]). Note that the integral operators of these

forms appear in such reduced integral equations.

It is well known that from (1.1) and (1.2) the operators Kλ and K̃λ are

bounded on C(∂D) with bounds ‖Kλ‖B(C(∂D)) + ‖K̃λ‖B(C(∂D)) ≤ C(Reλ)−1

(λ ∈Cδ0). Hence the Neumann series implies that for λ ∈Cδ0 with sufficiently

large μ = Reλ, the operator I − Yλ is invertible and the inverse is given by

(I − Yλ)
−1 =

∑∞
n=0(Yλ)

n.

The purpose of this paper is to give estimates of the integral kernel for the

operator Yλ(I − Yλ)
−1 with sufficiently large μ=Reλ. The main estimate is the

following one.

THEOREM 1.1

Assume that ∂D is strictly convex. Then, there exist positive constants C and

μ0 depending only on C0 in (1.1), C1 in (1.2), and ∂D such that for all λ ∈Cδ0

and μ≥ μ0, Yλ(I − Yλ)
−1 has the integral kernel Y ∞

λ (x, y) which is measurable

for (x, y) ∈ ∂D× ∂D, continuous for x �= y, and has the estimate

(1.3)
∣∣Y ∞

λ (x, y)
∣∣≤C

(
μ+

1

|x− y|
)
e−μ|x−y|, x, y ∈ ∂D.

The advantage of estimate (1.3) is in the form of the exponential term. Note that

for any fixed δ > 0, we can easily obtain the following estimate:

(1.4)
∣∣Y ∞

λ (x, y)
∣∣≤Cδ

(
μ+

1

|x− y|
)
e−(1−δ)μ|x−y|, x, y ∈ ∂D.

To obtain (1.4) with δ > 0, we do not need to assume strict convexity of ∂D.

To take δ = 0 in the above, that is, to obtain (1.3), however, we have to put the

assumption that ∂D is strictly convex and to give more precise analysis on the

boundary integrals. To compare differences between (1.3) and (1.4), we give a

proof of (1.4) in the appendix.

Estimates of some integral kernels based on (1.3) are essentially needed to

solve an inverse problem for a three-dimensional heat equation in thermal imag-

ing. This is one of applications of Theorem 1.1 and the main motivation why we

need to show Theorem 1.1. In Section 7, we introduce this application briefly and

explain the reason why estimate (1.3) is needed to treat this inverse problem.

The complete treatment about this inverse problem is given in another paper

(cf. [1]).

Theorem 1.1 is also useful to obtain asymptotic behavior of the solution of

the resolvent. Varadhan [4] considered the asymptotic behavior as λ −→ ∞ of
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the solution of the problem{
(	− λ2)v = 0 in Ω,

v = 1 on ∂Ω,

where Ω is a bounded domain. As is shown in Varadhan [4], this asymptotic

behavior is very useful to establish the short time asymptotics of the heat kernel.

When v = 0 in some part of the boundary, for example, when Ω has a cavity (i.e.,

a domain D with D ⊂ Ω), the asymptotic behavior may change. Theorem 1.1

can be used to obtain the asymptotic behavior of the solution of the following

problem: {
(	− λ2)w = 0 in Ω \D,
∂w
∂ν + ρ1w = 1 on ∂Ω, ∂w

∂ν + ρ2w = 0 on ∂D,

where ρ1 ∈C(∂Ω) and ρ2 ∈C(∂D), respectively. To keep this paper to an appro-

priate length, we only introduce this application here and do not give any detail.

For the precise treatment, see the forthcoming article [2].

2. Properties of the function given by the length of broken paths

In this and following sections we always assume that ∂D is of class C2,α0 with 0<

α0 ≤ 1. We denote by B(x, r) the open ball centered at x with radius r. The aim

of this section is to study the behavior of the function l(x,y)(z)≡ |x− z|+ |z− y|
with the independent variable z ∈ ∂D and given x, y ∈ ∂D. These properties of

l(x,y)(z) are essential to obtain Theorem 1.1.

We start with describing the following well-known facts.

LEMMA 2.1

(i) There exists a positive constant C such that, for all x, y ∈ ∂D,

|νx − νy| ≤C|x− y|,
∣∣νx · (x− y)

∣∣≤C|x− y|2.

(ii) There exists 0 < r0 such that, for all x ∈ ∂D, ∂D ∩ B(x,2r0) can be

represented as a graph of a function on the tangent plane of ∂D at x; that is, there

exist an open neighborhood Ux of (0,0) in R2 and a function g = gx ∈C2,α0(R2)

with g(0,0) = 0 and ∇g(0,0) = 0 such that the map

Ux � σ = (σ1, σ2) �→ x+ σ1e1 + σ2e2 − g(σ1, σ2)νx ∈ ∂D ∩B(x,2r0)

gives a system of local coordinates around x, where {e1, e2} is an orthogonal basis

for Tx(∂D). Moreover, the norm ‖g‖C2,α0 (R2) has an upper bound independent

of x ∈ ∂D.

In this paper we call this system of coordinates the standard system of local

coordinates around x.

Let r0 be the same constant as Lemma 2.1(ii). From Lemma 2.1(ii) we see

that given x ∈ ∂D and y ∈ ∂D ∩B(x,2r0) with y �= x, the vectors y − x and νx
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are linearly independent. Thus one can choose {e1, e2} in the standard system of

local coordinates around x in such a way that y − x is perpendicular to e2 and

(y− x) · e1 > 0. Therefore one can write

y = x+ σ0
1e1 − g(σ0

1 ,0)νx

with (σ0
1)

2 + g(σ0
1 ,0)

2 < (2r0)
2 and σ0

1 > 0.

Let z be an arbitrary point in ∂D ∩B(x,2r0); z has the expression

z = x+ σ1e1 + σ2e2 − g(σ)νx

with σ2
1 + σ2

2 + g(σ)2 < (2r0)
2. In the following proposition we denote by z′ the

point x+ σ1e1 − g(σ)νx which is the orthogonal projection of z onto the plane

passing x and spanned by the vectors y− x and νx.

PROPOSITION 2.1

Assume that ∂D is strictly convex.

(i) For all z ∈ ∂D ∩B(x,2r0) we have

(2.1) l(x,y)(z)≥ |x− y|+ 1

2

σ2
2

|z − x| .

(ii) One can choose r0 in such a way that there exists 0< r1 < 2r0 such that

for all σ = (σ1, σ2) and σ0 = (σ0
1 ,0) with σ1 < 2σ0

1/3, |σ|< r1, and |σ0|< r1,

(2.2) l(x,y)(z)≥ |x− y|+ c0
|z − x|

(
(σ0

1)
2σ2

1 + σ2
2

)
,

where c0 is a positive constant depending only on ∂D.

REMARK 2.2

In this paper, we choose smaller r0 > 0 if needed. This is always possibly since

in Lemma 2.1(ii), r0 can be arbitrarily small. Note also that r1 > 0 in Proposi-

tion 2.1(ii) is determined by (2.8) in the proof of Proposition 2.1 for sufficiently

small r0 > 0.

Proof

First we give a proof of (2.1). Let z �= x. Since

|y− z|2 =
{
|y− x| − |z − x|

( z − x

|z − x| ·
y− x

|y− x|
)}2

+ |z − x|2
{
1−

( z − x

|z − x| ·
y− x

|y− x|
)2}

,

it follows that

|y− z| ≥ |y− x| − |z − x|
( z − x

|z − x| ·
y− x

|y− x|
)
.

From this we obtain the estimate

(2.3) l(x,y)(z)≥ |y− x|+ |z − x|
(
1− z − x

|z − x| ·
y− x

|y− x|
)
.
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Since

2
(
1− z − x

|z − x| ·
y− x

|y− x|
)
≥

(
1 +

z − x

|z − x| ·
y− x

|y− x|
)(

1− z − x

|z − x| ·
y− x

|y− x|
)

= 1−
( z − x

|z − x| ·
y− x

|y− x|
)2

=
∣∣∣ z − x

|z − x| ×
y− x

|y− x|

∣∣∣2,
we have

(2.4) |z − x|
(
1− z − x

|z − x| ·
y− x

|y− x|
)
≥ 1

2

|(z − x)× (y− x)|2
|z − x||y− x|2 .

From z−z′ = σ2e2, it follows that {(z−z′)× (y−x)} ·e2 = 0. On the other hand,

y− x= σ0
1e1 − g(σ0)νx and z′ − x= σ1e1 − g(σ)νx imply that

(z′ − x)× (y− x) =−
(
σ1g(σ

0)− σ0
1g(σ)

)
e1 × νx = αe2

for some α ∈ R. Hence we have {(z − z′)× (y− x)} · {(z′ − x)× (y− x)}= 0.

Moreover, since z − z′ and y − x are perpendicular to each other, we have

|(z − z′)× (y− x)|= |z − z′||y− x|. Thus this yields∣∣(z − x)× (y− x)
∣∣2 = ∣∣(z − z′)× (y− x)

∣∣2 + ∣∣(z′ − x)× (y− x)
∣∣2

+ 2
{
(z − z′)× (y− x)

}
·
{
(z′ − x)× (y− x)

}
= |z − z′|2|y− x|2 +

∣∣(z′ − x)× (y− x)
∣∣2 ≥ σ2

2 |y− x|2.

Therefore (2.4) gives

(2.5) |z − x|
(
1− z − x

|z − x| ·
y− x

|y− x|
)
≥ 1

2

σ2
2

|z − x| .

Thus from this and (2.3) one gets (2.1).

Let σ1 < 2σ0
1/3. Here we prove another inequality,

(2.6) |z − x|2
(
1− z − x

|z − x| ·
y− x

|y− x|
)
≥ c1(σ

0
1)

2σ2
1 .

Note that (2.3), (2.5), and (2.6) imply (2.2) with c0 =min{c1/2,1/4}. Hence for

finishing the proof of Proposition 2.1, it suffices to show (2.6).

By Lemma 2.1(ii) one can choose R1 > 0 independent of x ∈ ∂D in such a

way that

(2.7)
∣∣g(rω)∣∣≤R1r

2

with arbitrary r > 0 and unit vector ω in R2.

Write (σ1, σ2) = r(ω1, ω2) with a unit vector ω = (ω1, ω2) in R2 and r = |σ|.
Define

(2.8) r1 =
2r0√

1 +R2
1(2r0)

2
< 2r0.

We know from (2.7) that if r < r1, then it holds that r2 + g(rω)2 < (2r0)
2 for all

unit vectors ω. In this case z = x+ rω1e1 + rω2e2 − g(rω)νx satisfies

r ≤ |z − x| ≤ r
√

1 +R2
1r

2
1 ≡ rc1 (0≤ r ≤ r1).
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In what follows we will use this inequality without noticing.

Write

g̃(rω) = r−1g(rω), g̃(σ0
1 ,0) = (σ0

1)
−1g(σ0

1 ,0).

From (2.7) we have g̃(rω) =O(r) and g̃(σ0
1 ,0) =O(σ0

1) uniformly in x ∈ ∂D and

y ∈ ∂D ∩B(x, r1). These yield

z − x

|z − x| ·
y− x

|y− x| =
ω1 + g̃(rω)g̃(σ0

1 ,0)√
1 + g̃(rω)2

√
1 + g̃(σ0

1 ,0)
2

= ω1

(
1− 1

2
g̃(rω)2 +O(r4)

)(
1− 1

2
g̃(σ0

1 ,0)
2 +O

(
(σ0

1)
4
))

+ g̃(rω)g̃(σ0
1 ,0)

(
1 +O(r2)

)(
1 +O

(
(σ0

1)
2
))

= ω1 −
1

2
ω1

(
g̃(σ0

1 ,0)
2 + g̃(rω)2

)
+ g̃(rω)g̃(σ0

1 ,0)

+

4∑
j=0

O
(
r4−j(σ0

1)
j
)
.

From this we obtain

1− z − x

|z − x| ·
y− x

|y− x|

= (1− ω1)
(
1−

∣∣∣ g̃(σ0
1 ,0) + g̃(rω)

2

∣∣∣2)+
∣∣∣ g̃(σ0

1 ,0)− g̃(rω)

2

∣∣∣2(1 + ω1)

+

4∑
j=0

O
(
r4−j(σ0

1)
j
)

(2.9)

= (1− ω1)
(
1 +O

(
(σ0

1)
2
)
+O(r2)

)
+
∣∣∣ g̃(σ0

1 ,0)− g̃(rω)

2

∣∣∣2(1 + ω1)

+

4∑
j=0

O
(
r4−j(σ0

1)
j
)
.

Let 0< ε < 1. Consider the case when ω1 ≥ 1− ε. Since ∂D is C2,α0 and ∂D

is strictly convex, one has the expression

g(σ) = g0(σ) +O
(
|σ|2+α0

)
,

where

g0(σ) = aσ2
1 + 2bσ1σ2 + cσ2

2

with constants a > 0, c > 0, and ac− b2 > 0. Note that a, |b|, c has a positive

upper bound M1 independent of x and r0. Moreover, a has a positive lower bound

M2 independent of x and r0.

Since r(1− ε) ≤ rω1 < 2σ0
1/3, we have O(r) = O(σ0

1). Then one can choose

r0 in such a way that

(2.10) 1 +O
(
(σ0

1)
2
)
+O(r2)≥ 0 (0≤ r ≤ r1, σ

0
1 < r1).
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Further, using |ω2| ≤
√
2ε, 1 − ε ≤ ω1 ≤ 1, and the assumption rω1 = σ1 <

2σ0
1/3, we have

g̃(σ0
1 ,0)− g̃(rω) = aσ0

1 − r(aω2
1 + 2bω1ω2 + cω2

2) +O
(
(σ0

1)
1+α0

)
+O(r1+α0)

= σ0
1

(
a+O

(
(σ0

1)
α0
))

− arω1 · ω1 − 2brω1ω2 − crω1
ω2
2

ω1

≥ σ0
1

(
a+O

(
(σ0

1)
α0
))

− 2

3
aσ0

1 −
4

3
|b|σ0

1

√
2ε− 2

3
cσ0

1

2ε

1− ε

≥ σ0
1

(M2

3
+O

(
(σ0

1)
α0
))

− 4

3
M1σ

0
1

√
2ε− 2

3
M1σ

0
1

2ε

1− ε
.

Here we take a smaller r0 in such a way that

(2.11)
M2

3
+O

(
(σ0

1)
α0
)
≥ M2

6
(σ0

1 < r1).

Then we get

g̃(σ0
1 ,0)− g̃(rω)≥ M2

6
σ0
1 −

4

3
M1σ

0
1

√
2ε− 2

3
M1σ

0
1

2ε

1− ε
.

Therefore if one chooses a small ε in such a way that

M2

6
− 4

3
M1

√
2ε− 2

3
M1

2ε

1− ε
>

M2

24
,

then one gets

(2.12) g̃(σ0
1 ,0)− g̃(rω)≥Cσ0

1 (r < r1, σ
0
1 < r1, σ1 < 2σ0

1/3)

with C =M2/24. Note that the choice of ε is independent of x and r0. So one

can choose r0 satisfying (2.10) and (2.11) in such a way that

(2.13)
(C
2

)2

(σ0
1)

2 +

4∑
j=0

O
(
r4−j(σ0

1)
j
)
≥ 1

2

(C
2

)2

(σ0
1)

2.

Hereafter it is easy to see that, from (2.9), (2.10), (2.12), and (2.13) we obtain

(2.14) 1− z − x

|z − x| ·
y− x

|y− x| ≥ c2(σ
0
1)

2 ≥ c2(σ
0
1)

2ω2
1

with c2 = (C/2)2/2.

Fix ε above. Thus ε is independent of r0. Next consider the case when ω1 <

1− ε.

In this case, from (2.9) we obtain

(2.15) 1− z − x

|z − x| ·
y− x

|y− x| ≥ ε
(
1−O(r20)

)
+O(r40).

Thus if one chooses smaller r0, then one gets from (2.15)

(2.16) 1− z − x

|z − x| ·
y− x

|y− x| ≥
ε

2
=

ε

2r20
r20 ≥

ε

2r20
(σ0

1)
2 ≥ ε

2r20
(σ0

1)
2ω2

1 .

Finally choosing c1 = min{c2, ε/(2r20)}, from (2.14) and (2.16) we obtain (2.6).

�
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PROPOSITION 2.2

Assume that ∂D is strictly convex. Given r0 > 0 there exists a positive constant

c0 such that

(i) for all x, y, z ∈ ∂D with |x− y| ≥ r0, |x− z| ≥ r0/2, and |y − z| ≥ r0/2

we have

l(x,y)(z)≥ |x− y|+ c0;

(ii) for all x, y, z ∈ ∂D with |x− y| ≥ r0, |x− z| ≤ r0/2 we have

l(x,y)(z)≥ |x− y|+ c0|z − x|.

Proof

First we give a proof of (i). Since ∂D is strictly convex, if |x−z|+ |z−y|= |x−y|,
then z = x or z = y. Thus |x− z|+ |z − y| − |x− y|> 0 for all x, y, z ∈ ∂D with

|x−y| ≥ r0, |x−z| ≥ r0/2, and |y−z| ≥ r0/2. Therefore (i) is a consequence of the

compactness of the set {(x, y, z) ∈ ∂D3 | |x−y| ≥ r0, |x−z| ≥ r0/2, |y−z| ≥ r0/2}
and the continuity of the function (x, y, z) �−→ |x− z|+ |z − y| − |x− y|.

Second we give a proof of (ii). From (2.3) we see that it suffices to prove

(2.17) sup
(x,y,z)∈X

z − x

|z − x| ·
y− x

|y− x| < 1,

where X = {(x, y, z) ∈ ∂D3 | |x− y| ≥ r0,0< |x− z| ≤ r0/2}.
Assume that (2.17) is not true. Then there exist sequences {xn}, {yn}, and

{zn} with (xn, yn, zn) ∈X such that, as n−→∞,

(2.18)
zn − xn

|zn − xn|
· yn − xn

|yn − xn|
−→ 1.

Moreover, one may assume that xn −→ x0, yn −→ y0, zn −→ z0, (zn − xn)/|zn −
xn| −→ ϑ for a (x0, y0, z0) ∈ ∂D3 with |x0 − y0| ≥ r0, |x0 − z0| ≤ r0/2, and a unit

vector ϑ.

Since x0 �= y0, from (2.18) we have

ϑ · y0 − x0

|y0 − x0|
= 1,

and thus this yields ϑ= (y0 − x0)/|y0 − x0|. Since ∂D is strictly convex, we have

ϑ · νx0 < 0.

Consider the case when z0 = x0. From Lemma 2.1(i) one gets ϑ · νx0 = 0, a

contradiction.

Next consider the case when z0 �= x0. Then we have (z0 − x0)/|z0 − x0| =
(y0 − x0)/|y0 − x0|. From this one concludes that z0 ∈ ∂D is located on the line

determined by x0 and y0. Since ∂D is strictly convex, we have z0 = y0. However,

we have |y0 − z0| ≥ |x0 − y0| − |x0 − z0| ≥ r0/2, a contradiction. �

3. Basic estimates for integrals on the boundary

In this section, we prepare basic estimates for the boundary integrals appearing

in this paper. We start with describing the following lemma.
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LEMMA 3.1

Let r0 be same as that of Lemma 2.1(ii). There exists a positive constant C

depending only on ∂D such that

(i) for all x ∈ ∂D, 0< ρ′0 ≤ r0, μ > 0, 0≤ k < 2,∫
B(x,ρ′

0)∩∂D

e−μ|x−z|

|x− z|k dSz ≤
C

2− k
min

{
μ−2+k, (ρ′0)

2−k
}
;

(ii) for all x ∈ ∂D, μ > 0, 0≤ k < 2,∫
∂D

e−μ|x−z|

|x− z|k dSz ≤
C

2− k
μ−(2−k)

(
1 +

μ2−ke−μr0

rk0

)
;

(iii) there exists a constant 0< c < 1 such that for all x ∈ ∂D, 0< ρ′0 ≤ r0,

μ > 0, ∫
(B(x,r0)\B(x,ρ′

0))∩∂D

e−μ|x−z|

|x− z|2 dSz ≤Cmin
{
log

r0
cρ′0

,
1

cρ′0μ

}
;

(iv) for all x ∈ ∂D, 0< ρ′0 ≤ r0, μ > 0, 0< γ < 1,∫
B(x,ρ′

0)∩∂D

e−μ|x−z|

|x− z| log
r0

|x− z| dSz ≤min
{
Cμ−1

(
1 +max{0, logμ}

)
,Cγμ

−1+γ
}
.

Lemma 3.1(i) and (ii) have already been given as [1, Lemma 6.1(i), (ii)]. Since

the estimates in Lemma 3.1 frequently appear in this and the following sections,

we present here all the proofs of (i)–(iv).

Proof of Lemma 3.1

Let z = s(σ) be the standard system of local coordinates around x with |σ|2 +
g(σ)2 < (2r0)

2. We have∫
B(x,ρ′

0)∩∂D

e−μ|x−z|

|x− z|k dSz =

∫
|σ|2+g(σ)2<(ρ′

0)
2

e−μ
√

|σ|2+g(σ)2

(|σ|2 + g(σ)2)k/2

√
1 +

∣∣∇g(σ)
∣∣2 dσ

≤ C

∫ ρ′
0

0

∫ 2π

0

e−μr

rk
r dr dθ ≤ 2πC

∫ ρ′
0

0

e−μrr1−k dr.

Since ∫ ρ′
0

0

e−μrr1−k dr ≤
∫ ρ′

0

0

r1−k dr =
(ρ′0)

2−k

2− k

and∫ ρ′
0

0

e−μrr1−k dr = μk−2

∫ μρ′
0

0

e−rr1−k dr ≤ μk−2

∫ ∞

0

e−rr1−k dr ≤ 3

2− k
μk−2,

we get (i). To verify (ii) we compute∫
∂D\B(x,r0)

e−μ|x−z|

|x− z|k dSz ≤ e−r0μ

∫
∂D

1

rk0
dSz ≤

C

rk0
e−r0μ.

From this and (i) for ρ′0 = r0 we obtain (ii).
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From (2.7), we have |g(σ)| ≤ R1|σ|2 for |σ|2 + g(σ)2 < (2r0)
2. Since ρ′0 ≤√

σ2 + |g(σ)|2 ≤ r0 implies cρ′0 ≤ |σ| ≤ r0 with c= 1/
√
1 +R2

1r
2
0 (< 1) indepen-

dent of x ∈ ∂D, we get∫
(B(x,r0)\B(x,ρ′

0))∩∂D

e−μ|x−z|

|x− z|2 dSz ≤C

∫ r0

cρ′
0

e−μr

r
dr.

Note that∫ r0

cρ′
0

e−μr

r
dr ≤min

{∫ r0

cρ′
0

r−1 dr,
1

cρ′0

∫ r0

cρ′
0

e−μr dr
}
≤min

{
log

r0
cρ′0

,
1

cρ′0μ

}
.

Thus we obtain (iii).

Finally it follows that∫
B(x,ρ′

0)∩∂D

e−μ|x−z|

|x− z| log
r0

|x− z| dSz ≤C

∫ ρ′
0

0

e−μr log
r0
r
dr.

Since

0≤ log
(r0μ

r

)
≤ log r0 +max{0, logμ}+ | log r| (0< r ≤ r0μ),

one gets∫ ρ′
0

0

e−μr log
r0
r
dr = μ−1

∫ ρ′
0μ

0

e−r log
(r0μ

r

)
dr ≤Cμ−1

(
1 +max{0, logμ}

)
.

Noting also that supX≥1X
−γ logX <∞ for each fixed γ > 0, we obtain (iv) since∫ ρ′

0

0

e−μr log
r0
r
dr ≤Cγ

∫ ρ′
0

0

e−μr
(r0
r

)γ

dr ≤Cγμ
−1+γ . �

We choose x, y ∈ ∂D arbitrary and set ρ0 = |x−y|. Given ε > 0 set S−
ε (y) = ∂D \

B(y, ε), Sε(y) = ∂D∩B(y, ε) and also S−
ε (x) = ∂D\B(x, ε), Sε(x) = ∂D∩B(x, ε).

We consider the following integral:

(3.1)

∫
∂D

e−μ(|x−z|+|z−y|) dSz ≤ I−,1(x, y) + I−,2(x, y) + I+(x, y),

where

I−,1(x, y) =

∫
S−
ρ0 (x)

e−μ(|x−z|+|z−y|) dSz,

I−,2(x, y) =

∫
S−
ρ0 (y)

e−μ(|x−z|+|z−y|) dSz,

I+(x, y) =

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz.

By Lemma 3.1(ii) for k = 0 and μ≥ 1 we have∫
∂D

e−μ|y−z| dSz +

∫
∂D

e−μ|x−z| dSz ≤Cμ−2.
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This gives

(3.2) I−,1(x, y)≤ e−μρ0

∫
S−
ρ0 (x)

e−μ|z−y| dSz ≤Cμ−2e−μρ0 ;

similarly

(3.3) I−,2(x, y)≤Cμ−2e−μρ0 .

Next we estimate I+(x, y), which is essential to obtain Theorem 1.1.

PROPOSITION 3.1

Assume that ∂D is strictly convex. Then, there exist positive constants r1 > 0

and C > 0 depending only on ∂D such that, for μ ≥ 1, the following estimates

are valid.

(i) For ρ0 ≤ r1,

(3.4) I+(x, y)≤Ce−μρ0 min
{ρ

3/2
0√
μ
,

1

μ2ρ30

}
.

(ii) For ρ0 ≥ r1,

(3.5) I+(x, y)≤Ce−μρ0μ−2.

REMARK 3.1

From (3.1)–(3.5), for all x, y ∈ ∂D and μ≥ 1 the following estimate is valid:

(3.6)

∫
∂D

e−μ(|x−z|+|z−y|) dSz ≤Cμ−2e−μρ0

(
1 +min

{
(μρ0)

3/2,
1

ρ30

})
.

Hence noting that 1 +min{a, b} ≤ 2max{1, a}, from (3.6) we obtain

(3.7)

∫
∂D

e−μ(|x−z|+|z−y|) dSz ≤Cμ−2e−μρ0 (ρ0 ≥ r1/2).

Proof of Proposition 3.1

For z, y ∈ ∂D ∩B(x,2r0) we use the same local coordinates σ, σ0 with σ0
1 > 0,

respectively, around x as used in Proposition 2.1 and denote by σ̃, σ̃0 with σ̃0
1 > 0,

respectively, the local coordinates for z,x ∈ ∂D∩B(y,2r0), respectively, obtained

by changing the roles of x and y.

Set

B′
x(0,2σ

0
1/3) =

{
σ ∈R2

∣∣ |σ|< ρ0, σ1 < 2σ0
1/3

}
,

B′
y(0,2σ̃

0
1/3) =

{
σ̃ ∈R2

∣∣ |σ̃|< ρ0, σ̃1 < 2σ̃0
1/3

}
,

Bx(0,2σ
0
1/3) =

{
z ∈ ∂D

∣∣ σ ∈B′
x(0,2σ

0
1/3)

}
,

By(0,2σ̃
0
1/3) =

{
z ∈ ∂D

∣∣ σ̃ ∈B′
y(0,2σ̃

0
1/3)

}
.

Let r1 be given by (2.8) in the proof of Proposition 2.1(ii). Here we claim that if

r0 is sufficiently small and ρ0 ≤ r1, then

(3.8) Sρ0(x)∩ Sρ0(y)⊂Bx(0,2σ
0
1/3)∪By(0,2σ̃

0
1/3).
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This is proved as follows. Let z ∈ Sρ0(x)∩ Sρ0(y). Then we have

(i) (z − x) · (y− x)/|y− x| ≤ ρ0/2 or

(ii) −(z − y) · (y− x)/|y− x| ≤ ρ0/2.

Consider the case (i). Since (z − x) · (y− x) = σ1σ
0
1 + g(σ)g(σ0

1 ,0) and the strict

convexity of ∂D yields g(σ)g(σ0
1 ,0)≥ 0, we get σ1σ

0
1 ≤ ρ20/2. It follows from this,

(2.7), and (2.8) that

σ1 ≤
ρ20
2σ0

1

=
σ0
1

2

( ρ0
σ0
1

)2

=
σ0
1

2

{
1 +

(g(σ0
1 ,0)

σ0
1

)2}
≤ σ0

1

2

(
1 +R2

1(σ
0
1)

2
)
,

which yields σ1 ≤ σ0
1(1 + R2

1(2r0)
2)/2. Now choose r0 in such a way that

R2
1(2r0)

2 < 1/3. Then we get z ∈ Bx(0,2σ
0
1/3). Similarly, for case (ii) we get

z ∈By(0, σ̃
0
1/3). This completes the proof of (3.8).

Now we fix r0 as above. First we consider the case when ρ0 ≤ r1, where r1 > 0

is given in Proposition 2.1(ii). Property (3.8) gives

(3.9) I+(x, y)≤ I+,1(x, y) + I+,2(x, y),

where

I+,1(x, y) =

∫
Bx(0,2σ0

1/3)

e−μ(|x−z|+|z−y|) dSz,

I+,2(x, y) =

∫
By(0,2σ̃0

1/3)

e−μ(|x−z|+|z−y|) dSz.

For the estimation of I+,1(x, y) we introduce the polar coordinates σ1 =

r cosθ, σ2 = r sinθ, r > 0, |θ| ≤ π. From (2.7) we have |g(σ)| ≤ R1rr1 and

|g(σ0
1 ,0)| ≤R1|σ0

1 |r1. These yield

r

|z − x| =
1√

1 + (g(σ)/r)2
≥ 1√

1 + (R1r1)2
,

|σ0
1 |

ρ0
≥ 1√

1 + (R1r1)2
.

Thus it follows from Proposition 2.1(ii) that, for all σ ∈B′
x(0,2σ

0
1/3),

|x− z|+ |z − y| ≥ ρ0 +
c1
r
(ρ20σ

2
1 + σ2

2),

where c1 > 0 depends only on ∂D.

Noting that

ρ20σ
2
1 + σ2

2 = r2(ρ20 cos
2 θ+ sin2 θ) = r2

(
ρ20 + (1− ρ20) sin

2 θ
)

and

| sinθ| ≥ 2

π
f(θ), |θ| ≤ π

with

f(θ) =

⎧⎪⎪⎨
⎪⎪⎩
|θ| if |θ| ≤ π/2,

|π− θ| if π/2≤ θ ≤ π,

|π+ θ| if − π ≤ θ ≤−π/2,
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one gets

|x− z|+ |z − y| ≥ ρ0 + c2r
(
ρ20 + f(θ)2

)
, σ = (r cosθ, r sinθ) ∈B′

x(0,2σ
0
1/3)

provided r0 is sufficiently small if necessary. Thus we obtain

I+,1(x, y) ≤ Ce−μρ0

∫ ρ0

0

∫ π

−π

e−μc2r(ρ
2
0+f(θ)2)r dr dθ

≤ Ce−μρ0

∫ ρ0

0

e−μc2rρ
2
0

(∫ π

−π

e−μc2rf(θ)
2

dθ
)
r dr(3.10)

= 4Ce−μρ0

∫ ρ0

0

e−μc2rρ
2
0

(∫ π/2

0

e−μc2rθ
2

dθ
)
r dr.

Since ∫ π/2

0

e−μc2rθ
2

dθ ≤ 1
√
μc2r

∫ ∞

0

e−θ2

dθ =
1

2

√
π

μc2r
,

it follows from (3.10) that

I+,1(x, y) ≤ 2Ce−μρ0

∫ ρ0

0

e−μc2rρ
2
0

√
π

μc2r
r dr

(3.11)

= 2C

√
π

μc2
e−μρ0

∫ ρ0

0

e−μc2rρ
2
0
√
r dr.

Since ∫ ρ0

0

e−μc2rρ
2
0
√
r dr ≤min

{∫ ρ0

0

√
r dr,

2

(μc2)3/2ρ30

∫ ∞

0

e−s2s2 ds
}
,

from (3.11) we obtain

(3.12) I+,1(x, y)≤Ce−μρ0 min
{ρ

3/2
0√
μ
,

1

μ2ρ30

}
.

We see that I+,2(x, y) also has the same estimate as (3.12). Thus from (3.9) one

gets (3.4).

Next consider the case when ρ0 > r1. Set

S1 =
{
z ∈ Sρ0(x)∩ Sρ0(y)

∣∣ |z − x| ≤ r1/2
}
,

S2 =
{
z ∈ Sρ0(x)∩ Sρ0(y)

∣∣ |z − y| ≤ r1/2
}
,

S3 =
{
z ∈ Sρ0(x)∩ Sρ0(y)

∣∣ |z − x| ≥ r1/2, |z − y| ≥ r1/2
}
.

Since Sρ0(x)∩ Sρ0(y)⊂ S1 ∪ S2 ∪ S3, we have

I+(x, y)≤
3∑

k=1

I+,k(x, y),

where

I+,k(x, y) =

∫
Sk

e−μ(|x−z|+|z−y|) dSz (k = 1,2,3).
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From Proposition 2.2(ii) with r0 = r1 and Lemma 3.1(ii) with k = 0 we obtain

I+,1(x, y)≤ e−μρ0

∫
∂D

e−μc0|x−z| dSz ≤Cμ−2e−μρ0

and also the same estimate for I+,2(x, y). For I+,3(x, y) we make use of Proposi-

tion 2.2(i) with r0 = r1 and get

I+,3(x, y)≤ e−μρ0

∫
∂D

e−μc0 dSz =Ce−μρ0e−μc0 .

Therefore we obtain (3.5). This completes the proof of Proposition 3.1. �

4. Estimates for repeated integral kernels, I

This and subsequent sections are essential for the study of the integral kernel

of the operator Yλ(I − Yλ)
−1 as |λ| −→ ∞. Since one has the Neumann series

expansion (I − Yλ)
−1 =

∑∞
n=0(Yλ)

n as |λ| −→ ∞, first we study the integral

kernels of (Yλ)
n, n = 1,2, . . . , which are called the repeated integral kernels.

Since it seems to be hard to treat (Yλ)
n = (Kλ + K̃λ)

n directly, we first consider

the repeated kernels of Kλ. This is the main subject of this section.

Using Kλ(x, y) in Section 1, we define the functions K
(n)
λ (x, y), n= 1,2, . . .

by the formula

K
(n+1)
λ (x, y) =

∫
∂D

K
(n)
λ (x, z)Kλ(z, y)dSz, n= 1,2, . . .

and

K
(1)
λ (x, y) =Kλ(x, y).

We see that the integral kernel of the operator Kn
λ is given by function K

(n)
λ (x, y),

that is,

Kn
λh(x) =

∫
∂D

K
(n)
λ (x, y)h(y)dSy, n= 1,2, . . . .

In this section we always assume that ∂D is strictly convex and ∂D is of

class C2,α0 with 0<α0 ≤ 1. The main result of this section is the following one.

THEOREM 4.1

There exist positive constants C and μ0 depending only on C0 in (1.1) and ∂D

such that, for all λ ∈Cδ0 and μ≥ μ0 the operator I−Kλ is invertible and Kλ(I−
Kλ)

−1 has an integral kernel K∞
λ (x, y) which is measurable for (x, y) ∈ ∂D×∂D,

continuous for x �= y, and has the estimate∣∣K∞
λ (x, y)

∣∣≤Cμe−μ|x−y|, x, y ∈ ∂D.

The estimate given in Theorem 4.1 is crucial for the study of the integral kernel

of Yλ(I−Yλ)
−1. Note that Theorem 4.1 is immediately obtained by the following

proposition.
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PROPOSITION 4.1

There exist positive constants C and μ0 depending only on C0 in (1.1) and ∂D

such that, for all λ ∈Cδ0 with μ≥ μ0,∣∣K(n+1)
λ (x, y)

∣∣≤Cμe−μ|x−y|
(1
2

)n

, x, y ∈ ∂D,n= 0,1,2, . . . .

The rest of this section is to devoted to obtaining Proposition 4.1.

REMARK 4.1

Using (3.1)–(3.5), we can immediately obtain the following estimates of the

repeated kernel K
(2)
λ (x, y): there exist r1 > 0 and C > 0 depending only on C0 in

(1.1) and ∂D such that, for all λ ∈Cδ0 with μ=Reλ≥ 1,

(i) for all x, y ∈ ∂D with |x− y| ≥ r1,∣∣K(2)
λ (x, y)

∣∣≤Ce−μ|x−y|;

(ii) for all x, y ∈ ∂D with |x− y| ≤ r1,∣∣K(2)
λ (x, y)

∣∣≤Ce−μ|x−y|max
{
1, μ

(
μ|x− y|3

)1/2}
;

(iii) for all x, y ∈ ∂D with |x− y| ≤ r1,∣∣K(2)
λ (x, y)

∣∣≤Ce−μ|x−y|max
{
1,

1

|x− y|3
}
.

However, note that these are not used to show Theorem 1.1.

4.1. Estimation of K(n+1)
λ (x, y)

It seems to be hard to show Proposition 4.1 directly. In our proof, we need to

divide two steps. In this subsection, as in the first step, we prove the following

estimate of the repeated kernel.

PROPOSITION 4.2

Let Kλ be a bounded measurable function on ∂D×∂D with the parameter λ ∈Cδ0 ,

continuous for all x, y ∈ ∂D, x �= y, and let it satisfy (1.1). Choose the r0 in

Lemma 2.1(ii) sufficiently small, and let 0 < r1 < 2r0 be given by (2.8) in the

proof of Proposition 2.1(ii). Then, there exists a positive constant C2 such that,

for all x, y ∈ ∂D, λ ∈Cδ0 with μ=Reλ≥ 1, and n= 0,1,2, . . . ,∣∣K(n+1)
λ (x, y)

∣∣≤Cn
2 C

n+1
0 μ(2−n)/2e−μ|x−y|Φ(n)

μ

(
min

{
|x− y|3, r31

})
,

where

Φ(n)
μ (α) =

n∑
p=0

1

p!

(2μ
3

)p

αp/2, α≥ 0.

Proof

We employ an induction argument. It suffices to prove the following statement. If
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(4.1)
∣∣K(n+1)

λ (x, y)
∣∣≤ C̃nC0μ

(2−n)/2e−μ|x−y|Φ(n)
μ

(
|x− y|3

)
, |x− y| ≤ r1

and

(4.2)
∣∣K(n+1)

λ (x, y)
∣∣≤ C̃nC0μ

(2−n)/2e−μ|x−y|Φ(n)
μ (r31), |x− y| ≥ r1,

then there exists a positive constant C2 independent of n such that∣∣K(n+2)
λ (x, y)

∣∣
(4.3)

≤C2C̃nC0μ
(2−n−1)/2e−μ|x−y|Φ(n+1)

μ

(
|x− y|3

)
, |x− y| ≤ r1,

and ∣∣K(n+2)
λ (x, y)

∣∣
(4.4)

≤C2C̃nC0μ
(2−n−1)/2e−μ|x−y|Φ(n+1)

μ (r31), |x− y| ≥ r1.

The size of r0 which is independent of n (and x, y ∈ ∂D) will be clarified in this

induction step. Since Φ
(0)
μ (α) = 1, from (1.1) one can see that for n= 0, (4.1) and

(4.2) are satisfied with C̃0 = 1. Set ρ0 = |x− y|.

4.1.1. The case when ρ0 ≤ r1: Proof of (4.3)

Since Sρ0(x)⊂ S2r1(x), we have

∂D = S−
2r1

(x)∪
(
S−
ρ0
(x)∩ S2r1(x)

)
∪
(
S−
ρ0
(y)∩ S2r1(x)

)
∪
(
Sρ0(x)∩ Sρ0(y)

)
.

From this and the definition of K
(n+2)
λ (x, y) we get

∣∣K(n+2)
λ (x, y)

∣∣ ≤ ∫
∂D

∣∣K(n+1)
λ (x, z)

∣∣∣∣Kλ(z, y)
∣∣dSz

(4.5)
≤ I1 + I2 + I3 + I4,

where I1, I2, I3, and I4 are the integrals of the function |K(n+1)
λ (x, z)||Kλ(z, y)|

over the domains S−
2r1

(x), S−
ρ0
(x)∩S2r1(x), S

−
ρ0
(y)∩S2r1(x), and Sρ0(x)∩Sρ0(y),

respectively.

First we give an estimate for I1. Since |z−x| ≥ 2r1 > r1 for z ∈ S−
2r1

(x), from

(1.1) and (4.2) we get

I1 ≤ C̃nC
2
0μ

(2−n)/2+1Φ(n)
μ (r31)

∫
S−
2r1

(x)

e−μ(|x−z|+|z−y|) dSz

(4.6)

≤ C̃nC
2
0μ

(2−n)/2+1e−2μr1Φ(n)
μ (r31)

∫
∂D

e−μ|z−y| dSz.

Note that

e−2μr1Φ(n)
μ (r31) ≤ e−μr1e−μr1e2μr

3/2
1 /3

≤ e−μρ0e−μr1+2μr
3/2
1 /3

and 2r
3/2
1 /3− r1 = 2r1(

√
r1 − 3/2)/3. Thus choosing r0 in such a way that

r1 ≤
(3
2

)2

,
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and using Lemma 3.1(ii), from (4.6) one obtains

I1 ≤ C̃nC
2
0Cμ(2−n)/2+1−2e−μρ0 = C̃nC

2
0Cμ−n/2e−μρ0

(4.7)
= C̃nC

2
0Cμ(2−n−1)/2μ−1/2e−μρ0 ≤ C̃nC

2
0Cμ(2−n−1)/2e−μρ0 .

Second we give an estimate for I4. From (1.1), (4.1), and ρ0 ≤ r1 we have

I4 ≤ C̃nC
2
0μ

(2−n)/2+1

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)Φ(n)
μ

(
|x− z|3

)
dSz

≤ C̃nC
2
0μ

(4−n)/2
n∑

p=0

1

p!

(2μ
3

)p

(4.8)

×
∫
Sρ0 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz.

Here we claim that∫
Sρ0 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

(4.9)

≤ C̃μ−3/2e−μρ0
2μ

3(p+ 1)
ρ
3(p+1)/2
0 .

This is proved as follows. Recalling the proof of (3.4) and Proposition 2.1(i), for

z = x+ σ1e1 + σ2e2 − g(σ)νx ∈ Sρ0(x) with σ = (r cosθ, r sinθ) we have

(4.10) |x− z|+ |z − y| ≥ ρ0 + c|x− z|f(θ)2

provided r0 is sufficiently small if necessary. Thus one gets∫
Sρ0 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤
∫
Sρ0 (x)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

(4.11)

≤ C̃e−μρ0

∫ π

−π

dθ

∫ r(θ)

0

e−μc
√

r2+g(r cosθ,r sin θ)2f(θ)2

×
(
r2 + g(r cosθ, r sinθ)2

)3p/4
r dr,

where r(θ)> 0 satisfies ρ0 =
√

r(θ)2 + g(r(θ) cosθ, r(θ) sinθ)2.

For each fixed θ consider the change of variable r −→ ρ:

ρ=
√
r2 + g(r cosθ, r sinθ)2, 0≤ r ≤ r(θ).

Since ∣∣∣dρ
dr

∣∣∣= 1

ρ

∣∣r+ g(σ)
(
∂σ1g(σ) cosθ+ ∂σ2g(σ) sinθ

)∣∣≥ r

ρ
(1− C̃r2),

we have ∣∣∣dρ
dr

∣∣∣≥ C̃r

ρ
,
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that is,

(4.12)
∣∣∣dr
dρ

∣∣∣≤ C̃ρ

r

provided that r0 is sufficiently small if necessary. A combination of (4.11) and

(4.12) gives ∫
Sρ0 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ C̃e−μρ0

∫ π

−π

dθ

∫ ρ0

0

e−μcρf(θ)2ρ3p/2ρdρ

≤ 4C̃e−μρ0

∫ ρ0

0

ρ3p/2+1
(∫ π/2

0

e−μcρθ2

dθ
)
dρ

≤ 4C̃μ−1/2

∫ ρ0

0

ρ(3p+1)/2
(∫ √

μρπ/2

0

e−cθ2

dθ
)
dρ

≤ 4C̃

∫ ∞

0

e−cθ2

dθμ−1/2

∫ ρ0

0

ρ(3p+1)/2 dρ.

This yields (4.9). A combination of (4.8) and (4.9) gives

(4.13) I4 ≤ C̃nC̃C2
0μ

(2−n−1)/2e−μρ0Φ(n+1)
μ (ρ30).

Third we give an estimate for I2. Since Φ
(n)
μ is monotone increasing, it follows

from (4.1) and (4.2) that (4.1) is valid for all x, y ∈ ∂D. This gives

I2 ≤ C̃nC
2
0μ

(2−n)/2+1

(4.14)

×
n∑

p=0

1

p!

(2μ
3

)p
∫
S−
ρ0 (x)∩S2r1 (x)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz.

Here we describe a lemma concerned with the integral in the right-hand side

of (4.14).

LEMMA 4.1

There exists a positive constant C̃ such that, for all p= 0,1,2, . . . , x, y ∈ ∂D with

ρ0 = |x− y| ≤ r1 and μ > 0,

(i) if μρ0 ≥ p, then∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ C̃μ−1/2e−μρ0
1

p+ 1
ρ
3(p+1)/2
0 ;

(ii) if μρ0 ≤ p, then∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ C̃e−μρ0μ−(p+3/2)p!(23/2e)pρ
(p+1)/2
0 ;
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(iii) we have∫
S−
ρ0 (x)∩S2r1 (x)∩S−

ρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ C̃e−μρ0μ−(p+2)(p+ 1)!(2r1)
p/2.

We give the proof of this lemma later and continue to estimate I2. From (4.14)

and Lemma 4.1 we obtain

I2 ≤ C̃nC̃C2
0μ

(2−n−1)/2+1e−μρ0

n∑
p=0

1

p!

(2μ
3

)p{ 1

p+ 1
ρ
3(p+1)/2
0

+ μ−(p+1)p!(23/2e)pρ
(p+1)/2
0 + μ−(p+3/2)(p+ 1)!(2r1)

p/2
}

≤ C̃nC̃C2
0μ

(2−n−1)/2e−μρ0

{ n∑
p=0

1

p!

(2μ
3

)p μ

p+ 1
ρ
3(p+1)/2
0(4.15)

+

n∑
p=0

1

p!

(2μ
3

)p

μ−pp!(23/2e)pρ
(p+1)/2
0

+

n∑
p=0

1

p!

(2μ
3

)p

μ−(p+1/2)(p+ 1)!(2r1)
p/2

}
.

Here we estimate the right-hand side of (4.15) term by term. First we have

n∑
p=0

1

p!

(2μ
3

)p μ

p+ 1
ρ
3(p+1)/2
0 =

3

2

n+1∑
p=1

1

p!

(2μ
3

)p

ρ
3p/2
0

(4.16)

≤ 3

2
Φ(n+1)

μ (ρ30).

Second we have
n∑

p=0

1

p!

(2μ
3

)p

μ−pp!(23/2e)pρ
(p+1)/2
0 =

n∑
p=0

(25/2e
3

)p

ρ
(p+1)/2
0

≤√
r1

n∑
p=0

(25/2e√r1
3

)p

.

Thus choosing r0 in such a way that

(4.17)
25/2e

√
r1

3
≤ 1

2
,

we obtain

(4.18)

n∑
p=0

1

p!

(2μ
3

)p

μ−pp!(23/2e)pρ
(p+1)/2
0 ≤ 3

25/2e
.
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Third for r0 satisfying (4.17) we get

n∑
p=0

1

p!

(2μ
3

)p

μ−(p+1/2)(p+ 1)!(2r1)
p/2 = μ−1/2

n∑
p=0

(p+ 1)
(23/2√r1

3

)p

(4.19)
≤ 4.

Now from (4.15), (4.16), (4.18) and (4.19) we obtain

(4.20) I2 ≤ C̃nC̃C2
0μ

(2−n−1)/2e−μρ0Φ(n+1)
μ (ρ30)

for r0 satisfying (4.17).

Finally we estimate I3. Similarly to (4.14) we have

I3 ≤ C̃nC
2
0μ

(2−n)/2+1
n∑

p=0

1

p!

(2μ
3

)p

×
∫
S−
ρ0 (y)∩S2r1 (x)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz.

Since |z − y| ≥ ρ0 for z ∈ S−
ρ0
(y), we get

I3 ≤ C̃nC
2
0μ

(2−n)/2+1e−μρ0

n∑
p=0

1

p!

(2μ
3

)p

(4.21)

×
∫
S2r1 (x)

|x− z|3p/2e−μ|x−z| dSz.

Here we claim a lemma concerned with an estimate for the integral in

the right-hand side of (4.21). The proof is almost identical with that of Lem-

ma 4.1(iii).

LEMMA 4.2

There exists a positive constant C̃ such that, for all p= 0,1,2, . . . , x ∈ ∂D, a > 0,

and μ > 0,∫
S2r1 (x)

|x− z|3p/2e−μ|x−z| dSz ≤ C̃(2r1)
p/2μ−(p+2)(p+ 1)!.

The proof is given at the end of this subsection, and we continue to estimate I3.

From Lemma 4.2 and (4.21) we get

I3 ≤ C̃nC̃C2
0μ

(2−n−1)/2μ−1/2e−μρ0

n∑
p=0

(23/2√r1
3

)p

(p+ 1)

≤ C̃n4C̃C2
0μ

(2−n−1)/2μ−1/2e−μρ0(4.22)

≤ C̃n4C̃C2
0μ

(2−n−1)/2e−μρ0

provided that r0 satisfies (4.17). Now from (4.5), (4.7), (4.13), (4.20), and (4.22)

we conclude that (4.3) is valid.
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4.1.2. The case when ρ0 ≥ r1: Proof of (4.4)

Since Φ
(n)
μ is monotone increasing, it follows from (4.1) and (4.2) that (4.2) is

valid for all x, y ∈ ∂D. Since ρ0 ≥ r1/2, it follows from the definition of K
(n+2)
λ

and (3.7) that∣∣K(n+2)
λ (x, y)

∣∣ ≤ C̃nC
2
0μ

(2−n)/2μΦ(n)
μ (r31)

∫
∂D

e−μ(|x−z|+|z−y|) dSz

≤ C̃nCC2
0μ

(2−n−1)/2μ−1/2e−μρ0Φ(n)
μ (r31)

≤ C̃nCC2
0μ

(2−n−1)/2e−μρ0Φ(n+1)
μ (r31).

Thus (4.4) is valid. This completes the proof of Proposition 4.2. �

4.1.3. Proof of Lemma 4.1

Set ρ= |x− z|. Since |z − y| ≥ |x− z| − |x− y|, we have

|x− z|+ |z − y| ≥ 2ρ− ρ0 = ρ0 + 2ρ0

( ρ

ρ0
− 1

)
.

A combination of this and (4.10) gives

|x− z|+ |y− z| ≥ 7

8

{
ρ0 + 2ρ0

( ρ

ρ0
− 1

)}
+

1

8

(
ρ0 + cρf(θ)2

)
(4.23)

= ρ0 +
7

4
ρ0

( ρ

ρ0
− 1

)
+ c̃ρf(θ)2.

Set

s=
ρ

ρ0
− 1.

We have ρ= ρ0(1 + s), and this together with (4.23) gives

|x− z|3p/2e−μ(|x−z|+|z−y|) ≤ ρ3p/2e−μρ0e−μ 7
4ρ0(

ρ
ρ0

−1)e−c̃μρf(θ)2

(4.24)
= e−μρ0ρ

3p/2
0 (1 + s)3p/2e−μ 7

4ρ0se−c̃μρf(θ)2 .

Let z ∈ S−
ρ0
(x)∩S2r1(x)∩Sρ0(y). Since |z−x| ≥ ρ0 and |z− y| ≤ ρ0, we have

ρ0 ≤ ρ≤ 2ρ0. Thus s in (4.24) has the bound 0≤ s≤ 1.

First we give a proof of (i). Let μρ0 ≥ p. Since er ≥ 1 + r for r ≥ 0, we have

(1 + r)3/2e−
7
4 r ≤ (1 + r)−1/4. Combining this with (4.24), we get

|x− z|3p/2e−μ(|x−z|+|z−y|) ≤ e−μρ0ρ
3p/2
0 (1 + s)3μρ0/2e−

7
4μρ0se−c̃μρf(θ)2

= e−μρ0ρ
3p/2
0

(
(1 + s)3/2e−

7
4 s
)μρ0

e−c̃μρf(θ)2

(4.25)
≤ e−μρ0ρ

3p/2
0

(
(1 + s)−1/4

)μρ0
e−c̃μρf(θ)2

= e−μρ0ρ
3p/2
0

( ρ

ρ0

)−μρ0/4

e−c̃μρf(θ)2 .

Using the polar coordinate z = x+ r cosθe1 + r sinθe2 − g(r cosθ, r sinθ)νx, one

gets from (4.25),
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∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤
∫
S2ρ0 (x)\Sρ0 (x)

e−μρ0ρ
3p/2
0

( |x− z|
ρ0

)−μρ0/4

e−c̃μ|x−z|f(θ)2 dSz(4.26)

≤Ce−μρ0ρ
3p/2
0

∫ π

−π

dθ

∫ R2ρ0 (θ)

Rρ0 (θ)

(ρ(r, θ)
ρ0

)−μρ0/4

e−c̃μρ(r,θ)f(θ)2r dr,

where ρ(r, θ) =
√

r2 + (g(r cosθ, r sinθ))2; ρ(R2ρ0(θ), θ) = 2ρ0; and ρ(Rρ0(θ),

θ) = ρ0. For each fixed θ consider the change of variable r −→ ρ(r, θ), Rρ0(θ)≤
r ≤R2ρ0(θ). Using (4.12), we obtain∫ π

−π

dθ

∫ R2ρ0 (θ)

Rρ0 (θ)

(ρ(r, θ)
ρ0

)−μρ0/4

e−c̃μρ(r,θ)f(θ)2r dr

≤C

∫ π

−π

dθ

∫ 2ρ0

ρ0

( ρ

ρ0

)−μρ0
4

e−c̃μρf(θ)2ρdρ

= 4C

∫ π/2

0

dθ

∫ 2ρ0

ρ0

( ρ

ρ0

)−μρ0/4

e−c̃μρθ2

ρdρ

(4.27)

= 4C

∫ 2ρ0

ρ0

( ρ

ρ0

)−μρ0/4(∫ π/2

0

e−c̃μρθ2

dθ
)
ρdρ

≤ C̃

∫ 2ρ0

ρ0

( ρ

ρ0

)−μρ0/4 ρ
√
μρ

dρ=
C̃
√
μ
ρ
3/2
0

∫ 2

1

t−
μρ0
4 + 1

2 dt

≤ C
√
μμρ0

ρ
3/2
0 .

Note that we made use of the estimate∫ 2

1

t−
μρ0
4 + 1

2 dt=

∫ 2

1

t−
μρ0
4 −1t3/2 dt≤ 23/2

∫ 2

1

t−
μρ0
4 −1 dt≤ 27/2

μρ0
.

Hence for p≥ 1, a combination of (4.26) and (4.27) gives∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤Ce−μρ0ρ
3p/2
0

ρ
3/2
0√
μμρ0

≤Cμ−1/2e−μρ0ρ
3(p+1)/2
0

1

p

≤ 2Cμ−1/2e−μρ0ρ
3(p+1)/2
0

1

p+ 1
.

For p= 0, note that (4.23) implies also that

e−μ(|x−z|+|z−y|)) ≤ e−μρ0e−μc̃ρf(θ)2 .

From this estimate, the same argument as for obtaining (4.26) and (4.27) yields
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∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz

≤Ce−μρ0

∫ π

−π

dθ

∫ R2ρ0 (θ)

Rρ0 (θ)

e−μc̃ρf(θ)2r dr

≤Ce−μρ0

∫ 2ρ0

ρ0

ρ
√
μρ

dρ≤Cμ−1/2e−μρ0(2ρ0)
3/2.

This completes the proof of (i).

Second we give a proof of (ii). Let μρ0 ≤ p. Since |x − z| + |z − y| ≥ ρ0,

similarly to (4.26) and (4.27), it follows that∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ C̃e−μρ0ρ
3p/2
0

∫ π

−π

dθ

∫ 2ρ0

ρ0

( ρ

ρ0

)3p/2

ρdρ

(4.28)

≤ C̃e−μρ0ρp+1
0 ρ

p/2+1
0

2
3p
2

p+ 1

≤ C̃e−μρ0μ−(p+1)ρ
p/2+1
0 (p+ 1)p+1 2

3p
2

p+ 1
.

The Stirling formula p!∼
√
2πpppe−p tells us

(p+ 1)p+1e−(p+1) ≤C(p+ 1)!(p+ 1)−1/2, p= 0,1,2, . . . .

Applying this to the right-hand side of (4.28), we obtain∫
S−
ρ0 (x)∩S2r1 (x)∩Sρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ C̃e−μρ0μ−(p+1)ρ
p/2+1
0 ep+1(p+ 1)!(p+ 1)−1/2 2

3p
2

p+ 1

≤ C̃e−μρ0μ−(p+1)ρ
p/2+1
0 (23/2e)pp!p−1/2

≤ C̃e−μρ0μ−(p+1)ρ
p/2+1
0 (23/2e)pp!(μρ0)

−1/2.

This completes the proof of (ii).

Finally we give a proof of (iii). Since |z − y| ≥ ρ0 for z ∈ S−
ρ0
(y), we have∫

S−
ρ0 (x)∩S2r1 (x)∩S−

ρ0 (y)

|x− z|3p/2e−μ(|x−z|+|z−y|) dSz

≤ e−μρ0ρ
3p/2
0

∫
S2r1 (x)\Sρ0 (x)

( |x− z|
ρ0

)3p/2

e−μ|x−z| dSz

≤ C̃e−μρ0ρ
3p/2
0

∫ π

−π

dθ

∫ R2r1 (θ)

Rρ0 (θ)

(ρ(r, θ)
ρ0

)3p/2

e−μρ(r,θ)r dr
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≤ C̃e−μρ0ρ
3p/2
0

∫ 2r1

ρ0

( ρ

ρ0

)3p/2

e−μρρdρ

≤ C̃e−μρ0ρ
3p/2
0

(2r1
ρ0

)p/2
∫ 2r1

ρ0

( ρ

ρ0

)p

e−μρρdρ

≤ C̃e−μρ0ρ
3p/2
0

(2r1
ρ0

)p/2 1

(μρ0)pμ2

∫ 2μr1

μρ0

sp+1e−s ds

≤ C̃e−μρ0(2r1)
p/2μ−(p+2)(p+ 1)!.

This completes the proof of (iii).

4.2. Proof of Proposition 4.1
Let R> 0. Consider the case when |x− y| ≤ r1 and μ|x− y|3 ≤R. From Propo-

sition 4.2 we have∣∣K(n+1)
λ (x, y)

∣∣ ≤ Cn
2 C

n+1
0 μ(2−n)/2e−μ|x−y|Φ(n)

μ

(
|x− y|3

)
≤ C0μe

−μ|x−y|
n∑

p=0

( (C0C2)
2

μ

)(n−p)/2 1

p!

(2
3

)p

(C0C2)
pRp/2.

Thus if μ≥R(C0C2)
2, then one gets

∣∣K(n+1)
λ (x, y)

∣∣ ≤ C0μe
−μ|x−y|

n∑
p=0

( 1

R

)(n−p)/2 1

p!

(2
3

)p

(C0C2)
pRp/2

≤ C0μe
−μ|x−y|

( 1

R

)n/2 n∑
p=0

1

p!

(2C0C2R

3

)p

≤ C0μe
−μ|x−y|

( 1

R

)n/2

exp
(2C0C2R

3

)
.

Set C ′
2 = (2C0C2)/3 and μ1 = (C0C2)

2 + 1. As a simple consequence of the

argument done above we have the following: if |x−y| ≤ r1, μ|x−y|3 ≤R, λ ∈Cδ0 ,

μ=Reλ≥max{μ1R,1}, and R> 0, then

(4.29)
∣∣K(n+1)

λ (x, y)
∣∣≤C0μe

−μ|x−y|
( 1

R

)n/2

eC
′
2R (n= 0,1,2, . . .).

Here we prepare a lemma that covers all the remaining cases for x, y.

LEMMA 4.3

Under all the assumptions made in Theorem 4.1 there exists a positive constant

C3 such that, for all λ ∈Cδ0 with μ≥ μ1R and n= 0,1,2, . . . ,∣∣K(n+1)
λ (x, y)

∣∣≤C0C
n
3 μe

−μ|x−y|
( 1

R

)n/2

eC
′
2R, x, y ∈ ∂D,R≥ 1.

Choosing R≥ 1 in Lemma 4.3 in such a way that C2
3/R≤ 1/4 and setting μ0 =

μ1R, we immediately obtain the desired estimate in Proposition 4.1. Thus in the

following we present a proof of Lemma 4.3.
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Proof of Lemma 4.3

We employ an induction argument. First we prove that one can find a suitable

positive constant C3 independent of n, x, y, μ, and R such that, if we have, for

all x, y ∈ ∂D, ∣∣K(n+1)
λ (x, y)

∣∣≤C0C̃nμe
−μ|x−y|

( 1

R

)n/2

eC
′
2R,

(4.30)
λ ∈Cδ0 ,Reλ= μ≥ μ1R,R≥ 1,

then we have, for all x, y ∈ ∂D,∣∣K(n+2)
λ (x, y)

∣∣≤C0
C3

2
(1 + C̃n)μe

−μ|x−y|
( 1

R

)(n+1)/2

eC
′
2R,

(4.31)
λ ∈Cδ0 ,Reλ= μ≥ μ1R,R≥ 1.

We divide the proof into three cases: (a) ρ0 = |x − y| ≤ r1 and μρ30 ≤ R; (b)

ρ0 ≤ r1 and μρ30 ≥R; (c) ρ0 ≥ r1.

Case (a). In this case it follows from (4.29) that

(4.32)
∣∣K(n+2)

λ (x, y)
∣∣≤C0μe

−μ|x−y|
( 1

R

)(n+1)/2

eC
′
2R.

Case (b). From the definition of K
(n+2)
λ (x, y) we get

(4.33)
∣∣K(n+2)

λ (x, y)
∣∣≤ J1 + J2 + J3,

where J1, J2, and J3 are the integrals of the function |K(n+1)
λ (x, z)||Kλ(z, y)| in

z over the domains S−
ρ0
(x), Sρ0(x)∩ S−

ρ0
(y), and Sρ0(x)∩ Sρ0(y), respectively.

First we estimate J1. Since |z− x| ≥ ρ0 for z ∈ S−
ρ0
(x), from (1.1) and (4.30)

we obtain

J1 ≤
∫
S−
ρ0 (x)

C0C̃nμe
−μ|x−z|

( 1

R

)n/2

eC
′
2RC0μe

−μ|z−y| dSz

= C2
0 C̃ne

C′
2R

( 1

R

)n/2

μ2

∫
S−
ρ0 (x)

e−μ(|x−z|+|z−y|) dSz

≤ C2
0 C̃ne

C′
2R

( 1

R

)n/2

μ2e−μρ0

∫
S−
ρ0 (x)

e−μ|z−y| dSz.

From this, Lemma 3.1(ii), μ1 ≥ 1, and R≥ 1 one gets

J1 ≤ CC2
0 C̃ne

C′
2R

( 1

R

)n/2

e−μρ0 =CC2
0 C̃ne

C′
2Rμe−μρ0

( 1

R

)n/2( 1

R

)1/2R1/2

μ

= CC2
0 C̃ne

C′
2Rμe−μρ0

( 1

R

)(n+1)/2R1/2

μ1R
≤CC2

0 C̃ne
C′

2Rμe−μρ0

( 1

R

)(n+1)/2

.

The estimation for J2 is the same as J1 since Sρ0(x)∩ S−
ρ0
(y)⊂ S−

ρ0
(y).
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Finally we give an estimation for J3. Since ρ0 ≤ r1, one has (3.4). This

together with (1.1) and (4.30) gives

J3 ≤ C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2
∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz

≤ CC2
0 C̃ne

C′
2Rμe−μρ0

( 1

R

)n/2 1

μρ30
≤CC2

0 C̃ne
C′

2Rμe−μρ0

( 1

R

)(n+1)/2

for R≥ 1. Summing these up, we obtain, for all x, y ∈ ∂D with μ|x−y|3 ≥R and

|x− y| ≤ r1,

(4.34)
∣∣K(n+2)

λ (x, y)
∣∣≤CC2

0 C̃nμe
−μ|x−y|

( 1

R

)(n+1)/2

eC
′
2R.

Case (c). In this case we choose the integral domains of J1, J2, and J3 in

(4.33) as Sr1/2(x), Sr1/2(y), and S−
r1/2

(x)∩ S−
r1/2

(y), respectively.

From (4.30) we have

(4.35) J1 ≤C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2
∫
Sr1/2(x)

e−μ(|x−z|+|z−y|) dSz.

Since ρ0 ≥ r1 and |x−z| ≤ r1/2 for z ∈ Sr1/2(x) it follows from Proposition 2.2(ii)

for the case r0 = r1 that |x − z| + |z − y| ≥ ρ0 + c0|z − x|. A combination of

Lemma 3.1(ii) and (4.35) yields

J1 ≤ C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2

e−μρ0

∫
Sr1/2(x)

e−μc0|z−y| dSz

≤ C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2

e−μρ0C̃μ−2

= CC2
0 C̃ne

C′
2Rμe−μρ0

( 1

R

)(n+1)/2R1/2

μ
.

Combining this with μ≥ μ1R≥R≥R1/2, we get

J1 ≤CC2
0 C̃ne

C′
2Rμe−μρ0

( 1

R

)(n+1)/2

.

Similarly, for J2 we get the same estimate.

It follows from (4.30) that

J3 ≤C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2
∫
S−
r1/2(x)∩S−

r1/2(y)

e−μ(|x−z|+|z−y|) dSz.

From Proposition 2.2(i) for the case r0 = r1 we have |x− z|+ |z − y| ≥ ρ0 + c0.

This yields

J3 ≤ C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2

e−μρ0e−μc0 |∂D| ≤C2
0 C̃nμ

2eC
′
2R

( 1

R

)n/2

e−μρ0Cμ−2

≤ CC2
0 C̃ne

C′
2Rμe−μρ0

( 1

R

)(n+1)/2

.
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In summary,

(4.36)
∣∣K(n+2)(x, y)

∣∣≤CC2
0 C̃nμe

−μρ0

( 1

R

)(n+1)/2

eC
′
2R

for x, y, ∂D with |x− y| ≥ r1 and λ ∈Cδ0 with Reλ= μ≥ μ1R,R≥ 1.

From (4.32), (4.34), and (4.36) one concludes that if one chooses

C3 = 2max{1,CC0}

in advance, then (4.30) for all x, y ∈ ∂D implies (4.31) for all x, y ∈ ∂D.

Moreover, define

(4.37) C̃n+1 =
C3

2
(1 + C̃n), n= 0,1, . . . , C̃0 = 1.

Then we obtain, for all λ ∈Cδ0 with μ≥ μ1R and n= 0,1,2, . . . ,

∣∣K(n+1)
λ (x, y)

∣∣≤C0C̃nμe
−μ|x−y|

( 1

R

)n/2

eC
′
2R, x, y ∈ ∂D,R≥ 1.

It follows from (4.37) and C3 ≥ 1 that C̃n ≤ Cn
3 . Thus this completes the proof

of Lemma 4.3. �

5. Estimates for repeated integral kernels, II

Continuing from Section 4 we give an estimate for another repeated integral

kernel which is necessary for the estimation of the integral kernel of the operator

Yλ(I − Yλ)
−1.

For the kernels Kλ(x, y) and K̃λ(x, y) given in Section 1, define

(5.1) Lλ(x, y) = K̃λ(x, y) +

∫
∂D

K̃λ(x, z)Kλ(z, y)dSz.

This is the integral kernel of the operator Lλ = K̃λ(I +Kλ). We introduce the

sequence of functions

L
(n+1)
λ (x, y) =

∫
∂D

L
(n)
λ (x, z)L

(1)
λ (z, y)dSz, n= 1,2, . . . ,

L
(1)
λ (x, y) = Lλ(x, y).

This is the integral kernel of the operator (Lλ)
n = (K̃λ(I +Kλ))

n.

In this section we always assume that ∂D is strictly convex and ∂D is of

class C2,α0 with 0 < α0 ≤ 1, and the kernels Kλ(x, y) and K̃λ(x, y) satisfy all

conditions described in Section 1. The main result of this section is the following.

THEOREM 5.1

There exist positive constants C and μ0 ≥ 1 depending only on C0 in (1.1), C1

in (1.2), and ∂D such that

(i) the operator Lλ(I −Lλ)
−1 with λ ∈Cδ0 and Reλ= μ≥ μ0 has an inte-

gral kernel L∞
λ (x, y);
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(ii) the integral kernel L̃∞
λ (x, y) of the operator L3

λ(I −Lλ)
−1 is continuous

on ∂D× ∂D and satisfies∣∣L̃∞
λ (x, y)

∣∣≤Cμ−2/3(1 + logμ)e−μ|x−y|, x, y ∈ ∂D,λ ∈Cδ0 , μ=Reλ≥ μ0;

(iii) L∞
λ (x, y) in (i) is measurable on ∂D×∂D, continuous for (x, y) ∈ ∂D×

∂D with x �= y, and has the estimate

∣∣L∞
λ (x, y)

∣∣≤ Ce−μ|x−y|

|x− y| , x, y ∈ ∂D,x �= y,λ ∈Cδ0 , μ=Reλ≥ μ0.

Theorem 5.1 is based on the following estimates for L
(n)
λ (x, y) as derived in

Section 5.1.

PROPOSITION 5.2

There exists a positive constant C depending only on ∂D, C0 in (1.1), and C1 in

(1.2) such that the following holds for all x, y ∈ ∂D with x �= y and all λ ∈Cδ0

with μ=Reλ≥ 1:

∣∣L(1)
λ (x, y)

∣∣ ≤ Ce−μ|x−y|

|x− y| ,(5.2)

∣∣L(2)
λ (x, y)

∣∣ ≤ Ce−μ|x−y|
(
1 +max

{
0, log

r0
|x− y|

})
,(5.3)

∣∣L(3)
λ (x, y)

∣∣ ≤ Cμ−2/3(1 + logμ)e−μ|x−y|.(5.4)

PROPOSITION 5.3

There exists a positive constant C depending only on ∂D, C0 in (1.1), and C1 in

(1.2) such that, for all x, y ∈ ∂D with x �= y and all λ ∈Cδ0 with μ=Reλ≥ 1,

(5.5)
∣∣L(n+2)

λ (x, y)
∣∣≤Cnμ−2n/3(1 + logμ)e−μ|x−y|, n= 1,2,3, . . . .

The proof of Propositions 5.2 and 5.3 are given in the next subsection.

5.1. Two lemmas and proof of Propositions 5.2 and 5.3
First we describe two lemmas needed for the proof of Propositions 5.2 and 5.3.

In the following we set ρ0 = |x− y|.

LEMMA 5.1

There exists a positive constant C̃ such that the following holds for any μ≥ 1:∫
S−
ρ0 (x)

e−μ(|x−z|+|z−y|)

|x− z| dSz ≤ C̃μ−1e−μρ0 , x, y ∈ ∂D,(5.6)

∫
S−
ρ0 (x)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

(5.7)
≤ C̃e−μρ0

(
1 +max

{
0, log

r0
ρ0

})
, x, y ∈ ∂D,x �= y,
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∫
Sρ0 (x)∩S−

ρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| dSz ≤ C̃μ−1e−μρ0 , x, y ∈ ∂D,(5.8)

∫
Sρ0 (x)∩S−

ρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

(5.9)
≤ C̃e−μρ0

(
1 +max

{
0, log

r0
ρ0

})
, x, y ∈ ∂D,x �= y,

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| dSz

(5.10)

≤ C̃e−μρ0 min
{ 1

μρ0
, μ−2/3

}
, x, y ∈ ∂D,

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz ≤ C̃e−μρ0 , x, y ∈ ∂D,x �= y.(5.11)

LEMMA 5.2

There exists a positive constant C̃ such that the following holds for all x, y ∈ ∂D

with x �= y and μ≥ 1:∫
S−
ρ0 (x)∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz ≤ C̃μ−2/3e−μρ0 ,(5.12)

∫
Sρ0 (x)∩S−

ρ0 (y)∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz ≤ C̃μ−2/3e−μρ0 ,(5.13)

∫
Sρ0 (x)∩Sρ0 (y)∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz

(5.14)
≤ C̃μ−2/3(1 + logμ)e−μρ0 .

The proofs of those lemmas are given in Sections 5.2 and 5.3.

Proof of Proposition 5.2

From (1.1) and (1.2) we have

(5.15)
∣∣L(1)

λ (x, y)
∣∣≤C1

(e−μ|x−y|

|x− y| +C0μ

∫
∂D

e−μ(|x−z|+|z−y|)

|x− z| dSz

)
.

Noting that ∂D = S−
ρ0
(x)∪ (Sρ0(x)∩S−

ρ0
(y))∪ (Sρ0(x)∩Sρ0(y)) and ρ0 ≤ diamD

we obtain from (5.6), (5.8), and (5.10),∫
∂D

e−μ(|x−z|+|z−y|)

|x− z| dSz ≤ 2C̃μ−1e−μρ0 + C̃e−μρ0
1

μρ0
≤ Ce−μρ0

μρ0
.(5.16)

A combination of (5.15) and (5.16) yields (5.2).

From (5.2) we get

(5.17)
∣∣L(2)

λ (x, y)
∣∣≤C2

∫
∂D

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz.
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Using the same decomposition of ∂D as above, we obtain from (5.7), (5.9), and

(5.11), ∫
∂D

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

≤ 2C̃e−μρ0

(
1 +max

{
0, log

r0
ρ0

})
+ C̃e−μρ0(5.18)

≤ 3C̃e−μρ0

(
1 +max

{
0, log

r0
ρ0

})
.

This together with (5.17) gives (5.3).

Using (5.2) and (5.3), we obtain∣∣L(3)
λ (x, y)

∣∣
≤C

(∫
∂D

e−μ(|x−z|+|z−y|)

|z − y| dSz(5.19)

+

∫
∂D

e−μ(|x−z|+|z−y|)

|z − y| max
{
0, log

r0
|x− z|

}
dSz

)
.

It follows from (5.6), (5.8), and (5.10) that, for all μ≥ 1,∫
∂D

e−μ(|x−z|+|z−y|)

|z − y| dSz ≤ 2C̃μ−1e−μρ0 + C̃μ−2/3e−μρ0

(5.20)
≤ 3C̃μ−2/3e−μρ0 .

Noting that log(r0/|x− z|)≥ 0 on Sr0(x) and log(r0/|x− z|)≤ 0 outside Sr0(x)

and using the decomposition Sr0(x) = (S−
ρ0
(y) ∩ Sr0(x)) ∪ (Sρ0(y) ∩ S−

ρ0
(x) ∩

Sr0(x)) ∪ (Sρ0(y) ∩ Sρ0(x) ∩ Sr0(x)), we obtain from (5.12)–(5.14) by changing

the roles of x and y therein,∫
∂D

e−μ(|x−z|+|z−y|)

|z − y| max
{
0, log

r0
|x− z|

}
dSz

=

∫
Sr0 (x)

e−μ(|x−z|+|z−y|)

|z − y| log
r0

|x− z| dSz

≤ C̃e−μρ0
{
2μ−2/3 + μ−2/3(1 + logμ)

}
.

This together with (5.19) and (5.20) yields (5.4). This completes the proof of

Proposition 5.2. �

Proof of Proposition 5.3

We denote by C4 and C̃ the constants appearing in Proposition 5.2 and Lem-

ma 5.1, respectively. Set C =C4max{3C̃,1}. Note that we have (5.20) with the

constant C̃ in Lemma 5.1. We prove (5.5) by an induction argument. In the case

when n= 1 it follows from (5.4) that (5.5) is valid. Assume that (5.5) is valid for
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some n. From (5.2) we get

∣∣L(n+3)
λ (x, y)

∣∣≤CnC4μ
−2n/3(1 + logμ)

∫
∂D

e−μ(|x−z|+|z−y|)

|z − y| dSz.

This together with (5.20) yields∣∣L(n+3)
λ (x, y)

∣∣≤Cn+1μ−2(n+1)/3(1 + logμ)e−μ|x−y|.

This completes the proof of Proposition 5.3. �

5.2. Proof of Lemma 5.1
Proof of (5.6)

Since |x− z| ≥ ρ0 for z ∈ S−
ρ0
(x), we have∫

S−
ρ0 (x)

e−μ(|x−z|+|z−y|)

|x− z| dSz ≤ e−μρ0

∫
S−
ρ0 (x)

e−μ|z−y|

|x− z| dSz

(5.21)

≤ e−μρ0

∫
∂D

e−μ|z−y|

|x− z| dSz.

Note that ∂D has the decomposition

(5.22) ∂D = S1 ∪ S2,

where

S1 =
{
z ∈ ∂D

∣∣ |x− z| ≤ |y− z|
}
, S2 =

{
z ∈ ∂D

∣∣ |x− z| ≥ |y− z|
}
.

On S1,

(5.23)
e−μ|z−y|

|y− z| ≤ e−μ|z−y|

|x− z| ≤ e−μ|x−z|

|x− z| .

On S2,

(5.24)
e−μ|z−y|

|x− z| ≤ e−μ|z−y|

|y− z| .

Thus this together with Lemma 3.1(ii) yields∫
∂D

e−μ|z−y|

|x− z| dSz ≤
∫
∂D

e−μ|x−z|

|x− z| dSz +

∫
∂D

e−μ|y−z|

|y− z| dSz

(5.25)

≤ 2Cμ−1
(
1 +

μe−μr0

r0

)
.

Now from this and (5.21) we obtain (5.6). �

Proof of (5.7)

We have ∫
S−
ρ0 (x)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz ≤ e−μρ0(I1 + I2 + I3),
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where ρ′0 =min{ρ0, r0} and

I1 =

∫
S−
ρ0 (x)∩Sρ′0

(y)

e−μ|z−y|

|x− z||z − y| dSz,

I2 =

∫
S−
ρ0 (x)∩(Sr0 (y)\Sρ′0

(y))

e−μ|z−y|

|x− z||z − y| dSz,

I3 =

∫
S−
r0 (y)

e−μ|z−y|

|x− z||z − y| dSz.

Since we have

I1 ≤
1

ρ′0

∫
Sρ′0

(y)

e−μ|z−y|

|z − y| dSz,

it follows from Lemma 3.1(i) that I1 ≤C.

Using the decomposition (5.22) and estimates (5.23) and (5.24), we get

I2 ≤
∫
S−
ρ0 (x)∩(Sr0 (y)\Sρ′0

(y))∩S1

e−μ|x−z|

|x− z|2 dSz

(5.26)

+

∫
S−
ρ0 (x)∩(Sr0 (y)\Sρ′0

(y))∩S2

e−μ|y−z|

|y− z|2 dSz.

Note that the sets S−
ρ0
(x)∩ (Sr0(y) \Sρ′

0
(y))∩S1 and S−

ρ0
(x)∩ (Sr0(y) \Sρ′

0
(y))∩

S2 are contained in the sets Sr0(x) ∩ S−
ρ′
0
(x) and Sr0(y) ∩ S−

ρ′
0
(y), respectively.

Therefore one can apply Lemma 3.1(iii) to the right-hand side of (5.26) and get

I2 ≤C
(
1 + log

r0
cρ′0

)
≤ C̃

(
1 + log

r0
ρ′0

)
= C̃

(
1 +max

{
0, log

r0
ρ0

})
.

Finally, using (5.25) and μ≥ 1, we get

I3 ≤
1

r0

∫
∂D

e−μ|z−y|

|x− z| dSz ≤
2C

r0

(
1 +

1

r0

)
.

Summing up the estimates for I1, I2, and I3 above, we obtain (5.7). �

Proof of (5.8)

Since |z − y| ≥ ρ0 for z ∈ Sρ0(x)∩ S−
ρ0
(y), we have∫

Sρ0 (x)∩S−
ρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| dSz ≤ e−μρ0

∫
∂D

e−μ|x−z|

|x− z| dSz.

From this and Lemma 3.1(ii) we obtain (5.8). �

Proof of (5.9)

Since Sρ0(x)∩S−
ρ0
(y) is contained in S−

ρ0
(y) and the integrand of (5.9) is invariant

under the change of the role of x and y, (5.9) is a direct consequence of (5.7). �
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Proof of (5.10)

Let r1 be the same as in Proposition 3.1. For ρ′0 =min{ρ0, r1} we have∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| dSz ≤ J1 + J2,

where

J1 =

∫
(Sρ0 (x)\Sρ′0/2(x))∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| dSz,

J2 =

∫
Sρ′0/2(x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| dSz.

Consider first J1. One has

J1 ≤
2

ρ′0

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz.

Note that if ρ0 ≤ r1, then ρ′0 = ρ0 and it follows from (3.4) that∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz ≤ C̃e−μρ0

(ρ3/20√
μ

)8/9( 1

μ2ρ30

)1/9

= C̃e−μρ0ρ′0μ
−2/3

and ∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz ≤ C̃e−μρ0

(ρ3/20√
μ

)2/3( 1

μ2ρ30

)1/3

= C̃e−μρ0μ−1;

if ρ0 ≥ r1, then ρ′0 = r1 and from (3.5) we have∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz ≤ C̃e−μρ0μ−2 = C̃e−μρ0μ−2 r1
r1

≤ C̃r−1
1 e−μρ0ρ′0μ

−2/3.

Thus one gets

J1 ≤
2

ρ′0
Ce−μρ0 min{μ−1, ρ′0μ

−2/3}= 2Ce−μρ0 min
{ 1

μρ′0
, μ−2/3

}

≤ C ′e−μρ0 min
{ 1

μρ0
, μ−2/3

}
.

Note that we have used the fact that if ρ0 ≥ r1, then

(ρ′0)
−1 = r−1

1 = ρ−1
0 ρ0r

−1
1 ≤

(
r−1
1 max

x,y∈∂D
|x− y|

)
ρ−1
0 .

Now consider J2. Recalling the argument in the proof of (3.8), we see that

if ρ0 ≤ r1, then ρ′0 = ρ0 and Sρ′
0/2

(x) ⊂ Bx(0,2σ
0
1/3). Moreover, in the proof of

Proposition 3.1, we have already known that, for all z = x+σ1e1+σ2e2− g(σ)νx
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with σ = (r cosθ, r sinθ) ∈B′
x(0,2σ

0
1/3),

|x− z|+ |z − y| ≥ ρ0 + c2r
(
ρ20 + f(θ)2

)
.

Therefore we obtain

J2 ≤ C̃e−μρ0

∫ ρ0

0

∫ π

−π

e−μc2r(ρ
2
0+f(θ)2)

r
r dr dθ

≤ 2C̃e−μρ0

∫ ρ0

0

∫ π/2

−π/2

e−μc2r(ρ
2
0+θ2) dr dθ(5.27)

≤ Ce−μρ0μ−1/2

∫ ρ0

0

e−μc2rρ
2
0

√
r

dr.

Since ∫ ρ0

0

e−μc2rρ
2
0

√
r

dr ≤ C ′
√
μρ0

and ∫ ρ0

0

e−μc2rρ
2
0

√
r

dr ≤C ′′√ρ0,

we have ∫ ρ0

0

e−μc2rρ
2
0

√
r

dr ≤ Cmin
{ 1
√
μρ0

,
( 1
√
μρ0

)1/3

(
√
ρ0)

2/3
}

= Cmin{μ−1/2ρ−1
0 , μ−1/6}.

This together with (5.27) yields

(5.28) J2 ≤ C̃e−μρ0 min{μ−1ρ−1
0 , μ−2/3}.

If ρ0 ≥ r1, then ρ′0 = r1 and from Proposition 2.2(ii) we obtain, for all z ∈
Sρ′

0/2
(x),

|x− z|+ |z − y| ≥ ρ0 + c0|z − x|.

This together with Lemma 3.1(ii) yields

J2 ≤ e−μρ0

∫
Sρ′0/2(x)

e−μc0|z−x|

|z − x| dSz

≤ e−μρ0

∫
∂D

e−μc0|z−x|

|z − x| dSz

≤ Ce−μρ0μ−1.

Since

1

μ
=

ρ0
μρ0

≤ C

μρ0

and μ−1 ≤ μ−2/3 for μ≥ 1 we conclude that (5.28) is true also in the case when

ρ0 ≥ r1. Thus, we have (5.10). �
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Proof of (5.11)

Consider first the case when ρ0 ≥ r1. We have

I ≡
∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

=

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)
( 1

|x− z| +
1

|z − y|
) dSz

|x− z|+ |z − y|

≤ 1

ρ0

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)
( 1

|x− z| +
1

|z − y|
)
dSz.

Then a combination of this and (5.10) ensures that integral I has a bound C̃e−μρ0 .

Now consider the case when ρ0 ≤ r1. Decompose

I =

∫
Sρ0 (x)∩(Sρ0 (y)\Sρ0/2(y))

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

+

∫
Sρ0 (x)∩Sρ0/2(y)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

≡ I1(x, y) + I2(x, y).

Using the same local coordinates as in the proof of (4.9), and noting (4.12), we

obtain

I1(x, y) ≤
2

ρ0

∫
Sρ0 (x)

e−μ(|x−z|+|z−y|)

|x− z| dSz

≤ C̃e−μρ0

ρ0

∫ π

−π

dθ

∫ r(θ)

0

e−μc
√

r2+g(r cosθ,r sin θ)2f(θ)2√
r2 + g(r cosθ, r sinθ)2

r dr

≤ C̃e−μρ0

ρ0

∫ π

−π

dθ

∫ ρ0

0

e−μcρf(θ)2 dρ≤Ce−μρ0 .

Since it holds that |z−x| ≥ |x−y|−|y−z| ≥ ρ0−ρ0/2 = ρ0/2 for all z ∈ Sρ0/2(y),

we have

I2(x, y)≤
∫
(Sρ0 (x)\Sρ0/2(x))∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz = I1(y,x)≤Ce−μρ0 .

Therefore I has a bound C̃e−μρ0 also in the case when ρ0 ≤ r1. This completes

the proof of (5.11). �

5.3. Proof of Lemma 5.2
Proof of (5.12)

Let S1 and S2 be the same as in (5.22). We have Sr0(y) ∩ S1 ⊂ Sr0(x) and the

following estimates hold: on Sr0(y)∩ S1,

e−μ|z−y|

|x− z| log
r0

|z − y| ≤
e−μ|x−z|

|x− z| log
r0

|x− z| ;
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on Sr0(y)∩ S2,

e−μ|z−y|

|x− z| log
r0

|z − y| ≤
e−μ|y−z|

|y− z| log
r0

|y− z| .

These together with Lemma 3.1(iv) yield∫
Sr0 (y)

e−μ|z−y|

|x− z| log
r0

|z − y| dSz

=

∫
Sr0 (y)∩S1

e−μ|z−y|

|x− z| log
r0

|z − y| dSz +

∫
Sr0 (y)∩S2

e−μ|z−y|

|x− z| log
r0

|z − y| dSz

≤
∫
Sr0 (x)

e−μ|x−z|

|x− z| log
r0

|x− z| dSz +

∫
Sr0 (y)

e−μ|y−z|

|y− z| log
r0

|y− z| dSz ≤ C̃μ−2/3.

Now (5.12) is a direct consequence of this and the estimate∫
S−
ρ0 (x)∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz

≤ e−μρ0

∫
Sr0 (y)

e−μ|z−y|

|x− z| log
r0

|z − y| dSz. �

Proof of (5.13)

If r0 < ρ0, then Sρ0(x)∩S−
ρ0
(y)∩Sr0(y) = ∅. Thus it suffices to consider only the

case ρ0 ≤ r0. Since Sρ0(x)∩ S−
ρ0
(y)∩ Sr0(y)⊂ S1, we have∫

Sρ0 (x)∩S−
ρ0 (y)∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz

≤ e−μρ0

∫
Sρ0 (x)

e−μ|x−z|

|x− z| log
r0

|z − x| dSz.

Now from Lemma 3.1(iv) one gets (5.13). �

Proof of (5.14)

Set ρ′0 =min{ρ0, r0}. Decompose∫
Sρ0 (x)∩Sρ0 (y)∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz

=

∫
Sρ′0

(x)∩Sρ′0
(y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz

+

∫
(Sρ0 (x)\Sρ′0

(x))∩Sρ′0
(y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − y| dSz

≡ J1 + J2.

Consider first J2. If ρ0 ≤ r0, then J2 = 0. If ρ0 > r0, then ρ′0 = r0. In this case

we have
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J2 ≤
1

r0

∫
(Sρ0 (x)\Sr0 (x))∩Sr0 (y)

e−μ(|x−z|+|z−y|) log
r0

|z − y| dSz

=

∫
(Sρ0 (x)\Sr0 (x))∩Sr0 (y)

e−μ(|x−z|+|z−y|)

|z − y|
|z − y|
r0

log
r0

|z − y| dSz(5.29)

≤ C̃

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|z − y| dSz ≤Ce−μρ0μ−2/3.

Note that we made use of the fact supx≥1 x
−1 logx <∞ and (5.10) of Lemma 5.1.

Now consider J1. Using the decomposition Sρ′
0
(x) ∩ Sρ′

0
(y) = (Sρ′

0
(x) ∩

Sρ′
0
(y)∩ S1)∪ (Sρ′

0
(x)∩ Sρ′

0
(y)∩ S2), we have

J1 ≤
∫
Sρ′0

(x)∩Sρ′0
(y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − x| dSz

+

∫
Sρ′0

(x)∩Sρ′0
(y)

e−μ(|x−z|+|z−y|)

|y− z| log
r0

|z − y| dSz

≡ J ′
1(x, y) + J ′

1(y,x).

Thus if we have the estimate

(5.30) J ′
1(x, y)≤ C̃e−μρ0μ−2/3(1 + logμ), x, y ∈ ∂D,

then for J ′
1(y,x), hence, for J1, the same estimate as (5.30) is also valid. A com-

bination of this and (5.29) yields (5.14).

Estimate (5.30) is proved as follows. We have

J ′
1(x, y) =

∫
(Sρ′0

(x)\Sρ′0/2(x))∩Sρ′0
(y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − x| dSz

+

∫
Sρ′0/2(x)∩Sρ′0

(y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − x| dSz

≡ J ′′
1 + J ′′

2 .

Consider first J ′′
1 . We have

(5.31) J ′′
1 ≤ 2

ρ′0
log

2r0
ρ′0

∫
(Sρ′0

(x)\Sρ′0/2(x))∩Sρ′0
(y)

e−μ(|x−z|+|z−y|) dSz.

If ρ0 ≥ r0, then ρ′0 = r0 and from (3.6) and (5.31) one gets

J ′′
1 ≤ 2

r0
log

2r0
r0

∫
∂D

e−μ(|x−z|+|z−y|) dSz

(5.32)

≤ Cμ−2e−μρ0

(
1 +

1

ρ30

)
≤Ce−μρ0μ−2

(
1 +

1

r30

)
.

If ρ0 < r0, then ρ′0 = ρ0. Let r1 be the same as in the proof of Proposition 3.1.

We further divide this case into two: (a) ρ0 > r1; (b) ρ0 ≤ r1.
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Case (a). In this case ρ′0 = ρ0 > r1. A combination of (5.31) and (3.5) gives

(5.33) J ′′
1 ≤ 2

r1
log

2r0
r1

∫
Sρ0 (x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz ≤Ce−μρ0μ−2.

Case (b). From (3.4) and (5.31) one gets

J ′′
1 ≤ 2

ρ0
log

2r0
ρ0

∫
(Sρ0 (x)\Sρ0/2(x))∩Sρ0 (y)

e−μ(|x−z|+|z−y|) dSz

≤ C̃e−μρ0
2

ρ0
log

2r0
ρ0

min
{ρ

3/2
0√
μ
,

1

μ2ρ30

}
(5.34)

=
Ce−μρ0

r0
min

{r
3/2
0√
μ
X−1/2 log 2X,

1

r30μ
2
X4 log 2X

}
,

where X = r0/ρ0 (≥ 1).

Let μ (≥ 1) satisfy μρ30 ≤ 23e−6r30 . Since e2/2 ≤ (e2/2)μ1/3 ≤ X and the

function ξ �−→ ξ−1/2 log 2ξ is monotone decreasing on [e2/2,∞[, it follows from

(5.34) that

J ′′
1 ≤ Ce−μρ0

r0

r
3/2
0√
μ
X−1/2 log 2X

≤ Ce−μρ0

r0

r
3/2
0√
μ

(
(e2/2)μ1/3

)−1/2
log

{
2(e2/2)μ1/3

}
(5.35)

≤ C̃e−μρ0μ−2/3(1 + logμ).

Let μ (≥ 1) satisfy μρ30 > 23e−6r30 . We have (e2/2)μ1/3 >X . Since the func-

tion ξ �−→ ξ4 log 2ξ is monotone increasing on [1,∞[, it follows from (5.34) that

J ′′
1 ≤ Ce−μρ0

r0

1

r30μ
2
X4 log 2X

≤ Ce−μρ0

r0

1

r30μ
2

{
(e2/2)μ1/3

}4
log 2

{
(e2/2)μ1/3

}
(5.36)

≤ C̃e−μρ0μ−2/3(1 + logμ).

Therefore from (5.32), (5.33), (5.35), and (5.36) one gets

(5.37) J ′′
1 ≤ C̃e−μρ0μ−2/3(1 + logμ).

Next we consider J ′′
2 .

Case (i): ρ0 ≥ r0. In this case ρ′0 = r0. Since |x− y|= ρ0 ≥ r0 and |z − x| ≤
r0/2 for z ∈ Sr0/2(x), using Proposition 2.2(ii), we obtain

J ′′
2 ≤ e−μρ0

∫
Sr0/2(x)∩Sr0 (y)

e−μc0|z−x|

|x− z| log
r0

|z − x| dSz

≤ e−μρ0

∫
Sr0 (x)

e−μc0|z−x|

|x− z| log
r0

|z − x| dSz.
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Now Lemma 3.1(iv) yields

(5.38) J ′′
2 ≤Ce−μρ0μ−2/3.

Case (ii): ρ0 < r0. In this case, ρ′0 = ρ0. We divide this case into two subcases:

(a) r1 < ρ0; (b) ρ0 ≤ r1:

(a) Divide J ′′
2 into two parts:

J ′′
2 =

∫
Sr1/2(x)∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − x| dSz

(5.39)

+

∫
(Sρ0/2(x)\Sr1/2(x))∩Sρ0 (y)

e−μ(|x−z|+|z−y|)

|x− z| log
r0

|z − x| dSz.

One can apply Proposition 2.2(ii) to the first term in the right-hand side of (5.39)

and a similar argument done in case (i) above together with Lemma 3.1(iv) yields

the bound Ce−μρ0μ−2/3. For the second term in the right-hand of (5.39) we

employ a similar argument done for the derivation of (5.32) and get the same

bound. Thus we obtain J ′′
2 ≤ C̃e−μρ0μ−2/3.

(b) Since z ∈ Sρ0/2(x)∩ Sρ0(y) implies (z− x) · (y− x)/|y− x| ≤ ρ0/2, using

the local coordinates used in the proof of (3.4), we have

J ′′
2 ≤ C̃e−μρ0

∫ ρ0

0

∫ π/2

0

e−μc2r(ρ
2
0+θ2)

r

(
log

r0
r

)
r dr dθ

= C̃e−μρ0

∫ ρ0

0

e−μc2rρ
2
0 log

r0
r

(∫ π/2

0

e−μc2rθ
2

dθ
)
dr

≤ Ce−μρ0μ−1/2

∫ ρ0

0

e−μc2rρ
2
0

√
r

log
r0
r
dr.

Note that we have∫ ρ0

0

e−μc2rρ
2
0

√
r

log
r0
r
dr ≤

∫ ρ0

0

1√
r

(
log

r0
r

)
dr ≤ C̃

√
ρ0

(
1 + log

r0
ρ0

)

≤ C̃
√
ρ0

(
log 3 + log

r0
ρ0

)
≤C ′

( r0
ρ0

)−1/2

log
3r0
ρ0

and also ∫ ρ0

0

e−μc2rρ
2
0

√
r

log
r0
r
dr =

1
√
μρ0

∫ μρ3
0

0

e−c2r

√
r

(
log

μρ20r0
r

)
dr

≤ C
√
μρ0

(
1 +

∣∣log(μρ20r0)∣∣)

≤ C ′r0√
μρ0

(
1 + log

r0
ρ0

+
∣∣log(μρ30)∣∣).

Therefore setting X = r0/ρ0, we obtain

(5.40) J ′′
2 ≤ C̃e−μρ0 min

{
μ−1/2X−1/2 log 3X,

1

μ
X
(
1 + logX +

∣∣log(μρ30)∣∣)}.



40 Masaru Ikehata and Mishio Kawashita

Let μ (≥ 1) satisfy μρ30 ≤ 33e−6r30 . Since (e2/3) ≤ (e2/3)μ1/3 ≤ X and the

function ξ �−→ ξ−1/2 log 3ξ is monotone decreasing on [e2/3,∞[, from (5.40) we

obtain

J ′′
2 ≤ C̃e−μρ0μ−1/2

(
(e2/3)μ1/3

)−1/2
log

(
3(e2/3)μ1/3

)
≤Ce−μρ0μ−2/3(1 + logμ).

Let μ (≥ 1) satisfy μρ30 ≥ 33e−6r30 . Since (e
2/3)μ1/3 ≥X ≥ 1 and the function

ξ �−→ ξ log ξ is monotone increasing on ]e−1,∞[, it follows from (5.40) that

J ′′
2 ≤ C̃e−μρ0

1

μ
(e2/3)μ1/3

(
1 + log

(
(e2/3)μ1/3

)
+
∣∣log(μρ30)∣∣)

≤ Ce−μρ0μ−2/3(1 + logμ),

where we used 33e−6r30 ≤ μρ30 ≤ μr30 .

Thus in any subcase of case (ii) we have

J ′′
2 ≤ C̃e−μρ0μ−2/3(1 + logμ), μ≥ 1.

This together with (5.38) yields that J ′′
2 has the same bound as (5.37) for J ′′

1 .

This completes the proof of (5.30). �

5.4. Proof of Theorem 5.1
If λ ∈Cδ0 satisfies Reλ= μ� 1, then the operator Lλ(I −Lλ)

−1 is given by the

Neumann series

Lλ(I −Lλ)
−1 =

∞∑
n=1

Ln
λ.

The integral kernel of the operator Ln
λ is given by L

(n)
λ (x, y).

Let C be the constant in Proposition 5.3. Choose μ0 ≥ 1 in such a way that

max{C,1}μ−2/3
0 ≤ 1/2. Let μ≥ μ0. Then( C

μ2/3

)n

≤ C

μ2/3

(1
2

)n−1

and from (5.5) we have, for all x, y ∈ ∂D with x �= y, all λ ∈Cδ0 with Reλ= μ≥
μ0 and n= 1,2, . . . ,∣∣L(n+2)

λ (x, y)
∣∣≤Cμ−2/3

(1
2

)n−1

(1 + logμ)e−μ|x−y|.

Therefore the series
∑∞

n=3L
(n)
λ (x, y) is uniformly convergent and satisfies

∞∑
n=3

∣∣L(n)
λ (x, y)

∣∣≤Cμ−2/3(1 + logμ)e−μ|x−y|.

These yield Theorem 5.1(i) and (ii). Moreover, from this, (5.2), and (5.3) we

obtain
∞∑

n=1

∣∣L(n)
λ (x, y)

∣∣ ≤ Ce−μ|x−y|

|x− y| +Ce−μ|x−y|
(
1 +max

{
0, log

r0
|x− y|

})

+Cμ−2/3(1 + logμ)e−μ|x−y|
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≤ C ′e−μ|x−y|

|x− y|
(
1 + r0

|x− y|
r0

max
{
0, log

r0
|x− y|

}
+ |x− y|

)

≤ C̃e−μ|x−y|

|x− y| .

This gives Theorem 5.1(iii). �

6. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Since Yλ =Kλ + K̃λ, it follows

that for λ ∈Cδ0 with sufficiently large μ=Reλ,

(I − Yλ)(I −Kλ)
−1 = I − K̃λ(I −Kλ)

−1.

Set Lλ = K̃λ(I −Kλ)
−1. The above equality yields

(I − Yλ)
−1 = (I −Kλ)

−1
(
I − K̃λ(I −Kλ)

−1
)−1

= (I −Kλ)
−1(I −Lλ)

−1,

which implies that

(I − Yλ)
−1 =

{
I +Kλ(I −Kλ)

−1
}{

I +Lλ(I −Lλ)
−1

}
= I +Kλ(I −Kλ)

−1 +Lλ(I −Lλ)
−1 +Kλ(I −Kλ)

−1Lλ(I −Lλ)
−1.

Hence Yλ(I − Yλ)
−1 can be represented as

Yλ(I − Yλ)
−1 =Kλ(I −Kλ)

−1 +Lλ(I −Lλ)
−1

(6.1)
+Kλ(I −Kλ)

−1Lλ(I −Lλ)
−1.

Noting that Lλ = K̃λ(I−Kλ)
−1 = K̃λ+K̃λKλ(I−Kλ)

−1, from Theorem 4.1

and (5.1), we know that for λ ∈Cδ0 with sufficiently large μ=Reλ, Lλ has an

integral kernel Lλ(x, y) given by the formula

Lλ(x, y) = K̃λ(x, y) +

∫
∂D

K̃λ(x, z)K
∞
λ (z, y)dSz,

where K∞
λ (x, y) is the integral kernel of Kλ(I −Kλ)

−1 in Theorem 4.1.

Choosing larger μ0 if necessary, we conclude from Theorems 4.1 and 5.1 that

for all μ≥ μ0 the operator Lλ(I −Lλ)
−1 has an integral kernel L∞

λ (x, y) that is

measurable on ∂D× ∂D, continuous for x �= y, and satisfies

(6.2)
∣∣L∞

λ (x, y)
∣∣≤ Ce−μ|x−y|

|x− y| , x, y ∈ ∂D,λ ∈Cδ0 , μ=Reλ≥ μ0.

From (6.1) we know that the integral kernel Y ∞
λ (x, y) of the operator Mλ =

Yλ(I − Yλ)
−1 is given by the formula

(6.3) Y ∞
λ (x, y) =K∞

λ (x, y) +L∞
λ (x, y) +

∫
∂D

K∞
λ (x, z)L∞

λ (z, y)dSz.
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Using Theorem 4.1, (6.2), and (5.16), one gets∣∣∣∫
∂D

K∞
λ (x, z)L∞

λ (z, y)dSz

∣∣∣≤ Ce−μ|x−y|

|x− y| .

This together with Theorem 4.1, (6.2), and (6.3) yields∣∣Y ∞
λ (x, y)

∣∣≤C
(
μ+

1

|x− y|
)
e−μ|x−y|, x, y ∈ ∂D,λ ∈Cδ0 , μ=Reλ≥ μ0,

for some positive constants C and μ0 depending only on ∂D, C0 in (1.1), and

C1 in (1.2). This completes the proof of Theorem 1.1. �

Put Nλ = K̃λ + (Yλ)
2(I − Yλ)

−1. We denote the integral kernel of Nλ by

Nλ(x, y). We can also give estimates of the integral kernel Nλ(x, y) which also

we need to study the inverse problem described in Section 1.

THEOREM 6.1

There exist positive constants C and μ0 ≥ 1 such that for all λ ∈Cδ0 with μ=

Reλ ≥ μ0 the operator Nλ has an integral kernel Nλ(x, y) which is measurable

for (x, y) ∈ ∂D× ∂D, continuous for x �= y, and has the estimate

(6.4)
∣∣Nλ(x, y)

∣∣≤Ce−μ|x−y|
(
1 +

1

|x− y| +min
{
μ
(
μ|x− y|3

)1/2
,

1

|x− y|3
})

.

REMARK 6.1

Since min{√a, a−1} ≤ 1 for all a > 0, from (6.4) we get

(6.5)
∣∣Nλ(x, y)

∣∣≤C
(
μ+

1

|x− y|
)
e−μ|x−y|.

Proof of Theorem 6.1

Since Nλ = K̃λ +KλYλ(I − Yλ)
−1 + K̃λYλ(I − Yλ)

−1, the integral kernel of Nλ

is given by the formula

(6.6) Nλ(x, y) = K̃λ(x, y) +

∫
∂D

(
Kλ(x, z) + K̃λ(x, z)

)
Y ∞
λ (z, y)dSz.

Hence from (1.1), (1.2), and Theorem 1.1, and from (3.6), (5.16), and (5.18), it

follows that∣∣∣∫
∂D

(
Kλ(x, z) + K̃λ(x, z)

)
Y ∞
λ (z, y)dSz

∣∣∣
≤C2

{
μ2

∫
∂D

e−μ(|x−z|+|z−y|) dSz + μ

∫
∂D

e−μ(|x−z|+|z−y|)

|y− z| dSz

+ μ

∫
∂D

e−μ(|x−z|+|z−y|)

|x− z| dSz +

∫
∂D

e−μ(|x−z|+|z−y|)

|x− z||z − y| dSz

}
(6.7)

≤Ce−μ|x−y|
[
1 +min

{
(μ|x− y|)3/2, 1

|x− y|3
}

+
1

|x− y| +max
{
0, log

r0
|x− y|

}]
.



Estimates of integral kernels arising from inverse problems 43

Since

max
{
0, log

r0
|x− y|

}
≤ C

|x− y| ,

from (1.2), (6.6), and (6.7) we obtain (6.4). This completes the proof of Theo-

rem 6.1. �

7. The reason why Theorem 1.1 is needed

For ρ= ρ(x) ∈C0,α0(∂D), we consider the following elliptic problem in the exte-

rior domain R3 \D:

(	− λ2)w = 0 in R3 \D,
(7.1)

∂w

∂ν
+ ρ(x)w = g(x) on ∂D.

It is well known that for any g ∈ C(∂D) and λ ∈C with |argλ|< π/2, the L2-

solution w(x;λ) of (7.1) is given by

w(x;λ) = VD(λ)ψ(x) =

∫
∂D

Eλ(x, y)ψ(y)dSy, x ∈R3 \ ∂D,

where Eλ(x, y) is a fundamental solution of (	x − λ2)Eλ(x, y) =−2δ(x− y) of

the form

Eλ(x, y) =
e−λ|x−y|

2π|x− y| , x �= y, |argλ|< π

2
.

As is in Mizohata [3], for example, this is a famous approach in potential theory.

Problem (7.1) can be reduced to the following equation on the boundary:(
I − Y (λ)

)
ψ = g in C(∂D).

In the above, Y (λ) is the integral operator on ∂D with the integral kernel

Y (x, y;λ) defined by

(7.2) Y (x, y;λ) =M0(y,x;λ) + M̃(y,x;λ),

where

(7.3) M0(y,x;λ) =
λ

2π
e−λ|x−y| νx · (y− x)

|x− y|2

and

(7.4) M̃(y,x;λ) =
1

2π

e−λ|x−y|

|x− y|
(νx · (y− x)

|x− y|2 + ρ(y)
)
.

As is described in Section 1, an inverse problem for a three-dimensional

heat equation in thermal imaging is considered in [1]. We recall this problem

briefly. Let Ω be a bounded domain of R3 with C2,α0 boundary and 0<α0 ≤ 1.

Assume that the domain D satisfies D ⊂Ω and has all the properties described in

Section 1. We take a function f ∈ L2(∂Ω× ]0, T [) for some fixed T > 0 as an input

datum of the inverse problem. We consider the solution u(x, t) of the following
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problem: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut −	u= 0 in (Ω \D)× ]0, T [,

(∂ν + ρ)u= 0 on ∂D× ]0, T [,

∂νu= f on ∂Ω× ]0, T [,

u(x,0) = 0 in Ω \D,

where ∂ν = ν · ∇x. The original inverse problem studied in [1] is to find informa-

tion of D from the one measurement, that is, a pair of input and output data

(f(x, t), ∂νu(x, t)) on ∂Ω× ]0, T [.

For any fixed p ∈R3 \Ω, we put lp(x, z) = |p− x|+ |x− z| (x ∈ ∂D,z ∈ ∂Ω).

The essential problem of the approach presented in [1] is to obtain the asymptotic

behavior of the following type of integral:

J(λ, p) =

∫
∂Ω

dSzϕ(z;λ)

∫
∂D

e−λlp(x,z)G(x, z, p;λ)dSx,

where ϕ(·;λ) ∈C(∂Ω) is bounded in λ ∈Cδ0 , μ=Reλ≥ 1, and

G(x, z, p;λ) = a(x, z) + b(x, z)
(
F0(x, p;λ) + F1(x, p;λ)

)
for some continuous functions a(x, z) and b(x, z) of (x, z) ∈ ∂D × ∂Ω, and con-

tinuous functions Fj(x, p;λ) (j = 0,1) of x ∈ ∂D with the parameter λ. Thus, to

obtain asymptotic behavior of J(λ, p) as |λ| →∞, we need to know how Fj(x, p;λ)

(j = 0,1) behave as |λ| →∞.

We define M0(λ) and M̃(λ) by

M0(λ)h(x) =

∫
∂D

M0(x, y;λ)h(y)dSy

and

M̃(λ)h(x) =

∫
∂D

M̃(x, y;λ)h(y)dSy.

Put M1(λ) = M̃(λ)+(tY (λ))2(I− tY (λ))−1, where tY (λ) is the integral operator

defined by

tY (λ)h(x) =

∫
∂D

Y (y,x;λ)h(y)dSy.

As is in [1, (3.18), (3.20), (3.21)], Fj(x, p;λ) (j = 0,1) are given by

Fj(x, p;λ) = eλ|x−p|
(
Mj(λ)

(e−λ|·−p|

| · −p|
))

(x), j = 0,1.

For F0(x, p;λ), it follows that

F0(x, p;λ) =
λ

2π

∫
∂D

e−λ(|x−y|+|y−p|−|x−p|) νy · (x− y)

|x− y|2
1

|y− p| dSy,

which implies that F0(x, p;λ) =O(|λ|) at worst. Thus we can see that there is no

exponentially growing factor in μ=Reλ. For F1(x, p;λ), we also have

F1(x, p;λ) =

∫
∂D

e−λ(|y−p|−|x−p|)M1(x, y;λ)
1

|y− p| dSy,
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where M1(x, y;λ) is the integral kernel of M1(λ). Hence to obtain the asymptotic

behavior of J(λ, p), it is important to determine the exponential term of the

estimate of M1(x, y;λ). From Lemma 2.1(i) and (7.2)–(7.4), tY (λ) = M0(λ) +

M̃(λ) satisfies all assumptions in Theorems 1.1 and 6.1. Hence (6.5) implies that∣∣M1(x, y;λ)
∣∣≤C

(
μ+

1

|x− y|
)
e−μ|x−y|,

which yields∣∣F1(x, p;λ)
∣∣≤C

∫
∂D

e−μ(|x−y|+|y−p|−|x−p|)
(
μ+

1

|x− y|
) 1

|y− p| dSy.

This implies that F1(x, p;λ) does also not contain exponentially growing factors

in μ=Reλ. Thus we can handle the term containing F1(x, p;λ) in the same way

as the other ones. To ensure this, we need to obtain the estimate of the integral

kernel introduced in Theorem 1.1. This is why we have to get Theorem 1.1.

Appendix

Here, we show estimate (1.4) for δ > 0 when we do not assume that ∂D is strictly

convex. In what follows, we assume only that D is a bounded domain of R3 with

C2,α0 (0 < α0 ≤ 1)-boundary. Even in this case, Lemma 3.1 holds since in the

proof of Lemma 3.1, the convexity assumption for ∂D does not used.

LEMMA A.1

There exists a constant C > 0 such that∫
∂D

e−μ|z−y|

|x− z| dSz ≤Cμ−1, x, y ∈ ∂D,μ > 0,

and ∫
∂D

e−μ|z−y|

|x− z||y− z| dSz ≤
Cμ−1

|x− y| , x, y ∈ ∂D,x �= y,μ > 0.

Proof

From Lemma 3.1(ii), it follows that

(A.1)

∫
∂D

e−μ|z−y|

|y− z|k dSz ≤Cμ−2+k, y ∈ ∂D,μ > 0, k = 0,1.

Note that decomposition (5.22) of ∂D and estimates (5.23) and (5.24) imply∫
∂D

e−μ|z−y|

|x− z| dSz ≤
∫
∂D∩S1

e−μ|z−x|

|x− z| dSz +

∫
∂D∩S2

e−μ|z−y|

|y− z| dSz.

Combining this estimate with (A.1), we obtain the first estimate of Lemma A.1.

For the second estimate of Lemma A.1, we note that

(A.2) |x− y| e−μ|z−y|

|x− z||y− z| ≤
|x− z|+ |y− z|
|x− z||y− z| e−μ|z−y| =

e−μ|z−y|

|x− z| +
e−μ|z−y|

|y− z| .

Combining this estimate with (A.1) and the first estimate of Lemma A.1, we

obtain the second estimate in Lemma A.1. �
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LEMMA A.2

There exists a positive constant C depending only on ∂D such that for all μ > 0

and 0< δ ≤ 1,∫
∂D

e−μ(1−δ)|x−z|e−μ|z−y|
(
δμ+

1

|x− z|
)(

δμ+
1

|y− z|
)
dSz

≤Cδ−1μ−1
(
δμ+

1

|x− y|
)
e−(1−δ)μ|x−y|, x, y ∈ ∂D,x �= y.

Proof

From the fact that

(1− δ)|x− z|+ |z − y| = (1− δ)
(
|x− z|+ |z − y|

)
+ δ|z − y|

≥ (1− δ)|x− y|+ δ|z − y|,

it follows that∫
∂D

e−(1−δ)μ|x−z|e−μ|z−y|
(
δμ+

1

|x− z|
)(

δμ+
1

|y− z|
)
dSz

≤ e−(1−δ)μ|x−y|
∫
∂D

e−δμ|z−y|
(
δμ+

1

|x− z|
)(

δμ+
1

|y− z|
)
dSz.

Hence, we obtain Lemma A.2 since Lemma A.1 and (A.1) imply∫
∂D

e−μ|z−y|
(
μ+

1

|x− z|
)(

μ+
1

|y− z|
)
dSz ≤Cμ−1

(
μ+

1

|x− y|
)

for all x, y ∈ ∂D, x �= y, and μ > 0. �

As is in the beginning of Section 4, the Neumann series expansion implies Yλ(I−
Yλ)

−1 =
∑∞

n=1(Yλ)
n, where operators (Yλ)

n are the integral operator with the

integral kernel Y
(n)
λ (x, y) (n= 1,2, . . .) defined by

Y
(n+1)
λ (x, y) =

∫
∂D

Y
(n)
λ (x, z)Y

(1)
λ (z, y)dSz, n= 1,2, . . .

and

Y
(1)
λ (x, y) =Kλ(x, y) + K̃λ(x, y).

For the constants C0 and C1 in (1.1) and (1.2), respectively, we put C5 =

max{C0,C1}> 0. Note that it follows that∣∣Y (1)
λ (x, y)

∣∣≤C5

(
μ+

1

|x− y|
)
e−μ|x−y|,

(A.3)
x, y ∈ ∂D,x �= y,λ ∈Cδ0 , μ=Reλ.

Now, we state the following theorem describing (1.4).

THEOREM A.1

Let D be a bounded domain of R3 with C2,α0(0<α0 ≤ 1)-boundary. Then, there

exists a constant μ0 > 0 such that λ ∈Cδ0 with μ ≥ μ0, the operator I − Yλ is
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invertible, and Yλ(I−Yλ)
−1 has an integral kernel Y ∞

λ (x, y) which is measurable

for (x, y) ∈ ∂D× ∂D, continuous for x �= y, and has the estimate∣∣Y ∞
λ (x, y)

∣∣≤ 2C5δ
−1

(
δμ+

1

|x− y|
)
e−(1−δ)μ|x−y|,

x, y ∈ ∂D,x �= y,λ ∈Cδ0 , μ �=Reλ≥ δ−2μ0,

for all 0< δ ≤ 1, where C5 is the constant in (A.3).

Proof

We give the following estimates for Y
(n+1)
λ (x, y) (n= 0,1,2, . . .):∣∣Y (n+1)

λ (x, y)
∣∣≤C5δ

−1(CC5δ
−2)nμ−n

(
δμ+

1

|x− y|
)
e−(1−δ)μ|x−y|,

(A.4)
x, y ∈ ∂D,x �= y,λ ∈Cδ0 ,0< δ ≤ 1,

where the constant C in the above is just given in Lemma A.2. From (A.3), it

follows that∣∣Y (1)
λ (x, y)

∣∣≤C5δ
−1

(
δμ+

1

|x− y|
)
e−μ|x−y| (0< δ ≤ 1),

which means that (A.4) holds for n= 0 for 0< δ ≤ 1. Assume that (A.4) holds

for some nonnegative integer n. Then the definition of Y
(n+2)
λ (x, y) implies that

∣∣Y (n+2)
λ (x, y)

∣∣ ≤ ∫
∂D

∣∣Y (n+1)
λ (x, z)

∣∣∣∣Y (1)
λ (z, y)

∣∣dSz

≤ C5δ
−1(CC5δ

−2)nμ−nC5δ
−1(A.5)

×
∫
∂D

e−(1−δ)μ|x−z|e−μ|z−y|
(
δμ+

1

|x− z|
)(

δμ+
1

|z − y|
)
dSz.

Combining this estimate with Lemma A.2, we obtain∣∣Y (n+2)
λ (x, y)

∣∣≤C5δ
−1(CC5δ

−2)n+1μ−(n+1)
(
δμ+

1

|x− y|
)
e−(1−δ)μ|x−y|,

that is, (A.4) for n+ 1. Thus, (A.4) holds for any n= 0,1,2, . . . .

We put μ0 = 2CC5 > 0. For λ ∈Cδ0 with μ≥ μ0δ
−2, (A.4) implies∣∣Y (n+1)

λ (x, y)
∣∣≤C5δ

−1
(1
2

)n(
δμ+

1

|x− y|
)
e−(1−δ)μ|x−y|,

x, y ∈ ∂D,x �= y,0< δ ≤ 1.

Noting this estimate and |Y ∞
λ (x, y)| ≤

∑∞
n=0 |Y

(n+1)
λ (x, y)|, we obtain the esti-

mate of Y ∞
λ (x, y) in Theorem A.1, which completes the proof of Theorem A.1. �

As is in Theorem 5.1 and Proposition 5.2, we can expect that Y
(n)
λ (x, y) (n≥ 2)

are more regular than Y
(1)
λ (x, y). We can also show the following estimates.
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PROPOSITION A.1

Let D be a bounded domain of R3 with C2,α0(0<α0 ≤ 1)-boundary. Then there

exist constants C > 0 and μ0 > 0 such that

(i) Y
(2)
λ (x, y) satisfies∣∣Y (2)

λ (x, y)
∣∣≤Cδ−2e−(1−δ)μ|x−y|

(
1 +max

{
0, log

r0
|x− y|

})
for all x, y ∈ ∂D, x �= y, λ ∈Cδ0 , μ=Reλ≥ δ−2μ0, and 0< δ ≤ 1;

(ii) the integral kernel Ỹ ∞
λ (x, y) of the operator Y 3

λ (I − Yλ)
−1 is continuous

on ∂D× ∂D and satisfies∣∣Ỹ ∞
λ (x, y)

∣∣≤Cδ−4μ−1
(
1 + | log δ|+ logμ

)
e−(1−δ)μ|x−y|

for all x, y ∈ ∂D, x �= y, λ ∈Cδ0 , μ=Reλ≥ δ−2μ0, and 0< δ ≤ 1.

Proof

First we show that there exists a constant C > 0 such that for any μ > 0,

(A.6)

∫
∂D

e−μ|z−y|

|x− z||y− z| dSz ≤C
(
1 +max

{
0, log

r0
|x− y|

})
, x, y ∈ ∂D,x �= y,

and ∫
∂D

e−μ|z−y|

|y− z| max
{
0, log

r0
|x− z|

}
dSz

(A.7)
≤Cμ−1

(
1 +max{0, logμ}

)
, x, y ∈ ∂D,

where r0 > 0 is the constant described in Lemma 2.1.

For x, y ∈ ∂D, we put ρ0 = |x − y|. First consider the case when ρ0 > r0.

Estimate (A.2) implies that

e−μ|z−y|

|x− z||y− z| ≤
1

r0

(e−μ|z−y|

|x− z| +
e−μ|z−y|

|y− z|
)
≤ 1

r0

( 1

|x− z| +
1

|y− z|
)
,

which yields (A.6) since
∫
∂D

|x− z|−1 dSz ≤C. For (A.7), since |x− z| ≤ r0/2<

ρ0/2 implies that |y − z| ≥ |y − x| − |x− z| = ρ0 − r0/2 ≥ r0/2, from (A.1) and

the argument of the proof of Lemma 3.1(iv), the integral in (A.7) is estimated

by ∫
Sr0/2(x)

e−μr0/2

r0/2
log

r0
|x− z| dSz + log 2

∫
Sr0 (x)\Sr0/2(x)

e−μ|z−y|

|y− z| ≤Cμ−1.

Next we consider the case of ρ0 ≤ r0. For (A.6), we put D1(x, y) = S−
ρ0
(x),

D2(x, y) = Sρ0(x) ∩ S−
ρ0
(y), D3(x, y) = Sρ0(x) ∩ (Sρ0(y) \ Sρ0/2(y)), D4(x, y) =

Sρ0(x)∩ Sρ0/2(y), and

Ij(x, y) =

∫
Dj(x,y)

e−μ|z−y|

|x− z||y− z| dSz (j = 1,2,3,4).

To show (A.6), it suffices to give estimates of each Ij(x, y).
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Since |x− z| ≤ ρ0 ≤ |y− z| for z ∈D2(x, y), it follows that

I2(x, y)≤
∫
S−
ρ0 (y)

e−μ|z−x|

|x− z||y− z| dSz = I1(y,x).

Combining this fact with the proof of (5.7), we obtain

I1(x, y) + I2(x, y)≤ I1(x, y) + I1(y,x)≤C
(
1 +max

{
0, log

r0
|x− y|

})
.

Since ρ0 ≥ |y − z| ≥ ρ0/2 and |x − z|/2 ≤ ρ0/2 ≤ |y − z| for z ∈ D3(x, y), from

Lemma 3.1(i), it follows that

I3(x, y)≤
2

ρ0

∫
Sρ0 (x)

e−μ|x−z|/2

|x− z| dSz ≤C.

If z ∈D4(x, y), it follows that |x− z| ≥ |x− y| − |y− z| ≥ ρ0 − ρ0/2 = ρ0/2. This

fact and Lemma 3.1(i) yields

I4(x, y)≤
2

ρ0

∫
Sρ0/2(y)

e−μ|y−z|

|y− z| dSz ≤C.

Combining all estimates for Ij(x, y), we obtain (A.6).

Next we show (A.7) for the case ρ0 ≤ r0. Note that the integral domain of the

integral in (A.7) is Sr0(x). From (5.22), (5.23), and the fact that 1≤ r0/|x− z| ≤
r0/|y− z| for all z ∈ Sr0(x)∩ S2 ⊂ Sr0(y), the integral in (A.7) is estimated by∫

Sr0 (x)

e−μ|z−x|

|x− z| log
r0

|x− z| dSz +

∫
Sr0 (y)

e−μ|z−y|

|y− z| log
r0

|y− z| dSz.

Form the above estimate and Lemma 3.1(iv), we obtain (A.7).

Using (A.5) with n= 0 and the argument obtaining Lemma A.2, we obtain∣∣Y (2)
λ (x, y)

∣∣ ≤ (C5δ
−1)2e−(1−δ)μ|x−y|

×
∫
∂D

e−δμ|z−y|
(
δμ+

1

|x− z|
)(

δμ+
1

|z − y|
)
dSz.

Hence, the first estimate of Lemma A.1, (A.1), and (A.6) imply Proposi-

tion A.1(i).

For (ii), note that∣∣Ỹ ∞
λ (x, y)

∣∣≤ ∫
∂D

∣∣Y (2)
λ (x, z)

∣∣∣∣Y ∞
λ (z, y)

∣∣dSz

since Y 3
λ (I − Yλ)

−1 = Y 2
λ · Yλ(I − Yλ)

−1. For 0< δ ≤ 1, we put δ′ = δ/4. It yields

that

(1− δ)|x− z|+ (1− 2δ′)|z − y| = (1− δ)
(
|x− z|+ |z − y|

)
+ 2δ′|z − y|

≥ (1− δ)|x− y|+ 2δ′|z − y|,

which implies e−(1−δ)μ|x−z|e−(1−2δ′)μ|z−y| ≤ e−(1−δ)μ|x−y|e−2δ′μ|z−y|. Hence,

from Theorem A.1 and Proposition A.1(i) it follows that
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∣∣Ỹ ∞
λ (x, y)

∣∣ ≤ 4CC5δ
−3e−(1−δ)μ|x−y|

∫
∂D

e−2δ′μ|z−y|

×
(
1 +max

{
0, log

r0
|x− z|

})(
2δ′μ+

1

|z − y|
)
dSz,

where C > 0 is the constant in Proposition A.1(i). Noting that

δ′μe−2δ′μ|z−y| ≤ e−δ′μ|z−y|

2|z − y| ,

we obtain∣∣Ỹ ∞
λ (x, y)

∣∣ ≤ 8CC5δ
−3e−(1−δ)μ|x−y|

×
∫
∂D

e−δ′μ|z−y|
(
1 +max

{
0, log

r0
|x− z|

}) 1

|z − y| dSz.

From the above estimate, (A.7), and Lemma 3.1(ii), the estimate in Proposi-

tion A.1(ii) holds. This completes the proof of Proposition A.1. �
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