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Abstract Let G denote Sp(n,R), U(p, q), or O∗(2n). The main aim of this article is to

show that the canonical quantization of themomentmap on a symplecticG-vector space

(W,ω) naturally gives rise to the oscillator (or Segal–Shale–Weil) representation of g :=

Lie(G)⊗C. More precisely, after taking a complex Lagrangian subspace V of the com-

plexification of W , we assign an element of the Weyl algebra for V to 〈μ,X〉 for each
X ∈ g, which we denote by 〈μ̂,X〉. Then we show that the mapX �→ i〈μ̂,X〉 gives a rep-
resentation of g. With a suitable choice of V in each case, the representation coincides

with the oscillator representation of g.

1. Introduction

Let (W,ω) be a symplectic vector space, and let Sp(W ) be the group of linear

symplectic isomorphisms of W . Then it is well known that each component of the

moment map, that is, the Hamiltonian function HX on W , is quadratic in the

coordinate functions for any X ∈ sp(W ) (see, e.g., [2]). Therefore, taking account

of the fact that the commutators among the quantized operators corresponding

to the coordinate functions are central, one can see that the canonical quanti-

zation gives a representation of sp(W ), since the map X �→HX is a Lie algebra

homomorphism from sp(W ) into C∞(W ), where the latter is regarded as a Lie

algebra of infinite dimension with respect to the Poisson bracket.

The main aim of this article is to show that, for real reductive Lie groups

G= Sp(n,R), U(p, q), and O∗(2n), the canonical quantization of the moment map

on the real symplectic G-vector space (W,ω) gives rise to the oscillator (or Segal–

Shale–Weil) representation of the complexified Lie algebra g of g0 := Lie (G) in a

natural way. Here, we understand that the canonical quantization is to construct

a mapping from the space of smooth functions on W into the ring of polyno-

mial coefficient differential operators on a complex Lagrangian subspace V of

the complexification WC of W , the so-called Weyl algebra for V , that induces

a Lie algebra homomorphism from g into the Weyl algebra. We remark that a

different choice of a Lagrangian subspace results in a different quantization and,

hence, a different representation of the Lie algebra. In fact, when G = U(p, q)
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and O∗(2n), we will find in Sections 3–5 that one choice of a Lagrangian sub-

space produces finite-dimensional irreducible representations of g, while another

produces infinite-dimensional ones (i.e., the oscillator representations).

The oscillator representations have been extensively studied in relation to

the Howe duality and the minimal representations. Note that each Lie group G

we consider in this article is a counterpart of Howe’s reductive dual pair (G,G′)

with G′ compact, that is, G and G′ are centralizers of each other in a symplectic

group Sp(N,R) for some N . One can obtain the oscillator representations by

embedding G into Sp(N,R) for G=U(p, q) and O∗(2n) (see [13], [4], [10], [11],

[9], [3], etc.).

As another approach to a construction of the oscillator representations, we

should mention Hilgert, Kobayashi, Möllers, and Ørsted [8], in which they con-

struct the oscillator representations via Jordan algebras when G is an arbitrary

Hermitian Lie group of tube type.

It was shown in [6] that, for the classical Hermitian symmetric pairs (G,K) =

(SU(p, q),S(U(p) × U(q))), (Sp(n,R),U(n)), and (SO∗(2n),U(n)), one obtains

generating functions of the principal symbols of KC-invariant differential opera-

tors on G/K in terms of the determinant or Pfaffian of a certain g-valued matrix

whose entries are the total symbols of the differential operators corresponding

to the holomorphic discrete series representations realized via Borel–Weil the-

ory, where KC denotes a complexification of K. We note that the KC-invariant

differential operators play a prominent role in the Capelli identity (see [12]).

Moreover, the author [6] also clarified that the g-valued matrix mentioned above

can be regarded as the twisted moment map μλ on the cotangent bundle of G/K

which reduces to the moment map μ on the cotangent bundle when λ→ 0, where

λ is an element of g∗, the dual space of g, that parameterizes the representations.

In summary, one can say that the moment map relates noncommutative objects

(representation operators which are realized as differential operators) to commu-

tative ones (symbols of the differential operators). Now in this article, we will

proceed in the reverse direction: from commutative objects to noncommutative

ones.

In the remainder of this section, we briefly review a few relevant notions

from symplectic geometry, and we state our main result. Let (M,ω) be a real

symplectic manifold. For f ∈ C∞(M), the space of smooth R-valued functions

on M , let ξf denote the vector field on M satisfying ι(ξf )ω = df , where ι stands

for the contraction. Then we define the Poisson bracket by

(1.1) {f, g} := ω(ξg, ξf )
(
f, g ∈C∞(M)

)
,

which we extend to the space of smooth C-valued functions by linearity. If

we denote the quantum observable corresponding to a classical observable f ∈
C∞(M) by f̂ , then the quantization principles require in particular that

(1.2) if {f1, f2}= f3, then [f̂1, f̂2] =−i�f̂3,

where � is the Planck constant (see, e.g., [1], [16]); we set �= 1 for simplicity in

what follows.
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Suppose that a Lie group G acts on M symplectically, that is, g∗ω = ω for

all g ∈G. A smooth map μ :M → g∗0 is called the moment map if the following

conditions hold: μ is G-equivariant, and it satisfies

(1.3) d〈μ,X〉= ι(XM )ω for all X ∈ g0,

where g∗0 is the dual space of g0 and XM denotes the vector field on M defined

by

(1.4) XM (p) =
d

dt

∣∣∣
t=0

exp(−tX).p (p ∈M).

We often identify g∗0 with g0 via the nondegenerate symmetric invariant bilinear

form B defined by

(1.5) B(X,Y ) =

{
1
2 tr(XY ) if g0 = sp(n,R) or o∗(2n),

tr(XY ) if g0 = u(p, q),

which extends to the one on g = spn, o2n, or glp+q , the complexification of

g0 = sp(n,R), o∗(2n), or u(p, q). If there is no risk of confusion, we denote the

composition of μ and the isomorphism g∗0 � g0 also by μ. Our symplectic G-

manifold (M,ω) will be a real symplectic G-vector space.

The main result of this article is the following, which we prove case by case.

THEOREM

Let G= Sp(n,R), U(p, q), and O∗(2n), and let (W,ω) be the real symplectic G-

vector spaces W =R
2n, (Cp+q)R, and (C2n)R equipped with ω given by

ω(v,w) =

⎧⎪⎪⎨⎪⎪⎩
tvJnw if W =R

2n,

Im(v∗Ip,qw) if W = (Cp+q)R,

Im(v∗In,nw) if W = (C2n)R

for v,w ∈W , where Jn = [ 1n
−1n

] and Ip,q = [
1p

−1q
]. Then, with a certain choice

of the complex Lagrangian subspace of the complexification WC of W , the canoni-

cal quantization of the moment map μ :W → g∗0 given by (2.9), (5.7), and (4.19)

below yields the oscillator representations of g= spn, glp+q, and o2n, respectively.

The rest of this article is organized as follows. In Section 2, we consider the case

whereG= Sp(n,R), which is the most fundamental case in this article in the sense

that a choice of a complex Lagrangian subspace is the key to obtain the oscilla-

tor representation. The original motivation for this project started from this case

with n= 1. In Section 3, we turn to the case where G= U(p, q) and show that

the canonical quantization of the moment map with a certain choice of a com-

plex Lagrangian subspace yields irreducible finite-dimensional representations of

glp+q . We postpone showing that another choice leads to the oscillator repre-

sentations of glp+q until Section 5. In Section 4, we treat the case G=O∗(2n),

in which the moment map can be expressed in two ways due to the fact that

the quaternionic vector space Hn is C-isomorphic to C2n and to Matn×2(C). In
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Section 5, we take complex Lagrangian subspaces different from the ones con-

sidered in Sections 3 and 4 in the cases of U(p, q) and O∗(2n): one leading to

finite-dimensional irreducible representations when g = o2n, and one leading to

the oscillator representation when g= glp+q . Finally, we note a relation between

the moment map and the associated variety of the corresponding irreducible g-

modules occurring in the irreducible decomposition of the space of polynomials

on the Lagrangian subspace under the joint action of the dual pairs (g,G′).

1.1. Notation
(i) Throughout the article, we fix a Cartan involution θ to be given by θX =

−X∗. Let g0 = k0 ⊕ p0 denote the Cartan decomposition for g0, and let g= k⊕ p

denote the corresponding complexified Cartan decomposition for g= g0 ⊗C.

For a given basis {Xα}α for g0 (resp., g), let us denote by {X∨
α} its dual

basis with respect to B, that is, the basis for g0 (resp., g) satisfying

B(Xα,X
∨
β ) = δα,β ,

where δα,β is Kronecker’s delta, that is, is equal to 1 if α= β and 0 otherwise.

(ii) For a positive integer i, we set

ı̄ :=

{
n+ i if g= spn or o2n,

p+ i if g= glp+q,

where spn, o2n, and glp+q denote the complexified Lie algebras of sp(n,R), o∗(2n),

and u(p, q), respectively.

2. Reductive dual pair (sp(n,R),Ok)

In this section, let G denote the symplectic group Sp(n,R) of rank n over R

which we realize as

Sp(n,R) =
{
g ∈GL2n(R);

tgJng = Jn
}

with Jn = [ 1n
−1n

]. Set g0 = sp(n,R), the Lie algebra of G, and take a basis for

g0 as

(2.1)

X0
i,j =Ei,j −Ej̄,̄ı (1≤ i, j ≤ n),

X+
i,j =Ei,j̄ +Ej,̄ı (1≤ i≤ j ≤ n),

X−
i,j =Eı̄,j +Ej̄,i (1≤ i≤ j ≤ n),

where Ei,j denotes the matrix unit of size 2n× 2n, that is, its (i, j)th entry is 1

and all other entries are 0. Note that they also form a basis for g= spn.

2.1.
Let W =R

2n, which is equipped with the canonical symplectic form ω given by

(2.2) ω(v,w) = tvJnw (v,w ∈W ).

Obviously, the natural left action of G on W defined by v �→ gv (matrix mul-

tiplication) for v ∈ W and g ∈ G is symplectic, that is, g∗ω = ω for all g ∈ G.
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If we identify the canonical base vectors ei :=
t(0, . . . ,0,

ith
1 ,0, . . . ,0) with ∂xi for

i= 1,2, . . . , n and with ∂yi−n for i= 1̄, 2̄, . . . , n̄, then it is written as

(2.3) ω =

n∑
i=1

dxi ∧ dyi

at v = t(x1, . . . , xn, y1, . . . , yn) ∈W .

LEMMA 2.1

The vector fields on W generated by the basis (2.1) for g0 = sp(n,R) in the sense

of (1.4) are given by

(2.4)

(X0
i,j)W =−xj∂xi + yi∂yj (1≤ i, j ≤ n),

(X+
i,j)W =−(yj∂xi + yi∂xj ) (1≤ i≤ j ≤ n),

(X−
i,j)W =−(xj∂yi + xi∂yj ) (1≤ i≤ j ≤ n).

Proof

It is an easy exercise to show these formulae. �

Note that the orthogonal group O(1) = {±1} also acts on W symplectically on

the right.

PROPOSITION 2.2

Let (W,ω) be as above and G= Sp(n,R). Then the moment map μ :W → g∗0 � g0

is given by

(2.5) μ(v) = vtvJn =

[
−xty xtx

−yty ytx

]
for v = t(x1, . . . , xn, y1, . . . , yn) ∈W with x= t(x1, . . . , xn) and y = t(y1, . . . , yn).

In particular, μ is G-equivariant and is O(1)-invariant.

Proof

To make this article self-contained, we include the proof (see, however, e.g., [2,

Proposition 1.4.6]). It follows from Lemma 2.1 that

d〈μ,X0
i,j〉= ι

(
(X0

i,j)W
)
ω

= ι(−xj∂xi + yi∂yj )

n∑
k=1

dxk ∧ dyk

=−xj dyi − yi dxj =−d(yixj).

Hence, one obtains that

〈μ,X0
i,j〉=−yixj .
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Similar calculations yield

〈μ,X+
i,j〉=−yiyj and 〈μ,X−

i,j〉= xixj .

Therefore,

μ(v) =
∑
i,j

〈μ,X0
i,j〉(X0

i,j)
∨ +

∑
i≤j

〈μ,X+
i,j〉(X+

i,j)
∨ +

∑
i≤j

〈μ,X−
i,j〉(X−

i,j)
∨

=
∑
i,j

(−yixj)(Ej,i −Eı̄,j̄) +
∑
i≤j

(−yiyj)2
−δij (Ei,j̄ +Ej,̄ı)

+
∑
i≤j

xixj2
−δij (Eı̄,j +Ej̄,i)

=
∑
i,j

(−xiyjEi,j + xixjEi,j̄ − yiyjEı̄,j + yixjEı̄,j̄)

=

[
−xty xtx

−yty ytx

]
= vtvJn

for v = t(x1, . . . , yn) with x= t(x1, . . . , xn) and y = t(y1, . . . , yn).

Now the O(1)-invariance of μ is trivial, and the G-equivariance can be verified

as

μ(gv) = gvt(gv)Jn = gvtvtgJn = gvtvJng
−1 =Ad(g)μ(v),

since tgJn = Jng
−1 for g ∈G. This completes the proof. �

It follows from the definitions of the Poisson bracket (1.1) and the symplectic

form (2.3) that

(2.6) {xi, yj}=−δi,j , {xi, xj}= {yi, yj}= 0,

for i, j = 1, . . . , n. In view of (2.6), we quantize the classical observables by assign-

ing

(2.7) x̂i =multiplication by xi, ŷi =−i∂xi ,

so that [x̂i, ŷj ] = iδi,j , as required. In what follows, we simply denote the mul-

tiplication operator by a function f by the same letter f if there is no risk of

confusion.

Note that the quantization (2.7) corresponds to taking a Lagrangian sub-

space of W spanned by e1, . . . , en. However, to obtain a representation of the

complex Lie algebra g= spn, we will take a complex Lagrangian subspace of the

complexification WC defined by

(2.8) V := 〈e1, . . . , en〉C.

Therefore, the classical observables xj , j = 1, . . . , n, are now the complex coordi-

nates on V with respect to this basis.
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Now, we quantize the moment map μ according to (2.7) and define the

quantized moment map by μ̂ as

μ̂ : =

⎡⎢⎣x̂1

...

ŷn

⎤⎥⎦ (x̂1, . . . , ŷn)Jn =

[
x

−i∂x

]
(tx,−it∂x)Jn

=

[
ixt∂x xtx

∂x
t∂x −i∂x

tx

](2.9)

with x= t(x1, . . . , xn) and ∂x =
t(∂x1 , . . . , ∂xn).

Let P(V ) denote the space of complex coefficient polynomial functions on

V ; that is, P(V ) = C[x1, . . . , xn], and let PD(V ) denote the ring of polynomial

coefficient differential operators on V . Thus, each entry of μ̂ is an element of

PD(V ).

THEOREM 2.3

For X ∈ g= spn, set π(X) = i〈μ̂,X〉. Then the map

π : g→ PD(V )

is a Lie algebra homomorphism. In terms of the basis (2.1), it is given by

(2.10) π(X) =

⎧⎪⎪⎨⎪⎪⎩
−1

2 (xi∂xj + ∂xjxi) if X =X0
i,j ,

i∂xi∂xj if X =X+
i,j ,

ixixj if X =X−
i,j .

Proof

Of course, one can verify that the commutation relations among the explicit form

(2.10), which can be easily deduced from (2.9), coincide with those of the basis

{X�
i,j} for g. However, we will give another proof in the following.

The moment map μ induces a Lie algebra homomorphism from g0 to C
∞(W );

that is, if we write HX := 〈μ,X〉 for X ∈ g0, then we have

(2.11) {HX ,HY }=H[X,Y ] (X,Y ∈ g0).

Taking account of the fact that both the Poisson bracket and commutator are

derivations, one sees that the relation (2.11) implies that

[ĤX , ĤY ] =−iĤ[X,Y ]

as required in (1.2), since each function HX is quadratic in the coordinate func-

tions xi, yj for any X ∈ g0 (see [2]) and the commutators among x̂i and ŷj are in

the center of PD(V ) for i, j = 1, . . . , n. Hence, it follows from π(X) = iĤX that[
π(X), π(Y )

]
= π

(
[X,Y ]

)
(X,Y ∈ g0).

Now, extend the result to the complexification by linearity. �



560 Takashi Hashimoto

REMARK 2.4

By (2.9), one can rewrite π(X) = i〈μ̂,X〉, X ∈ g, as

π(X) =
i

2
tr(μ̂X) =

i

2
tr

([
x

−i∂x

]
(tx,−it∂x)JnX

)

=
i

2
(it∂x,

tx)X

[
x

−i∂x

]
,

where the last equality follows from the fact that X is a member of g. Namely,

our quantized moment map μ̂ is essentially identical to the homomorphism ϕ :

U(g) → A given by Knapp–Vogan [14, Chapter I, Section 6, p. 98, Example],

where U(g) denotes the universal enveloping algebra of g and A denotes the

Weyl algebra corresponding to our PD(V ) with n= 1. This observation was the

original motivation for the present work.

It is well known that the irreducible decomposition of the representation (π,P(V ))

of g is given by P(V ) = P(V )+ ⊕ P(V )−, where P(V )+ and P(V )− are the sub-

spaces consisting of even polynomials f(x) satisfying f(−x) = f(x) and of odd

polynomials f(x) satisfying f(−x) = −f(x), respectively. It is also well known

that this phenomena can be explained by the type of representations of O(1)

which acts on V on the right.

2.2.
Let us consider the vector space W k :=W ⊕ · · · ⊕W , the direct sum of k copies

of W =R
2n, which can be identified with Mat2n×k(R). It is a symplectic vector

space equipped with symplectic form ωk given by

ωk(v,w) = tr(tvJnw) (v,w ∈W k).

Let ei,a denote the matrix unit of size 2n× k for i = 1, . . . , n and a = 1, . . . , k.

Under the identification ei,a ↔ ∂xi,a and eı̄,a ↔ ∂yi,a , we write v = t[x1, . . . , xn,

y1, . . . , yn] ∈W k with xi = (xi,1, . . . , xi,k) and yi = (yi,1, . . . , yi,k) being row vec-

tors1 of size k for i= 1, . . . , n. Then ωk is given by

(2.12) ωk =
∑

1≤i≤n,1≤a≤k

dxi,a ∧ dyi,a

at v = t[x1, . . . , yn]. Note that G = Sp(n,R) acts on W k = Mat2n×k(R) on the

left, while the real orthogonal group O(k) acts on the right. Both actions are

symplectic.

For brevity, let us write x� · y� =
∑k

a=1 x�,ay�,a, the standard inner product

between two row vectors x� = (x�,1, . . . , x�,k) and y� = (y�,1, . . . , y�,k) of size k in

what follows.

1More precisely, one should write an element v ∈ Wk = Mat2n×k(R) as v = t[tx1, . . . , txn,
ty1, . . . , tyn]; however, we will adopt this abbreviated notation in what follows.
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PROPOSITION 2.5

Let (W k, ωk) be the symplectic G-vector space. Then the moment map μ :W k →
g∗0 � g0 is given by

μ(v) = vtvJn(2.13a)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1 · y1 −x1 · y2 · · · −x1 · yn x1 · x1 x1 · x2 · · · x1 · xn

−x2 · y1 −x2 · y2 · · · −x2 · yn x2 · x1 x2 · x2 · · · x2 · xn

...
...

. . .
...

...
...

. . .
...

−xn · y1 −xn · y2 · · · −xn · yn xn · x1 xn · x2 · · · xn · xn

−y1 · y1 −y1 · y2 · · · −y1 · yn y1 · x1 y1 · x2 · · · y1 · xn

−y2 · y1 −y2 · y2 · · · −y2 · yn y2 · x1 y2 · x2 · · · y2 · xn

...
...

. . .
...

...
...

. . .
...

−yn · y1 −yn · y2 · · · −yn · yn yn · x1 yn · x2 · · · yn · xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.13b)

for v = t[x1, . . . , xn, y1, . . . , yn] ∈ W k. In particular, μ is G-equivariant and is

O(k)-invariant.

Proof

When xi, yi, ∂xi , and ∂yi denote row vectors and the products stand for the inner

product of row vectors, a simple calculation shows that the vector fields on W k

generated by the basis (2.1) for g0 = sp(n,R) are given by the same formulae as

in Lemma 2.1, and thus, the same argument given in the proof of Proposition 2.2

produces the result. �

It follows from (2.12) that the Poisson brackets among the coordinate functions

xi,a, yi,a, i= 1, . . . , n, a= 1, . . . , k, are given by

{xi,a, yj,b}=−δi,jδa,b,

and all other brackets vanish. Therefore, we quantize them by assigning

x̂i,a = xi,a and ŷi,a =−i∂xi,a

for i= 1, . . . , n and a= 1, . . . , k.

Let V k denote the direct sum V ⊕ · · · ⊕ V (k copies) with V given in (2.8).

Since V k can be identified with Matn×k(C), the upper half of W
k
C
=Mat2n×k(C),

we write an element of V k as x = (xi,a)i=1,...,n;a=1,...,k. Let P(V k) = C[xi,a;

i= 1, . . . , n, a= 1, . . . , k] be the algebra of complex polynomial functions on V k,

and let PD(V k) be the ring of polynomial coefficient differential operators on

V k. Note that the xi,a’s are now complex variables and that the complex general

linear group GLk acts on V k by matrix multiplication on the right and, thus, on

P(V k) by right translation:

(2.14) ρ(g)f(x) := f(xg)
(
g ∈GLk, f ∈ P(V k)

)
.

The right action of GLk on V k is the restriction of the one on W k
C
.
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The quantized moment map μ̂ in this case is also given by the same formula

as (2.9):

μ̂=

[
ixt∂x xtx

∂x
t∂x −i∂x

tx

]
.

In this case, however, x and ∂x are (n× k)-matrices whose (i, a)th entries are

the multiplication operator xi,a and the differential operator ∂xi,a for i= 1, . . . , n

and a= 1, . . . , k, respectively.

LEMMA 2.6

For x = (xi,a)i=1,...,n;a=1,...,k ∈ V k and g ∈ GLk, the following relations hold in

End(P(V k)):

ρ(g)−1∂xi,aρ(g) =
∑
b

gab∂xi,b
,(2.15)

ρ(g)−1xi,aρ(g) =
∑
b

gbaxi,b,(2.16)

where g = (gab) and g−1 = (gab).

Proof

Since ∂xi,a is identified with ei,a ∈Matn×k(C), one sees that

(
∂i,a

(
ρ(g)f

))
(x) =

d

dt

∣∣∣
t=0

f(xg+ tei,ag) =
k∑

b=0

gab
∂f

∂xi,b
(xg),

and hence,

(
ρ(g)−1∂xi,aρ(g)

)
f =

k∑
b=1

gab
∂f

∂xi,b

for f ∈ P(V k). Thus, one obtains (2.15).

On the other hand, since

(
ρ(g)−1(xi,af)

)
(x) =

( k∑
b=1

xi,bg
ba
)
f(xg−1),

one has (
ρ(g)−1xi,aρ(g)

)
f =

( k∑
b=1

gbaxi,b

)
f

and (2.16). �

Let us abbreviate as ρ(g)aρ(g)−1 =: Adρ(g) a for a ∈ PD(V k) and g ∈GLk. More-

over, for a given matrix A= (aij) with aij ∈ PD(V k), let us denote by Adρ(g)A=

(Adρ(g) aij) the matrix whose (i, j)th entries are equal to Adρ(g) aij .
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COROLLARY 2.7

For X ∈ g= spn, set π(X) = i〈μ̂,X〉. Then the map

π : g→ PD(V k)

is a Lie algebra homomorphism. In terms of the basis (2.1), it is given by

(2.17) π(X) =

⎧⎪⎪⎨⎪⎪⎩
−1

2

∑k
a=1(xi,a∂xj,a + ∂xj,axi,a) if X =X0

i,j ,

i
∑k

a=1 ∂xi,a∂xj,a if X =X+
i,j ,

i
∑k

a=1 xi,axj,a if X =X−
i,j .

Moreover, π(X) commutes with the action of the complex orthogonal group2 Ok;

that is, π(X) ∈ PD(V k)Ok for all X ∈ spn.

Proof

The same argument as in the proof of Theorem 2.3 shows that π : g→ PD(V k)

is a Lie algebra homomorphism and that (2.17) holds.

For the last statement, it follows from Lemma 2.6 that

Adρ(g)−1xi = xig
−1 and Adρ(g)−1∂xi = ∂xi

tg

with xi = (xi,1, . . . , xi,k) and ∂xi = (∂xi,1 , . . . , ∂xi,k
) for g ∈GLk. Hence, if g ∈Ok,

then one has [
Adρ(g)−1x

−iAdρ(g)−1∂

]
=

[
x

−i∂

]
tg

with x= t[x1, . . . , xn] and ∂ = t[∂x1 , . . . , ∂xn ], since
tg = g−1. Therefore,

Adρ(g)−1 μ̂=

[
iAdρ(g)−1(xt∂x) Adρ(g)−1(xtx)

Adρ(g)−1(∂x
t∂x) −iAdρ(g)−1(∂x

tx)

]

=

[
iAdρ(g)−1xt(Adρ(g)−1∂x) Adρ(g)−1xt(Adρ(g)−1x)

Adρ(g)−1∂x
t(Adρ(g)−1∂x) −iAdρ(g)−1∂x

t(Adρ(g)−1x)

]

=

[
Adρ(g)−1x

−iAdρ(g)−1∂x

][
t(Adρ(g)−1x),−it(Adρ(g)−1∂x)

]
Jn

=

[
x

−i∂

]
tgg

[
tx,−it∂

]
Jn = μ̂.

This completes the proof. �

It is well known (see [13]) that the irreducible decomposition of P(V k) under the

joint action of (spn,Ok) is given by

(2.18) P(V k)�
∑

σ∈Ôk,L(σ) �={0}

L(σ)⊗ Vσ,

2We realize the complex orthogonal group as Ok = {g ∈GLk;
tgg = 1k} in this section.
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where Vσ is a representative of the class σ ∈ Ôk, the set of all equivalence

classes of the finite-dimensional irreducible representation of Ok, and L(σ) :=

HomOk
(Vσ,P(V

k)), which is an infinite-dimensional irreducible representation of

spn. Moreover, it is also known that the action π restricted to k lifts to the dou-

ble cover K̃C of the complexification KC of the maximal compact subgroup K of

G= Sp(n,R), which implies that L(σ) is an irreducible (g, K̃C)-module.

Note that our realization of the representation π in this section is the

Schrödinger model of the oscillator representation of g = spn. We will need

another realization of the representation in Section 5, that is, the Fock model.

3. Reductive dual pair (u(p, q),GLk)

Let G denote the indefinite unitary group defined by

U(p, q) =
{
g ∈GLn(C);g

∗Ip,qg = Ip,q
}

with Ip,q = [
1p

−1q
], and put n= p+ q only in this section for brevity. Set g0 =

u(p, q), the Lie algebra of G, and take a basis for g0 as

(3.1)

Xc
i,j =Ei,j −Ej,i (1≤ i < j ≤ p or p+ 1≤ i < j ≤ n),

Y c
i,j = i(Ei,j +Ej,i) (1≤ i≤ j ≤ p or p+ 1≤ i≤ j ≤ n),

Xn
i,j =Ei,j̄ +Ej̄,i (1≤ i≤ p,1≤ j ≤ q),

Y n
i,j = i(Ei,j̄ −Ej̄,i) (1≤ i≤ p,1≤ j ≤ q),

where Ei,j denotes the matrix unit of size n×n. Note that the Ei,j , i, j = 1, . . . , n,

form a basis for g= gln, the complexified Lie algebra of g0 = u(p, q).

3.1.
Let W = (Cn)R, the underlying real vector space of the complex vector space Cn,

and let H :Cn ×C
n →C be the indefinite Hermitian form given by

H(z,w) := z∗Ip,qw (z,w ∈C
n).

We regard W as a symplectic manifold with symplectic form ω = ImH , where

ImH stands for the imaginary part of H . Under the identification ej ↔ ∂xj and

iej ↔ ∂yj for j = 1, . . . , n, it is explicitly given by

(3.2) ω =

n∑
j=1

εj dxj ∧ dyj

at z = x+ iy ∈W with x= t(x1, . . . , xn), y =
t(y1, . . . , yn) ∈R

n, where

(3.3) εj :=

{
1 (j = 1, . . . , p),

−1 (j = p+ 1, . . . , n).

Then (W,ω) is a symplectic G-manifold since the natural action of G on C
n

preserves the Hermitian form H .
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LEMMA 3.1

The vector fields on W generated by the basis (3.1) for g0 = u(p, q) in the sense

of (1.4) are given by

(3.4)

(Xc
i,j)W =−xj∂xi − yj∂yi + xi∂xj + yi∂yj ,

(Y c
i,j)W = yj∂xi − xj∂yi + yi∂xj − xi∂yj ,

(Xn
i,j)W =−xj̄∂xi − xi∂xj̄ − yj̄∂yi − yi∂yj̄ ,

(Y n
i,j)W = yj̄∂xi − xj̄∂yi − yi∂xj̄ + xi∂yj̄ .

Note that the unitary group U(1) also acts on W symplectically on the right.

PROPOSITION 3.2

Let (W,ω) be as above, and let G=U(p, q). Then the moment map μ :W → g∗0 �
g0 is given by

(3.5) μ(z) =− i

2
zz∗Ip,q

for z = x+ iy ∈W with x= t(x1, . . . , xn), y =
t(y1, . . . , yn) ∈Rn. In particular, μ

is G-equivariant and U(1)-invariant.

Proof

It follows from Lemma 3.1 that

(3.6) 〈μ,X〉=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εi(xiyj − xjyi) if X =Xc

i,j ,

εi(xixj + yiyj) if X = Y c
i,j ,

xiyj̄ − xj̄yi if X =Xn
i,j ,

xixj̄ + yiyj̄ if X = Y n
i,j ,

which can be rewritten in terms of the complex coordinates defined by zj =

xj + iyj (j = 1, . . . , n) and their complex conjugates as

(3.7) 〈μ,X〉=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i
2εi(ziz̄j − zj z̄i) if X =Xc

i,j ,
1
2εi(ziz̄j + zj z̄i) if X = Y c

i,j ,
i
2 (ziz̄j̄ − zj̄z̄i) if X =Xn

i,j ,
1
2 (ziz̄j̄ + zj̄z̄i) if X = Y n

i,j .

Hence,

μ(z) =
∑
i<j

〈μ,Xc
i,j〉(Xc

i,j)
∨ +

∑
i≤j

〈μ,Y c
i,j〉(Y c

i,j)
∨

+
∑
i,j

〈μ,Xn
i,j〉(Xn

i,j)
∨ +

∑
i,j

〈μ,Y n
i,j〉(Y n

i,j)
∨

=− i

2

∑
1≤i,j≤p

ziz̄jEi,j +
i

2

∑
1≤i,j≤q

zı̄z̄j̄Eı̄,j̄
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+
i

2

∑
1≤i≤p,1≤j≤q

ziz̄j̄Ei,j̄ −
i

2

∑
1≤i≤q,1≤j≤p

zı̄z̄jEı̄,j

=− i

2
zz∗Ip,q,

with z = t(z1, . . . , zn).

The U(1)-invariance of μ is obvious, and the G-equivariance can be verified

as

μ(gz) =− i

2
(gz)(gz)∗Ip,q =− i

2
gzz∗g∗Ip,q =Ad(g)μ(z),

since g∗Ip,q = Ip,qg
−1 for g ∈U(p, q). �

It follows from (3.2) that the Poisson brackets among the real coordinate func-

tions xi, yi, i= 1, . . . , n, are given by

(3.8) {xi, yj}=−εiδi,j (i, j = 1,2, . . . , n),

and all other brackets vanish. In terms of the complex coordinates zj = xj + iyj ,

j = 1,2, . . . , n, and their conjugates, it follows from (3.8) that the Poisson brackets

among zj and z̄j are given by

(3.9) {zi, z̄j}= 2iεiδi,j , {zi, zj}= {z̄i, z̄j}= 0,

for i, j = 1,2, . . . , n. In view of (3.9) we quantize zi and z̄i by assigning

(3.10) ẑi = zi, ̂̄zi =−2εi∂zi ,

so that they satisfy

(3.11) [ẑi, ̂̄zj ] = 2εiδi,j , [ẑi, ẑj ] = [̂̄zi, ̂̄zj ] = 0,

for i, j = 1,2, . . . , n. Therefore, we quantize the moment map μ and define the

quantized moment map by μ̂ as

μ̂ :=− i

2

⎡⎢⎣ẑ1...
ẑn

⎤⎥⎦ (̂̄z1, . . . , ̂̄zn)Ip,q = i

⎡⎢⎣z1...
zn

⎤⎥⎦ (∂z1 , . . . , ∂zn) = izt∂z(3.12)

with z = t(z1, . . . , zn) and ∂z =
t(∂z1 , . . . , ∂zn). Note that the quantization (3.10)

corresponds to taking a complex Lagrangian subspace V ′ given by

(3.13) V ′ :=
〈1
2
(e1 − iIe1), . . . ,

1

2
(en − iIen)

〉
C

⊂WC,

where I denotes the complex structure on W defined by ej �→ iej , iej �→ −ej
for j = 1, . . . , n. The classical observables zj = xj + iyj can be regarded as the

coordinates on V ′ with respect to this basis under the identification ej ↔ ∂xj

and iej ↔ ∂yj , j = 1, . . . , n, and V ′ is naturally identified with C
n. Let P(V ′)

denote the algebra of complex coefficient polynomial functions on V , that is,

P(V ′) = C[z1, . . . , zn], and let PD(V ′) denote the ring of polynomial coefficient

differential operators on V ′.
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THEOREM 3.3

For X ∈ g= gln, set π(X) = i〈μ̂,X〉. Then the map

π : g→ PD(V ′)

is a Lie algebra homomorphism. In terms of the basis {Ei,j} for g, it is given by

(3.14) π(Ei,j) =−zj∂zi

for i, j = 1, . . . , n.

Proof

The same argument as in Theorem 2.3 shows that π is a Lie algebra homomor-

phism, and (3.14) follows immediately from (3.12). �

It is clear from (3.14) that π(X) ∈ PD(V ′)GL1 for all X ∈ g, where GL1 acts on

V ′ on the right.

3.2.
Now let us consider W k, the direct sum of k copies of W = (Cn)R, which is

identified with the underlying real vector space of Matn×k(C). It is equipped

with a symplectic form ωk given by

ωk(z,w) = Imtr(z∗Ip,qw) (z,w ∈W k)

and is still acted on by G = U(p, q) symplectically by matrix multiplication on

the left. Under the identification of ei,a ↔ ∂xi,a and iei,a ↔ ∂yi,a , we write an

element of W k as z = t[z1, . . . , zn], where zi = xi + iyi are complex row vectors

with xi = (xi,1, . . . , xn,k) and yi = (yi,1, . . . , yi,k) being real row vectors of size k

for i= 1, . . . , n. Then ωk is given by

(3.15) ωk =
∑

1≤i≤n,1≤a≤k

εi dxi,a ∧ dyi,a

at z = t[z1, . . . , zn] ∈ W k. Note that U(p, q) acts on W on the left, while U(k)

acts on it on the right, and both actions are symplectic.

PROPOSITION 3.4

Let (W k, ωk) be the symplectic G-vector space as above. Then the moment map

μ :W k → g∗0 � g0 is given by the same formula as (3.5)

μ=− i

2
zz∗Ip,q

with z ∈W k =Matn×k(C). In particular, μ is G-equivariant and U(k)-invariant.

Proof

As in the proof of Proposition 2.5, if we regard xi, yi, ∂xi , ∂yi as row vectors and

the products as the inner product on the space of row vectors, then a similar

argument to that for Proposition 3.2 shows that the moment map μ :W k → g0 is
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given by (3.5), with the understanding that z ∈Matn×k(C). The U(k)-invariance

is obvious, and the G-equivariance is verified as in Proposition 3.2. �

It follows from (3.15) that the Poisson brackets among the real coordinate func-

tions xi,a, yi,a, i= 1, . . . , n, a= 1, . . . , k are given by

(3.16) {xi,a, yj,b}=−εiδi,jδa,b (i, j = 1, . . . , n, a, b= 1, . . . , k),

and all other brackets vanish. It follows from (3.16) that the Poisson brackets

among the complex coordinates zj,a = xj,a + iyj,a and their conjugates are given

by

(3.17) {zi,a, z̄j,b}= 2iεiδi,jδa,b

for i, j = 1, . . . , n, a, b = 1, . . . , k, and all other brackets vanish. Therefore, we

quantize zi,a and z̄i,a by assigning

(3.18) ẑi,a = zi,a, ̂̄zi,a =−2εi∂zi,a ,

so that the nontrivial commutators are given by

(3.19) [ẑi,a, ̂̄zj,b] = 2εiδi,jδa,b.

Let V ′k denote the direct sum of k copies of V ′, with V ′ as in (3.13).

Since V ′k can be identified with Matn×k(C), we write an element of V ′k as

z = (zi,a)i=1,...,n;a=1,...,k. Note then that GLk acts on V ′k by matrix multiplica-

tion on the right and, hence, acts on P(V ′k) by right regular representation, which

we denote also by ρ as in (2.14). Let P(V ′k) =C[zi,a; i= 1, . . . , n, a= 1, . . . , k] be

the algebra of complex polynomial functions on V ′k, and let PD(V ′k) be the ring

of polynomial coefficient differential operators on V ′k.

The quantized moment map μ̂ is also given by the same formula as (3.12),

namely,

μ̂= izt∂z.

In this case, however, z and ∂z are (n×k)-matrices whose (i, a)th entries are the

multiplication operator zi,a and the differential operator ∂zi,a for i= 1, . . . , n and

a= 1, . . . , k, respectively.

COROLLARY 3.5

For X ∈ g= gln, set π(X) = i〈μ̂,X〉. Then the map

π : g→ PD(V ′k)

is a Lie algebra homomorphism. In terms of the basis {Ei,j} for g, it is given by

(3.20) π(Ei,j) =−
k∑

a=1

zj,a∂zi,a

for i, j = 1, . . . , n. Moreover, π(X) commutes with the action of the complex gen-

eral linear group GLk, that is, π(X) ∈ PD(V ′k)GLk for all X ∈ g.
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Proof

The first statement that π is a Lie algebra homomorphism can be shown as in

the proof of Theorem 2.3. It remains to show that μ̂ commutes with the action

of GLk, which can be done in the following way. By Lemma 2.6, one obtains that

Adρ(g)−1z = zg−1 and Adρ(g)−1∂z = ∂z
tg,

from which it follows that

Adρ(g)−1(zt∂z) = (Adρ(g)−1z)t(Adρ(g)−1∂z) = zg−1gt∂z = zt∂z.

This completes the proof. �

Similarly to the case of Sp(n,R), it is well known (see, e.g., [10], [5]) that the

irreducible decomposition of P(V k) under the joint action of (gln,GLk) is given

by

(3.21) P(V ′k)�
∑

σ∈ĜLk,L(σ) �={0}

L(σ)⊗ Vσ,

where Vσ is a representative of the class σ ∈ ĜLk, the set of all equivalence

classes of the finite-dimensional irreducible representation of GLk, and L(σ) :=

HomGLk
(Vσ,P(V

′k)), which is a finite-dimensional irreducible representation of

gln. It is also well known that the action π restricted to k lifts to the complexi-

fication KC of the maximal compact subgroup K of G=U(p, q), which implies

that L(σ) is an irreducible (g,KC)-module.

4. Reductive dual pair (o∗(2n),Spk)

In this section, let G denote the linear Lie group defined by

(4.1)
O∗(2n) =

{
g ∈U(n,n); tgSg = S

}
=
{
g ∈GL2n(C);g

∗In,ng = In,n,
tgSg = S

}
,

where S denotes the nondegenerate symmetric matrix [
1n

1n
] of size 2n×2n. Set

g0 = o∗(2n), the Lie algebra of G, and take a basis for g0 as

(4.2)

Xc
i,j =Ei,j −Ej,i +Eı̄,j̄ −Ej̄,̄ı (1≤ i < j ≤ n),

Y c
i,j = i(Ei,j +Ej,i −Eı̄,j̄ −Ej̄,̄ı) (1≤ i≤ j ≤ n),

Xn
i,j =Ei,j̄ −Ej,̄ı −Eı̄,j +Ej̄,i (1≤ i < j ≤ n),

Y n
i,j = i(Ei,j̄ −Ej,̄ı +Eı̄,j −Ej̄,i) (1≤ i < j ≤ n),

where Ei,j denotes the matrix unit of size 2n× 2n. The complexified Lie algebra

o2n of g0 = o∗(2n) is realized as

(4.3) o2n =
{
X ∈Mat2n(C);

tXS + SX =O
}
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in this section, which we will denote by g below. It has a basis

(4.4)

X0
i,j =Ei,j −Ej̄,̄ı (1≤ i, j ≤ n),

X+
i,j =Ei,j̄ −Ej,̄ı (1≤ i < j ≤ n),

X−
i,j =Ej̄,i −Eı̄,j (1≤ i < j ≤ n).

4.1.
Let W = (C2n)R and ω = ImH , where H :C2n ×C

2n →C is the Hermitian form

given by

H(u, v) = u∗In,nv (u, v ∈C
2n).

Namely, we consider the case we have discussed in Section 3 with p= q = n. Note

in particular that ω can be written as

(4.5) ω =

n∑
j=1

(dxj ∧ dyj − dxj̄ ∧ dyj̄)

at v = x+ iy ∈W with x = t(x1, . . . , x2n), y = t(y1, . . . , y2n) ∈ R
2n. Then (W,ω)

is a symplectic G-vector space, as above.

REMARKS 4.1

(i) There is another realization of the Lie group O∗(2n) as a group consisting of

the complex orthogonal matrices; namely,

O∗(2n) = {g ∈GL2n;
tgg = 1, tgJng = Jn}.

We temporarily denote this realization of O∗(2n) by Gγ , because the former

realization G is isomorphic to Gγ by the correspondence G � g �→ γgγ−1 ∈ Gγ

with γ = 1√
2
[ 1 1
i −i ] ∈U(2n) (cf. [7]).

Let us consider the quaternionic vector space

H
n :=

{
v = t(v1, . . . , vn);vi ∈H (i= 1, . . . , n)

}
,

where H= {a+ bi+ cj+ dk;a, b, c, d ∈ R} denotes the skew field of quaternions.

We regard H
n as a right H-vector space. If we identify i ∈H with i ∈C, then H

n

is isomorphic to C
2n by the map

(4.6) φ1 :H
n →C

2n, v = v′ + jv′′ �→
[
v′

v′′

]
(v′, v′′ ∈C

n),

which is in fact a C-isomorphism. Then Gγ is characterized as the group con-

sisting of H-linear transformations on H
n that preserve the quaternionic skew-

Hermitian form C given by (see [5] for details)

(4.7) C(u, v) := u∗jv (u, v ∈H
n).

(ii) There is another identification of H
n with a C-vector space. Namely,

there is an isomorphism of Hn onto Matn×2(C) given by

(4.8) φ2 :H
n →Matn×2(C), v = v′ + v′′j �→ [v′, v′′].
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In this case, however, Hn is regarded as a left H-vector space, and the map φ2 is

a C-isomorphism in this sense. Since jv′′ = v̄′′j for v′′ ∈C
n, one sees that

(4.9) (φ2 ◦ φ−1
1 )

([
v′

v′′

])
= [v′, v̄′′].

Note that φ2 ◦ φ−1
1 is an R-isomorphism from C

2n onto Matn×2(C).

More generally, let us consider (Hn)k, the direct sum of k copies of Hn,

which we regard as a left H-vector space as above. Then the multiplication on

(Hn)k on the right by an element of Matk(H), say, a+ bj with a, b ∈Matk(C),

corresponds to the multiplication on Matn×2k(C) on the right by the complex

(2k× 2k)-matrix [ a b
−b̄ ā ].

LEMMA 4.2

The vector fields on W generated by the basis (4.2) for g0 = o∗(2n) in the sense

of (1.4) are given by

(4.10)

(Xc
i,j)W =−xj∂xi − yj∂yi + xi∂xj + yi∂yj − xj̄∂xı̄ − yj̄∂yı̄ + xı̄∂xj̄ + yı̄∂yj̄ ,

(Y c
i,j)W = yj∂xi + yi∂xj − yj̄∂xı̄ − yı̄∂xj̄ − xj∂yi − xi∂yj + xj̄∂yı̄ + xı̄∂yj̄ ,

(Xn
i,j)W =−xj̄∂xi + xı̄∂xj + xj∂xı̄ − xi∂xj̄ − yj̄∂yi + yı̄∂yj + yj∂yı̄ − yi∂yj̄ ,

(Y n
i,j)W = yj̄∂xi − yı̄∂xj + yj∂xı̄ − yi∂xj̄ − xj̄∂yi + xı̄∂yj − xj∂yı̄ + xi∂yj̄ .

For a given v = [ v
′

v′′ ] ∈C
2n with v′, v′′ ∈C

n, we set v+ := (φ2 ◦φ−1
1 )(v) = [v′, v̄′′] ∈

Matn×2(C) for brevity. By Remark 4.1(ii), Sp(1) acts on W on the right via the

R-isomorphism φ2 ◦ φ−1
1 .

PROPOSITION 4.3

Let (W,ω) be as above, and let G=O∗(2n) as in (4.1). Then the moment map

μ :W → g∗0 � g0 is given by

μ(v) =− i

2

(
vv∗In,n − St(vv∗In,n)S

)
(4.11a)

=− i

2

[
v+v

∗
+ −v+J1

tv+
−v̄+J1v

∗
+ −v̄+

tv+

]
(4.11b)

for v = x+ iy ∈W with x= t(x1, . . . , x2n), y =
t(y1, . . . , y2n) ∈R

2n. In particular,

μ is G-equivariant and Sp(1)-invariant.

Proof

It follows from Lemma 4.2 that

〈μ,X〉=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xiyj − xjyi − xı̄yj̄ + xj̄yı̄ if X =Xc

i,j ,

xixj + xı̄xj̄ + yiyj + yı̄yj̄ if X = Y c
i,j ,

xiyj̄ − xjyı̄ + xı̄yj − xj̄yi if X =Xn
i,j ,

xixj̄ − xjxı̄ − yjyı̄ + yiyj̄ if X = Y n
i,j ,

(4.12)
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which can be rewritten in terms of complex coordinates defined by zi := xi + iyi,

i= 1, . . . ,2n, and their complex conjugates as

〈μ,X〉=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− i

2 (z̄izj − z̄jzi − z̄ı̄zj̄ + z̄j̄zı̄) if X =Xc
i,j ,

1
2 (z̄izj + z̄jzi + z̄ı̄zj̄ + z̄j̄zı̄) if X = Y c

i,j ,

− i
2 (z̄izj̄ − z̄jzı̄ + z̄ı̄zj − z̄j̄zi) if X =Xn

i,j ,
1
2 (z̄izj̄ − z̄jzı̄ − z̄ı̄zj + z̄j̄zi) if X = Y n

i,j .

(4.13)

Thus, setting v′ := t(z1, . . . , zn) and v′′ := t(z1̄, . . . , zn̄), one obtains that

μ(v) =
∑
i<j

〈μ,Xc
i,j〉(Xc

i,j)
∨ +

∑
i≤j

〈μ,Y c
i,j〉(Y c

i,j)
∨

+
∑
i<j

〈μ,Xn
i,j〉(Xn

i,j)
∨ +

∑
i<j

〈μ,Y n
i,j〉(Y n

i,j)
∨

=− i

2

n∑
i,j=1

(
(ziz̄j + z̄ı̄zj̄)Ei,j − (z̄izj + zı̄z̄j̄)Eı̄,j̄

− (ziz̄j̄ − z̄ı̄zj)Ei,j̄ − (z̄izj̄ − zı̄z̄j)Eı̄,j

)
=− i

2

[
v′tv̄′ + v̄′′tv′′ −v′tv̄′′ + v̄′′tv′

−v̄′tv′′ + v′′tv̄′ −v̄′tv′ − v′′tv̄′′

]

=− i

2

([
v′

v′′

]
t(v̄′,−v̄′′) +

[
v̄′′

−v̄′

]
t(v′′,−v′)

)
= − i

2

(
vv∗In,n − St(vv∗In,n)S

)
.

Rewriting (4.11a), one obtains the second expression (4.11b).

The Sp(1)-invariance of μ immediately follows from (4.11b), and the G-

equivariance can be verified in the following way. If g ∈G, then

μ(gv) =− i

2

(
gvv∗g∗In,n − St(gvv∗g∗In,n)S

)
=− i

2

(
gvv∗In,ng

−1 − St(gvv∗In,ng
−1)S

)
,

since g∗In,n = In,ng
−1. The second term in the parentheses on the right-hand

side equals

Stg−1t(vv∗In,n)
tgS = gSt(vv∗In,n)Sg

−1,

since tgS = Sg−1. Thus,

μ(gv) =− i

2

(
gvv∗In,ng

−1 − gSt(vv∗In,n)Sg
−1
)
=Ad(g)μ(v).

This completes the proof. �
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It follows from (4.5) that the Poisson brackets among xi, yi, i = 1, . . . ,2n, are

given by

(4.14) {xi, yj}=−δi,j , {xı̄, yj̄}= δi,j ,

for i, j = 1, . . . , n, and all other brackets vanish. In terms of complex coordinates

zj = xj + iyj for j = 1, . . . ,2n and their conjugates, it follows from (4.14) that

the Poisson brackets among them are given by

(4.15) {zi, z̄j}= {z̄ı̄, zj̄}= 2iδi,j

for i, j = 1, . . . , n, and all other brackets vanish, as in (3.9). In view of (4.15), we

quantize them by assigning

(4.16)
ẑi = zi, ̂̄zi =−2∂zi ,̂̄z ı̄ = z̄ı̄, ẑı̄ =−2∂z̄ı̄ ,

for i= 1, . . . , n, so that the nontrivial commutators among the quantized opera-

tors are given by

(4.17) [ẑi, ̂̄zj ] = [̂̄z ı̄, ẑj̄] = 2δi,j

for i, j = 1, . . . , n.

Let I denote a complex structure on W defined by ej �→ iej and iej �→ −ej
for j = 1, . . . ,2n. Under the identification ej ↔ ∂xj and iej ↔ ∂yj , the classical

observables zj and z̄j introduced above can be regarded as the coordinate func-

tions on WC with respect to the basis 1
2 (ej − iIej) and

1
2 (ej + iIej), respectively,

for j = 1, . . . ,2n. Note that z̄j is no longer the complex conjugate of zj , since xi

and yi are now complex functions. Then the quantization (4.16) corresponds to

taking a complex Lagrangian subspace V given by

(4.18) V =
〈1
2
(ej − iIej),

1

2
(ej̄ + iIej̄); j = 1, . . . , n

〉
C

.

For simplicity, we set wj := z̄j̄, j = 1, . . . , n, and we write an element of V =

Matn×2(C) as [z,w] with z = t(z1, . . . , zn) and w = t(w1, . . . ,wn) in what follows.

Now, we quantize the moment map μ according to (4.16) by using its first

expression (4.11a) and define the quantized moment map by μ̂ as

μ̂ :=− i

2

⎛⎜⎝
⎡⎢⎣ẑ1...
ẑn̄

⎤⎥⎦ (̂̄z1, . . . , ̂̄zn̄)In,n − SIn,n

⎡⎢⎣̂̄z1...̂̄zn̄
⎤⎥⎦ (ẑ1, . . . , ẑn̄)S

⎞⎟⎠(4.19a)

=− i

2

([
z

−2∂w

]
(−2t∂z,

tw)In,n − SIn,n

[
−2∂z
w

]
(tz,−2t∂w)S

)

= i

[
zt∂z +wt∂w

1
2 (z

tw−wtz)

2(∂z
t∂w − ∂w

t∂z) −(∂w
tw+ ∂z

tz)

]
,(4.19b)
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where z = t(z1, . . . , zn), w = t(w1, . . . ,wn), ∂z = t(∂z1 , . . . , ∂zn), and ∂w =
t(∂w1 , . . . , ∂wn). The quantization of the second expression (4.11b), that is,

(4.19c) μ̂=− i

2

[
v̂+

t̂̄v+ −v̂+J1
tv̂+

−̂̄v+J1t̂̄v+ −̂̄v+tv̂+

]
,

produces the same result as (4.19b), where v̂+ = [z,w] and ̂̄v+ = [−2∂z,−2∂w].

Let P(V ) denote the algebra of complex coefficient polynomials on V , that

is, P(V ) =C[z1, . . . , zn,w1, . . . ,wn], and let PD(V ) denote the ring of polynomial

coefficient differential operators on V . Note that the complex symplectic group

of rank one

Sp1 = {g ∈GL2;
tgJ1g = J1}

acts on V by matrix multiplication on the right and, hence, on P(V ) by right

regular representation, which we denote by ρ, as in (2.14). The right action of

Sp1 on V coincides with the one on Matn×2(C) mentioned in Remark 4.1(ii).

THEOREM 4.4

For X ∈ g= o2n, set π(X) = i〈μ̂,X〉. Then the map

π : g→ PD(V )

is a Lie algebra homomorphism. In terms of the basis (4.4) for g, it is given by

(4.20) π(X) =

⎧⎪⎪⎨⎪⎪⎩
−(zj∂zi +wj∂wi + δi,j) if X =X0

i,j ,

2(∂zi∂wj − ∂wi∂zj ) if X =X+
i,j ,

1
2 (zjwi −wjzi) if X =X−

i,j .

Moreover, π(X) commutes with the action of Sp1; that is, π(X) ∈ PD(V )Sp1 for

all X ∈ g.

Proof

It suffices to prove that π(X) commutes with the right action of Sp1. For this,

we use the second expression (4.19c) of μ̂. It follows from Lemma 2.6 that

Adρ(g)−1 v̂+ = v̂+g
−1 and Adρ(g)−1̂̄v+ = ̂̄v+tg

for g ∈GL2. Therefore, if g ∈ Sp1, then one obtains

Adρ(g)−1 μ̂=− i

2

[
v̂+g

−1t(̂̄v+tg) −v̂+g
−1J1

t(v̂+g
−1)

−̂̄v+tgJ1
t(̂̄v+tg) −̂̄v+tgt(v̂+g

−1)

]

=− i

2

[
v̂+

t̂̄v+ −v̂+J1
tv̂+

−̂̄v+J1t̂̄v+ −̂̄v+tv̂+

]
= μ̂,

since tgJ1g = J1. This completes the proof. �
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4.2.
Now let us consider W k, the direct sum of k copies of W = (C2n)R, which we

identify with Mat2n×k(C). It is equipped with a symplectic form given by

ωk(u, v) = Imtr(u∗In,nv) (u, v ∈W k)

and is still acted on by G=O∗(2n) symplectically by matrix multiplication on

the left. Under the identification of ei,a ↔ ∂xi,a and iei,a ↔ ∂yi,a , we write an

element of W k as v = t[v1, . . . , v2n], where vi = xi + iyi are complex row vectors

with xi = (xi,1, . . . , xi,k) and yi = (yi,1, . . . , yi,k) being real row vectors of size k

for i= 1, . . . ,2n. Then ωk is given by

(4.21) ωk =
∑

1≤i≤n,1≤a≤k

(dxi,a ∧ dyi,a − dxı̄,a ∧ dyı̄,a)

at v = t[v1, . . . , v2n] ∈Mat2n×k(C). Moreover, the isomorphisms φ1 and φ2 defined

by (4.6) and (4.8), respectively, naturally extend to the one between (Hn)k and

Mat2n×k(C) and the one between (Hn)k and Matn×2k(C), respectively, which

we denote by the same symbols. Then Sp(k) acts on W k on the right via the

R-isomorphism φ2 ◦ φ−1
1 , as above.

PROPOSITION 4.5

Let (W k, ωk) be the symplectic G-vector space as above. Then the moment map

μ : W k → g∗0 � g0 is given by the same formulae as (4.11). Namely, for v =
t[v′, v′′] ∈W k with v′, v′′ ∈Matn×k(C),

(4.22)

μ(v) =− i

2

(
vv∗In,n − St(vv∗In,n)S

)
=− i

2

[
v+v

∗
+ −v+Jk

tv+
−v̄+Jkv

∗
+ −v̄+

tv+

]
,

where v+ = (φ2 ◦ φ−1
1 )(v) ∈ Matn×2k(C). In particular, μ is G-equivariant and

Sp(k)-invariant.

Proof

The vector fields on W k generated by the basis for g0 are given by the same

formulae as (4.10) in Lemma 4.2, with the understanding that xi, yi, ∂xi , ∂yi are

row vectors and the products stand for the inner product of row vectors. Now,

exactly the same argument as in Proposition 4.3 implies the proposition. �

It follows from (4.21) that the Poisson brackets among the real coordinate func-

tions xi,a, yi,a are given by

(4.23) {xi,a, yj,b}=−δi,jδa,b, {xı̄,a, yj̄,b}= δi,jδa,b

and all other brackets vanish. Hence, the nontrivial ones among the complex

coordinate functions are given by

(4.24) {zi,a, z̄j,b}= {z̄ı̄,a, zj̄,b}= 2iδi,jδa,b
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for i, j = 1, . . . , n and a, b= 1, . . . , k. Therefore, we quantize zi,a and z̄i,a by assign-

ing

(4.25)
ẑi,a = zi,a, ̂̄zi,a =−2∂zi,a ,̂̄z ı̄,a = z̄ı̄,a, ẑı̄,a =−2∂z̄ı̄,a

so that the nontrivial commutators among the quantized operators are given by

(4.26) [ẑi,a, ̂̄zj,b] = [̂̄z ı̄,a, ẑj̄,b] = 2δi,jδa,b

for i, j = 1, . . . , n and a, b= 1, . . . , k.

Let V k denote the direct sum of k copies of V , with V as in (4.18). Since V k

can be identified with Matn×2k(C), we write an element of V k as [z,w], where

z = (zi,a) and w = (wi,a) are elements of Matn×k(C), and we set wi,a = z̄ı̄,a for

i = 1, . . . , n and a = 1, . . . , k for simplicity, as above. Let P(V k) = C[zi,a,wi,a;

i= 1, . . . , n, a= 1, . . . , k] be the algebra of complex polynomial functions on V k,

and let PD(V k) be the ring of polynomial coefficient differential operators on V k.

Then the complex symplectic group Spk acts on V k by matrix multiplication on

the right and, hence, on P(V k) by right regular representation, which we denote

by ρ, as usual.

The quantized moment map μ̂ is given by the same formula as (4.19b):

μ̂= i

[
zt∂z +wt∂w

1
2 (z

tw−wtz)

2(∂z
t∂w − ∂w

t∂z) −(∂w
tw+ ∂z

tz)

]
.

Here, z (resp., w) and ∂z (resp., ∂w) now denote (n× k)-matrices whose (i, a)th

entries are the multiplication operator zi,a (resp., wi,a) and the differential oper-

ator ∂zi,a (resp., ∂wi,a) for i= 1, . . . , n and a= 1, . . . , k.

COROLLARY 4.6

For X ∈ g= o2n, set π(X) = i〈μ̂,X〉. Then the map

π : g→ PD(V k)

is a Lie algebra homomorphism. In terms of the basis (4.4) for g, it is given by

(4.27) π(X) =

⎧⎪⎪⎨⎪⎪⎩
−
∑k

a=1(zj,a∂zi,a +wj,a∂wi,a + kδi,j) if X =X0
i,j ,

2
∑k

a=1(∂zi,a∂wj,a − ∂wi,a∂zj,a) if X =X+
i,j ,

1
2

∑k
a=1(zj,awi,a −wj,azi,a) if X =X−

i,j .

Moreover, π(X) commutes with the action of the complex symplectic group Spk,

that is, π(X) ∈ PD(V k)Spk for all X ∈ g.

Proof

The proof is essentially the same as that of Theorem 4.4. �

Similarly to the cases discussed above, it is well known (see, e.g., [10], [5]) that

the irreducible decomposition of P(V k) under the joint action of (o2n,Spk) is
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given by

(4.28) P(V k)�
∑

σ∈Ŝpk,L(σ) �={0}

L(σ)⊗ Vσ,

where Vσ is a representative of the class σ ∈ Ŝpk, the set of all equivalence

classes of the finite-dimensional irreducible representation of Spk, and L(σ) :=

HomSpk
(Vσ,P(V

k)), which is an infinite-dimensional irreducible representation

of o2n. It is also well known that the action π restricted to k lifts to the complex-

ification KC of the maximal compact subgroup K of G=O∗(2n), which implies

that L(σ) is an irreducible (g,KC)-module.

5. Lagrangian subspace

In this section, we take complex Lagrangian subspaces of WC different from the

ones considered in the previous sections in the cases where G = O∗(2n) and

U(p, q), and we quantize the moment map to obtain finite-dimensional repre-

sentations of o2n and the oscillator representation of u(p, q). Finally, we make

an observation that the image of the Lagrangian subspace coincides with the

associated variety of the corresponding irreducible (g,KC) (or (g, K̃C))-modules

occurring in the irreducible decomposition of the space consisting of polynomial

functions on the Lagrangian subspace under the joint action of (g,G′).

5.1.
Let G =O∗(2n), and let (W,ω) be the symplectic G-vector space we discussed

in Section 4, that is, W = (C2n)R and ω is given by (4.5). Let us now consider

another complex Lagrangian subspace V ′ ⊂WC defined by

(5.1) V ′ :=
〈1
2
(e1 − iIe1), . . . ,

1

2
(e2n − iIe2n)

〉
C

and the corresponding quantization

(5.2) ẑi = zi, ̂̄zi =−2εi∂zi ,

for i = 1, . . . ,2n as in Section 3, which also satisfy (4.26). Here I denotes the

complex structure on W mentioned in Section 4. Then the quantized moment

map, which we denote by the same symbol μ̂, is given by

μ̂=− i

2

⎛⎜⎝
⎡⎢⎣ẑ1...
ẑn̄

⎤⎥⎦ (̂̄z1, . . . , ̂̄zn̄)In,n − SIn,n

⎡⎢⎣̂̄z1...̂̄zn̄
⎤⎥⎦ (ẑ1, . . . , ẑn̄)S

⎞⎟⎠
=−i

[
−z′t∂z′ + ∂z′′ tz′′ −z′t∂z′′ + ∂z′′ tz′

−z′′t∂z′ + ∂z′ tz′′ −z′′t∂z′′ + ∂z′ tz′

](5.3)

with z′ = t(z1, . . . , zn), z′′ = t(z1̄, . . . , zn̄), ∂z′ = t(∂z1 , . . . , ∂zn), and ∂z′′ =
t(∂z1̄ , . . . , ∂zn̄). Therefore, in terms of the basis (4.4) for g= o2n, π(X) := i〈μ̂,X〉
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is given by

(5.4) π(X) =

⎧⎪⎪⎨⎪⎪⎩
zj∂zi − zı̄∂zj̄ if X =X0

i,j ,

zj̄∂zi − zı̄∂zj if X =X+
i,j ,

zi∂zj̄ − zj∂zı̄ if X =X−
i,j .

Since each π(X) preserves the degree of a homogeneous polynomial f ∈ P(V ′) =

C[z1, . . . , z2n] for X ∈ g, any irreducible representation occurring in the irre-

ducible decomposition of P(V ′) is finite-dimensional.

5.2.
On the contrary, we will apply the quantization procedure introduced in Section 4

to the case discussed in Section 3. Namely, let G=U(p, q), and let (W,ω) be the

symplectic G-vector space, that is, W = (Cp+q)R and ω is given by (3.2). Now

we quantize the complex coordinate functions zj = xj + iyj and z̄j = xj − iyj in

the following way (cf. (4.16)):

(5.5)
ẑi = zi, ̂̄zi =−2∂zi (i= 1, . . . , p),̂̄zj̄ = z̄j̄, ẑj̄ =−2∂z̄j̄ (j = 1, . . . , q),

which also satisfy (3.11). This quantization corresponds to taking a complex

Lagrangian subspace V ⊂WC defined by

(5.6) V =
〈1
2
(ei − iIei),

1

2
(ej̄ + iIej̄); i= 1, . . . , p, j = 1, . . . , q

〉
C

,

where I denotes the complex structure on W mentioned in Section 3. For sim-

plicity, we will write wj := z̄j̄, j = 1, . . . , q, as in the previous section, and write

an element of V as [ zw ] with z ∈ C
p and w ∈ C

q . Then the quantized moment

map, which we denote by the same symbol μ̂, is given by

μ̂=− i

2

⎡⎢⎣ẑ1...
ẑn

⎤⎥⎦ (̂̄z1, . . . , ̂̄zn)Ip,q =− i

2

[
z

−2∂w

]
(−2t∂z,−tw)

= i

[
zt∂z

1
2z

tw

−2∂w
t∂z −∂w

tw

](5.7)

with z = t(z1, . . . , zp), ∂z = t(∂z1 , . . . , ∂zp), w = t(w1, . . . ,wq), and ∂w =
t(∂w1 , . . . , ∂wq ). In terms of the basis {Ei,j} for g= gln, π(X) := i〈μ̂,X〉 is given
by

(5.8) π(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−zj∂zi if X =Ei,j (i, j = 1, . . . , p),

2∂zi∂wj if X =Ei,j̄ (i= 1, . . . , p; j = 1, . . . , q),

−1
2zjwi if X =Eı̄,j (i= 1, . . . , q; j = 1, . . . , p),

∂wjwi if X =Eı̄,j̄ (i, j = 1, . . . , q).

Let us now consider the k direct sum W k
C
and its subspace V k with V given

in (5.6), which is identified with Matn×k(C). Then GLk acts on V k on the right
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by

(5.9)

[
z

w

]
�→
[

zg

wtg−1

]
for g ∈ GLk, with z = (zi,a) ∈ Matp×k(C) and w = (wj,a) ∈ Matq×k(C) and,

hence, on P(V k) by right regular representation, which we denote by ρ, as usual.

Note that (5.9) is the holomorphic extension of the standard right action of U(k)

on Matn×k(C) given by Z �→ Zg for Z ∈Matn×k(C) and g ∈U(k). Then, under-

standing that z and ∂z (resp., w and ∂w) in (5.7) stand for (p×k)-matrices (zi,a)

and (∂zi,a) (resp., (q×k)-matrices (wj,a) and (∂wj,a)) as in the previous sections,

one obtains the following.

THEOREM 5.1

For X ∈ g= gln, set π(X) := i〈μ̂,X〉. Then the map

π : g→ PD(V k)

is a Lie algebra homomorphism. Moreover, π(X) commutes with the action of

GLk on V k, that is, π(X) ∈ PD(V k)GLk for all X ∈ g.

Proof

We only show that π(X) ∈ PD(V k)GLk for X ∈ g. It follows from Lemma 2.6

that

Adρ(g)−1z = zg−1, Adρ(g)−1w =wtg,

Adρ(g)−1∂z = ∂z
tg, Adρ(g)−1∂w = ∂wg

−1

for g ∈GLk. Hence, one obtains that

Adρ(g)−1 μ̂=− i

2

[
Adρ(g)−1z

−2Adρ(g)−1∂w

][
−2t(Adρ(g)−1∂z),

t(Adρ(g)−1w)
]

=− i

2

[
zg−1

−2∂wg
−1

]
[−2gt∂z, g

tw]

=− i

2

[
z

−2∂w

]
g−1g[−2t∂z,

tw] = μ̂.

This completes the proof. �

Therefore, the irreducible decomposition of P(V k) is given by

(5.10) P(V k)�
∑

σ∈ĜLk,L(σ) �={0}

L(σ)⊗ Vσ,

where Vσ is a representative of the class σ ∈ ĜLk, the set of all equivalence

classes of the finite-dimensional irreducible representation of GLk, and L(σ) :=

HomGLk
(Vσ,P(V

k)) (see [13]). It is also known that L(σ) is an irreducible (g,KC)-

module of infinite dimension for any σ ∈ ĜLk such that L(σ) �= {0}, where
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g= glp+q and KC is the complexification of the maximal compact subgroup K

of G=U(p, q).

5.3.
One can uniquely extend the moment map μ :W → g0 to the map from WC into

g, which we denote by μC. Then the images by μC of the complex Lagrangian

subspaces that have been considered in this and previous sections are all equal to

the associated varieties of the corresponding representations, which we will see

below case by case.

5.3.1.

First we consider the cases where G=U(p, q) and O∗(2n). Let KC be the com-

plexification of the maximal compact group K of G. Then it is well known that

KC acts on p with the irreducible decomposition p= p+ ⊕ p− and that the orbit

space decomposition of p+ under KC is given by

(5.11) p+ =

r⊔
j=0

OKC

j (r :=R- rankG),

where

OKC

j =

{[
O C

O O

]
;
C ∈Matp×q(C),

rankC = j

}
for G=U(p, q),(5.12)

OKC

j =

{[
O C

O O

]
;
C ∈Matn×n(C),

tC +C =O,

rankC = 2j

}
for G=O∗(2n).(5.13)

Moreover, if we denote the closure of an orbit O by O, then (see [15])

(5.14) OKC

j =
⊔
i≤j

OKC

i .

Therefore, in view of the explicit formulae (3.5) and (4.11), one finds that

(5.15) μC(V
′k) =OKC

0 = {0} and μC(V
k) =OKC

m

with m=min(k, r). Since the associated varieties of the finite-dimensional rep-

resentations and those of the irreducible representations L(σ) occurring in (5.10)

and (4.28) are equal to {0} and OKC

m , respectively (cf. [3]), one concludes that

the image of the complex Lagrangian subspace V k or V ′k by μC coincides with

the associated variety corresponding to the irreducible representations occurring

in P(V k) or in P(V ′k).

5.3.2.

To see that this is the case for G= Sp(n,R), we realize the symplectic group over

R as its Cayley transform:

Gγ : = {γgγ−1;g ∈G}= Spn ∩U(n,n),

with γ = 1
2 [

1 1
−i i ]. In the rest of this section, however, let us denote Gγ just by

G, and use the same symbols to denote the Cayley transforms of subgroups, Lie
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algebras, and so on as those of the corresponding objects by abuse of notation if

there is no risk of confusion.

One can also obtain the so-called Fock model of the oscillator representa-

tion by the canonical quantization of the moment map in the following way:

let us denote by I the complex structure on W = R2n defined by ei �→ eı̄ and

eı̄ �→ −ei for i = 1, . . . , n, and introduce complex coordinates zi := xi + iyi and

their conjugates z̄i := xi− iyi, i= 1, . . . , n. Namely, we regard W =R2n as (Cn)R;

more precisely, let us define an R-vector space Wa by Wa = {[ zz̄ ]; z ∈C
n} and an

R-isomorphism from Wa onto W by

ϕγ :Wa →W,

[
z

z̄

]
�→ γ

[
z

z̄

]
=

1

2

[
z + z̄

−i(z − z̄)

]
,

for z = t(z1, . . . , zn) and z̄ = t(z̄1, . . . , z̄n) ∈ C
n. The Cayley transform G acts on

Wa by v �→ gv (matrix multiplication) for g ∈ G and v ∈ Wa, with respect to

which ϕγ is equivariant. Moreover, one sees that ϕ∗
γω = i

2

∑n
i=1 dzi ∧ dz̄i and

that the moment map μ :Wa → g0 is given by

(5.16) μ(v) =
i

2
vtvJn =

i

2

[
−ztz̄ ztz

−z̄tz̄ z̄tz

]
for v = t(z1, . . . , zn, z̄1, . . . , z̄n) ∈Wa.

REMARK 5.2

If we temporarily distinguish the Cayley transform g
γ
0 from g0 only in this remark,

it is easily verified that the following diagram is commutative:

Wa

μ

ϕγ

g
γ
0

W
μ

g0

Ad(γ)(5.17)

where the upper horizontal map denotes the moment map given by (5.16), while

the lower horizontal one is given by (2.5).

The Poisson brackets among zi and z̄i are given by (3.9) with all εi = 1. Therefore,

we quantize zi and z̄i by assigning

(5.18) ẑi = zi, ̂̄zi =−2∂zi ,

so that they satisfy (3.11) with all εi = 1. This quantization corresponds to the

choice of the complex Lagrangian subspace V of WC =C
2n given by

(5.19) V =
〈1
2
(e1 − ie1̄), . . . ,

1

2
(en − ien̄)

〉
C

.
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Then the quantized moment map, which we denote by μ̂ as always, is given by

μ̂=
i

2

⎡⎢⎣ ẑ1...̂̄zn
⎤⎥⎦ (ẑ1, . . . , ̂̄zn)Jn =

i

2

[
z

−2∂z

]
(tz,−2t∂z)Jn

= i

[
zt∂z

1
2z

tz

−2∂z
t∂z −∂z

tz

](5.20)

with z = t(z1, . . . , zn), ∂z =
t(∂z1 , . . . , ∂zn). In terms of the basis {X�

i,j} for g =

spn, π(X) := i〈μ̂,X〉 is given by

(5.21) π(X) =

⎧⎪⎪⎨⎪⎪⎩
−1

2 (zj∂zi + ∂zizj) if X =X0
i,j ,

2∂zi∂zj if X =X+
i,j ,

−1
2zjzi if X =X−

i,j .

Now let us take the k direct sum W k
C

and its subspace V k, with V as in

(5.19). When V k is identified with Matn×k(C), GLk acts on V k on the right and,

hence, on P(V k) by right regular representation. Then, if one understands that z

and ∂z in (5.20) stand for (n×k)-matrices (zi,a) and (∂zi,a), respectively, and sets

π(X) = i〈μ̂,X〉 for X ∈ g= spn, then one can show that the map π : g→ PD(V k)

is a Lie algebra homomorphism and that π(X) ∈ PD(V k)Ok for all X ∈ g. The

irreducible decomposition of P(V k) under the joint action of (spn,Ok) is of course

the same as (2.18).

It is known that the orbit space decomposition under KC of p+ is given by

the same formula as (5.11) with

OKC

j =

{[
O C

O O

]
;
C ∈Matn×n(C),

tC =C,

rankC = j

}
,

and its closure OKC

j is given by the same formula as (5.14) (see [15]). Therefore,

in view of (5.16), one finds that

(5.22) μC(V
k) =OKC

m

with m =min(k, r). Hence, the image of the complex Lagrangian subspace V k

by μC coincides with the associated variety corresponding to the irreducible rep-

resentations occurring in P(V k), as in the previous cases.
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