Cyclicity and Titchmarsh divisor problem for Drinfeld modules

Cristian Virdol

Abstract

Let $A=\mathbb{F}_{q}[T]$, where \mathbb{F}_{q} is a finite field, let $Q=\mathbb{F}_{q}(T)$, and let F be a finite extension of Q. Consider ϕ a Drinfeld A-module over F of rank r. We write $r=$ hed, where E is the center of $D:=\operatorname{End}_{\bar{F}}(\phi) \otimes Q, e=[E: Q]$, and $d=[D: E]^{\frac{1}{2}}$. If \wp is a prime of F, we denote by \mathbb{F}_{\wp} the residue field at \wp. If ϕ has good reduction at \wp, let $\bar{\phi}$ denote the reduction of ϕ at \wp. In this article, in particular, when $r \neq d$, we obtain an asymptotic formula for the number of primes \wp of F of degree x for which $\bar{\phi}\left(\mathbb{F}_{\wp}\right)$ has at most $(r-1)$ cyclic components. This result answers an old question of Serre on the cyclicity of general Drinfeld A-modules. We also prove an analogue of the Titchmarsh divisor problem for Drinfeld modules.

1. Introduction

Let \mathbb{F}_{q} be a finite field, let $A=\mathbb{F}_{q}[T]$, let $Q=\mathbb{F}_{q}(T)$, let F be a finite extension of Q, let \mathbb{F}_{F} be the constant field of F, and let $\overline{\mathbb{F}}_{F}$ be the algebraic closure of \mathbb{F}_{F}. For \wp a prime of F, we denote by \mathbb{F}_{\wp} the residue field at \wp and by $\overline{\mathbb{F}}_{\wp}$ the algebraic closure of \mathbb{F}_{\wp}. Let ϕ be a Drinfeld A-module over F of rank r. For all but finitely many primes \wp of F, ϕ has good reduction at \wp, and we denote by \mathcal{P}_{ϕ} the set of primes \wp of F of good reduction for ϕ. For $\wp \in \mathcal{P}_{\phi}$, let $\bar{\phi}$ be the reduction of ϕ at \wp.

We have that $\bar{\phi}\left(\mathbb{F}_{\wp}\right) \subseteq \bar{\phi}[m]\left(\overline{\mathbb{F}}_{\wp}\right) \subseteq(A / m A)^{r}$, for some $m \in A$ with $m \neq 0$, where $\bar{\phi}[m]\left(\overline{\mathbb{F}}_{\wp}\right)$ is the set of m-division points of $\bar{\phi}$ in $\overline{\mathbb{F}}_{\wp}$. Hence,

$$
\begin{equation*}
\bar{\phi}\left(\mathbb{F}_{\wp}\right) \simeq A / w_{1} A \times A / w_{2} A \times \cdots \times A / w_{s} A, \tag{1.1}
\end{equation*}
$$

where $s \leq r, w_{i} \in A \backslash \mathbb{F}_{q}$, and $w_{i} \mid w_{i+1}$ for $1 \leq i \leq s-1$. Each $A / w_{i} A$ is called a cyclic component of $\bar{\phi}\left(\mathbb{F}_{\wp}\right)$. (Thus, when $r=1, \bar{\phi}\left(\mathbb{F}_{\wp}\right)$ is always cyclic.) If $s<r$, we say that $\bar{\phi}\left(\mathbb{F}_{\wp}\right)$ has at most $(r-1)$ cyclic components.

For $x \in \mathbb{N}$, define
$f_{\phi, F}(x)=\mid\left\{\wp \in \mathcal{P}_{\phi} \mid \operatorname{deg}_{F} \wp=x, \bar{\phi}\left(\mathbb{F}_{\wp}\right)\right.$ has at most $(r-1)$ cyclic components $\} \mid$,

Kyoto Journal of Mathematics, Vol. 57, No. 3 (2017), 505-518
First published online 14, April 2017.
DOI 10.1215/21562261-2017-0004, © 2017 by Kyoto University
Received June 1, 2015. Revised February 17, 2016. Accepted April 20, 2016.
2010 Mathematics Subject Classification: Primary 11G09; Secondary 11G15.
The author's work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01056643).
where $\operatorname{deg}_{F} \wp=\left[\mathbb{F}_{\wp}: \mathbb{F}_{F}\right]$. Let $F(\phi[m])$ be the field obtained by adjoining to F the m-division points $\phi[m]$ of ϕ.

For $x \in \mathbb{N}$ we define (throughout this article $m \in A$ is a monic polynomial and $p \in A$ is the prime below $\wp)$

$$
\begin{align*}
& f_{\phi, F}^{\prime}(x) \\
& \quad:=\sum_{\substack{\wp \in \mathcal{P}_{\phi} \\
\operatorname{deg}_{F} \wp=x}} \mid\{m \in A \mid(m, p)=1, \wp \text { splits completely in } F(A[m])\} \mid . \tag{1.2}
\end{align*}
$$

Let $r_{m}:=\left[F(\phi[m]) \cap \overline{\mathbb{F}}_{F}: \mathbb{F}_{F}\right]$, let $d_{F}:=\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right]$, and let $\pi_{F}(x)$ be the number of primes of F of degree x. Let E be the center of $D:=\operatorname{End}_{\bar{F}}(\phi) \otimes Q$. By the theory of central simple algebras, there exist positive integers e, d, h such that $[E: Q]=e,[D: E]=d^{2}$, and $r=$ hed.

In this article we prove the following results.

THEOREM 1.1

Let ϕ be a Drinfeld A-module over F of rank $r \geq 2$. We write $r=$ hed, where E is the center of $D:=\operatorname{End}_{\bar{F}}(\phi) \otimes Q, e=[E: Q]$, and $d=[D: E]^{\frac{1}{2}}$. Assume that $r \neq d$. Then, for $x \in \mathbb{N}$, we have

$$
f_{\phi, F}(x)=c_{\phi, F}(x) \pi_{F}(x)+O\left(\left(q^{d_{F} x}\right)^{\Delta_{r, h, e}}\right),
$$

where

$$
\Delta_{r, h, e}= \begin{cases}\frac{r+3}{2 r+2} & \text { if } h^{2} e \geq \frac{r+1}{2} \\ \frac{h^{2} e+1}{2 h^{2} e} & \text { otherwise }\end{cases}
$$

and

$$
c_{\phi, F}(x)=\sum_{\substack{m \in A \\ m \text { is monic }}} \frac{\mu_{q}(m) r_{m}(x)}{[F(\phi[m]): F]},
$$

where $\mu_{q}(\cdot)$ is the Möbius function of A and

$$
r_{m}(x)= \begin{cases}3 r_{m} & \text { if } r_{m} \mid x \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, assume that $F=Q, D=A$, and all division fields of ϕ are geometric. (Thus, $r_{m}(x)=r_{m}=1$, and $c_{\phi, F}:=c_{\phi, F}(x)$ is independent of x.) Then, from [11, Theorem 3], we know that $c_{\phi, F}$ is positive if and only if $Q(\phi[a]) \neq Q$ for all $a \in A$ of degree 1 .

THEOREM 1.2

Under the same conditions and assumptions as in Theorem 1.1, for $x \in \mathbb{N}$, we have

$$
f_{\phi, F}^{\prime}(x)=c_{\phi, F}^{\prime}(x) \pi_{F}(x)+O\left(\left(q^{d_{F} x}\right)^{\Delta_{r, h, e}}\right)
$$

where

$$
\Delta_{r, h, e}= \begin{cases}\frac{r+3}{2 r+2} & \text { if } h^{2} e \geq \frac{r+1}{2} \\ \frac{h^{2} e+1}{2 h^{2} e} & \text { otherwise }\end{cases}
$$

and

$$
c_{\phi, F}^{\prime}(x)=\sum_{\substack{m \in A \\ m \text { is monic }}} \frac{r_{m}(x)}{[F(\phi[m]): F]},
$$

where

$$
r_{m}(x)= \begin{cases}r_{m} & \text { if } r_{m} \mid x, \\ 0 & \text { otherwise } .\end{cases}
$$

Theorem 1.1 is a generalization of [11, Theorem 1], where only the case $\operatorname{End}_{\bar{F}}(\phi)=$ A was considered (i.e., with our notation $r=h e d$, with $h=r$ and $e=d=1$), but the error term in the asymptotic formula in [11, Theorem 1] even in this particular case is weaker than ours. (The error terms in Theorem 1.1 above and [11, Theorem 1] coincide only when $r=2, h=2$, and $e=d=1$.) To improve and generalize the asymptotic formula in [11, Theorem 1], we make use of the Chebotarev density theorem, the open image theorem for l-adic representations associated to general Drinfeld A-modules (i.e., [13, Theorem 0.1]), Lemma 3.3, which the authors of [11], [2], and [3] could prove only for $k=1$ and $k=r$ (in the case of both Drinfeld modules and abelian varieties), Lemmas 3.4 and 3.5, the sets $S_{c}(m)$ defined in Section 5, and the splitting from formula (5.1).

In the very particular case $r=2, h=1, e=2, d=1$, Theorems 1.1 and 1.2 are also a generalization and improvement of Cojocaru and Shulman [3, (9)] and of the main theorem of [3], that is, [3, Theorem 1.1]. (In [3] an additional condition is imposed: ϕ has complex multiplication (CM) by the full ring of integers of an imaginary quadratic field.)

Here is a brief history of the cyclicity question we consider in this article. Let E be an elliptic curve defined over \mathbb{Q} of conductor N. For p a rational prime we denote by \mathbb{F}_{p} the finite field of cardinality p and by $\overline{\mathbb{F}}_{p}$ the algebraic closure of \mathbb{F}_{p}. Let \mathcal{P}_{E} be the set of rational primes p of good reduction for E (i.e., $(p, N)=1)$. For $p \in \mathcal{P}_{E}$, we denote by \bar{E} the reduction of E at p. We have that $\bar{E}\left(\mathbb{F}_{p}\right) \subseteq \bar{E}[m]\left(\overline{\mathbb{F}}_{p}\right) \subseteq(\mathbb{Z} / m \mathbb{Z})^{2}$ for any positive integer m satisfying $\left|\bar{E}\left(\mathbb{F}_{p}\right)\right| \mid m$. Hence,

$$
\begin{equation*}
\bar{E}\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z}, \tag{1.3}
\end{equation*}
$$

where $m_{i} \in \mathbb{Z}_{\geq 1}$ and $m_{1} \mid m_{2}$. Each $\mathbb{Z} / m_{i} \mathbb{Z}$ is called a cyclic component of $\bar{E}\left(\mathbb{F}_{p}\right)$. If $m_{1}=1$, we say that $\bar{E}\left(\mathbb{F}_{p}\right)$ is cyclic.

For $x \in \mathbb{R}$, define

$$
f_{E, \mathbb{Q}}(x)=\mid\left\{p \in \mathcal{P}_{E} \mid p \leq x, \bar{E}\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \mid .
$$

In 1976, Serre proved (see [15] and also [12, Theorem 2]), under generalized Riemann hypothesis (GRH), that if E is a non-CM elliptic curve, then

$$
f_{E, \mathbb{Q}}(x)=c_{E} \operatorname{li} x+o\left(\frac{x}{\log x}\right),
$$

where li $x:=\int_{2}^{x} \frac{1}{\log t} d t$ and

$$
c_{E}=\sum_{m=1}^{\infty} \frac{\mu(m)}{[\mathbb{Q}(E[m]): \mathbb{Q}]},
$$

where $\mu(\cdot)$ is the Möbius function. Moreover, Serre proved that $c_{E}>0$ if and only if $\mathbb{Q}(E[2]) \neq \mathbb{Q}$. In 2004, the error term in Serre's estimate was improved by Cojocaru and Murty [2, Theorem 1.1], where they obtained the formula

$$
f_{E, \mathbb{Q}}(x)=c_{E} \operatorname{li} x+O\left(x^{5 / 6}(\log x)^{2 / 3}\right) .
$$

This corresponds to the case $r=2, h=2, e=1$, and $d=1$ in Theorem 1.1 above, and we obtain

$$
f_{\phi, F}(x)=c_{\phi, F}(x) \pi_{F}(x)+O\left(\left(q^{d_{F} x}\right)^{5 / 6}\right),
$$

which is the same formula as in [11, Theorem 1.1].
When the elliptic curve E has CM by the full ring of integers of an imaginary quadratic field, Cojocaru and Murty in Theorem 1.2 of [CM] obtained a better asymptotic formula:

$$
f_{E, \mathbb{Q}}(x)=c_{E} \operatorname{li} x+O\left(x^{3 / 4}(\log x)^{1 / 2}\right) .
$$

This corresponds (with the condition "full ring of integers" removed) to the case $r=2, h=1, e=2$, and $d=1$ in Theorem 1.1 above, and we obtain

$$
f_{\phi, F}(x)=c_{\phi, F}(x) \pi_{F}(x)+O\left(\left(q^{d_{F} x}\right)^{3 / 4}\right),
$$

which is better than [3, (9)] or [3, the formula in Theorem 1.1]. (These two last results were obtained also under the restriction: " ϕ has CM by the full ring of integers of an imaginary quadratic field.")

Finally, the results regarding Serre's cyclicity question from [15], [2], and [11] were extended to arbitrary abelian varieties defined over number fields in [18] and to arbitrary generic Drinfeld A-modules in this article. We remark that Theorem 1.2 is an analogue of the Titchmarsh divisor problem for Drinfeld modules of rank $r \geq 2$ (see [1], [17] for details). We remark that the methods of this article could be used to generalize [1] and [5], where the authors were able to prove their results only for the very particular case when the abelian variety A from [1] is defined over \mathbb{Q} and contains an abelian subvariety E of dimension 1 also defined over \mathbb{Q} (see [1, Theorem 1.2 and Remark 4.1] and also [5, the last sentence of Section 1.1], where the authors say that they can prove their results only for "abelian varieties defined over \mathbb{Q} which have a 1 -dimensional subvariety which is also defined over \mathbb{Q} ").

2. Known results

For F a finite extension of Q, we define $G_{F}:=\operatorname{Gal}\left(F^{\text {sep }} / F\right)$, where $F^{\text {sep }}$ is the separable closure of F inside a fixed algebraic closure \bar{F} of F. Let ϕ be a Drinfeld A-module over F of rank r. For $m \in A$ with $m \neq 0$, we denote by $\phi[m]$ the m division points of ϕ in \bar{F}. Then

$$
\phi[m] \simeq(A / m A)^{r}
$$

If $F(\phi[m])$ is the field obtained by adjoining to F the elements of $\phi[m]$, then we have a natural injection

$$
\Phi_{m}: \operatorname{Gal}(F(\phi[m]) / F) \hookrightarrow \operatorname{Aut}(\phi[m]) \simeq \mathrm{GL}_{r}(A / m A)
$$

We denote $G_{m}:=\operatorname{Im} \Phi_{m}(\operatorname{Gal}(F(\phi[m]) / F))$. Define

$$
n(m):=\left|G_{m}\right|=[F(\phi[m]): F] .
$$

For a rational prime l, let

$$
T_{l}(\phi)=\lim _{\longleftarrow} \phi\left[l^{n}\right]
$$

and $V_{l}(\phi)=T_{l}(\phi) \otimes Q$. The Galois group G_{F} acts on

$$
T_{l}(\phi) \simeq A_{l}^{r}
$$

where A_{l} is the l-adic completion of A at l, and also on $V_{l}(\phi) \simeq Q_{l}^{r}$, and we obtain a continuous representation

$$
\rho_{\phi, l}: G_{F} \rightarrow \operatorname{Aut}\left(T_{l}(\phi)\right) \simeq \mathrm{GL}_{r}\left(A_{l}\right) \subset \operatorname{Aut}\left(V_{l}(\phi)\right) \simeq \mathrm{GL}_{r}\left(Q_{l}\right)
$$

Hence, we get a representation

$$
\rho_{\phi}:=G_{F} \rightarrow \prod_{l} \mathrm{GL}_{r}\left(A_{l}\right)
$$

If $\wp \in \mathcal{P}_{\phi}$, let $\mathfrak{p}=\wp \cap A$, let $p \in A$ be the prime such that $p A=\mathfrak{p}$, and let $l \in A$ be a prime satisfying $(l, p)=1$. Then $F\left(\phi\left[l^{\infty}\right]\right) / F$ is unramified at \wp, and let σ_{\wp} be the Artin symbol of \wp in $\operatorname{Gal}\left(F\left(\phi\left[l^{\infty}\right]\right) / F\right)$. We denote by $P_{\phi, \wp}(X)=X^{r}+a_{1, \phi}(\wp) X^{r-1}+\cdots+a_{r-1, \phi}(\wp) X+u_{\wp} p^{m_{\wp}} \in A[X]$, where $u_{\wp} \in \mathbb{F}_{q}^{*}$ and $m_{\wp}=\left[\mathbb{F}_{\wp}: A / \mathfrak{p}\right]$, the characteristic polynomial of σ_{\wp} on $T_{l}(\phi)$. Then $P_{\phi, \wp}(X)$ is independent of l. One can identify $T_{l}(\phi)$ with $T_{l}(\bar{\phi})$, where $\bar{\phi}$ is the reduction of ϕ at \wp, and the action of σ_{\wp} on $T_{l}(\phi)$ is the same as the action of the Frobenius π_{\wp} of $\bar{\phi}$ on $T_{l}(\bar{\phi})$. Define $Q_{\phi, \wp}(X)=X^{r}+c_{1, \phi}(\wp) X^{r-1}+\cdots+c_{r-1, \phi}(\wp) X+c_{r, \phi}(\wp) \in$ $A[X]$ by $Q_{\phi, \wp}(X):=P_{\phi, \wp}(X+1)$.

We know the following (see [11, Proposition 11]).

LEMMA 2.1

Let F / Q be a finite extension, and let ϕ be a Drinfeld A-module over F of rank $r \geq 2$. If $\wp \in \mathcal{P}_{\phi}$, let $\mathfrak{p}=\wp \cap A$, and let $p \in A$ be the prime satisfying $p A=\mathfrak{p}$.
(i) For $m \in A$ with $(m, p)=1$, the finite A-module $\bar{\phi}\left(\mathbb{F}_{\wp}\right)$ contains an $(A / m A)^{r}$-type submodule if and only if \wp splits completely in $F(\phi[m])$.
(ii) The module $\bar{\phi}\left(\mathbb{F}_{\wp}\right)$ contains at most $(r-1)$ cyclic components if and only if \wp does not split completely in $F(\phi[l])$ for all primes $l \in A$ with $l \neq p$.

3. Drinfeld modules

Let ϕ be a Drinfeld module of rank r, defined over a finite extension F / Q, such that $\operatorname{End}_{F} \phi=\operatorname{End}_{\bar{F}} \phi$. (In the proofs of Theorems 1.1 and 1.2 one does not have to assume that $\operatorname{End}_{F} \phi=\operatorname{End}_{\bar{F}} \phi$: the reason is that the inequality on the left in Lemma 3.2 below holds true even without the assumption $\operatorname{End}_{F} \phi=$ $\operatorname{End}_{\bar{F}} \phi$ as is noted just after the proof of Lemma 3.2.) Let E be the center of $D:=\operatorname{End}_{\bar{F}}(\phi) \otimes Q$. By the theory of central simple algebras (see [14, the section after Theorem 0.1]), there exist positive integers e, d, h such that $[E: Q]=e$, $[D: E]=d^{2}$, and $r=h e d$. Let O_{E} be the "ring of integers" of E.

Let l be a rational prime. Since the actions of $D=\operatorname{End}_{F} \phi \otimes Q$ and G_{F} on $V_{l}(\phi)$ commute, we obtain a continuous h-dimensional representation

$$
\rho_{l}: G_{F} \rightarrow \operatorname{Aut}_{D_{l}} V_{l}(\phi) \cong \operatorname{GL}_{h}\left(E_{l}\right),
$$

where $D_{l}:=\operatorname{End}_{F} \phi \otimes Q_{l}$ and $E_{l}:=E \otimes Q_{l}$. Hence, we get a representation

$$
\rho: G_{F} \rightarrow \prod_{l} \mathrm{GL}_{h}\left(O_{E} \otimes A_{l}\right)
$$

(Actually throughout this article we should have written, as in [13, Theorem 0.2], $\operatorname{Cent}_{\mathrm{GL}_{r}\left(A_{l}\right)}\left(\operatorname{End}_{\bar{F}}(\phi)\right)$ instead of $\mathrm{GL}_{h}\left(O_{E} \otimes A_{l}\right)$, but to simplify the notation, because for almost all l these two groups are isomorphic, and also because this identification does not affect our arguments, we leave it in this form.)

We know the following (see [13, Theorem 0.2]).

LEMMA 3.1
The image of the homomorphism

$$
\rho: G_{F} \rightarrow \prod_{l} \mathrm{GL}_{h}\left(O_{E} \otimes A_{l}\right)
$$

is open.

Hence, we obtain the following (see also [19]).

LEMMA 3.2
Let ϕ be a Drinfeld A-module over F of rank r. Assume that $\operatorname{End}_{\bar{F}}(\phi)=\operatorname{End}_{F}(\phi)$. We write $r=$ hed, where E is the center of $D:=\operatorname{End}_{\bar{F}}(\phi) \otimes Q, e=[E: Q]$, and $d=[D: E]^{1 / 2}$. Then, for $m \in A$ a monic polynomial, we have

$$
\left|\left(O_{E} / m O_{E}\right)^{*}\right| q^{e\left(h^{2}-1\right) \operatorname{deg} m} \ll\left|G_{m}\right| \leq\left|\left(O_{E} / m O_{E}\right)^{*}\right| q^{e\left(h^{2}-1\right) \operatorname{deg} m}<q^{e h^{2} \operatorname{deg} m} .
$$

Proof
From the injection

$$
\phi_{m}: \operatorname{Gal}(F(\phi[m]) / F) \hookrightarrow \mathrm{GL}_{h}\left(O_{E} / m O_{E}\right),
$$

one obtains trivially the inequality

$$
\left|G_{m}\right| \leq\left|\left(O_{E} / m O_{E}\right)^{*}\right| q^{e\left(h^{2}-1\right) \operatorname{deg} m}<q^{e h^{2} \operatorname{deg} m} .
$$

From [16, Théorème 1] (see also [7], [13]), after eventually replacing F by a finite extension, we obtain that the function

$$
l^{d} \mapsto\left[F\left(\phi\left[l^{d}\right]\right): F\right]
$$

is multiplicative in l, where l runs over the rational primes (and d stands for arbitrary powers of l). Hence, from the open image theorem for Drinfeld A modules, that is, Lemma 3.1 above, we get that

$$
\begin{aligned}
\left|G_{m}\right| & \gg\left|\mathrm{GL}_{h}\left(O_{E} / m O_{E}\right)\right| \\
& =q^{e\left(h^{2}-1\right) \operatorname{deg} m} \prod_{l \mid m}\left(1-\frac{1}{q^{\operatorname{deg} l}}\right)\left(1-\frac{1}{q^{2 \operatorname{deg} l}}\right) \cdots\left(1-\frac{1}{q^{r \operatorname{deg} l}}\right) \\
& =\left|\left(O_{E} / m O_{E}\right)^{*}\right| q^{e\left(h^{2}-1\right) \operatorname{deg} m} \prod_{l \mid m}\left(1-\frac{1}{q^{2 \operatorname{deg} l}}\right) \cdots\left(1-\frac{1}{q^{r \operatorname{deg} l}}\right),
\end{aligned}
$$

where the product is over distinct primes $l \mid m$. Because

$$
\prod_{l \mid m}\left(1-\frac{1}{q^{2 \operatorname{deg} l}}\right) \cdots\left(1-\frac{1}{q^{r \operatorname{deg} l}}\right) \gg \prod_{l}\left(1-\frac{1}{q^{2 \operatorname{deg} l}}\right) \cdots\left(1-\frac{1}{q^{r \operatorname{deg} l}}\right) \gg 1,
$$

where the last product is over all primes l, we are done with the proof of Lemma 3.2.

We remark that in Lemma 3.2, even if we do not assume that $\operatorname{End}_{F} \phi=\operatorname{End}_{\bar{F}} \phi$, we have

$$
\left|\left(O_{E} / m O_{E}\right)^{*}\right| q^{e\left(h^{2}-1\right) \operatorname{deg} m} \ll\left|G_{m}\right|
$$

because $\operatorname{End}_{F^{\prime}} \phi=\operatorname{End}_{\bar{F}} \phi$ for some finite extension F^{\prime} / F.

LEMMA 3.3
Using the same notation as above, let $\wp \in \mathcal{P}_{\phi}$, and let p be the rational prime below \wp. Let $m \in A$ be a monic polynomial such that $(m, p)=1$. If \wp splits completely in $F(\phi[m])$, then

$$
m^{k} \mid c_{k, \phi}(\wp),
$$

for any $k=1, \ldots, r$.
Proof
Let $l \mid m$ be a rational prime, and let $m(l)$ be the largest natural number such that $l^{m(l)} \mid m$. Let

$$
\pi_{\wp}: \bar{\phi}\left(\overline{\mathbb{F}}_{\wp}\right) \rightarrow \bar{\phi}\left(\overline{\mathbb{F}}_{\wp}\right)
$$

be the Frobenius endomorphism. Assume that \wp splits completely in $F(\phi[m])$. Then $\bar{\phi}\left(\overline{\mathbb{F}}_{\wp}\right)\left[l^{m(l)}\right] \subset \operatorname{Ker}\left(\pi_{\wp}-1\right)$ and we get that $\rho_{\phi, l}\left(\sigma_{\wp}\right)=I_{r}+l^{m(l)} B$, where
$B \in M_{r}\left(A_{l}\right)$. Thus, $X^{r}+c_{1, \phi}(\wp) X^{r-1}+\cdots+c_{r-1, \phi}(\wp) X+c_{r, \phi}(\wp)=Q_{\phi, \wp}(X)=$ $P_{\phi, \wp}(X+1)=\operatorname{det}\left((X+1) I_{r}-\rho_{\phi, l}\left(\sigma_{\wp}\right)\right)=\operatorname{det}\left(X I_{r}-l^{m(l)} B\right)$, and we obtain that $l^{m(l) k} \mid c_{k, \phi}(\wp)$ for any $k=1, \ldots, r$.

LEMMA 3.4
We have

$$
\left|c_{k, \phi}(\wp)\right| \leq q^{(k / r) d_{F} \operatorname{deg}_{F} \wp},
$$

for any $k=1, \ldots, r$.
Proof
We know (Riemann hypothesis; see [9, Theorem 5.1]) that

$$
P_{\phi, \wp}(X)=\left(X-x_{1, \wp}\right) \cdots\left(X-x_{r, \wp}\right),
$$

where $\left|x_{i, \wp}\right| \leq q^{(1 / r) d_{F} \operatorname{deg}_{F} \wp}$. Hence, $X^{r}+c_{1, \phi}(\wp) X^{r-1}+\cdots+c_{r-1, \phi}(\wp) X+$ $c_{r, \phi}(\wp)=Q_{\phi, \wp}(X)=P_{\phi, \wp}(X+1)=\left(X-\left(x_{1, \wp}-1\right)\right) \cdots\left(X-\left(x_{r, \wp}-1\right)\right)$, from which we deduce that $\left|c_{k, \phi}(\wp)\right| \leq q^{(k / r) d_{F} \operatorname{deg}_{F} \wp}$, for any $k=1, \ldots, r$.

LEMMA 3.5
We have

$$
c_{r, \phi}(\wp)=u_{\wp} p^{m_{\wp}}+d_{1} c_{1, \phi}(\wp)+d_{2} c_{2, \phi}(\wp)+\cdots+d_{r-1} c_{r-1, \phi}(\wp)+d_{r},
$$

where d_{1}, \ldots, d_{r} are integers which depend only on r.
Proof
From $Q_{\phi, \wp}(X):=P_{\phi, \wp}(X+1)$, we get

$$
\begin{aligned}
c_{1, \phi}(\wp) & =a_{1, \phi}(\wp)+\binom{r}{1}, \\
c_{2, \phi}(\wp) & =a_{2, \phi}(\wp)+a_{1, \phi}(\wp)\binom{r-1}{1}+\binom{r}{2}, \\
& \vdots \\
c_{r, \phi}(\wp) & =u_{\wp} p^{m_{\wp}}+a_{r-1, \phi}(\wp)\binom{1}{1}+\cdots+\binom{r}{r},
\end{aligned}
$$

and by writing $a_{1, \phi}(\wp)$ in terms of $c_{1, \phi}(\wp)$, then $a_{2, \phi}(\wp)$ in terms of $c_{2, \phi}(\wp)$ and $c_{1, \phi}(\wp), \ldots$, and $u_{\wp} p^{m_{\wp}}$ in terms of $c_{1, \phi}(\wp), \ldots, c_{r, \phi}(\wp)$, we are done with the proof of Lemma 3.5.

4. Chebotarev density theorem

Let L / F be a Galois extension, let G be the Galois group of L / F, let C be a union of conjugacy classes of G, let $r_{L}:=\left[L \cap \overline{\mathbb{F}}_{F}: \mathbb{F}_{F}\right]$, and let \mathbb{F}_{L} be the constant
field of L. For $x \in \mathbb{N}$, define
$\pi_{C}(x, L / F)=\mid\left\{\wp \mid \operatorname{deg}_{F} \wp=x, \wp\right.$ is a prime unramified in L / F, and $\left.\sigma_{\wp} \subseteq C\right\} \mid$, where σ_{\wp} is the Artin symbol of \wp in $\operatorname{Gal}(L / F)$.

We know the following result (see [6, Theorem 6.4.8]).

THEOREM 4.1 (CHEBOTAREV DENSITY THEOREM)

Let L / F be a finite Galois extension with Galois group G, and let $C \subseteq G$ be a conjugacy class whose restriction to \mathbb{F}_{L} is the ath power of the Frobenius automorphism of \mathbb{F}_{F}. If $x \in \mathbb{N}$ and $x \not \equiv a\left(\bmod r_{L}\right)$, then

$$
\pi_{C}(x, L / F)=0 .
$$

If $x \equiv a\left(\bmod r_{L}\right)$ and g_{L} and g_{F} are the genera of L and F, respectively, then

$$
\begin{aligned}
& \left|\pi_{C}(x, L / F)-r_{L} \frac{|C|}{|G|} \frac{q^{d_{F} x}}{x}\right| \\
& \quad \leq \frac{2|C|}{x|G|}\left(\left(|G|+g_{L} r_{L}\right) q^{d_{F} x / 2}+|G|\left(2 g_{F}+1\right) q^{d_{F} x / 4}+g_{L} r_{L}+|G| \Delta_{F} / d_{F}\right),
\end{aligned}
$$

where $\Delta_{F}:=[F: Q]$ and $d_{F}:=\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right]$.
Let $\pi_{F}(x)$ be the number of primes of F of degree x. Then from Theorem 4.1 with $L=F$, we get

$$
\pi_{F}(x)=\frac{q^{d_{F} x}}{x}+O\left(\frac{q^{d_{F} x / 2}}{x}\right) .
$$

Also from Theorem 4.1, for C equal to the trivial element of $\operatorname{Gal}(L / F)$, we obtain the following result.

THEOREM 4.2

Let L / F be a finite Galois extension with Galois group G, and let

$$
\pi_{1}(x, L / F)=\mid\left\{\wp \mid \operatorname{deg}_{F} \wp=x, \wp \text { splits completely in } L\right\} \mid .
$$

If $x \in \mathbb{N}$ and $r_{L} \nmid x$, then

$$
\pi_{1}(x, L / F)=0 .
$$

If $r_{L} \mid x$, then

$$
\left|\pi_{1}(x, L / F)-\frac{r_{L}}{|G|} \pi_{F}(x)\right| \ll\left(\frac{g_{L} r_{L}}{|G|}+1\right) \frac{q^{d_{F} x / 2}}{x},
$$

where the implicit constant depends only on F.
We know the following result (see [8, Corollaire 7]).

LEMMA 4.3

For each $m \in A \backslash \mathbb{F}_{q}$, we have

$$
g(m):=g_{F(\phi[m])} \ll D(\phi) \cdot[F(\phi[m]): F] \cdot \operatorname{deg} m,
$$

where the implicit constant depends only on F and the constant $D(\phi)$ depends only on ϕ.

We know the following result (see [4, Lemma 3.2], [10, Remark 7.1.9]).

LEMMA 4.4

If ϕ is a Drinfeld A-module over F, and F_{ϕ} is the field obtained by adjoining to F all division points of ϕ, then

$$
E(\phi)=\left[F_{\phi} \cap \overline{\mathbb{F}}_{F}: \mathbb{F}_{F}\right]<\infty
$$

5. The proofs of Theorems 1.1 and 1.2

From Lemma 2.1(ii) we get

$$
f_{\phi, F}(x)=\sum_{m \in A} \mu_{q}(m) \pi_{1}(x, F(\phi[m]) / F)
$$

where the sum is over monic square-free polynomials m of A. If \wp splits completely in $F(\phi[m])$, then from Lemma 3.3 we obtain that $m^{r} \mid P_{\phi, \wp}(1)$. Since $\operatorname{deg} P_{\phi, \wp}(1) \leq d_{F} \operatorname{deg}_{F} \wp=d_{F} x$, it is sufficient to consider only square-free polynomials $m \in A$ with $\operatorname{deg} m \leq d_{F} x / r$.

If $y=y(x)$ is a real number with $y \leq d_{F} x / r$ (y will be chosen later), then

$$
\begin{align*}
f_{\phi, F}(x)= & \sum_{\operatorname{deg} m \leq d_{F} x / r} \mu_{q}(m) \pi_{1}(x, F(\phi[m]) / F) \\
= & \sum_{\operatorname{deg} m \leq y} \mu_{q}(m) \pi_{1}(x, F(\phi[m]) / F) \\
& +\sum_{y<\operatorname{deg} m \leq d_{F} x / r} \mu_{q}(m) \pi_{1}(x, F(\phi[m]) / F) \tag{5.1}\\
= & \text { main }+ \text { error. }
\end{align*}
$$

From Theorem 4.2, we obtain

$$
\text { main }=\sum_{\operatorname{deg} m \leq y} \frac{\mu_{q}(m) r_{m}(x)}{n(m)} \pi_{F}(x)+\sum_{\operatorname{deg} m \leq y} O\left(\left(\frac{g(m) r_{m}(x)}{n(m)}+1\right) \frac{q^{d_{F} x / 2}}{x}\right)
$$

and from Lemmas 4.3 and 4.4, we get

$$
\sum_{\operatorname{deg} m \leq y}\left(\frac{g(m) r_{m}(x)}{n(m)}+1\right) \ll \sum_{\operatorname{deg} m \leq y} D(\phi) E(\phi) \operatorname{deg} m \ll x q^{y}
$$

because $\operatorname{deg} m \leq y \ll x$ and the number of $m \in A$ with $\operatorname{deg} m \leq y$ is much less than q^{y}. Thus,

$$
\begin{equation*}
\operatorname{main}=\pi_{F}(x)\left(\sum_{\operatorname{deg} m \leq y} \frac{\mu_{q}(m) r_{m}(x)}{n(m)}\right)+O\left(q^{\left(d_{F} x / 2\right)+y}\right) \tag{5.2}
\end{equation*}
$$

Now we estimate the error. For each $c=\left(c_{1}, \ldots, c_{r-1}\right) \in A^{r-1}$, with $\left|c_{k}\right| \leq$ $q^{(k / r) d_{F} \operatorname{deg}_{F} \wp}$, for any $k=1, \ldots, r-1$, and for each square-free monic polynomial
$m \in A$, we define

$$
S_{c}(m):=\left\{\wp \in \mathcal{P}_{A} \mid \operatorname{deg}_{F} \wp=x, c_{k, \phi}(\wp)=c_{k} \text { for } k=1, \ldots, r-1,\right.
$$ \wp splits completely in $F(A[m]) / F\}$.

Then, because from Lemma 3.4 we know that $\left|c_{k, \phi}(\wp)\right| \leq q^{(k / r) d_{F} \operatorname{deg}_{F} \wp}$, for any $k=1, \ldots, r$, we obtain

$$
\text { error } \leq \sum_{\substack{y<\operatorname{deg} m \leq d_{F} x / r \\ m \text { square-free }}} \sum_{\substack{c \in A^{r-1}\\}}\left|c_{k}\right| \leq q^{(k / r) d_{F} \operatorname{deg}_{F}^{\wp}, \text { for } k=1, \ldots, r-1} \ll
$$

From Lemma 3.3 we know that for each $\wp \in S_{c}(m)$ we have $m^{k} \mid c_{k, \phi}(\wp)$ for $k=1, \ldots, r$, and from Lemma 3.5 we know that $c_{r, \phi}(\wp)=u_{\wp} p^{m_{\wp}}+d_{1} c_{1, \phi}(\wp)+$ $d_{2} c_{2, \phi}(\wp)+\cdots+d_{r-1} c_{r-1, \phi}(\wp)+d_{r}$. Therefore,

$$
\begin{align*}
& \sum_{\substack{y<\operatorname{deg} m \leq d_{F} x / r \\
m \text { square-free }}} \sum_{\substack{c \in A^{r-1}}}\left|c_{k}\right| \leq q^{(k / r) d_{F} \operatorname{deg}_{F} \wp, \text { for } k=1, \ldots, r-1} \mid \\
& \leq \sum_{\substack{y<\operatorname{deg} m \leq d_{F} x / r \\
m \text { square-free }}} \sum_{\substack{\left|c_{k}\right| \leq q^{r-1}}} \sum_{\substack{(k / r) d_{F} \operatorname{deg}_{F} \wp, \text { for } k=1, \ldots, r-1 \\
m^{k} \mid c_{k}, \text { for } k=1, \ldots, r-1}} \\
& \sum_{\wp \in \mathcal{P}_{A}} 1 \\
& \operatorname{deg}_{F} \wp=x \\
& c_{k, \phi}(\wp)=c_{k} \text {, for } k=1, \ldots, r-1 \\
& m^{r} \mid c_{r, \phi}(\wp)=u_{\wp} p^{m} \wp+d_{1} c_{1, \phi}(\wp)+\cdots+d_{r-1} c_{r-1, \phi}(\wp)+d_{r} \\
& \ll \sum_{\substack{y<\operatorname{deg} m \leq d_{F} x / r \\
m \text { square-free }}} \sum_{\substack{c \in A^{r-1}}} q^{c_{k} \mid \leq q^{(k / r) d_{F}} \operatorname{deg}_{F} \wp \text {, for } k=1, \ldots, r-1} \begin{array}{c}
m^{k} \mid c_{k}, \text { for } k=1, \ldots, r-1
\end{array}, \tag{5.3}\\
& \ll \sum_{\substack{y<\operatorname{deg} m \leq d_{F} x / r \\
m \text { square-free }}} q^{d_{F} x-r \operatorname{deg} m} \prod_{k=1}^{r-1} q^{(k / r) d_{F} x-k \operatorname{deg} m} \\
& \ll \sum_{\substack{y<\operatorname{deg} m \leq d_{F} x / r \\
m \text { square-free }}} q^{d_{F} x-r \operatorname{deg} m} q^{\frac{r-1}{2} d_{F} x-\frac{(r-1) r}{2} \operatorname{deg} m} \\
& \ll q^{\frac{r+1}{2} d_{F} x-\frac{r(r+1)-2}{2} y} .
\end{align*}
$$

(We remark that in the above computation we should have considered whether c_{k} is zero or not for each $k=1, \ldots, r-1$, but in each of these 2^{r-1} cases the computation is similar and could be dealt with by induction.)

Since $\left|\left(O_{E} / m O_{E}\right)^{*}\right| \gg q^{e \operatorname{deg} m} / \log \operatorname{deg} m$ (see [11]), from Lemma 3.2 (see the remark after it) and Lemma 4.4 we get (see also [11] for all details)

$$
\begin{equation*}
\sum_{\operatorname{deg} m>y} \frac{\mu_{q}(m) r_{m}(x)}{n(m)} \ll \sum_{\operatorname{deg} m>y} \frac{\log \operatorname{deg} m}{q^{h^{2} e \operatorname{deg} m}} \ll \frac{\log y}{q^{\left(h^{2} e-1\right) y}} . \tag{5.4}
\end{equation*}
$$

From (5.1)-(5.4) we distinguish two cases.
(i) If $h^{2} e \geq \frac{r+1}{2}$, then we choose y such that $q^{\left(d_{F} x / 2\right)+y}=q^{\frac{r+1}{2} d_{F} x-\frac{r^{2}+r-2}{2} y}$, that is,

$$
\begin{equation*}
y=\frac{1}{r+1} d_{F} x, \tag{5.5}
\end{equation*}
$$

and from (5.2)-(5.4) we get

$$
\begin{equation*}
f_{\phi, F}(x)=c_{\phi, F}(x) \pi_{F}(x)+O\left(q^{\frac{r+3}{2+2} d_{F} x}\right) . \tag{5.6}
\end{equation*}
$$

(ii) If $h^{2} e<\frac{r+1}{2}$, then we choose y such that $q^{\left(d_{F} x / 2\right)+y}=q^{d_{F} x-\left(h^{2} e-1\right) y}$, that is,

$$
\begin{equation*}
y=\frac{1}{2 h^{2} e} d_{F} x \tag{5.7}
\end{equation*}
$$

(so the error term in (5.1) disappears), and from (5.2) and (5.4) we get

$$
\begin{equation*}
f_{\phi, F}(x)=c_{\phi, F}(x) \pi_{F}(x)+O\left(q^{\frac{h^{2} e+1}{2 h^{2} e} d_{F} x}\right) . \tag{5.8}
\end{equation*}
$$

Thus, we are done with the proof of Theorem 1.1.
Now we prove Theorem 1.2. (We remark that to prove Theorem 1.2 we have to use Lemma 3.2 above, and not a weaker version of it, that is, [19, Lemma 3.2]: the reason is that in the proof of Theorem 1.2 we have to consider a sum over all monic polynomials m of A, and in the proof of Theorem 1.1 it is sufficient to consider a sum over only square-free monic polynomials m of A.)

From the definition of $f_{\phi, F}^{\prime}(x)$ we get that

$$
f_{\phi, F}^{\prime}(x)=\sum_{m \in A} \pi_{1}(x, F(\phi[m]) / F)
$$

where the sum is over monic polynomials m of A. Again, if \wp splits completely in $F(\phi[m])$, then from Lemma 3.3 we deduce that $m^{r} \mid P_{\phi, \wp}(1)$. Because $\operatorname{deg} P_{\phi, \wp}(1) \leq d_{F} \operatorname{deg}_{F} \wp=d_{F} x$, it is sufficient to consider only monic polynomials $m \in A$ with $\operatorname{deg} m \leq d_{F} x / r$.

For $y=y(x)$ a real number with $y \leq d_{F} x / r$, we have

$$
\begin{align*}
f_{\phi, F}^{\prime}(x) & =\sum_{\operatorname{deg} m \leq d_{F} x / r} \pi_{1}(x, F(\phi[m]) / F) \\
& =\sum_{\operatorname{deg} m \leq y} \pi_{1}(x, F(\phi[m]) / F)+\sum_{y<\operatorname{deg} m \leq d_{F} x / r} \pi_{1}(x, F(\phi[m]) / F) \tag{5.9}\\
& =\text { main }+ \text { error. }
\end{align*}
$$

From Theorem 4.2, we get

$$
\text { main }=\sum_{\operatorname{deg} m \leq y} \frac{r_{m}(x)}{n(m)} \pi_{F}(x)+\sum_{\operatorname{deg} m \leq y} O\left(\left(\frac{g(m) r_{m}(x)}{n(m)}+1\right) \frac{q^{d_{F} x / 2}}{x}\right)
$$

and from Lemmas 4.3 and 4.4 as above, we deduce that

$$
\sum_{\operatorname{deg} m \leq y}\left(\frac{g(m) r_{m}(x)}{n(m)}+1\right) \ll \sum_{\operatorname{deg} m \leq y} D(\phi) E(\phi) \operatorname{deg} m \ll x q^{y}
$$

Hence,

$$
\begin{equation*}
\text { main }=\pi_{F}(x)\left(\sum_{\operatorname{deg} m \leq y} \frac{r_{m}(x)}{n(m)}\right)+O\left(q^{\left(d_{F} x / 2\right)+y}\right) \tag{5.10}
\end{equation*}
$$

Now the error can be estimated as above by doing the computations not only for square-free monic polynomials $m \in A$, but also for all monic polynomials $m \in A$, and we get that

$$
\begin{equation*}
\text { error } \ll q^{\frac{r+1}{2} d_{F} x-\frac{r(r+1)-2}{2} y} \tag{5.11}
\end{equation*}
$$

As above we have that

$$
\begin{equation*}
\sum_{\operatorname{deg} m>y} \frac{r_{m}(x)}{n(m)} \ll \sum_{\operatorname{deg} m>y} \frac{\log \operatorname{deg} m}{q^{h^{2} e \operatorname{deg} m}} \ll \frac{\log y}{q^{\left(h^{2} e-1\right) y}} \tag{5.12}
\end{equation*}
$$

and by considering again the cases (i) and (ii) we get that

$$
\begin{equation*}
f_{\phi, F}^{\prime}(x)=c_{\phi, F}^{\prime}(x) \pi_{F}(x)+O\left(q^{\frac{h^{2} e+1}{2 h^{2} e} d_{F} x}\right) \tag{5.13}
\end{equation*}
$$

Thus, we are done with the proof of Theorem 1.2.

References

[1] A. Akbary and D. Ghioca, A geometric variant of Titchmarsh divisor problem, Int. J. Number Theory 8 (2012), 53-69. MR 2887882.
[2] A. C. Cojocaru and M. R. Murty, Cyclicity of elliptic curves modulo \wp and elliptic curve analogues of Linnik's problem, Math. Ann. 330 (2004), 601-625. MR 2099195.
[3] A. C. Cojocaru and A. M. Shulman, An average Chebotarev density theorem for generic rank 2 Drinfeld modules with complex multiplication, J. Number Theory 133 (2013), 897-914. MR 2997774. DOI 10.1016/j.jnt.2012.07.001.
[4] C. David, Frobenius distributions of Drinfeld modules of any rank, J. Number Theory 90 (2001) 329-340. MR 1858082. DOI 10.1006/jnth.2000.2664.
[5] A. T. Felix and M. R. Murty, On the asymptotics for invariants of elliptic curves modulo p, J. Ramanujan Math. Soc. 28 (2013), 271-298. MR 3113386.
[6] M. Fried and M. Jarden, Field Arithmetic, 2nd ed., Ergeb. Math. Grenzgeb. (3) 11, Springer, Berlin, 2005. MR 2102046.
[7] W. Gajda and S. Petersen, Independence of ℓ-adic Galois representations over function fields, Compos. Math. 149 (2013), 1091-1107. MR 3078639.
[8] F. Gardeyn, Une borne pour l'action de l'inertie sauvage sur la torsion d'un module de Drinfeld, Arch. Math. (Basel) 79 (2002), 241-251. MR 1944948. DOI 10.1007/s00013-002-8310-5.
[9] E.-U. Gekeler, On finite Drinfeld modules, J. Algebra 141 (1991), 187-203. MR 1118323.
[10] D. Goss, Basic Structures of Function Field Arithmetic, Ergeb. Math. Grenzgeb. (3) 35, Springer, Berlin, 1996. MR 1423131. DOI 10.1007/978-3-642-61480-4.
[11] W. Kuo and Y.-R. Liu, Cyclicity of finite Drinfeld modules, J. Lond. Math. Soc. (2) $\mathbf{8 0}$ (2009), 567-584. MR 2559117. DOI 10.1112/jlms/jdp043.
[12] M. R. Murty, On Artin's conjecture, J. Number Theory 16 (1983), 147-168. MR 0698163. DOI 10.1016/0022-314X(83)90039-2.
[13] R. Pink and E. Rütsche, Adelic openness for Drinfeld modules in generic characteristic, J. Number Theory 129 (2009), 882-907. MR 2499412.
[14] , Image of the group ring of the Galois representation associated to Drinfeld modules, J. Number Theory 129 (2009), 866-881. MR 2499411.
[15] J.-P. Serre, Résumé des cours de l'année scolaire, Annuaire du Collège de France 78 (1979), 67-70.
[16] , Une critere d'indépendance pour une famille de représentations l-adiques, Comment. Math. Helv. 88 (2013), 541-554. MR 3093502.
[17] E. C. Titchmarsh, A divisor problem, Rend. Palermo 54 (1930), 414-429.
[18] C. Virdol, Cyclic components of abelian varieties (mod \wp), J. Number Theory 159 (2016), 426-433. MR 3412731.
[19] \qquad , Drinfeld modules and subfields of division fields, Houston J. Math. 42 (2016), 211-221. MR 3502779.

Department of Mathematics, Yonsei University, Seoul, South Korea; cristian.virdol@gmail.com

