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Abstract Let A= Fq [T ], where Fq is a finite field, let Q= Fq(T ), and let F be a finite

extensionofQ.ConsiderφaDrinfeldA-module overF of rank r.Wewrite r = hed,where

E is the center of D := EndF (φ) ⊗ Q, e = [E : Q], and d = [D : E]
1
2 . If ℘ is a prime of

F , we denote by F℘ the residue field at ℘. If φ has good reduction at ℘, let φ̄ denote the

reduction of φ at ℘. In this article, in particular, when r �= d, we obtain an asymptotic

formula for the number of primes ℘ of F of degree x for which φ̄(F℘) has at most (r− 1)

cyclic components. This result answers an old question of Serre on the cyclicity of gen-

eral Drinfeld A-modules. We also prove an analogue of the Titchmarsh divisor problem

for Drinfeld modules.

1. Introduction

Let Fq be a finite field, let A= Fq[T ], let Q= Fq(T ), let F be a finite extension

of Q, let FF be the constant field of F , and let FF be the algebraic closure of

FF . For ℘ a prime of F , we denote by F℘ the residue field at ℘ and by F℘ the

algebraic closure of F℘. Let φ be a Drinfeld A-module over F of rank r. For all

but finitely many primes ℘ of F , φ has good reduction at ℘, and we denote by

Pφ the set of primes ℘ of F of good reduction for φ. For ℘ ∈ Pφ, let φ̄ be the

reduction of φ at ℘.

We have that φ̄(F℘) ⊆ φ̄[m](F℘) ⊆ (A/mA)r, for some m ∈ A with m �= 0,

where φ̄[m](F℘) is the set of m-division points of φ̄ in F℘. Hence,

(1.1) φ̄(F℘)�A/w1A×A/w2A× · · · ×A/wsA,

where s≤ r, wi ∈A \ Fq , and wi |wi+1 for 1≤ i≤ s− 1. Each A/wiA is called a

cyclic component of φ̄(F℘). (Thus, when r = 1, φ̄(F℘) is always cyclic.) If s < r,

we say that φ̄(F℘) has at most (r− 1) cyclic components.

For x ∈N, define

fφ,F (x) =
∣∣{℘ ∈ Pφ | degF ℘= x, φ̄(F℘) has at most (r− 1) cyclic components

}∣∣,
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where degF ℘ = [F℘ : FF ]. Let F (φ[m]) be the field obtained by adjoining to F

the m-division points φ[m] of φ.

For x ∈ N we define (throughout this article m ∈ A is a monic polynomial

and p ∈A is the prime below ℘)

f ′
φ,F (x)

(1.2)
:=

∑
℘∈Pφ

degF ℘=x

∣∣{m ∈A | (m,p) = 1, ℘ splits completely in F
(
A[m]

)}∣∣.

Let rm := [F (φ[m])∩FF : FF ], let dF := [FF : Fq], and let πF (x) be the num-

ber of primes of F of degree x. Let E be the center of D := EndF (φ)⊗Q. By the

theory of central simple algebras, there exist positive integers e, d,h such that

[E :Q] = e, [D :E] = d2, and r = hed.

In this article we prove the following results.

THEOREM 1.1

Let φ be a Drinfeld A-module over F of rank r ≥ 2. We write r = hed, where E

is the center of D := EndF (φ)⊗Q, e = [E :Q], and d = [D : E]
1
2 . Assume that

r �= d. Then, for x ∈N, we have

fφ,F (x) = cφ,F (x)πF (x) +O
(
(qdF x)Δr,h,e

)
,

where

Δr,h,e =

{
r+3
2r+2 if h2e≥ r+1

2 ,
h2e+1
2h2e otherwise,

and

cφ,F (x) =
∑
m∈A

m is monic

μq(m)rm(x)

[F (φ[m]) : F ]
,

where μq(·) is the Möbius function of A and

rm(x) =

{
3rm if rm | x,
0 otherwise.

Moreover, assume that F =Q, D =A, and all division fields of φ are geometric.

(Thus, rm(x) = rm = 1, and cφ,F := cφ,F (x) is independent of x.) Then, from

[11, Theorem 3], we know that cφ,F is positive if and only if Q(φ[a]) �=Q for all

a ∈A of degree 1.

THEOREM 1.2

Under the same conditions and assumptions as in Theorem 1.1, for x ∈ N, we

have

f ′
φ,F (x) = c′φ,F (x)πF (x) +O

(
(qdF x)Δr,h,e

)
,
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where

Δr,h,e =

{
r+3
2r+2 if h2e≥ r+1

2 ,
h2e+1
2h2e otherwise,

and

c′φ,F (x) =
∑
m∈A

m is monic

rm(x)

[F (φ[m]) : F ]
,

where

rm(x) =

{
rm if rm | x,
0 otherwise.

Theorem 1.1 is a generalization of [11, Theorem 1], where only the case EndF (φ) =

A was considered (i.e., with our notation r = hed, with h= r and e= d= 1), but

the error term in the asymptotic formula in [11, Theorem 1] even in this par-

ticular case is weaker than ours. (The error terms in Theorem 1.1 above and

[11, Theorem 1] coincide only when r = 2, h = 2, and e = d = 1.) To improve

and generalize the asymptotic formula in [11, Theorem 1], we make use of the

Chebotarev density theorem, the open image theorem for l-adic representations

associated to general Drinfeld A-modules (i.e., [13, Theorem 0.1]), Lemma 3.3,

which the authors of [11], [2], and [3] could prove only for k = 1 and k = r (in

the case of both Drinfeld modules and abelian varieties), Lemmas 3.4 and 3.5,

the sets Sc(m) defined in Section 5, and the splitting from formula (5.1).

In the very particular case r = 2, h= 1, e= 2, d= 1, Theorems 1.1 and 1.2 are

also a generalization and improvement of Cojocaru and Shulman [3, (9)] and of

the main theorem of [3], that is, [3, Theorem 1.1]. (In [3] an additional condition

is imposed: φ has complex multiplication (CM) by the full ring of integers of an

imaginary quadratic field.)

Here is a brief history of the cyclicity question we consider in this article.

Let E be an elliptic curve defined over Q of conductor N . For p a rational prime

we denote by Fp the finite field of cardinality p and by Fp the algebraic closure

of Fp. Let PE be the set of rational primes p of good reduction for E (i.e.,

(p,N) = 1). For p ∈ PE , we denote by Ē the reduction of E at p. We have that

Ē(Fp)⊆ Ē[m](Fp)⊆ (Z/mZ)2 for any positive integer m satisfying |Ē(Fp)| |m.

Hence,

(1.3) Ē(Fp)� Z/m1Z×Z/m2Z,

where mi ∈ Z≥1 and m1 |m2. Each Z/miZ is called a cyclic component of Ē(Fp).

If m1 = 1, we say that Ē(Fp) is cyclic.

For x ∈R, define

fE,Q(x) =
∣∣{p ∈ PE | p≤ x, Ē(Fp) is cyclic

}∣∣.
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In 1976, Serre proved (see [15] and also [12, Theorem 2]), under generalized

Riemann hypothesis (GRH), that if E is a non-CM elliptic curve, then

fE,Q(x) = cE lix+ o
( x

logx

)
,

where lix :=
∫ x

2
1

log t dt and

cE =

∞∑
m=1

μ(m)

[Q(E[m]) :Q]
,

where μ(·) is the Möbius function. Moreover, Serre proved that cE > 0 if and

only if Q(E[2]) �=Q. In 2004, the error term in Serre’s estimate was improved by

Cojocaru and Murty [2, Theorem 1.1], where they obtained the formula

fE,Q(x) = cE lix+O
(
x5/6(logx)2/3

)
.

This corresponds to the case r = 2, h= 2, e= 1, and d= 1 in Theorem 1.1 above,

and we obtain

fφ,F (x) = cφ,F (x)πF (x) +O
(
(qdF x)5/6

)
,

which is the same formula as in [11, Theorem 1.1].

When the elliptic curve E has CM by the full ring of integers of an imaginary

quadratic field, Cojocaru and Murty in Theorem 1.2 of [CM] obtained a better

asymptotic formula:

fE,Q(x) = cE lix+O
(
x3/4(logx)1/2

)
.

This corresponds (with the condition “full ring of integers” removed) to the case

r = 2, h= 1, e= 2, and d= 1 in Theorem 1.1 above, and we obtain

fφ,F (x) = cφ,F (x)πF (x) +O
(
(qdF x)3/4

)
,

which is better than [3, (9)] or [3, the formula in Theorem 1.1]. (These two last

results were obtained also under the restriction: “φ has CM by the full ring of

integers of an imaginary quadratic field.”)

Finally, the results regarding Serre’s cyclicity question from [15], [2], and [11]

were extended to arbitrary abelian varieties defined over number fields in [18] and

to arbitrary generic Drinfeld A-modules in this article. We remark that Theorem

1.2 is an analogue of the Titchmarsh divisor problem for Drinfeld modules of

rank r ≥ 2 (see [1], [17] for details). We remark that the methods of this article

could be used to generalize [1] and [5], where the authors were able to prove their

results only for the very particular case when the abelian variety A from [1] is

defined over Q and contains an abelian subvariety E of dimension 1 also defined

over Q (see [1, Theorem 1.2 and Remark 4.1] and also [5, the last sentence of

Section 1.1], where the authors say that they can prove their results only for

“abelian varieties defined over Q which have a 1-dimensional subvariety which is

also defined over Q”).
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2. Known results

For F a finite extension of Q, we define GF := Gal(F sep/F ), where F sep is the

separable closure of F inside a fixed algebraic closure F of F . Let φ be a Drinfeld

A-module over F of rank r. For m ∈ A with m �= 0, we denote by φ[m] the m-

division points of φ in F . Then

φ[m]� (A/mA)r.

If F (φ[m]) is the field obtained by adjoining to F the elements of φ[m], then we

have a natural injection

Φm : Gal
(
F
(
φ[m]

)
/F

)
↪→Aut

(
φ[m]

)
�GLr(A/mA).

We denote Gm := ImΦm(Gal(F (φ[m])/F )). Define

n(m) := |Gm|=
[
F
(
φ[m]

)
: F

]
.

For a rational prime l, let

Tl(φ) = lim
←−

φ[ln]

and Vl(φ) = Tl(φ)⊗Q. The Galois group GF acts on

Tl(φ)�Ar
l ,

where Al is the l-adic completion of A at l, and also on Vl(φ) � Qr
l , and we

obtain a continuous representation

ρφ,l :GF →Aut
(
Tl(φ)

)
�GLr(Al)⊂Aut

(
Vl(φ)

)
�GLr(Ql).

Hence, we get a representation

ρφ :=GF →
∏
l

GLr(Al).

If ℘ ∈ Pφ, let p = ℘ ∩ A, let p ∈ A be the prime such that pA = p, and

let l ∈ A be a prime satisfying (l, p) = 1. Then F (φ[l∞])/F is unramified at

℘, and let σ℘ be the Artin symbol of ℘ in Gal(F (φ[l∞])/F ). We denote by

Pφ,℘(X) =Xr +a1,φ(℘)X
r−1+ · · ·+ar−1,φ(℘)X+u℘p

m℘ ∈A[X], where u℘ ∈ F∗
q

and m℘ = [F℘ :A/p], the characteristic polynomial of σ℘ on Tl(φ). Then Pφ,℘(X)

is independent of l. One can identify Tl(φ) with Tl(φ̄), where φ̄ is the reduction of

φ at ℘, and the action of σ℘ on Tl(φ) is the same as the action of the Frobenius π℘

of φ̄ on Tl(φ̄). Define Qφ,℘(X) =Xr+ c1,φ(℘)X
r−1+ · · ·+ cr−1,φ(℘)X+ cr,φ(℘) ∈

A[X] by Qφ,℘(X) := Pφ,℘(X + 1).

We know the following (see [11, Proposition 11]).

LEMMA 2.1

Let F/Q be a finite extension, and let φ be a Drinfeld A-module over F of rank

r ≥ 2. If ℘ ∈ Pφ, let p= ℘∩A, and let p ∈A be the prime satisfying pA= p.

(i) For m ∈ A with (m,p) = 1, the finite A-module φ̄(F℘) contains an

(A/mA)r-type submodule if and only if ℘ splits completely in F (φ[m]).
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(ii) The module φ̄(F℘) contains at most (r−1) cyclic components if and only

if ℘ does not split completely in F (φ[l]) for all primes l ∈A with l �= p.

3. Drinfeld modules

Let φ be a Drinfeld module of rank r, defined over a finite extension F/Q,

such that EndF φ = EndF φ. (In the proofs of Theorems 1.1 and 1.2 one does

not have to assume that EndF φ= EndF φ: the reason is that the inequality on

the left in Lemma 3.2 below holds true even without the assumption EndF φ=

EndF φ as is noted just after the proof of Lemma 3.2.) Let E be the center of

D := EndF (φ)⊗Q. By the theory of central simple algebras (see [14, the section

after Theorem 0.1]), there exist positive integers e, d,h such that [E : Q] = e,

[D :E] = d2, and r = hed. Let OE be the “ring of integers” of E.

Let l be a rational prime. Since the actions of D = EndF φ⊗Q and GF on

Vl(φ) commute, we obtain a continuous h-dimensional representation

ρl :GF →AutDl
Vl(φ)∼=GLh(El),

where Dl := EndF φ⊗Ql and El :=E ⊗Ql. Hence, we get a representation

ρ :GF →
∏
l

GLh(OE ⊗Al).

(Actually throughout this article we should have written, as in [13, Theorem 0.2],

CentGLr(Al)(EndF (φ)) instead of GLh(OE ⊗ Al), but to simplify the notation,

because for almost all l these two groups are isomorphic, and also because this

identification does not affect our arguments, we leave it in this form.)

We know the following (see [13, Theorem 0.2]).

LEMMA 3.1

The image of the homomorphism

ρ :GF →
∏
l

GLh(OE ⊗Al)

is open.

Hence, we obtain the following (see also [19]).

LEMMA 3.2

Let φ be a Drinfeld A-module over F of rank r. Assume that EndF (φ) = EndF (φ).

We write r = hed, where E is the center of D := EndF (φ)⊗Q, e= [E :Q], and

d= [D :E]1/2. Then, for m ∈A a monic polynomial, we have∣∣(OE/mOE)
∗∣∣qe(h2−1)degm  |Gm| ≤

∣∣(OE/mOE)
∗∣∣qe(h2−1)degm < qeh

2 degm.

Proof

From the injection

φm : Gal
(
F
(
φ[m]

)
/F

)
↪→GLh(OE/mOE),
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one obtains trivially the inequality

|Gm| ≤
∣∣(OE/mOE)

∗∣∣qe(h2−1)degm < qeh
2 degm.

From [16, Théorème 1] (see also [7], [13]), after eventually replacing F by a finite

extension, we obtain that the function

ld �→
[
F
(
φ[ld]

)
: F

]
is multiplicative in l, where l runs over the rational primes (and d stands for

arbitrary powers of l). Hence, from the open image theorem for Drinfeld A-

modules, that is, Lemma 3.1 above, we get that

|Gm| �
∣∣GLh(OE/mOE)

∣∣
= qe(h

2−1)degm
∏
l|m

(
1− 1

qdeg l

)(
1− 1

q2deg l

)
· · ·

(
1− 1

qr deg l

)

=
∣∣(OE/mOE)

∗∣∣qe(h2−1)degm
∏
l|m

(
1− 1

q2deg l

)
· · ·

(
1− 1

qr deg l

)
,

where the product is over distinct primes l |m. Because∏
l|m

(
1− 1

q2deg l

)
· · ·

(
1− 1

qr deg l

)
�

∏
l

(
1− 1

q2deg l

)
· · ·

(
1− 1

qr deg l

)
� 1,

where the last product is over all primes l, we are done with the proof of

Lemma 3.2. �

We remark that in Lemma 3.2, even if we do not assume that EndF φ=EndF φ,

we have ∣∣(OE/mOE)
∗∣∣qe(h2−1)degm  |Gm|,

because EndF ′ φ=EndF φ for some finite extension F ′/F .

LEMMA 3.3

Using the same notation as above, let ℘ ∈ Pφ, and let p be the rational prime below

℘. Let m ∈A be a monic polynomial such that (m,p) = 1. If ℘ splits completely

in F (φ[m]), then

mk | ck,φ(℘),

for any k = 1, . . . , r.

Proof

Let l |m be a rational prime, and let m(l) be the largest natural number such

that lm(l) |m. Let

π℘ : φ̄(F℘)→ φ̄(F℘)

be the Frobenius endomorphism. Assume that ℘ splits completely in F (φ[m]).

Then φ̄(F℘)[l
m(l)] ⊂ Ker(π℘ − 1) and we get that ρφ,l(σ℘) = Ir + lm(l)B, where
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B ∈Mr(Al). Thus, X
r + c1,φ(℘)X

r−1 + · · ·+ cr−1,φ(℘)X + cr,φ(℘) =Qφ,℘(X) =

Pφ,℘(X+1) = det((X+1)Ir −ρφ,l(σ℘)) = det(XIr − lm(l)B), and we obtain that

lm(l)k | ck,φ(℘) for any k = 1, . . . , r. �

LEMMA 3.4

We have ∣∣ck,φ(℘)∣∣≤ q(k/r)dF degF ℘,

for any k = 1, . . . , r.

Proof

We know (Riemann hypothesis; see [9, Theorem 5.1]) that

Pφ,℘(X) = (X − x1,℘) · · · (X − xr,℘),

where |xi,℘| ≤ q(1/r)dF degF ℘. Hence, Xr + c1,φ(℘)X
r−1 + · · · + cr−1,φ(℘)X +

cr,φ(℘) = Qφ,℘(X) = Pφ,℘(X + 1) = (X − (x1,℘ − 1)) · · · (X − (xr,℘ − 1)), from

which we deduce that |ck,φ(℘)| ≤ q(k/r)dF degF ℘, for any k = 1, . . . , r. �

LEMMA 3.5

We have

cr,φ(℘) = u℘p
m℘ + d1c1,φ(℘) + d2c2,φ(℘) + · · ·+ dr−1cr−1,φ(℘) + dr,

where d1, . . . , dr are integers which depend only on r.

Proof

From Qφ,℘(X) := Pφ,℘(X + 1), we get

c1,φ(℘) = a1,φ(℘) +

(
r

1

)
,

c2,φ(℘) = a2,φ(℘) + a1,φ(℘)

(
r− 1

1

)
+

(
r

2

)
,

...

cr,φ(℘) = u℘p
m℘ + ar−1,φ(℘)

(
1

1

)
+ · · ·+

(
r

r

)
,

and by writing a1,φ(℘) in terms of c1,φ(℘), then a2,φ(℘) in terms of c2,φ(℘) and

c1,φ(℘), . . . , and u℘p
m℘ in terms of c1,φ(℘), . . . , cr,φ(℘), we are done with the

proof of Lemma 3.5. �

4. Chebotarev density theorem

Let L/F be a Galois extension, let G be the Galois group of L/F , let C be a

union of conjugacy classes of G, let rL := [L∩FF : FF ], and let FL be the constant
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field of L. For x ∈N, define

πC(x,L/F ) =
∣∣{℘ | degF ℘= x,℘ is a prime unramified in L/F, and σ℘ ⊆C}

∣∣,
where σ℘ is the Artin symbol of ℘ in Gal(L/F ).

We know the following result (see [6, Theorem 6.4.8]).

THEOREM 4.1 (CHEBOTAREV DENSITY THEOREM)

Let L/F be a finite Galois extension with Galois group G, and let C ⊆ G be a

conjugacy class whose restriction to FL is the ath power of the Frobenius auto-

morphism of FF . If x ∈N and x �≡ a (mod rL), then

πC(x,L/F ) = 0.

If x≡ a (mod rL) and gL and gF are the genera of L and F , respectively, then∣∣∣πC(x,L/F )− rL
|C|
|G|

qdF x

x

∣∣∣
≤ 2|C|

x|G|
((
|G|+ gLrL

)
qdF x/2 + |G|(2gF + 1)qdF x/4 + gLrL + |G|ΔF /dF

)
,

where ΔF := [F :Q] and dF := [FF : Fq].

Let πF (x) be the number of primes of F of degree x. Then from Theorem 4.1

with L= F , we get

πF (x) =
qdF x

x
+O

(qdF x/2

x

)
.

Also from Theorem 4.1, for C equal to the trivial element of Gal(L/F ), we obtain

the following result.

THEOREM 4.2

Let L/F be a finite Galois extension with Galois group G, and let

π1(x,L/F ) =
∣∣{℘ | degF ℘= x,℘ splits completely in L}

∣∣.
If x ∈N and rL � x, then

π1(x,L/F ) = 0.

If rL | x, then ∣∣∣π1(x,L/F )− rL
|G|πF (x)

∣∣∣ (gLrL
|G| + 1

)qdF x/2

x
,

where the implicit constant depends only on F .

We know the following result (see [8, Corollaire 7]).

LEMMA 4.3

For each m ∈A \ Fq, we have

g(m) := gF (φ[m]) D(φ) ·
[
F
(
φ[m]

)
: F

]
· degm,
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where the implicit constant depends only on F and the constant D(φ) depends

only on φ.

We know the following result (see [4, Lemma 3.2], [10, Remark 7.1.9]).

LEMMA 4.4

If φ is a Drinfeld A-module over F , and Fφ is the field obtained by adjoining to

F all division points of φ, then

E(φ) = [Fφ ∩ FF : FF ]<∞.

5. The proofs of Theorems 1.1 and 1.2

From Lemma 2.1(ii) we get

fφ,F (x) =
∑
m∈A

μq(m)π1

(
x,F

(
φ[m]

)
/F

)
,

where the sum is over monic square-free polynomials m of A. If ℘ splits com-

pletely in F (φ[m]), then from Lemma 3.3 we obtain that mr | Pφ,℘(1). Since

degPφ,℘(1)≤ dF degF ℘= dFx, it is sufficient to consider only square-free poly-

nomials m ∈A with degm≤ dFx/r.

If y = y(x) is a real number with y ≤ dFx/r (y will be chosen later), then

fφ,F (x) =
∑

degm≤dF x/r

μq(m)π1

(
x,F

(
φ[m]

)
/F

)

=
∑

degm≤y

μq(m)π1

(
x,F

(
φ[m]

)
/F

)
(5.1)

+
∑

y<degm≤dF x/r

μq(m)π1

(
x,F

(
φ[m]

)
/F

)
= main+ error.

From Theorem 4.2, we obtain

main =
∑

degm≤y

μq(m)rm(x)

n(m)
πF (x) +

∑
degm≤y

O
((g(m)rm(x)

n(m)
+ 1

)qdF x/2

x

)
,

and from Lemmas 4.3 and 4.4, we get∑
degm≤y

(g(m)rm(x)

n(m)
+ 1

)


∑
degm≤y

D(φ)E(φ)degm xqy,

because degm ≤ y  x and the number of m ∈ A with degm ≤ y is much less

than qy . Thus,

(5.2) main = πF (x)
( ∑
degm≤y

μq(m)rm(x)

n(m)

)
+O(q(dF x/2)+y).

Now we estimate the error. For each c = (c1, . . . , cr−1) ∈ Ar−1, with |ck| ≤
q(k/r)dF degF ℘, for any k = 1, . . . , r−1, and for each square-free monic polynomial
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m ∈A, we define

Sc(m) := {℘ ∈ PA | degF ℘= x, ck,φ(℘) = ck for k = 1, . . . , r− 1,

℘ splits completely in F
(
A[m]

)
/F}.

Then, because from Lemma 3.4 we know that |ck,φ(℘)| ≤ q(k/r)dF degF ℘, for

any k = 1, . . . , r, we obtain

error≤
∑

y<degm≤dF x/r

m square-free

∑
c∈Ar−1

|ck|≤q(k/r)dF degF ℘, for k=1,...,r−1

∣∣Sc(m)
∣∣.

From Lemma 3.3 we know that for each ℘ ∈ Sc(m) we have mk | ck,φ(℘) for

k = 1, . . . , r, and from Lemma 3.5 we know that cr,φ(℘) = u℘p
m℘ + d1c1,φ(℘) +

d2c2,φ(℘) + · · ·+ dr−1cr−1,φ(℘) + dr. Therefore,∑
y<degm≤dF x/r

m square-free

∑
c∈Ar−1

|ck|≤q(k/r)dF degF ℘,for k=1,...,r−1

∣∣Sc(m)
∣∣

≤
∑

y<degm≤dF x/r

m square-free

∑
c∈Ar−1

|ck|≤q(k/r)dF degF ℘,for k=1,...,r−1

mk|ck,for k=1,...,r−1∑
℘∈PA

degF ℘=x

ck,φ(℘)=ck,for k=1,...,r−1

mr|cr,φ(℘)=u℘p
m℘+d1c1,φ(℘)+···+dr−1cr−1,φ(℘)+dr

1


∑

y<degm≤dF x/r

m square-free

∑
c∈Ar−1

|ck|≤q(k/r)dF degF ℘,for k=1,...,r−1

mk|ck,for k=1,...,r−1

qdF x−r degm(5.3)


∑

y<degm≤dF x/r

m square-free

qdF x−r degm
r−1∏
k=1

q(k/r)dFx−kdegm


∑

y<degm≤dF x/r

m square-free

qdF x−r degmq
r−1
2 dF x− (r−1)r

2 degm

 q
r+1
2 dF x− r(r+1)−2

2 y.

(We remark that in the above computation we should have considered whether

ck is zero or not for each k = 1, . . . , r − 1, but in each of these 2r−1 cases the

computation is similar and could be dealt with by induction.)
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Since |(OE/mOE)
∗| � qedegm/ log degm (see [11]), from Lemma 3.2 (see the

remark after it) and Lemma 4.4 we get (see also [11] for all details)

(5.4)
∑

degm>y

μq(m)rm(x)

n(m)


∑
degm>y

log degm

qh2edegm
 log y

q(h2e−1)y
.

From (5.1)–(5.4) we distinguish two cases.

(i) If h2e≥ r+1
2 , then we choose y such that q(dF x/2)+y = q

r+1
2 dF x− r2+r−2

2 y ,

that is,

(5.5) y =
1

r+ 1
dFx,

and from (5.2)–(5.4) we get

(5.6) fφ,F (x) = cφ,F (x)πF (x) +O(q
r+3
2r+2dF x).

(ii) If h2e < r+1
2 , then we choose y such that q(dF x/2)+y = qdF x−(h2e−1)y , that

is,

(5.7) y =
1

2h2e
dFx

(so the error term in (5.1) disappears), and from (5.2) and (5.4) we get

(5.8) fφ,F (x) = cφ,F (x)πF (x) +O(q
h2e+1

2h2e
dF x).

Thus, we are done with the proof of Theorem 1.1.

Now we prove Theorem 1.2. (We remark that to prove Theorem 1.2 we have

to use Lemma 3.2 above, and not a weaker version of it, that is, [19, Lemma 3.2]:

the reason is that in the proof of Theorem 1.2 we have to consider a sum over

all monic polynomials m of A, and in the proof of Theorem 1.1 it is sufficient to

consider a sum over only square-free monic polynomials m of A.)

From the definition of f ′
φ,F (x) we get that

f ′
φ,F (x) =

∑
m∈A

π1

(
x,F

(
φ[m]

)
/F

)
,

where the sum is over monic polynomials m of A. Again, if ℘ splits completely in

F (φ[m]), then from Lemma 3.3 we deduce that mr | Pφ,℘(1). Because

degPφ,℘(1) ≤ dF degF ℘ = dFx, it is sufficient to consider only monic polyno-

mials m ∈A with degm≤ dFx/r.

For y = y(x) a real number with y ≤ dFx/r, we have

f ′
φ,F (x) =

∑
degm≤dF x/r

π1

(
x,F

(
φ[m]

)
/F

)

=
∑

degm≤y

π1

(
x,F

(
φ[m]

)
/F

)
+

∑
y<degm≤dF x/r

π1

(
x,F

(
φ[m]

)
/F

)
(5.9)

= main + error.
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From Theorem 4.2, we get

main =
∑

degm≤y

rm(x)

n(m)
πF (x) +

∑
degm≤y

O
((g(m)rm(x)

n(m)
+ 1

)qdF x/2

x

)
,

and from Lemmas 4.3 and 4.4 as above, we deduce that∑
degm≤y

(g(m)rm(x)

n(m)
+ 1

)


∑
degm≤y

D(φ)E(φ)degm xqy.

Hence,

(5.10) main = πF (x)
( ∑
degm≤y

rm(x)

n(m)

)
+O(q(dF x/2)+y).

Now the error can be estimated as above by doing the computations not

only for square-free monic polynomials m ∈A, but also for all monic polynomials

m ∈A, and we get that

(5.11) error q
r+1
2 dF x− r(r+1)−2

2 y.

As above we have that

(5.12)
∑

degm>y

rm(x)

n(m)


∑
degm>y

log degm

qh2edegm
 log y

q(h2e−1)y
,

and by considering again the cases (i) and (ii) we get that

(5.13) f ′
φ,F (x) = c′φ,F (x)πF (x) +O(q

h2e+1

2h2e
dF x).

Thus, we are done with the proof of Theorem 1.2.
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