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Abstract Saito–Kurokawa liftings from Jacobi forms of degree one of weight k of level
N to Siegel modular forms of degree two of weight k of level N with or without character
are explicitly given by describing their Fourier expansions. Their L-functions are also
given as well as the action of Hecke operators including some operators at bad primes.
Also, a practical way of constructing Jacobi forms of given level is explained. This is ex-
plicitly executed for Jacobi forms of level up to 5, and their explicit structure theorems
are given.
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1. Introduction

In this paper, we generalize the theory of Saito–Kurokawa lifting in [20] and [8]
for arbitrary level with or without character, including the Hecke theory. Then
we also give explicit structure theorems on Jacobi forms of index one for levels up
to 5. Here we mean by Saito–Kurokawa lifting a lifting from Jacobi forms of level
N of index one to Siegel modular forms of degree two of level N belonging to
Γ(2)

0 (N) with or without character. (Such lifts from Jacobi forms are often called
Maass lifts by several mathematicians since Hans Maass found this as a link to
the lifting from elliptic modular forms to Siegel modular forms (cf. [20]), but in
this paper we loosely call all of these Saito–Kurokawa lifts.) The arguments in
this paper are largely an imitation of those in [8], but there are several subtle
points for generalization, and these are not completely trivial. For example, we
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must give a correct definition of index shift operators on Jacobi forms, we need
generators of groups Γ(2)

0 (N), we must show that cusp forms are lifted to cusp
forms, and we must newly calculate the action of Hecke operators, and so on. Also,
the lifting depends on N if Jacobi forms are old forms, and we can define several
different liftings for these. We do not treat here the correspondence between
Jacobi forms of index one and modular forms of half-integral weight, or Shimura
correspondence between half-integral weight and integral weight, since there are
many references for these, for example, [8], [19], [29], [33], [17], [32], and so on.
There are already several related works on Saito–Kurokawa lifting of level N , for
example, [24] for the trivial character case through Jacobi forms and [18] through
integral transformation, but none of them covers the content of this paper. Also
note that the definitions in [24] of the index shift operators or lifting operators
contain typos, and most of the proofs there are very sketchy. Other references
quoting it have the same defect as far as the author knows. As a related thing,
Böcherer and Schulze-Pillot studied conditions where the Yoshida liftings for
level N starting from pairs of modular forms of one variable do not vanish. The
shapes of the L-functions of the Saito–Kurokawa liftings are the same as those of
Yoshida liftings from pairs of a cusp form f of weight 2k − 2 and the Eisenstein
series of weight two. It does not seem clear if a Yoshida lifting of this type is
exactly equal to the Saito–Kurokawa lifting in our sense, but a Yoshida lifting of
this type vanishes when L(k − 1, f) = 0 (see [7]). Since our construction has no
such restriction anyway, the Yoshida liftings do not cover all the Saito–Kurokawa
liftings in general. Finally, we would like to call the reader’s attention to several
subjects which are not treated in this paper and remain for a future investigation
by researchers:

(1) direct relations between Yoshida liftings and Saito-Kurokawa liftings
(see, e.g., [26]);

(2) relations between inner products of Jacobi forms and Siegel modular
forms obtained by liftings;

(3) characterization of the image of liftings by relations of Fourier coefficients
like the Maass relation.

As for (3), see Section 3.4 for some explanation.
I have heard that H. Aoki obtained results similar to those in this paper

independently. V. Gritsenko treated the case of paramodular forms starting from
Jacobi forms of higher indices with level one in [10], but this is a different story.

2. Definitions and notation

We review here well-known definitions of Siegel modular forms and Jacobi forms
in order to fix notation. We denote by Hn the Siegel upper half-space of degree n.
We denote by Sp(n,R) the usual symplectic group of matrix size 2n and by
GSp+(n,R) the group of symplectic similitudes of matrix size 2n with positive
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multiplicators defined by

GSp+(n,R) =
{
g ∈ M2n(R); tgJng = n(g)Jn, n(g) > 0

}
,

where Jn = ( 0
1n

−1n

0 ). The group GSp+(n,R) acts on Hn as usual. We put Γn =
Sp(n,Z) = Sp(n,R) ∩ M2n(Z). We define the Hecke-type subgroup of Γn of level N

by

Γ(n)
0 (N) =

{
g =
(

A B

C D

)
∈ Γn;C ≡ 0 mod N

}
.

When n = 1, we simply write Γ(1)
0 (N) = Γ0(N). By a Dirichlet character χ mod-

ulo N (not necessarily primitive), we mean a C-valued function on Z such that
χ(a) = 0 if (a,N) �= 1 and that for (a,N) = 1, χ(a) induces a character on
(Z/NZ)×. The smallest natural number f |N such that there exists a Dirich-
let character χ0 modulo f such that χ0(a) = χ(a) for any a with (a,N) = 1 is
called the conductor of χ, and such a χ0 is called the primitive character associ-
ated with χ. For a Dirichlet character χ modulo N , we define a group character
of Γ(n)

0 (N) by χ(γ) = χ(det(D)) for γ = ( A
NC

B
D ), and by abuse of language, we

denote this also by χ. For any non-negative integer k, any function F of Hn, and
any g = (A

C
B
D ) ∈ GSp+(n,R), we write

(F |k[g])(Z) = J(g,Z)−kF (gZ),

where gZ = (AZ + B)(CZ + D)−1 and J(g,Z) = det(CZ + D). We denote by
Ak(Γ(n)

0 (N), χ) the vector space of Siegel modular forms of weight k of level N

with character χ, that is, holomorphic functions F of Hn such that F |k[γ] =
χ(γ)F for any γ ∈ Γ(n)

0 (N) with additional conditions of holomorphy at cusps
when n = 1. The subspace of cusp forms is denoted by Sk(Γ(n)

0 (N), χ). When the
conductor of χ is one, we sometimes write Ak(Γ(n)

0 (N)) = Ak(Γ(n)
0 (N), χ) and

Sk(Γ(n)
0 (N)) = Sk(Γ(n)

0 (N), χ).
Now we introduce Jacobi groups. For later use, we include the case when

GL2 is the semisimple part, not only SL2. For any subfield or subring K of R, we
denote by GL+

2 (K) the group of invertible elements of M2(K) with positive deter-
minants. We define the Jacobi group GJ(K) over K by GL+

2 (K) � H(K), where
H(K) is the Heisenberg group which is K2 × K as a set and the multiplication of
GJ(K) is defined as follows. For gi ∈ GL+

2 (K) (i = 1, 2) and ((λ,μ), κ) ∈ H(K),
we have

g1g2 = the usual multiplication of the matrices,(
(λ,μ), κ

)
×
(
(λ′, μ′), κ′) = (λ + λ′, μ + μ′, κ + κ′ + λμ′ − μλ′),(

(λ,μ), κ
)

× g = g ×
(
det(g)−1(λ,μ)g,det(g)−1κ

)
.

When κ = 0, we sometimes write (λ,μ) = ((λ,μ),0). We have a group isomor-
phism of GJ(K) into GSp+(2,R) given by embedding

(
g, ((λ,μ), κ)

)
to
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⎛⎜⎜⎝
a 0 b 0
0 det(g) 0 0
c 0 d 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 μ

λ 1 μ κ

0 0 1 −λ

0 0 0 1

⎞⎟⎟⎠ ∈ GSp+(2,R),

where g = (a
c

b
d ) ∈ GL+

2 (K). For any subgroup Γ of SL2(Z) with finite index, we
denote by ΓJ the subgroup of GJ(Q) defined by

ΓJ =
{(

g, ((λ,μ), κ)
)

∈ GJ(Q);g ∈ Γ, λ,μ,κ ∈ Z
}
.

In particular, we can regard Γ0(N)J as a subgroup of Γ(2)
0 (N) through the above

embedding.
For any complex number x and non-negative integer m, we write e(x) = e2πix

and em(x) = e(mx). Let f(τ, z) be a function of H1 × C. For ω ∈ H1 such that
Z = ( τ

z
z
ω ) ∈ H2 and any g̃ =

(
g, ((λ,μ), κ)

)
∈ GJ(R) with det(g) = l > 0, g̃ acts

on f(τ, z)em(ω) through the above embedding to GSp+(2,R), and moreover, we
can write (

f(τ, z)em(ω)
)

|k[g̃] = f̃(τ, z)eml(ω)

for some function f̃ of H1 × C depending on m, k, g̃, and f . If we write

f̃ = f |k,m[g̃],

for g̃ ∈ GJ(R), then this is a group action of {g̃ ∈ GJ(R); det(g) = 1} which is a
subgroup of GJ(R). More explicitly, for any g ∈ GL2(R) with det(g) = l > 0 and
((λ,μ), κ) ∈ H(R), we have

(f |k,m[g])(τ, z) = (cτ + d)−keml
(

− cz2

cτ + d

)
f
(aτ + b

cτ + d
,

lz

cτ + d

)
,(

f |m[((λ,μ), κ)]
)
(τ, z) = em(λ2τ + 2λz + λμ + κ)f(τ, z + λτ + μ).

Since the second action does not depend on k, we omit k in the suffix. If g1,
g2 ∈ GL+

2 (Q) and 0 < det(g1) = l ∈ Z, then we have

f |k,m[g1g2] = f |k,m[g1]|k,ml[g2].

Let χ be a Dirichlet character modulo N . We say that a holomorphic function
φ(τ, z) of H1 × C is a Jacobi form of weight k of index m with character χ with
respect to Γ0(N)J if it satisfies the following three conditions:

(1) f |k,m[M ] = χ(M)f for any M ∈ Γ0(N);
(2) f |m[(λ,μ)] = f for any λ, μ ∈ Z;
(3) for any M ∈ GL+

2 (Q), f |k,m[M ] has the Fourier expansion in the follow-
ing type:

f |k,m[M ] =
∑
n,r

cM (n, r)qnζr,

where q = e(τ), ζ = e(z), r ∈ Q, n ∈ Q, and cM (n, r) = 0 unless 4nm − r2 ≥ 0.
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We say that f is a Jacobi cusp form if it satisfies the condition

(4) cM (n, r) = 0 unless 4nm − r2 > 0 for any M ∈ GL+
2 (Q) in the above

condition (3).

Since GL2(Q) is a semidirect product of SL2(Z) and the group P0(Q) of
rational upper triangular matrices, and SL2(Z) normalizes the subgroup H(Z) =
{([λ,μ], κ);λ,μ,κ ∈ Z} of Γ0(N)J , we can replace condition (3) by the following
condition.

(3′) For any M ∈ SL2(Z), we have

f |k,m[M ] =
∑

n∈n−1
M Z,r∈Z

cM (n, r)qnζr

for some integer nM depending on M and cM (n, r) = 0 unless 4nm − r2 ≥ 0.

Here actually we can restrict M to representatives M of the double coset Γ0(N)\
SL2(Z)/(P0(Q) ∩ SL2(Z)), which corresponds bijectively to equivalence classes of
cusps of Γ0(N)\H1. We can change condition (4) for cusp forms in the same
way. We denote the space of Jacobi forms defined above by Jk,m(Γ0(N)J , χ) and
Jacobi cusp forms by Jcusp

k,m (Γ0(N)J , χ). When the conductor of χ is one, we write
Jk,m(Γ0(N)J ) = Jk,m(Γ0(N)J , χ), and similarly for cusp forms.

We should note that we are not defining here cusps of Jacobi groups when we
define cusp forms. Even if the level is one, there exist more than one Eisenstein
series when m is not square free as you see in [8, p. 25]. As for a more representa-
tion theoretic characterization of the cuspidality condition, see [6]. Incidentally,
we can also see that f ∈ Jk,m(Γ0(N)J , χ) is a Jacobi cusp form if and only if the
constant term of the Fourier expansion of f |k,m[M ] is zero for each M ∈ GJ(Q).
(This fact was shared with the author by S. Böcherer.)

By the way, we note that if the index is one, we have Jk,1(Γ0(N)J .χ) =
{0} unless χ(−1) = (−1)k. This is shown as follows. If φ =

∑
n,r c(n, r)qnζr ∈

Jk,1(Γ0(N), χ), then by the same proof as in [8], we can show that c(n, r) depends
only on 4n − r2, and in particular, we have c(n, −r) = c(n, r). In addition, by
the automorphy with respect to the action of (−12, (0,0)) ∈ Γ0(N)J , we have
c(n, −r) = χ(−1)(−1)kc(n, r). So c(n, r) = 0 unless χ(−1) = (−1)k (see also Sec-
tion 5 for an alternative proof).

3. Lifting map of level N

In this section, we define the Saito–Kurokawa lifting from Jk,1(Γ0(N)J , χ) to
Ak(Γ(2)

0 (N), χ). For that purpose, we first define an operator Vl,χ to change the
index of Jacobi forms. For any positive integer l and N , we put

ΔN,0(l) =
{

g =
(

a b

cN d

)
;a, b, c, d ∈ Z,det(g) = l, (a,N) = 1

}
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and

ΔN,0 =
∞⋃

l=1

ΔN,0(l).

Then ΔN,0 is a semigroup. For a Dirichlet character χ with conductor dividing
N , we can define a multiplicative function χ of ΔN,0 to C× by χ(g) = χ(a)−1 for
g = ( a

Nc
b
d ) ∈ ΔN,0.

We define an operator Vl,χ on Jk,m(Γ0(N)J , χ) by

(φ|k,mVl,χ)(τ, z)

= lk−1
∑

g∈Γ0(N)\ΔN,0(l)

χ(g)−1φ|k,m[g]

= lk−1
∑

( a
c

b
d )∈Γ0(N)\ΔN,0(l)

χ(a)(cτ + d)−kelm
(

− cz2

cτ + d

)
φ
(aτ + b

cτ + d
,

lz

cτ + d

)
.

LEMMA 3.1

If φ ∈ Jk,m(Γ0(N)J , χ), then φ|k,mVl,χ ∈ Jk,ml(Γ0(N)J , χ). If φ ∈ Jcusp
k,m (Γ0(N)J ,

χ), then φ|k,mVl,χ ∈ Jcusp
k,ml(Γ0(N)J , χ).

Proof
The first half follows from the facts that ΔN,0(l) is a left- and right-invariant
set of Γ0(N) and that χ(a1)−1 = χ(d1) = χ(γ) for any γ = (a1

c1

b1
d1

) ∈ Γ0(N). The
second assertion is obvious since if φ satisfies the condition (4) of the definition
of Jacobi cusp forms, then φ|k,m[g] also satisfies (4) for any g ∈ GL+

2 (Q). �

3.1. Cusp forms
We assume that χ(−1) = (−1)k. For any φ ∈ Jcusp

k,1 (Γ0(N)J , χ), we define a func-
tion of Z = ( τ

z
z
ω ) ∈ H2 by

(LN,χφ)(Z) =
∞∑

l=1

(φ|k,1Vl,χ)(τ, z)el(ω).

This is called the Saito–Kurokawa lifting of φ. This converges absolutely uni-
formly on {Z = X + iY ∈ H2;Y ≥ c12} for any positive constant c, where Y >

c12 means that Y − c12 is positive definite. The proof of the convergence is
sketched as follows. The Fourier coefficients of Jacobi forms of weight k have
a bound |c(n, r)| = |c(4n − r2)| ≤ C(4n − r2)k−1/2 for some positive constant C

for 4n − r2 �= 0, and hence the Fourier coefficient A(T ) of LN,χφ, which is given
explicitly below, is also bounded by a constant times some power of det(T ) or of
a diagonal component of T when det(T ) = 0. Then the convergence of the above
series is reduced to the convergence of

∑∞
n=1 nc1e−c2n for any positive constant

c1 and c2. We omit the details since this is a standard analysis.
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Now we would like to write down the Fourier expansion of LN,χφ. Since we
have

Γ0(N)\ΔN,0(l) =
{(

a b

0 d

)
;a, b, d ∈ Z, (a,N) = 1, ad = l, b = 0, . . . , d − 1

}
(see, e.g., [30]), we have

(LN,χφ)(Z) =
∞∑

l=1

∑
n,r∈Z

4nl−r2>0

lk−1
∑
ad=l

(a,N)=1

d−1∑
b=0

χ(a)d−kφ
(aτ + b

d
, az
)
el(ω).

(In the above summation, we can omit the condition (a,N) = 1 since χ(a) = 0 if
not by the definition of χ, but sometimes we write this to avoid any confusion.)
So, if we write

φ =
∑

n,r∈Z

4n−r2>0

c(n, r)qnζr,

where q = e(τ), ζ = e(z), then

LN,χφ =
∞∑

l=1

∑
n,r∈Z

4nl−r2>0

∑
a|(n,l,r)

(a,N)=1

ak−1χ(a)c
(nl

a2
,
r

a

)
qnζrel(ω).

Since we can show that c(n, r) depends only on 4n − r2 for Jacobi forms of index
one by the same proof as in [8], we may write c(n, r) = c(4n − r2). So we have

LN,χφ =
∞∑

l=1

∑
n,r∈Z

4nl−r2>0

∑
a|(n,l,r)

(a,N)=1

χ(a)ak−1c
(4nl − r2

a2

)
qnζrel(ω).

THEOREM 3.2

We assume that χ(−1) = (−1)k. Then the above map LN,χ gives an injective
linear map from Jcusp

k,1 (Γ0(N)J , χ) to Sk(Γ(2)
0 (N), χ).

To prove this theorem, we prepare two lemmas. One is on generators of Γ(2)
0 (N),

and the other is on cusps of Γ(2)
0 (N).

We put

R =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ ,

and for any g = (a
c

b
d ) ∈ SL2(R), x ∈ R, and S = tS ∈ M2(R), we put

u(x) =

⎛⎜⎜⎝
1 0 0 0
x 1 0 0
0 0 1 −x

0 0 0 1

⎞⎟⎟⎠ , ι(g) =

⎛⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞⎟⎟⎠ , u(S) =
(

12 S

0 12

)
.
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LEMMA 3.3 (AOKI AND IBUKIYAMA [3, LEMMA 6.2, P. 265])

For any natural number N , the group Γ(2)
0 (N) is generated by R, u(x), u(S),

and ι(M), where x, S, or M runs over x ∈ Z, S = tS ∈ M2(Z), or M ∈ Γ0(N),
respectively.

We define the standard maximal parabolic subgroup P1 of Sp(2,Q) corresponding
to one-dimensional cusps by

P1(Q) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

⎞⎟⎟⎠ ∈ Sp(2,Q)

⎫⎪⎪⎬⎪⎪⎭ ,

where ∗ runs over the rational numbers.

LEMMA 3.4

The representatives of the double cosets Γ(2)
0 (N)\ Sp(2,Q)/P1(Q) are chosen from

the elements in P1(Q)R, where R is defined as above.

Proof
We put P ′

1 = R−1P1(Q)R = RP1(Q)R. It is sufficient to prove that the representa-
tives of Γ(2)

0 (N)\ Sp(2,Q)/P ′
1 are taken in P1(Q), since if Sp(2,Q) =

⊔
i Γ

(2)
0 (N) ×

giP
′
1 for some gi ∈ P1(Q), then Sp(2,Q) = Sp(2,Q)R =

⊔
i Γ

(2)
0 (N)giRP1(Q) and

giR ∈ P1(Q)R. Now for g = (A
C

B
D ) ∈ Sp(2,Q), we write A = (aij), B = (bij),

C = (cij), and D = (dij) with 1 ≤ i, j ≤ 2 and try to change g in the same double
coset. First, we can assume that c11 or c21 is nonzero. Indeed if c11 = c21 = 0, then
a11 or a21 is nonzero since det(g) �= 0, so multiplying g by ( 12

N12

0
12

) ∈ Γ(2)
0 (N)

from the left, we see that c11 or c21 is nonzero. For any x, y ∈ Q, we have
U t(x, y) = t(z,0) for some U ∈ SL2(Z), and here z �= 0 if (x, y) �= (0,0). So mul-
tiplying g from the left by (

tU −1

0
0
U ) for some U ∈ SL2(Z), we can assume that

c21 = 0 and c11 �= 0. We can take V = (vij) ∈ SL2(Z) so that (c22, d22)V = (0, ∗);

so multiplying
(

1 0 0 0
0 v11 0 v12
0 0 1 0
0 v21 0 v22

)
∈ P ′

1 from the right, we also assume that c22 = 0.

Multiplying

(
1 −c−1

11 c12 0 0
0 1 0 0
0 0 1 0
0 0 c−1

11 c12 1

)
∈ P ′

1 from the right, we can make c12 = 0, so

that we now have C = ( c11
0

0
0 ) with c11 �= 0. Since C tD and tAC are symmetric,

we have d21 = a12 = 0. This means that g ∈ P1(Q). So the lemma is proved. �

Proof of Theorem 3.2
We first show that LN,χφ ∈ Ak(Γ(2)

0 (N), χ). By the Fourier expansion, LN,χφ is
invariant by translation by integers, so it is invariant by u(S) with S = tS ∈
M2(Z). Also, it is invariant by exchange of l and n, which means that it is
invariant by R. Since φ|k,1Vl,χ ∈ Jk,l(Γ0(N)J , χ) by Lemma 3.1, for γ ∈ Γ0(N)
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we have

(LN,χφ)|k[ι(γ)] =
∞∑

l=1

(
(φ|k,1Vl,χ)(τ, z)el(ω)

)
|k[ι(γ)]

=
∞∑

l=1

(
(φ|k,1Vl,χ)|k,l[γ]

)
(τ, z)el(ω)

=
∞∑

l=1

(φ|k,1Vl,χ)(τ, z)el(ω)χ(γ) = χ(γ)(LN,χφ).

Since det( 0 1
1 0 )−kχ(R) = (−1)kχ(−1) = 1, det(12)−kχ(u(S)) = 1, and χ(ι(γ)) =

χ(d) = χ(γ), we have (LN,χφ)|k[g] = χ(g)LN,χφ for all the generators g of Γ(2)
0 (N),

and hence LN,χφ ∈ Ak(Γ(2)
0 (N), χ). Now we prove that LN,χφ is a cusp form. By

Lemma 3.1, we have φ|k,1Vl,χ ∈ Jcusp
k,l (Γ0(N)J , χ). By virtue of Lemma 3.4, for any

g ∈ Sp(2,Q), we have g = γp1Rp2 for some pi ∈ P1(Q) (i = 1,2), and γ ∈ Γ(2)
0 (N).

So, any F ∈ Ak(Γ(2)
0 (N), χ) is a cusp form if and only if Φ(F |k[p1R]) = 0 where Φ

is the Siegel Φ-operator, in other words, if for the Fourier expansion F |k[p1R] =∑
n,r,m c(n, r,m)qnζrem(ω) we have c(n, r,m) = 0 unless 4nm − r2 > 0. This is

shown for LN,χφ as follows. We write

p1 =

⎛⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 x 0 0
0 0 1 0
0 0 0 x−1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 μ

λ 1 μ κ

0 0 1 −λ

0 0 0 1

⎞⎟⎟⎠
for p0 = ( a b

c d ) ∈ SL2(Q) and x ∈ Q×, λ, μ, κ ∈ Q. We put p0 = ( a b
c d ). By Lem-

ma 3.1, Vl,χφ is a Jacobi cusp form of index l and

(φ|k,1Vl,χ)(τ, z)el(ω)|kι(p0) = (φ|k,1Vl,χ|k,l[p0])(τ, z)el(ω),

so if we write

φ|k,1Vl,χ|k,l[p0] =
∑
n,r

cl,p0(n, r)qnζr,

then cl,p0(n, r) = 0 unless 4nl − r2 > 0. Then by calculating the action, we see
that

(LN,χφ)|k[p0] = xk
∞∑

l=1

∑
n,r

e(rxμ)el
(
x2(μλ + κ)

)
× cl,p0(n, r)qn+λrx+lx2λ2

ζrx+2lλx2
el(x2ω).

Since

4(n + λrx + lx2λ2)lx2 − (rx + 2lλx2)2 = (4nl − r2)x2,

this is positive if and only if 4nl − r2 > 0. Since the action of R only exchanges
τ and ω, we see that the Fourier coefficient of F |k[p1R] at a matrix T vanishes
unless T is positive definite. So LN,χφ is a cusp form. �
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3.2. Noncusp forms
Now assume that φ ∈ Jk,1(Γ0(N)J , χ) where φ is not necessarily a Jacobi cusp
form. We explain how to modify our definition of LN,χ. If we define LN,χφ as
above, then again we have (LN,χφ)|k[g] = χ(g)LN,χφ, (LN,χφ)|ku(S) = LN,χφ,
and (LN,χφ)|ku(x) = LN,χφ for g ∈ Γ0(N), S = tS ∈ M2(Z), x ∈ Z. But we can-
not say (LN,χφ)|kR = χ(R)LN,χφ in general. This is because c(0)q0ζ0el(ω) is
not zero if c(0) �= 0, but there is no c(0)qlζ0e0(ω) in the series by the pre-
vious definition. So to correct this, at least we must add to LN,χφ the term
c(0)
∑∞

n=1

∑
a|n,(a,N)=1 χ(a)ak−1qn. But to make LN,χφ invariant by ι(γ) for

γ ∈ Γ0(N), we must add a modular form in Ak(Γ0(N), χ). In fact, the series sup-
plied above becomes a modular form if we add a constant term c(0)L(1 − k,χ)/2.
This seems more or less well known, but there might not exist a good reference
for the case when χ is not necessarily primitive, so we give here some details
for the convenience of the readers. Let f be a conductor of χ, and let χ0 be the
primitive character modulo f associated with χ. For a natural number k, we put

A∗(k,χ0) =
(−2πi)kW (χ0)

fk(k − 1)!L(k,χ0)

where W (χ0) is the Gauss sum associated with χ0 and L(s,χ0) is the Dirichlet L-
function. We note that we always have L(k,χ0) �= 0 under our assumption. This is
clear by the Euler product if k > 1, and if k = 1, then by our assumption χ(−1) =
(−1)k = −1, χ0 is not the principal character and L(1, χ0) �= 0 by Dirichlet.
For any natural number M and a Dirichlet character ψ, we put σk−1,ψ(n) =∑

d|n ψ(d)dk−1 and σM
k−1,ψ(n) =

∑
d|n,(d,M)=1 ψ(d)dk−1. When we say that χ is

a Dirichlet character modulo N , we understand that χ(d) = 0 if (d,N) �= 1, so
we have σN

k−1,χ0(n) = σk−1,χ(n). Let N0 be the greatest divisor of N which is
coprime to f . We put

ck,χ(N) = A∗(k,χ0)−1
∑
t|N0

tk−1μ(t)χ0(t),

where μ is the Möbius function. By the well-known functional equation of the
Dirichlet L-function L(s,χ0), we have A∗(k,χ0) = (1/2)L(1 − k,χ0), so we have

ck,χ(N) =
1
2
L(1 − k,χ).

Here we understand that the series L(s,χ) =
∑∞

n=1 χ(n)n−s is continued analyt-
ically to the whole s-plane by the relation

L(s,χ) = L(s,χ0)
∑
t|N0

t−sμ(t)χ0(t) = L(s,χ0)
∏

p|N,p�f

(
1 − χ0(p)p−s

)
,

and we have L(1 − k,χ) = L(1 − k,χ0)
∏

p|N,p�f (1 − χ0(p)pk−1).

LEMMA 3.5

We assume that χ(−1) = (−1)k as before.
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(1) We have∑
d|(N0,n)

μ(d)χ0(d)dk−1σk−1,χ0

(n
d

)
= σk−1,χ(n) = σN

k−1,χ0(n).

(2) Unless (k, f,N) = (2,1,1), the function

fk,χ(τ) = ck,χ(N) +
∞∑

n=1

σk−1,χ(n)qn

is a modular form in Ak(Γ0(N), χ).

Proof
First we prove (1). We put

C(χ) =
∑

d|(N0,n)

μ(d)dk−1χ0(d)σk−1,χ0

(n
d

)
=
∑

d|(N0,n)

μ(d)χ0(d)dk−1
∑

a|(n/d)

ak−1χ0(a).

Since d|N0 is coprime to f , χ0(ad) = 0 if and only if χ0(a) = 0, so χ0(a) =
χ0(ad)/χ0(d). So writing l = ad, we have

C(χ) =
∑

d|(N0,n),d|l,l|n
χ0(d)μ(d)lk−1χ0(l/d)

=
∑
l|n

χ0(l)lk−1
∑

d|(l,N0,n)

μ(d) =
∑

l|n,(N0,n,l)=1

χ0(l)lk−1

=
∑

l|n,(N0,l)=1

χ0(l)lk−1.

If (l,N/N0) �= 1, then (l, f) �= 1 and χ0(l) = 0. So we have C(χ) =∑
l|n,(l,N)=1 χ0(l)lk−1 = σN

k−1,χ0(n) = σk−1,χ(n).
Next we prove (2). This seems more or less well known, but for completeness

we sketch the proof here. We put

E∗
k,f (τ, s,χ0) =

1
2

∑
c≡0 mod f

(c,d)=1

χ0(d)(cτ + d)−k |cτ + d| −2s.

If k > 0, then E∗
k,f (τ, s;χ0) is holomorphic at s = 0 as a function of s (cf. Miyake

[22, Corollary 7.2.10]). We put E∗
k,f (τ,χ0) = E∗

k,f (τ,0;χ0). It is obvious that
E∗

k,f (γτ,χ0) = χ0(d)(cτ + d)kE∗
k,f (τ,χ0) for any γ = ( a b

c d ) ∈ Γ0(f), where χ0 is
the complex conjugation. By [22, Theorems 7.1.3, 7.1.12, 7.2.13, 7.2.62], we have

E∗
k,f (τ,χ0) = 1 + D∗(k,χ0)y−1 + A∗(k,χ0)

∞∑
m=1

σk−1,χ0(m)qm,
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where

D∗(k,χ0) =

⎧⎨⎩− π
2L(k,χ0) if k = 2 and f = 1,

0 otherwise.

We put

fk,χ(τ) = A∗(k,χ0)−1
∑
t|N0

μ(t)χ0(t)tk−1E∗
k,f (tτ,χ0).

Unless (k, f) = (2,1), this is obviously holomorphic. If k = 2, f = 1, and N �= 1,
then N0 = N , χ0(t) = 1 for any t|N , and since Im(tτ) = ty and

∑
t|N
(
(tμ(t)χ0(t))/

ty
)

= y−1
∑

t|N μ(t) = 0, the term containing y−1 disappears and fk,χ(τ) is holo-
morphic also in this case. Since E∗

k,f (γτ,χ0) = (cτ + d)kχ0(d)E∗
k,f (τ) for any

γ = ( a b
c d ) ∈ Γ0(f), we have

E∗
k,f (tγτ,χ0) = (cτ + d)kχ0(d)E∗(tτ,χ0)

for any γ = ( a b
c d ) ∈ Γ0(ft) ⊂ Γ0(N) with t|N0. So we have fk,χ(τ) ∈ Ak(Γ0(N), χ).

On the other hand, if we calculate the expansion using Lemma 3.5(1), we have

fk,χ(τ) = A∗(k,χ0)−1
∑
t|N0

χ0(t)tk−1μ(t) +
∞∑

n=1

σk−1,χ(n)qn.

So if we put ck,χ(N) = L(1 − k,χ)/2, then

ck,χ(N) +
∞∑

n=1

σk−1,χ(n)qn

is a modular form in Ak(Γ0(N), χ). This proves Lemma 3.5. �

Now for any natural number k, any Dirichlet character χ modulo N with χ(−1) =
(−1)k, and any φ ∈ Jk,1(Γ0(N)J , χ) with constant term c(0), we define

LN,χφ = c(0)fk,χ(τ) +
∞∑

l=1

(φ|k,1Vl,χ)(τ, z)el(ω).

Here we note that J2,1(SL2(Z)J) = {0}, and we need not consider the case N =
f = 1 and k = 2 for our purpose. Then we have the following.

THEOREM 3.6

The mapping LN,χ gives a linear injection from Jk,1(Γ0(N)J , χ) into Ak(Γ(2)
0 (N),

χ).

The injectivity is obvious since the image LN,χφ determines all the Fourier coef-
ficients of φ. The rest has already been explained.

3.3. Comparison between different levels
Let N1 and N be natural numbers such that N1|N . For a Dirichlet character χ1

modulo N1 (not necessarily primitive), let χ be the Dirichlet character χ modulo
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N defined by χ(a) = χ1(a) if (a,N) = 1 and χ(a) = 0 if (a,N) �= 1. Then we have
Jk,1(Γ0(N1)J , χ1) ⊂ Jk,1(Γ0(N)J , χ). So for φ ∈ Jk,1(Γ0(N)J , χ1), we can define
two maps LN1,χ1φ and LN,χφ. We compare these.

PROPOSITION 3.7

We have

(LN,χφ)(Z) =
∑

d|N,(d,N1)=1

μ(d)dk−1χ1(d)(LN1,χ1φ)(dZ) (Z ∈ H2).

Proof
First we compare the positive index part of the Fourier–Jacobi expansion. The
positive index part of the right-hand side is given by∑

d|N,(d,N1)=1

μ(d)dk−1χ1(d)
∑

a|(n,l,r),(a,N1)=1

χ1(a)ak−1

× c
(
(4ln − r2)/a2

)
qdnζdredl(ω)

=
∑

d|N,(d,N1)=1

μ(d)
∑

a|(n,l,r),(a,N1)=1

χ1(ad)(ad)k−1

× c
(
(4nl − r2)/a2

)
qdnζdredl(ω)

=
∑

m|(n1,l1,r1),(m,N1)=1

χ1(m)mk−1
∑

d|N,d|m,(d,N1)=1

μ(d)c
(4n1l1 − r2

1

m2

)
× qn1ζr1el1(ω).

If d|m, then (d,N1) = 1 since (m,N1) = 1. So we have
∑

d|N,d|m,(d,N1)=1 μ(d) =∑
d|(m,N) μ(d) = 0 if (m,N) �= 1 and this sum equal to 1 if (m,N) = 1. By the

definition of χ, we have∑
m|(n1,l1,r1),(m,N)=1

χ1(m)md−1 =
∑

m|(n1,l1,r1)

χ(m)md−1.

So the right-hand side is nothing but the positive index part of LN,χφ. As for the
index-zero part, except for the constant term, the proof is essentially the same
as above. As for the constant term, we must compare ck,χ(N) and ck,χ1(N1). We
denote by χ0 the primitive character of the conductor f associated with χ. Then
this is also the primitive character associated with χ1. Since A∗(k,χ0) depends
only on k and χ0, the difference between ck,χ(N) and ck,χ1(N1) comes only from
the remaining part. If we denote by N10 the greatest divisor of N1 which is
coprime to f , we have∑

d|N,(d,N1)=1

μ(d)χ1(d)dk−1ck,χ1(N1)

= A∗(k,χ0)−1
∑

d|N,(d,N1)=1

μ(d)χ0(d)dk−1
∑
t|N10

μ(t)χ0(t)tk−1
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= A∗(k,χ0)−1
∏

p|N,p�N1

(
1 − χ0(p)pk−1

) ∏
p|N1,p�f

(
1 − χ0(p)pk−1

)
= A∗(k,χ0)−1

∏
p|N,p�f

(
1 − χ(p)pk−1

)
= ck,χ(N).

So the proposition is proved. �

REMARK

When N1 and N have the same prime divisors, Proposition 3.7 means just
LN,χφ = LN1,χ1φ ∈ Ak(Γ0(N1), χ1). Of course we still have (LN1,χ1φ)(dZ) ∈
Ak(Γ0(N), χ) for any d|(N/N1).

EXAMPLE

Assume that N = p is a prime, N1 = 1, and χ1 is the principal character χ0

modulo 1. Then for φ ∈ Jk,1(SL2(Z)J), we have

(Lp,χφ)(Z) = (L1,χ0φ)(Z) + μ(p)pk−1χ1,χ0(p)L1,χ0(pZ)

= (L1,χ0φ)(Z) − pk−1(L1,χ0φ)(pZ),

where L1,χ0φ is nothing but the usual Saito–Kurokawa lifting of level 1 in [8]. So
we can define two old forms of level p. Actually there are three old forms from
level one to p (e.g., Roberts and Schmidt [25] or my thesis [14]).

3.4. Relations between Fourier coefficients
When the level is one, the image of the Saito–Kurokawa lifting is characterized
as the space of Siegel modular forms whose Fourier coefficients satisfy certain
relations called Maass relations. The fact that the lifted forms satisfy these rela-
tions follows directly from the definition of the lifting (see [8]). The surjectivity
of the lifting to this space was proved by Andrianov [2] by using the converse
theorem. But in this paper, about this direction, we content ourselves with only
short remarks here. For any F ∈ Ak(Γ(2)

0 (N), χ), we write the Fourier expansion
of F as

F (Z) =
∑
T

A(T ;F ) exp
(
Tr(TZ)

)
,

where T runs over semipositive definite half-integral symmetric matrices. We
consider the following relations between Fourier coefficients:

(1) A

((
n l/2

l/2 m

)
, F

)
=
∑

a|(n,l,m)

(a,N)=1

χ(a)ak−1A

((
1 l/2a

l/2a mn/a2

)
, F

)
.

We denote by Mk(Γ(2)
0 (N), χ) the linear subspace of forms F ∈ Ak(Γ(2)

0 (N), χ)
such that coefficients A(T,F ) satisfy the above relations. For a Jacobi form φ =
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∑
n,r c(4n − r2)qnζr ∈ Jk,1(Γ0(N)J , χ), by definition we have

A

((
n l/2

l/2 m

)
,LN,χ(φ)

)
=
∑

a|(n,l,m)

χ(a)ak−1c
(4nm − l2

a2

)
.

In particular, if (n, l,m) = 1, then this is equal to c(4nm − l2), so we have

c
(4nm − l2

a2

)
= A

((
1 l/2a

l/2a nm/a2

)
,LN,χ(φ)

)
.

This gives the following proposition.

PROPOSITION 3.8

Elements in the image of the Saito–Kurokawa lifting satisfy the relation (1); that
is, we have

LN,χ

(
Jk,1(Γ0(N)J , χ)

)
⊂ Mk

(
Γ(2)

0 (N), χ
)
.

The relation (1) is similar to the Maass relation of the Saito–Kurokawa lift of
level 1, but there is one big difference when N > 1. When p|N , the above rela-
tion (1) does not say anything about the relation between A(pT,LN,χφ) and
A(T,LN,χφ). This relation depends on the action of the Hecke operator UJ(p) at
p|N which is defined in Section 4. This action essentially comes from the action of
a Hecke operator at the bad prime p on S2k−2(Γ0(N), χ2), and candidates of the
eigenvalues (if it is an eigenform) are fairly restricted, as we see for example in
[22, Theorem 4.6.17, p. 170], but there are several cases. Also, it is well described
only for new forms. So if we want to show any surjective of the Saito–Kurokawa
lifting to a space of Siegel modular forms characterized by a sort of Maass rela-
tion, then maybe we should describe them for each space of new forms. Also,
a generalization of the arguments in [2] using the converse theorems for general
cases would be more complicated than the level-one case. So we do not want to
go further here, and we would like to leave the characterization of the images by
relations of Fourier coefficients as an open problem.

3.5. Old forms coming from higher indices
Since Jk,m(SL2(Z)J) has a correspondence with a certain subspace of
M2k−2(Γ0(m)) (see [31]) and Jk,1(Γ0(N)J ) has a correspondence to a subspace
of M2k−2(Γ0(N)), we can expect that there is a mapping from Jk,m(SL2(Z)J) to
Jk,1(Γ0(m)J). We give a simple remark when m = p is a prime for this direction,
though we do not go further for a possible generalization.

For any function f(τ, z) on H1 × C, we define a function Rpf on H1 × C by
(Rpf)(τ, z) = f(pτ, z). If f ∈ Jk,p(SL2(Z)J ), then we have Rpf |k,1[γ] = Rpf for
any γ = ( a b

pc d ) ∈ Γ0(p), since

f
(p(aτ + b)

pcτ + d
,

z

pcτ + d

)
= f
(a(pτ) + pb

c(pτ) + d
,

z

c(pτ) + d

)
=
(
c(pτ) + d

)−k
ep
(
cz2/(c(pτ) + d)

)
f(pτ, z).
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On the other hand, as for the action of (λ,μ) ∈ Z2, we have

(Rpf)|1(λ,μ) = e(λ2τ + 2λz)f(pτ, z + λτ + μ).

This is equal to Rpf if λ ∈ pZ, but it might not be equal for the other λ ∈ Z.
So Rpf might not belong to Jk,1(Γ0(p)J ). To make this invariant also by the
Heisenberg part, we take an average. For any f on H1 × C such that f |1[(pλ,0)] =
f for any λ ∈ Z, we define

(Spf)(τ, z) =
p−1∑
λ=0

f |1[(λ,0)] =
p−1∑
λ=0

e(λ2τ + 2λz)f(τ, z + λτ).

PROPOSITION 3.9

We assume that k is even and p is an odd prime. For any f ∈ Jk,p(SL2(Z)J), we
have SpRpf ∈ Jk,1(Γ0(p)J ). Besides, this mapping SpRp is injective.

Proof
It is clear that SpRpf is invariant by Z2. We have (λ,0)γ = γ × ((λ,0)γ) for
γ = ( a b

pc d ) ∈ Γ0(p). Since (λ,0)g = (aλ, bλ) and Rpf |1(aλ, bλ) = Rp|1(aλ,0) and
aλ runs over the representatives modulo p when λ runs over the same set, we see
that SpRpf is invariant by Γ0(p). The injectivity is proved by seeing the action
on the Fourier expansion. We write

f(τ, z) =
∑
n,r

c(n, r)qnζr

as usual. Since f ∈ Jk,p(SL2(Z)J), we have c(n1, r1) = c(n2, r2) if 4n1p − r2
1 =

4n2p − r2
2 and r1 ≡ r2 mod 2p. We also have c(n, −r) = (−1)kc(n, r) = c(n, r) by

the action of −12. We have

(SpRpf)(τ, z) =
p−1∑
λ=0

c(n, r)qnp+λ2+λrζr+2λ.

Now fix n0 and r0, and find n, r, and λ with 0 ≤ λ ≤ p − 1 such that n0 =
np + λ2 + λr and r0 = r + 2λ. Since n = (n0 − λr0 + λ2)/p and r = r0 − 2λ, the
existence of the integer n is assured only when ((r2

0 − 4n0)/p) �= −1. If there is
only one such λ modulo p, then n, r are unique and the Fourier coefficient is
c(n, r). If there are λ1, λ2 which satisfy the condition, then we put ri = r0 − 2λi,
ni = (n0 − λir0 + λ2

i )/p for i = 1, 2. Since 4n1p − r2
1 = 4n2p − r2

2 = 4n0 − r2
0 , we

have r1 ≡ ±r2 mod 2p. If r1 ≡ r2 mod 2p, then we have c(n1, r1) = c(n2, r2). Even
if r1 ≡ −r2 mod p, we have c(n1, r1) = c(n2, −r2) = c(n2, r2) since we assume that
k is even. So the coefficient of qn1ζr1 is 2c(n1, r1) in this case. In any case, if
SpRpf = 0, then we have c(n, r) = 0 for all n, r, so f = 0. �

4. Hecke operators

4.1. Definitions and results
The Hecke theory of the Saito–Kurokawa lifting can be developed mostly in the
same way as in [8], but there are two differences. One is the existence of bad
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primes. In general, the local Hecke algebra with respect to Γ(n)
0 (N) at a prime

p|N is noncommutative even if n = 1 and is complicated. But here we define
Hecke operators at bad primes only to the extent that we can define a good
L-function for n = 2, and in that sense this is not so complicated. Another is the
point that, in Eichler and Zagier [8], it had been known that the space consisting
of lifted forms is invariant by Hecke operators by Andrianov [2]. We have no such
results for level N , so we must do this complicated part. This makes our proof a
little longer than the one in [8]. For completeness, we give almost all the proofs
again here.

First we define Hecke operators on φ ∈ Jk,1(Γ0(N)J , χ). For any prime p � N ,
we put

(2) φ|k,χTJ(p) = pk−4
∑
gν

∑
(λ,μ)∈(Z/pZ)2

χ(aν)φ|k,1[gν/p]|1[λ,μ],

where aν is the (1,1)-component of gν and gν runs over a complete set of repre-
sentatives of

(3) Γ0(N)\
{
g ∈ Δ0,N (p2); gcd(g) = �

}
.

Here gcd(g) means the greatest common divisor of the components of g and
� means a square integer. The only difference from the case of N = 1 is the
condition (aν ,N) = 1, and the representatives are given, for example, by

(4)
{(

1 b

0 p2

)
(b = 0, . . . , p2 − 1),

(
p b

0 p

)
(b = 1, . . . , p − 1),

(
p2 0
0 1

)}
.

For p|N , we define an operator UJ(p) by the same expression as (2), but here we
let gν run over the set of representatives of

(5) Γ0(N)\Γ0(N)
(

1 0
0 p2

)
Γ0(N) =

⋃
b mod p2

Γ0(N)
(

1 b

0 p2

)
.

Incidentally, in [8], there is a definition of Hecke operators for primes which divide
the index. These operators are more complicated than those you see there. Since
we are assuming that the index is one in our context, we do not treat them here.

The Hecke operators of Siegel modular forms are defined as usual. Assume
that, for g ∈ GSp+(2,Q) ∩ M4(Z) with gJ tg = n(g)J , the double coset has the
following coset decomposition:

T = Γ(2)
0 (N)gΓ(2)

0 (N) =
⋃
ν

Γ(2)
0 (N)

(
Aν Bν

Cν Dν

)
.

Here we may assume that each det(Aν) is coprime to N in all the cases we treat
below. Then for any F ∈ Ak(Γ(2)

0 (N), χ), we define an action of T by

F |k,χT

= n(g)2k−3
∑

ν

χ
(
det(Aν)

)
det(CνZ + Dν)−kF

(
(AνZ + Bν)(CνZ + Dν)−1

)
.
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When p � N , for any diagonal matrix diag(pa, pb, pc, pd) with a + c = b + d and
p � N , we put

TS(pa, pb, pc, pd) = Γ(2)
0 (N)

⎛⎜⎜⎝
pa 0 0 0
0 pb 0 0
0 0 pc 0
0 0 0 pd

⎞⎟⎟⎠Γ(2)
0 (N).

We put TS(p) = TS(1,1, p, p) and TS(p2) = TS(1, p, p2, p) + TS(1,1, p2, p2) +
TS(p, p, p, p). We put T ′

S(p) = TS(p)2 − TS(p2). Then we have

T ′
S(p) = pTS(1, p, p2, p) + p(1 + p + p2)TS(p, p, p, p).

Since this is simpler than TS(p2), we use this below. When p|N , we put US(p) =
Γ(2)

0 (N)diag(1,1, p, p)Γ(2)
0 (N).

THEOREM 4.1

For any φ ∈ Jk,1(Γ0(N)J , χ), if p � N , then we have

(LN,χφ)|k,χTS(p) = LN,χ

(
(φ|k,1TJ(p)) + χ(p)(pk−2 + pk−1)φ

)
,

(LN,χφ)|k,χT ′
S(p) = LN,χ

(
χ(p)(pk−2 + pk−1)(φ|k,χTJ(p))

+ χ(p)2(2p2k−3 + p2k−4)φ
)
,

and if p|N , then we have

(LN,χφ)|k,χUS(p) = LN,χ

(
φ|k,1UJ(p)

)
.

REMARK

Let F ∈ Ak(Γ(2)
0 (N), χ) be a common eigenform of all TS(p), TS(1, p, p2, p) (p � N),

and US(p) (p|N). Denote by λ(p), ω(p2), or μ(p) each eigenvalue corresponding
to each of these operators. Then the L-function of F ∈ Ak(Γ0(N), χ) including
bad primes is defined, for example, in [21] by

L(s,F ) =
∏
p|N

(
1 − μ(p)p−s

)−1∏
p�N

Qp(p−s)−1,

where

Qp(p−s) = 1 − λ(p)p−s +
(
pω(p2) + (p2 + 1)χ(p)2p2k−5

)
p−2s

− λ(p)χ(p)2p2k−3−3s + χ(p)4p4k−6−4s.

On the other hand, if we denote by λJ(p) the eigenvalues of TJ (p) or UJ(p) of a
common eigenfunction φ ∈ Jk,1(Γ0(N)J , χ), the above theorem means that

L(s,LN,χφ) = L(s − k + 1, χ)L(s − k + 2, χ)

×
∏
p|N

(
1 − λJ(p)p−s

)−1∏
p�N

(
1 − λJ(p)p−s + χ(p)2p2k−3−2s

)−1
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where L(s,χ) is the Dirichlet L-function. In particular, if φ has a nonzero constant
term, then we have

L(s,LN,χφ) = ζ(s)L(s − 2k + 3, χ2)L(s − k + 1, χ)L(s − k + 2, χ),

where ζ(s) is the Riemann zeta function.

Since we see that Jk,1(Γ0(N)J , χ) ∼= S+
k−1/2(Γ0(N), χψk) (Kohnen’s plus sub-

space, see [19] or [4]) and S+
k−1/2(Γ0(N), χ) corresponds with S2k−2(Γ0(N), χ2)

by Shimura correspondence, the part coming from φ is essentially the L-function
of modular forms of integral weight 2k − 2. We do not go in this direction here
since we restrict ourselves in this paper to correspondence between Jacobi forms
and Siegel modular forms.

4.2. Proof
We denote the Fourier coefficients of any φ ∈ Jk,1(Γ0(N)J , χ) by

φ(τ, z) =
∑

n,r,4n−r2≥0

c(n, r;φ)qnζr.

Now we fix φ and write c(4n − r2) = c(n, r;φ). We calculate the action of Hecke
operators on the Fourier coefficients of φ and LN,χφ. For an odd prime p and
any integer a, we define a Dirichlet character ψp by ψp(a) = (a/p), which is the
usual quadratic residue symbol. When p = 2, we define ψ2(a) = 1, −1, or 0 if
a ≡ 1 mod 8, 5 mod 8, or otherwise, respectively. Then the Fourier coefficient of
φ|k,χTJ(p) is given by

c
(
n, r;φ|k,χTJ (p)

)
= c
(
p2(4n − r2)

)
+ pk−2χ(p)ψp(r2 − 4n)c(4n − r2) + p2k−3χ(p)2c

(4n − r2

p2

)
where we understand that c(x) = 0 if x /∈ Z (and c(x) = 0 unless x ≡ 0 or 3 mod 4
by definition). For p|N , we have

φ|UJ(p) =
∑
n,r

c
(
p2(4n − r2)

)
qnζr.

Actually this is the same formula as that of φ|k,χTJ(p) above since we are assum-
ing that χ(p) = 0 for p|N . For each p with p � N or p|N , these formulas are easily
shown by using explicit representatives of (4) for (3), or (5), and the details of
the proof are omitted here.

Next we give the Fourier coefficients of F |k,χTS(p) and F |k,χTS(1, p, p2, p)
for F ∈ Ak(Γ0(p), χ). We write F (Z) =

∑
T A(T,F )e(Tr(TZ)) where T runs over

positive semidefinite half-integral matrices. Sometimes we write A(T ) = A(T,F )
for short. For any p, we put

R(p) =
{(

1 x

0 1

)
;x ∈ Z,0 ≤ x ≤ p − 1

}
∪
{(

0 1
−1 0

)}
.
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For T = ( n r/2
r/2 l

), we define the content of T by Cont(T ) = gcd(l, r, n), and for

U ∈ R(p), we write UT tU = ( nU rU /2
rU /2 lU

). Then it is well known that for p � N ,
the Fourier coefficient of F |k,χTS(p) at T is given by

A(pT ) + χ(p)pk−2
∑

U ∈R(p)

A

(
nU/p rU/2
rU/2 plU

)
+ χ(p)2p2k−3A(T/p),

where we understand that A(∗) = 0 if ∗ is not a half-integral matrix (see [1]).
For p|N , the Fourier coefficient of F |k,χUS(p) is given by A(pT ), and this is
the same expression as above since χ(p) = 0 for p|N . On the other hand, the
representatives of Γ(2)

0 (N)\TS(1, p, p2, p) are given by⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

p2 0 0 0
0 p 0 0
0 0 1 0
0 0 0 p

⎞⎟⎟⎠(tU −1 0
0 U

)
; U ∈ R(p)

⎫⎪⎪⎬⎪⎪⎭
∪
{(

p12 A

0 p12

)
; A = tA with rank(A mod p) = 1, A runs over rep. mod. p

}

∪

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

p 0 0 pb1

0 1 b1 b2

0 0 p 0
0 0 0 p2

⎞⎟⎟⎠(tU −1 0
0 U

)
; b1 mod p, b2 mod p2, U ∈ R(p)

⎫⎪⎪⎬⎪⎪⎭ .

If we put ζp = exp(2πi/p), then by a standard calculation of exponential sums
including p = 2, we have∑

xz=y2,

(x,y,z)∈F3
p − {(0,0,0)}

ζxn+yr+zl
p =

{
p2 − 1 if p|(l, r, n),

pψp(r2 − 4nl) − 1 otherwise.

Using this formula, the Fourier coefficient at T of F |k,χTS(1, p, p2, p) is calculated
and given by the sum of the following (6)–(8):∑

U ∈R(p)

p3k−6χ(p)3A
(

nU/p2 rU/2p

rU/2p lU

)
,(6)

p2k−6χ(p2)A(T ) ×
{

pψp(r2 − 4nl) − 1 if p � Cont(T ),

p2 − 1 if p | Cont(T ),
(7)

pk−3χ(p)
∑

U ∈R(p)

A

(
nU rUp/2

rUp/2 lUp2

)
,(8)

where Cont(T ) = gcd(n, r, l). If F = LN,χφ for φ ∈ Jk,1(Γ0(N)J , χ), then we have

A(T ) =
∑

a| Cont(T )

χ(a)ak−1c
(
det(2T )/a2

)
,
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which depends only on det(2T ) and Cont(T ) = gcd(l, n, r). So it is important to
obtain the contents of the matrices which appear in the action. We denote by
t the greatest integer such that pt| Cont(T ). We write T0 = p−tT = ( n0 r0/2

r0/2 l0
).

If we write Cont(T ) = ptC0, then C0 is coprime to p and Cont(T0) = C0. For
simplicity, for any T = ( n r/2

r/2 l
), we put

Rp(T ) =
{(

nU prU/2
prU/2 p2lU

)
;U ∈ R(p)

}
.

For odd p, we put Z(p) = Z, and for p = 2, we define Z(2) by the set of integers
x such that x ≡ 0 or 3 mod 4.

PROPOSITION 4.2

For any prime p, the content of any matrix in the set Rp(T ) is either ptC0,
pt+1C0, or pt+2C0. The number of matrices in Rp(T ) with each content is given by⎧⎪⎪⎨⎪⎪⎩

ptC0, p − ψp(− det(2T0)),

pt+1C0, 1 + ψp(− det(2T0)) if det(2T0)/p2 �∈ Z(p), and 0 otherwise,

pt+2C0, 1 + ψp(− det(2T0))(= 1) if det(2T0)/p2 ∈ Z(p), and 0 otherwise.

Proof
It is enough to prove this for T0 and t = 0. For the sake of simplicity, we denote
each element of Rp(T0) by

T0(x) =
(

l0x
2 + r0x + n0 p(2l0x + r0)/2

(2l0x + r0)/2 p2l0

)
(0 ≤ x ≤ p − 1),

T ′
0 =
(

l0 −pr0/2
−pr0/2 p2n0.

)
.

First we prove the case p = 2. We assume that r0 is odd. Then 2l0x + r0 is odd
and ord2(Cont(T0(x))) ≤ 1. It is 2C0 for x such that l0x

2 + r0x + n0 ≡ 0 mod 2,
and C0 otherwise. For x = 0, it is n0. For x = 1, it is l0 + r0 + n0. On the other
hand, Cont(T ′

0) = 2C0 if l0 is even and C0 if l0 is odd. So if both l0 and n0

are even, then the number of matrices in Rp(T0) with a given content is 2 for
2C0 and 1 for C0. If one of l0 and n0 is odd and one is even, then again it
is 2 for 2C0 and 1 for C0. In all these cases, we have r2

0 − 4l0n0 ≡ 1 mod 8,
so ψ(r2

0 − 4n0l0) = 1. If both l0 and n0 are odd, then we have 3 for C0 and
ψ(r2

0 − 4l0n0) = −1 since r2
0 − 4l0n0 ≡ 1 − 4 ≡ 5 mod 8. So 2 − ψ(r2

0 − 4l0n0) for
C0 and 1 + ψ(r2

0 − 4l0n0) for 2C0. So the case when r0 is odd is as the claim.
If r0 is even, we always have ψ(r2

0 − 4l0n0) = 0. Then Cont(T0(x)) = C0, 2C0, or
4C0 according to whether l0x2 + r0x + n0 is odd, ≡ 2 mod 4, or 0 mod 4. When
x = 0, this amounts to saying that n0 is odd, ≡ 2 mod 4, or that n0 ≡ 0 mod 4.
When x = 1, this amounts to saying that l0 + n0 is odd, l0 + r0 + n0 ≡ 2 mod 4,
or l0 + r0 + n0 ≡ 0 mod 4. As for T ′

0, the content is C0, 2C0, or 4C0 according
to whether l0 is odd, l0 ≡ 2 mod 4, or l0 ≡ 0 mod 4. (The fact that the content
is not divisible by 8 is proved by the assumption that gcd(l0, n0, r0) is odd.) So
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the content is 2C0 if n0 ≡ 2 mod 4 or l0 + r0 + n0 ≡ 2 mod 4 or l0 ≡ 2 mod 4. By
the assumption that gcd(n0, l0, r0) is odd, only one of these can occur. Besides,
we have

4l0n0 − r2
0

4
= l0n0 −

(r0

2

)2
.

In each case above, we see that l0n0 ≡ 2 mod 4, so l0n0 − (r0/2)2 ≡ 2 or 1 mod 4,
and this does not belong to Z(2). The content is 4C0 if l0 ≡ 0 mod 4, n0 ≡
0 mod 4, or l0 + r0 + n0 ≡ 0 mod 4. Again by the assumption that gcd(l0, n0, r0)
is odd, only one of these can occur. In the first two cases, we have

4l0n0 − r2
0

4
= l0n0 −

(r0

2

)
≡ −(r0/2)2 ≡ 0 or 3 mod 4.

If l0 +r0 +n0 ≡ 0 mod 4, then of course l0 +n0 is even, and besides, if r0/2 is odd,
then (l0 +n0)/2 is odd, so l0 = 2l1, n0 = 2n1 with l1 +n1 odd, or l0 = 4l1 +1, n0 =
4n1+1, or l0 = 4n1+3, n0 = 4n1+3. In the latter case l0n0 ≡ 1 mod 4. So anyway,
we have l0n0 − (r0/2)2 ≡ 0 or 3 mod 4. If r0/2 is even, then (l0 +n0)/2 is even, So
l0 ≡ −n0 mod 4 and l0n0 ≡ −l20 mod 4, so l0n0 − (r0/2)2 ≡ −l20 ≡ 0 or −1 mod 4,
so this is in Z(2). So there is one 4C0 or 2C0 according to (4n0l0 − r2

0)/4 ∈ Z(2)
or not. The other two have content C0. So we prove the case p = 2.

Next we consider the case when p is odd. First we assume that p � l0. Then
Cont(T ′

0) = C0 and Cont(T0(x)) = C0 for p − (1 + ψ(r2
0 − 4l0n0)) numbers of x.

So the number of matrices whose content is C0 is p − ψ(− det(2T0)). We have
l0x

2 + r0x + n0 ≡ 0 mod p2 if and only if 4l0(l0x2 + r0x + n0) = (2l0x + r0)2 +
4l0n0 − r2

0 ≡ 0 mod p2. So Cont(T (x)) = p2C0 if and only if 2l0x + r0 ≡ 0 mod p

and 4l0n0 − r2
0 ≡ 0 mod p2. So if 4l0n0 − r2

0 ≡ 0 mod p2, then there is exactly
one matrix whose content is p2C0. Now assume that 4l0n0 − r2

0 �≡ 0 mod p2. If
r2
0 − 4l0n0 �≡ 0 mod p and l0x

2 +r0x+n0 ≡ 0 mod p, then 2l0x+r0 �≡ 0 mod p and
the content is pC0. If r2

0 − 4n0l0 ≡ 0 mod p and �≡ 0 mod p2, and in addition l0x
2+

r0x + n0 ≡ 0 mod p, then 2l0x + r0 ≡ 0 mod p and l0x2 + r0x + n0 �≡ 0 mod p2.
So there exist 1 + ψ(r2

0 − 4l0n0) matrices whose content is pC0. So we prove the
claim. Now assume that p|l0. If in addition p|r0, then p � n0 since gcd(l0, n0, r0)
is coprime to p, so the content of T0(x) is C0 for any x. There are p = p −
ψ(r2

0 − 4n0l0) such x. If the content of T0(x) is divisible by pC0, then p � r0. This
means that 2l0x + r0 �≡ 0 mod p, so the content is exactly pC0. Also, we have
ψ(r2

0 − 4l0n0) = 1 and l0x
2 + r0x + n0 ≡ r0x + n0 ≡ 0 mod p only for one x. For

the rest of x, the content is C0 and the number is p − 1 = p − ψ(r2
0 − 4l0n0).

The content of T ′
0 is p2C0 if p2|l0 and p|r0. If p � r0 or p|l0, then the content

is pC0. These are distinguished by det(2T0) as follows. If p2|l0 and r0|p, then
det(2T0) ≡ 0 mod p2. If r0 is odd, then of course r2

0 − 4l0n0 �≡ 0 mod p2, and the
content is pC0. The number of such matrices is, together with T0(x), given by
2 = 1+ψ(r2

0 − 4l0n0). If p|r0 and p|l0, then r2
0 − 4l0n0 ≡ 0 mod p but �≡ 0 mod p2,

and the content is pC0. The number of such matrices is in this case given by
1 = 1 + ψ(r2

0 − 4n0l0). Hence we prove Proposition 4.2 in all the cases. �
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Now we can use this proposition to compare the action of the Hecke operators
at T , since the complicated terms in the Hecke operators in question can be
calculated by the contents of the matrices in Rp(p−1T ), Rp(T ) or Rp(pT ). Nota-
tion being as above, we write M = det(2T ) and M0 = det(2T0) for the sake of
simplicity.

Proof of Theorem 4.1
We compare the Fourier coefficients. First we consider TS(p). It is easy to see
from the definitions that the Fourier coefficient of LN,χ

(
φ|k,χTJ (p)

)
at T is given

by ∑
a| Cont(T )

χ(a)ak−1c
(p2M

a2

)
(9)

+ χ(p)pk−2
∑

a| Cont(T )

χ(a)ak−1ψ
(

− M

a2

)
c
(M

a2

)
(10)

+ χ(p)2p2k−3
∑

a| Cont(T )

χ(a)ak−1c
( M

a2p2

)
.(11)

Since ψ(M/a2) = 0 if M/a2 is divisible by p, the term (10) is rewritten as

χ(p)pk−2
∑

a0|C0

χ(a0)ak−1
0 ψ
(−M0

a2
0

)
c
(M0

a2
0

)
.

Now we compare this with the coefficients of (LN,χ(φ))|k,χTS(p). We write
Cont(T ) = ptC0 with p � C0 and T0 = p−tT as above. In the second term con-
taining U ∈ R(p) in the formula of the Fourier coefficient of F |k,χTS(p), by
Proposition 4.2, the number of matrices UT tU with a given content is p −
ψ(− det(2T0)) for Cont(UT tU) = pt−1C0 (or zero if t = 0), or 1 + ψ(− det(2T0))
for Cont(UT tU) = ptC0 or pt+1C0, respectively, in the case det(2T0)/p2 /∈
Z(p) or ∈ Z(p). In particular if C(UT tU) = pt+1C0, then we may assume that
ψ(− det(2T0)) = 0. Now adding the terms containing ψ(− det(2T0)) coming from
this part of the coefficients, we have

ψ
(

− det(2T0)
)(

−
∑

a|pt−1C0

χ(a)ak−1c
(M

a2

)
+
∑

a|ptC0

χ(a)ak−1c
(M

a2

))

= ψ
(

− det(2T0)
) ∑

a=pta0,a0|C0

χ(a)ak−1c(M/a2)

=
∑

a|ptC0

χ(a)ak−1ψ(−M/a2)c(M/a2),

since if a = pua0 with a0|C0 and u < t, then ψ(−M/a2) = 0. This coincides with
(10). Next, we have

A(pT ) =
∑

a|ptC0

χ(a)ak−1c
(p2M

a2

)
+

∑
a=pt+1a0,a0|C0

χ(a)ak−1c
(p2M

a2

)
.
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Here the first term is equal to (9). As for the second term, we take the sum
with the second term considered above, that is, the term containing p in p −
ψ(− det(2T0)) for Cont(UT tU) = pt−1C0, and we have

χ(p)pk−1
∑

a1=pta0,a0|C0

χ(a1)ak−1
1 c
(M

a2
1

)
+ pχ(p)pk−2

∑
a|pt−1C0

χ(a)ak−1c(M/a2)

= χ(p)pk−1
∑

a|ptC0

χ(a)ak−1c(M/a2) = A(T,F |k,χF ).

We still have terms coming from the second term of A(T,F |k,χ) which does
not contain ψ in the case Cont(UT tU) = ptC0 or pt+1C0. If M0/p2 ∈ Z(p),
then this term is written as χ(p)pk−2

∑
a|pt+1C0

χ(a)ak−1c(M/a2), and even if
M0/p2 /∈ Z(p) and Cont(UT tU) = ptC0, this term is written uniformly in the
same way as above since c(M/p2t+2a2

0) = 0 if M0/p2 /∈ Z(p). This term is neatly
summed up with the term coming from A(T/p). Indeed, the sum of the above
and χ(p)2p2k−3A(T/p) is given by

χ(p)2p2k−3
∑

a|pt−1C0

χ(a)ak−1c(M/a2p2) + χ(p)pk−2
∑

a|pt+1C0

χ(a)ak−1c
(M

a2

)
= χ(p)2p2k−3

∑
a|pt−1C0

χ(a)ak−1c(M/p2a2) + χ(p)pk−2

×
∑

a|ptC0

χ(a)ak−1c(M/a2)

+ χ(p)pk−2
∑

a=pt+1a0,a0|C0

χ(a)ak−1c
(
M/p2(pta0)2

)
= χ(p)2p2k−3

∑
a|ptC0

χ(a)ak−1c(M/p2a2) + χ(p)pk−2
∑

a|ptC0

χ(a)ak−1c(M/a2).

The first term of this is (11), and the second term is χ(p)pk−2A(T,F |k,χTS(p)).
Hence, as a whole, the coefficients of (LN,χφ)|k,χTS(p) at T are equal to those
of LN,χ(φ|k,χTJ (p) + χ(p)(pk−2 + pk−1)φ). The comparison between US(p) and
UJ(p) for p|N is similarly proved, noting that χ(a) = 0 for a with p|a. We omit
the details.

Next we compare T ′
S(p) with TJ (p) for p � N . We calculate the coefficient of

(LN,χφ)|k,χT ′
S(p). In the formula of the coefficients of F |k,χTS(1, p, p2, p), Rp(T )

and Rp(p−2T ) appear, and the contents are ptC0, pt+1C0, pt+2C0, or pt−2C0,
pt−1C0, ptC0. Of course the term for p−1C0 or p−2C0 is regarded as zero. Calcu-
lating in each case when M0/p2 ∈ Z(p) or not, we can show that the contribution
for (6) of the formula of TS(1, p, p2, p) is given by

p2k−5χ(p)2
∑

a|ptC0

χ(a)ak−1ψ(−M/a2)c(M/a2)

+ χ(p)3p3k−6
(
p
∑

a|pt−2C0

χ(a)ak−1c(M/p2a2) +
∑

a|ptC0

χ(a)ak−1c(M/p2a2)
)
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if t > 0 and by

χ(p)3p3k−6
∑
a|C0

χ(a)ak−1c(M/p2a2)

if t = 0. (Note that the contribution for t = 0 is not regarded as a special case of
the expression for t > 0.) The contribution of (7) is given by

p2k−6χ(p)2
∑

a|ptC0

χ(a)ak−1c(M/a2) ×
{

p2 − 1 if t ≥ 1,

pψ(−M) − 1 if t = 0.

If a|C0, then we have ψ(−M) = ψ(−M/a2). So in each case when t = 0 or t > 0,
the terms in (6) and (7) containing ψ(−M/a2) are given by the same expression

p2k−5χ(p)2
∑

a|ptC0

χ(a)ak−1ψ(−M/a2)c(M/a2).

Next we consider (8). Here the determinant of the matrices is p2M , and the
contribution is given by

p2k−4χ(p)2
∑

a|ptC0

ψ(M/a2)χ(a)ak−1c(M/a2)

+ pk−3(p + 1)χ(p)
∑

a|ptC0

χ(a)ak−1c(p2M/a2)

+ χ(p)3p3k−5
∑

a=pt−1a1,a1|pC0

χ(a)ak−1c(M/p2a2)

for t > 0, and for t = 0 the last term in the above should be replaced by

χ(p)2p2k−4
∑

a2|pC0

χ(a)ak−1c(M/a2) = χ(p)2p2k−4
∑
a|C0

χ(a)ak−1c(M/a2)

+ χ(p)3p3k−5
∑
a|C0

χ(a)ak−1c(M/p2a2).

Since we have

{a ∈ Z>0;a|pt−2C0} ∪ {a ∈ Z>0;a = pt−1a1, a1|pC0} = {a ∈ Z>0;a|ptC0},

taking the sum of the corresponding terms in (6) and (8), we have

χ(p)3p3k−5
( ∑

a|pt−2C0

χ(a)ak−1c(M/p2a2) +
∑

a=pt−1a1,a1|pC0

χ(a)ak−1c(M/p2a2)
)

= χ(p)3p3k−5
∑

a|ptC0

χ(a)ak−1c(M/p2a2)

for t > 0. So together with the last term of (6), we have

χ(p)3(p3k−5 + p3k−6)
∑

a|ptC0

χ(a)ak−1c(M/p2a2).

Comparing all these with the coefficients of LN,χ(φ|k,χTJ (p)), we obtain the
equality between the image of LN,χ(φ) by the action of pTS(1, p, p2, p) + (p +
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p2 + p3)χ(p)2p2k−6 and the image of (pk−1 + pk−2)χ(p)(φ|k,χTJ (p)) + (2p2k−3 +
p2k−4)χ(p)2φ by the mapping LN,χ.

In the above calculation, we actually tacitly assume that T �= 0 since
Cont(0) = ∞. But for the case T = 0 (which does not vanish only in the case
when c(0) �= 0), the action of TS(p) or TS(1, p, p2, p) is given by(

1 + χ(p)pk−2(1 + p) + χ(p)2p2k−3
)
A(0)

or (
p3k−6χ(p)3(p + 1) + p2k−4χ(p)2 + pk−3χ(p)

)
A(0).

On the other hand, the constant term of φ|k,1UJ(p) is given by(
1 + p2k−3χ(p)2

)
c(0).

The constant term of LN,χ(φ|k,1UJ(p)) is given by the multiple of this by the
constant depending on k, N , and χ. So by comparing these, we have the equality
of the action also in this case. �

5. Structures of Jacobi forms of small levels

To obtain Siegel modular forms by Saito–Kurokawa lifting, we need explicit
Jacobi forms of index one. When N = 1, the structure of such forms is known
in [8]. We give the same sort of results when 2 ≤ N ≤ 5. Kramer [18] gave a
formula for dimJk,1(Γ0(p)J ) and characterized Jk,m(Γ0(N)J ) in general by some
data of modular forms of one variable. His method there is very useful also for
practical construction of Jacobi forms if we combine this with the Atkin–Lehner
involution. So in the first subsection we explain a general method based on his
result and give explicit results in later sections.

5.1. Taylor expansion and theta expansion
Most of the results in this section are a review of [8] and [19], but we insert this
for the reader’s convenience. It is classically well known that any holomorphic
function φ(τ, z) of H1 × C which satisfies

(12) φ(τ, z + λτ + μ) = em(−λ2τ − 2λz)φ(τ, z)

for any λ, μ ∈ Z is a linear combination of some standard theta functions as a
function of z. Combining this with the Taylor expansion along z = 0, we can get
a general way to construct Jacobi forms. For the sake of simplicity, we explain
here the case m = 1, though the other cases are treated similarly (see [19]). For
ν = 0 or 1, we put

ϑν(τ, z) =
∑
n∈Z

q(n+ν/2)2ζ2n+ν .

Then when φ(τ, z) satisfies the above condition (12) for m = 1, we have

φ(τ, z) = c0(τ)ϑ0(τ, z) + c1(τ)ϑ1(τ, z)
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for some holomorphic functions c0(τ) and c1(τ) of H1. We call this for short a
theta expansion of φ. By the definition of ϑν , this is an even function with respect
to z. Now assume that φ(τ, z) ∈ Jk,1(Γ0(N)J , χ). By considering the action of
−12, we have

φ(τ, −z) = χ(−1)(−1)kφ(τ, z),

and since this should be an even function with respect to z, we have χ(−1) =
(−1)k unless φ = 0. So we assume χ(−1) = (−1)k from now on. We consider the
Taylor expansion of φ(τ, z) along z = 0. Then we have

φ(τ, z) = χ0(τ) + z2χ1(τ) + O(z4).

It is known by [8] that φ is determined only by χ0 and χ1 since φ has at most
two zeros in the fundamental parallelotope of z (for a direct proof, see below).
By invariance of φ with respect to Γ0(N), we see that

χ0(τ) = f0(τ),

χ1(τ) = − π2

k
f1(τ) +

2πi

k
f ′
0(τ)

for some holomorphic functions f0(τ), f1(τ) on H1 (and the derivative f ′
0 of

f0 with respect to τ ) which satisfy fν(γτ) = χ(γ)(cNτ + d)k+2νfν(τ) for any
γ = ( a b

cN d ) ∈ Γ0(N) for each ν = 0 or 1. In order to show that these are modular
forms, we must show that they are holomorphic also at cusps. To show this, we
consider the action of M ∈ SL2(Z). We have

φ|k,1[M ] = (χ0|k[M ])(τ) + z2
(

−2πic(cτ + d)−1χ0|k[M ] + χ1|k+2[M ]
)
+ O(z4)

= f0|k[M ] + z2
(

− π2

k
f1|k+2[M ] +

2πi

k
(f0|k[M ])′

)
+ O(z4).

Since the Fourier expansion of φ|k,1[M ] has no negative power of q by the def-
inition of Jacobi forms, we see that each fν |k+2ν [M ] for ν = 0 or 1 is holo-
morphic at i∞. Hence fν ∈ Ak+2ν(Γ0(N), χ). Now our problem is to construct
Jacobi forms from f0 and f1. The mapping σ from φ ∈ Jk,1(Γ0(N)J , χ) to σ(φ) =
(f0, f1) ∈ Ak(Γ0(N), χ) × Ak+2(Γ0(N), χ) is injective but not surjective in gen-
eral. To determine genuine Jacobi forms starting from (f0, f1), we now investi-
gate conditions when the pair (f0, f1) is contained in the image of σ. We put
ϑν(τ) = ϑν(τ,0) and ϑ′

ν(τ) = d
dτ ϑν(τ). If cν(τ) (ν = 0, 1) are coefficients of a

theta expansion of Jacobi forms whose image by σ is (f0, f1), then we have

c0(τ)ϑ0(τ) + c1(τ)ϑ1(τ) = f0(τ),

c0(τ)ϑ′
0(τ) + c1(τ)ϑ′

1(τ) =
1
2k

f ′
0(τ) +

πi

4k
f1(τ),

since ϑ′
ν(τ) =

(
1/(4(2πi))

)
d2

dz2 ϑν(τ, z)
∣∣
z=0

. Now instead of assuming that cν(τ)
are coefficients of a Jacobi form, we assume that fν ∈ Ak+2ν(Γ0(N), χ) are given
for ν = 0 and 1 and regard the above relation as a simultaneous equation for
unknown functions cν(τ). Since we have ϑ0(τ)ϑ′

1(τ) − ϑ1(τ)ϑ′
0(τ) = (πi)η(τ)6
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where η(τ) = q1/24
∏∞

n=1(1 − qn) is the Dedekind eta function which does not van-
ish anywhere on H1, we always have a solution (c0(τ), c1(τ)) holomorphic on H1.
Now we put f(τ, z) = c0(τ)ϑ0(τ, z)+ c1(τ)ϑ1(τ, z) and ask if f ∈ Jk,1(Γ0(N)J , χ).
It is clear that this satisfies (12), and so it is invariant by the Heisenberg part Z2.
In GJ(R), we have M · (λ,μ) = ((λ,μ)M) · M , and if M ∈ SL2(Z), then Z2M = Z2,
so the function φ|k,1[M ] also satisfies the relation (12) for m = 1. So we have

f |k,1[M ] = cM
0 (τ)ϑ0(τ, z) + cM

1 (τ)ϑ1(τ, z)

for some holomorphic function cM
0 (τ) and cM

1 (τ) on H1 and we get a similar
simultaneous equation for cM

ν (τ) given by

(13)

⎧⎪⎪⎨⎪⎪⎩
cM
0 (τ)ϑ0(τ) + cM

1 (τ)ϑ1(τ) = (f0|k[M ])(τ),

cM
0 (τ)ϑ′

0(τ) + cM
1 (τ)ϑ′

1(τ)

= (1/2k)(f0|k[M ])′(τ) + ((πi)/(4k))(f1|k+2[M ])(τ).

The functions cM
ν (τ) are uniquely determined by this equation. If M ∈

Γ0(N), then by our assumption we have fν |k+2ν [M ] = χ(M)fν for M ∈ Γ0(N),
so we have χ(M)cν(τ) = cM

ν (τ) for ν = 0, 1 for any M ∈ Γ0(N). This means that
φ|k,1[M ] = χ(M)φ. So the automorphy with respect to Γ0(N) is always satisfied.
So the only remaining condition to assure that f is a genuine Jacobi form is the
condition on the Fourier expansion at cusps. This is equivalent to saying that
cM
ν (τ) is holomorphic at i∞ for any M ∈ SL2(Z); that is, the Fourier expan-

sion of cM
ν (τ) has no negative power of q. For each M ∈ SL2(Z), there exists

the smallest natural number nM such that M( 1 nM
0 1 )M −1 ∈ Γ0(N), and we have

(fν |k+2ν [M ])(τ +nM ) = (fν |k+2ν [M ])(τ). Since ϑν(τ +1, z) = e(ν2/4)ϑν(τ, z) and
cM
ν (τ) are uniquely determined by fν |k+νM , we have cM

ν (τ + nM ) = e(−ν2nM/

4)cM
ν (τ). So we may write

cM
ν (τ) =

∑
n∈Z

cM
ν (n)qn/nM −ν2/4.

Since there is no negative power of q on the right-hand side of the simultaneous
equation (13), by comparing the q-expansions carefully, we see that cM

ν (n) = 0 if
n < 0. But the condition of the Fourier expansion of Jacobi forms is

cM
ν (n) = 0 unless

n

nM
− ν2

4
≥ 0.

We would like to describe this condition as a condition on f0 and f1. For ν = 0
or 1, we write

fν |k+2ν [M ] =
∞∑

n=0

bM
ν (n)qn/nM .

By comparing the Fourier coefficients at qn/nM for n/nM < 1/4 of both sides of
the above simultaneous equation, we have

cM
0 (n) + 2cM

1 (n) = bM
0 (n), cM

1 (n) =
n

knM
bM
0 (n) +

1
4k

bM
1 (n),
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by using the expansion

ϑ0(τ) = 1 + 2(q + q4 + · · · ),

ϑ1(τ) = 2q1/4(1 + q2 + · · · ),

ϑ′
0(τ) = (4πi)(q + 4q4 + · · · ),

ϑ′
1(τ) = (πi)q1/4(1 + 9q2 + · · · ).

The condition for cM
0 (n) is that this should vanish for n < 0 and this does not

give conditions on fi. The condition for cM
1 (n) is that this should vanish for

0 ≤ n < nM/4. The equivalent condition for this is

n

nM
bM
0 (n) +

1
4
bM
1 (n) = 0

for 0 ≤ n < nM/4 (cf. [19, Bemerkung 4.2, p. 294]). In particular, bM
1 (0) = 0

for any M ∈ SL2(Z), so f1 should be a cusp form. Moreover, if nM ≤ 4, then
there is no other condition. So if nM ≤ 4 for any M , then the image is exactly
Ak(Γ0(N), χ) × Sk+2(Γ0(N), χ). When N = p is a prime, then the representa-
tive of a cusp is given by i∞ or zero and corresponds with 12 or J1 = ( 0 −1

1 0 ).
We have n12 = 1 and nJ = p, and the conditions are f0 ∈ Ak(Γ0(N), χ), f1 ∈
Sk+2(Γ0(N), χ), and

bJ
2 (n) = − 4n

p
bJ
0 (n)

for any n < p/4.
Now we add something that is not written in [19]. We take three weak Jacobi

forms φ−2,1, φ0,1, φ−1.2 with respect to SL2(Z) of weight k of index m with
(k,m) = (−2,1), (0,1), or (−1,2) as in [8]. Then as shown in [3, Proposition 6.1],
the ring of weak Jacobi forms with respect to a subgroup Γ of SL2(Z) of finite
index is generated by these three over A(Γ) =

⊕
k Ak(Γ). In particular, we have

Jk,1

(
Γ0(N)J , χ

)
⊂ Ak

(
Γ0(N), χ

)
φ−2,1 ⊕ Ak

(
Γ0(N), χ

)
φ0,1.

So we would like to write down Jacobi forms of index one corresponding to (f0, f2)
with fν ∈ Ak+ν(Γ0(N), χ) (ν = 0, 2) by linear combinations of the right-hand side
above. We put

P = 1 − 24
∞∑

n=1

σ1(n) = 1 − 24(q + 3q2 + 4q3 + · · · ),

E4 = 1 + 240
∞∑

n=1

σ3(n)qn,

E6 = 1 − 504
∞∑

n=1

σ5(n)qn.

Here Ek is the Eisenstein series of weight k with respect to SL2(Z). The function
P is the one defined in [27], and this is not a modular form but a holomorphic
part of a real analytic modular form of weight 2 which is nearly holomorphic in
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the sense of Shimura. This is sometimes called a quasi-modular form. Then we
have

φ−2,1(τ, z) = (2πi)2z2 + O(z4),

φ0,1(τ, z) = 12 + (2πi)2Pz2 + O(z4).

If we write a Jacobi form f as f(τ, z) = g0(τ)φ0,1(τ, z) + g1(τ)φ−2,1(τ, z), then
the Taylor coefficients of f are given by

χ0(τ) = 12g0(τ),

χ1(τ) = (2πi)2
(
P (τ)g0(τ) + g1(τ)

)
,

so we have

g0(τ) =
1
12

f0(τ),

g1(τ) =
1
4k

f1(τ) +
1

2πik
f ′
0(τ) − 1

12
P (τ)f0(τ).

As in Zagier [34], we have P = (3E′
4/(2πi)+E6)/E4 = (2E′

6/(2πi)+E2
4)/E6. For

f ∈ Ak(SL2(Z)) and g ∈ Al(Γ0(N), χ), we write {f, g}1 = (kfg′ − lgf ′)/(2πi).
Then this belongs to Ak+l+2(Γ0(N), χ). We have

g1(τ) =
f1(τ)
4k

+
1

4kE4
{E4, f0}1 − E6f0(τ)

12E4

=
f1(τ)
4k

+
1

6kE6
{E6, f0}1 − E2

4f0(τ)
12E6

.

Since E4 and E6 have no common zero, this is always holomorphic for any f0

and f1 (even at cusps), and we have g1 ∈ Ak+2(Γ0(N), χ). Of course f(τ, z) is a
Jacobi form only for (f0, f1) satisfying the conditions we describe above.

5.2. Examples for N ≤ 5
We write A(N) =

⊕∞
k=0 Ak(Γ0(N)) and denote by S(N) the ideal of cusp forms

in A(N). We also write J(N,χ) =
⊕∞

k=0 Jk,1(Γ0(N)J , χ) where χ is a Dirichlet
character modulo N . When the conductor of χ is 1, we write J(N) = J(N,χ).
Since J(N,χ) is an A(N)-module, we are interested in the structure of J(N,χ)
as an A(N)-module. Note that Jk,1(Γ0(N)J , χ) = 0 unless χ(−1) = (−1)k as we
explain above. We also have J0,1(Γ0(N), χ) = 0. To check the conditions at cusps
of Jacobi forms, we need the Fourier expansions of fν |k+ν [M ] for the representa-
tives M of cusps of Γ0(N). When N = p is a prime, if we put ηp = ( 0 −1/

√
p√

p 0 ) =

J1(
√

p 0

0 1/
√

p ), then ηp normalizes Γ0(N) and the element ηp gives the Atkin–

Lehner involution. Since we have (fν |k+2ν [ηp])(τ) = pk/2+ν(fν |k+2ν [J1])(pτ) ∈
Ak+2ν(Γ0(N), χ), it is not so difficult to write down the Fourier expansion of
(f |k[J1])(τ) for concrete examples. If N = 4, there are three cusps, but these
are represented by 12, ( 0 −1/2

2 0
), and ( 1 0

2 1 ), and these normalize Γ0(4) too. So
also in this case, f |k[M ] is easily obtained for each cusp. By using these, we
can determine Jk,1(Γ0(N)J , χ). But actually, when N ≤ 4, we always have nM ≤
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4 for any M ∈ SL2(Z), so the mapping σ : Jk,1(Γ0(N)J , χ) → Ak(Γ0(N), χ) ×
Sk+2(Γ0(N), χ) is a bijection by the reason we explain in Section 5.1, so the
description of Jacobi forms is much easier. Here we explain the case N = 5 for
trivial character in detail. As for N ≤ 4, we give only the results and omit the
proofs.

5.2.1. Level 5
First we give A(5) explicitly. By the well-known dimension formula (see, e.g.,
[30]), we have

∞∑
k=0

dimAk

(
Γ0(5)
)
tk =

1 + t4

(1 − t2)(1 − t4)
.

We put

E2(τ) = 1 + 6
∞∑

n=1

σ5
1(n)qn,

where σ5
1(n) =

∑
d|n,5�d d. Then this is the Eisenstein series in A2(Γ0(5)), and this

is also the theta function
∑

x∈Z4 e(txSxτ/2) associated with the even symmetric
matrix

S =

⎛⎜⎜⎝
2 1 0 0
1 2 0 1
0 0 10 5
0 1 5 4

⎞⎟⎟⎠
of level 5 and discriminant 52. We have E2|2[η5] = −E2 since dimA2(Γ0(5)) = 1
and dimA2(Γ∗

0(5)) = 0 by the well-known formula, where Γ∗
0(5) is the normalizer

of Γ0(5) generated by Γ0(5) and η5. We put

χ4(τ) =
(
26E2

2(τ) − (E4(τ) + 25E4(5τ))
)
/72

= q − 4q2 + 2q3 + 8q4 − 5q5 + · · · ,

where E4 is the Eisenstein series of weight 4 of SL2(Z) as before. Since E4|4[η5] =
5−2τ −4E4(−1/5τ) = 52E4(5τ) and (E4(5τ))|4[η5] = 5−2E4(τ), we have χ4|4[η5] =
χ4, so this is a cusp form and this spans the one-dimensional space S4(Γ0(5)).
We see that two forms E2(τ) and χ4 are algebraically independent since E2 does
not vanish at q = 0 while χ4 does. We put f4(τ) = E4(τ) − 25E4(5τ). Then we
have f4|4[η5] = −f4. We show that

A
(
Γ0(5)
)

= C[E2, χ4] ⊕ f4C[E2, χ4],

S
(
Γ0(5)
)

= χ4A
(
Γ0(5)
)
,

where ⊕ means a direct sum as a module. Indeed, we obviously have C[E2, χ4] =
C[E2

2 , χ4] ⊕E2C[E2
2 , χ4]. If P1+E2P2+f4P3+E2f4P4 = 0 for some Pi ∈ C[E2

2 , χ4],
then by applying η5, we see that P1 − E2P2 − f4P3 + E2f4P4 = 0, and so P1 +
E2f4P4 = E2P2 + f4P3 = 0. This means that Pi = 0 for all i since the weights of
Pi are multiples of 4. Hence the assertion is proved. By the way, comparing the
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Fourier coefficients, we can see that

E4 = 13E2
2 − 36χ4 + f4/2,

E6 = −62E3
2 + 864E2χ4 − 63E2f4/24,

f2
4 = 576(E4

2 − 44E2
2χ4 − 16χ2

4).

Next we study J(5). By [19], we have
∞∑

k=0

dimJk,1

(
Γ0(5)J

)
tk =

∞∑
k=2

A2k−2

(
Γ0(5)
)
tk =

t2(1 + t2)
(1 − t2)2

.

We take f0 ∈ Ak(Γ0(5)) and f1 ∈ Ak+2(Γ0(5)) and assume that σ(φ) = (f0, f1) for
φ ∈ Jk,1(Γ0(5)J). As we explain in the last subsection, the condition that (f0, f1)
is in the image of σ is described by the conditions on the Fourier expansion
at each cusp. In this case, the condition at the cusp i∞ is that f1 vanishes at
i∞. We see the condition at the cusp 0. We write 5k/2+ν(fν |k+2ν [J1])(5τ) =
fν |k+2ν [η5] =

∑∞
n=0 bν(n)qn. Then the condition at the cusp 0 is given by the

conditions b1(l)+4lb0(l) = 0 for 0 ≤ l < 5/4, that is, b1(0) = 0 and b1(1)+4b0(1) =
0. So f1 should be a cusp form. Now we see the case k = 2. Then f1 = cχ4 for
some constant c. If f0 = 0, then b0(1) = 0 and c = 0, so f1 = 0, and φ = 0 in this
case since σ is injective. So we assume that f0 = E2. Since E2|2[η5] = −E2, we
have b0(1) = −6, so b1(1) = 24. Since χ4|4[η5] = χ4, this means that c = 24. We
denote by f2,1 the element of J2,1(Γ0(5)J ) such that σ(f2,1) = (E2,24χ4). Then
we have

f2,1(τ, z) =
1
12

E2(τ)φ0,1(τ, z) +
(
3χ4(τ) +

1
6
E2(τ)2 +

1
96

f4

)
φ−2,1(τ, z).

Next we construct Jacobi forms of weight 4. If we put (f0, f1) = (χ4,4E2χ4), then
since χ4|4[η5] = χ4 and E2χ4|4[η5] = −E2χ4, we have b0(1) = 1 and b1(1) = −4,
and this pair satisfies the condition. We denote by χ4,1 the corresponding Jacobi
form. Then this is given by

χ4,1 =
1
12

(χ4φ0,1 + 5E2χ4φ−2,1).

This is a Jacobi cusp form. If we put (f0, f1) = (E4,0), then since E4|4[η5] =
25E4(5τ), we have b0(1) = 0, so this pair also satisfies the condition. The corre-
sponding Jacobi form is obviously a Jacobi form belonging to J4,1(SL2(Z)J) and
given by (E4φ0,1 − E6φ−2,1)/12. This is nothing but the Jacobi–Eisenstein series
E4,1 of weight 4 with respect to SL2(Z)J given in [8]. So we have three forms
f2,1, χ4,1, E4,1. Now we put B = C[E2, χ4], and we show the following.

THEOREM 5.1

We have

(14) J(5) = A(5)f2,1 ⊕ Bχ4,1 ⊕ BE4,1,

where ⊕ means a direct sum as modules.
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Proof
First we show that this is a direct sum. Assume that

(h1 + f4h2)(96f2,1) + h3(12χ4,1) + h4(24E4,1) = 0

for some hi ∈ B with 1 ≤ i ≤ 4. Since φ0,1 and φ−2,1 are linearly independent as
a function of z, we compare the coefficients of φ0,1 and φ−2,1. Then we have

8E2(h1 + f4h2) + χ4h3 + (312E2
2 − 864χ4 + 12f4)h4 = 0,

(288χ4 + 16E2
2 + f4)(h1 + f4h2) +

5E2χ4h3 + (1488E3
2 − 20736E2χ4 + 63E2f4)h4 = 0.

We have f2
4 ∈ B as explained above. Since 1 and f4 are linearly independent over

B, we obtain four equations from the above equations which are given by Ah = 0
where h = t(h1, h2, h3, h4) and

A =

⎛⎜⎜⎝
8E2 0 χ4 312E2

2 − 864χ4

0 8E2 0 12
288χ4 + 16E2

2 f2
4 5E2χ4 1488E3

2 − 20738E2χ4

1 288χ4 + 16E2
2 0 63E2

⎞⎟⎟⎠ .

We have det(A) = 16χ2
4(−E2

2 + 69120χ4), which is not identically zero. So we
have hi = 0 for all i. Since

∑∞
k=0 dim

(
B ∩ Ak(Γ0(5))

)
tk = 1/(1 − t2)(1 − t4), the

generating function of the dimensions of the right-hand side of (14) is

t2(1 + t4)
(1 − t2)(1 − t4)

+
2t4

(1 − t2)(1 − t4)
=

t2(1 + t2)
(1 − t2)2

,

which is equal to the generating function of dimJk,1(Γ0(5)J). So we prove The-
orem 5.1. �

5.2.2. Level 4
We can proceed almost in the same way as in the level 5 case. For any (not neces-
sarily primitive) Dirichlet character χ modulo 4, the mapping σ : Jk,1(Γ0(4)J , χ) →
Ak(Γ0(4)) ⊕ Sk+2(Γ0(4), χ) is bijective as we saw above. It is well known (and easy
to see) that A(4) = C[ϑ4

0, ϑ
4
1] where ϑν = ϑν(τ) = ϑν(τ,0). We denote by ψ4 the

primitive Dirichlet character modulo 4 given by ψ4(a) = (−4/a) = (−1)(a−1)/2

for any odd a. We put

f1,1(τ, z) = ϑ0(τ)ϑ0(τ, z),

f2,1(τ, z) = ϑ0(τ)3ϑ0(τ, z) + ϑ1(τ)3ϑ1(τ, z),

f3,1(τ, z) = ϑ0(τ)2f2,1(τ, z).

Then by the usual theta transformation formula (see, e.g., [15] or [8]), we can show
that f1,1 ∈ J1,1(Γ0(4)J , ψ4), f3,1 ∈ J3,1(Γ0(4)J , ψ4), f2,1 ∈ J2,1(Γ0(2)J ). Here we
have another expression of f2,1. Denote by O the maximal order of the defi-
nite quaternion algebra B over Q with discriminant 2∞; then we can see that
f2,1(τ, z) =

∑
x∈O qn(x)ζtr(x) where n(x) or tr(x) is the reduced norm or trace,

respectively.
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THEOREM 5.2

We have

J(4) = A
(
Γ0(4)
)
ϑ2

0(τ)f1,1(τ, z) ⊕ A
(
Γ0(4)
)
f2,1(τ, z),

J(4, ψ4) = A
(
Γ0(4)
)
f1,1(τ, z) ⊕ A

(
Γ0(4)
)
f3,1,

where ⊕ means the direct sum as modules.

The proof is omitted here. By the way, for degree two, the graded ring⊕∞
k=0

(
Ak(Γ(2)

0 (4)) ⊕ Ak(Γ(2)
0 (4), ψ4)

)
of Siegel modular forms is generated by

5 modular forms of weight 1, 2, 2, 3, and 11 (see [3]). Here the form of weight 1
or 3 is with character ψ4, and each form of weight 2 or 11 is without character.
By the parity condition on character, we cannot get the form of weight 11 by
our Saito–Kurokawa lifting. The other four forms are obtained by (L4,ψ4f1,1)(Z),
(L4,χ0f2,1)(Z), (L4,χ0f2,1)(2Z), L4,ψ4

(
(ϑ0(τ)4 − ϑ1(τ)4)f1,1

)
where χ0 is the

Dirichlet character modulo 4 with conductor 1.

5.2.3. Levels 2 and 3
The content of this section was partly given in [16]. In each case when N = 2 or 3,
the mapping σ : Jk,1(Γ0(N)J , χ) → Ak(Γ0(N), χ) × Sk+2(Γ0(N), χ) is bijective.

First we study the level 2 case. We put α(τ) = ϑ4
0(τ) + ϑ4

1(τ) and β(τ) =
ϑ4

0(τ)ϑ4
1(τ)/16. Then α ∈ A2(Γ0(2)), β ∈ A4(Γ0(2)), and we have C[α(τ), β(τ)].

We put

f2,1(τ, z) =
1
12

α(τ)φ0,1(τ, z) +
(

− α(τ)2

12
+ 16β(τ)

)
φ−2,1(τ, z).

This is the same f2,1 defined for level 4. Then we have the following.

THEOREM 5.3

We have

J(2) = A(2)f2,1 ⊕ A(2)E4,1,

where f2,1 is as above and E4,1 is the Jacobi–Eisenstein series of SL2(Z)J of
weight 4.

The proof is omitted here. Next we study the level 3 case with trivial character.
We put g2 = 1 + 12

∑∞
n=1 σ3

1(n)qn. This is the Eisenstein series of weight two in
A2(Γ0(3)). We denote by χ6 = q − 6q2 + 9q3 + 4q4 + 6q5 + · · · the unique nor-
malized cusp form in A6(Γ0(3)). Then g2 and χ6 are algebraically independent,
and we have A(3) = B(3) ⊕ E4B(3) where we put B(3) = C[g2, χ6]. By the way,
we have E2

4 = −9g4
2 + 10g2

2E4 − 1728g2χ6 (cf. [12, p. 24]; there 1729 is a typo
for 1728). We consider the Jacobi form of weight 2, 4, 4, 6 whose image of σ is
(24g2,0), (24E4,0), (0,16χ6), or (12χ6,0). These are given by

g2,1 = 2g2φ0,1 − (3g2
2 − E4)φ−2,1,

g4,1 = 2E4φ0,1 − 2E6φ−2,1 = 24E4,1,
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c4,1 = χ6φ−2,1,

c6,1 = χ6φ0,1 + g2χ6φ−2,1.

Then we have g2,1 ∈ J2,1(Γ0(3)J), c4,1, g4,1 ∈ J4,1(Γ0(3)J ), and c6,1 ∈ J6,1(Γ0(3)J ).

THEOREM 5.4

We have

J(3) = B(3)g2,1 ⊕ C[χ6]c6,1 ⊕ B(3)E4,1 ⊕ A(3)c4,1,

where ⊕ means a direct sum as modules.

The proof is omitted here. Now we treat the case when N = 3 with character
ψ3(a) = (−3/a). We put A = ( 1 1/2

1/2 1
) and

θA(τ) =
∑

x,y∈Z

qx2+xy+y2
, g3(τ) =

η(3τ)9

η(τ)3
.

Then we have θA(τ) ∈ A1(Γ0(3), ψ3), g3 ∈ A3(Γ0(3), ψ3), and
∞⊕

k=0

Ak

(
Γ0(3), ψ3

)
= C[g2, χ6]θA ⊕ C[g2, χ6]g3.

By the way, we have

χ6 =
1

216
(g2E4 − g3

2) − 27g2
3 .

We also have
∞∑

k=0

dimAk

(
Γ0(3), ψ3

)
tk =

t + t3

(1 − t2)(1 − t6)
,

∞∑
k=0

dimSk

(
Γ0(3), ψ3

)
tk =

t7 + t9

(1 − t2)(1 − t6)
.

There exists a Jacobi form whose image by σ is (12θA,0) or (12g3,0). Each is
given by

g1,1 = θAφ0,1 + (−g2θA + 108g3)φ−2,1,

g3,1 = g3φ0,1 + 3g2g3φ−2,1,

where g2 ∈ A2(Γ0(3)) is defined as above.

THEOREM 5.5

We have

J(3, ψ3) = A(3)g1,1 ⊕ A(3)g3,1.

The proof is omitted here.
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Also in the case of levels 2 and 3, we can construct generators of the graded
ring of Siegel modular forms of degree two given in [3] essentially by Saito–
Kurokawa liftings except for weight 19 of level 2 and weight 14 of level 3, which
have bad parity conditions. We omit the details.
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