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Abstract In this paper, we describe the graded canonical module of a Noetherian mul-
tisection ring of a normal projective variety. In particular, in the case of the Cox ring, we
prove that the graded canonicalmodule is a graded freemodule of rank onewith the shift
of degree KX . We give two kinds of proofs. The first one utilizes the equivariant twisted
inverse functor developed by the first author. The second proof is down-to-earth, which
avoids the twisted inverse functor, but some additional assumptions are required in this
proof.

1. Introduction

Cox [1] studied the total coordinate ring (Cox ring) of toric varieties. Cox rings of
normal projective varieties have become such important and interesting objects
that many mathematicians try to prove (in)finite generation or to study their
ring-theoretic properties (generators, relations, syzygies, homological properties,
etc.).

In this paper, we describe the graded canonical module of a Noetherian
multisection ring of a normal projective variety in Theorem 1.2. Using this result,
we give a necessary and sufficient condition for the canonical module to be a free
module (see Corollary 1.3). Since the Cox ring is a unique factorization domain
as in [2], its graded canonical module is a free module. We prove that the graded
canonical module of the Cox ring of a normal projective variety X is a graded
free module of rank one with the shift of degree KX (see Corollary 1.5). Many
mathematicians study syzygies of the Cox ring. One of the purposes of our study
is to contribute to their study.

We give two kinds of proofs for Theorem 1.2 in this paper. In Section 3, we
prove Theorem 1.2 by using the equivariant twisted inverse functor developed in
[6]. The second proof is given in Section 4. The second proof is down-to-earth,
which avoids the twisted inverse functor, but some additional assumptions are
required in this proof.

From now on, we give precise definitions, and state our main theorem and
corollaries.
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DEFINITION 1.1

Let X be a d-dimensional normal projective variety over a field k. Let D1, . . . ,Ds

be Weil divisors on X . We define a ring R(X;D1, . . . ,Ds) to be⊕
(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi

))
tn1
1 · · · tns

s ⊂ k(X)[t±1
1 , . . . , t±1

s ].

For a Weil divisor F on X , we set

MF =
⊕

(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi + F
))

tn1
1 · · · tns

s ⊂ k(X)[t±1
1 , . . . , t±1

s ];

that is, MF is a Zs-graded R(X;D1, . . . ,Ds)-module such that

[MF ](n1,...,ns) = H0

(
X, OX

(∑
i

niDi + F
))

tn1
1 · · · tns

s .

In this paper, for a normal variety X we denote by Cl(X) the class group of X ,
and for a Weil divisor F on X , we denote by F the class of F in Cl(X).

In the case where Cl(X) is freely generated by D1, . . . ,Ds, the ring R(X;D1,

. . . ,Ds) is called the Cox ring of X , and it is denoted by Cox(X). Recall that
Cox(X) is uniquely determined by X up to isomorphisms, that is, independent
of the choice of D1, . . . ,Ds.

THEOREM 1.2

Let X be a normal projective variety over a field k such that H0(X, OX) = k.
Assume that D1, . . . ,Ds are Weil divisors on X which satisfy the following three
conditions.

(1) D1, . . . ,Ds are linearly independent over Z in the divisor class group
Cl(X).

(2) The lattice ZD1 + · · · + ZDs contains an ample Cartier divisor.
(3) The ring R(X;D1, . . . ,Ds) is Noetherian.
Then, R(X;D1, . . . ,Ds) is a local Zs-graded k-domain (see Definition 2.1),

and we have an isomorphism

ωR(X;D1,...,Ds) � MKX

of Zs-graded R(X;D1, . . . ,Ds)-modules.

Let X be a normal projective variety, and let D1, . . . ,Ds be Weil divisors on X .
Then, R(X;D1, . . . ,Ds) is a Krull domain as in [2]. (In particular, if R(X;D1, . . . ,

Ds) is Noetherian, then it is a Noetherian integrally closed domain.) Therefore,
the divisor class group of R(X;D1, . . . ,Ds) can be defined. If Theorem 1.2(2) is
satisfied, then we have an exact sequence

(1.1) 0 −→ ZD1 + · · · + ZDs −→ Cl(X)
p−→ Cl

(
R(X;D1, . . . ,Ds)

)
−→ 0

defined by p(F ) = MF for each Weil divisor F , where MF stands for the isomor-
phism class containing MF . We construct this map p explicitly in Remark 4.4.
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Theorem 1.2 says that

p(KX) = ωR(X;D1,...,Ds)

if (1), (2), and (3) in Theorem 1.2 are satisfied. In particular, we have the following
corollary.

COROLLARY 1.3

Suppose that the assumptions in Theorem 1.2 are satisfied.
Then, ωR(X;D1,...,Ds) is a free R(X;D1, . . . ,Ds)-module if and only if

KX ∈ ZD1 + · · · + ZDs

in Cl(X).

We give some examples (Example 5.1, Example 5.2) in Section 5.

REMARK 1.4

Suppose that the assumptions in Theorem 1.2 are satisfied. Put d = dimX . Let
F1, . . . , Fr be linearly independent elements in ZD1 + · · · + ZDs. Put

L1 = ZD1 + · · · + ZDs ⊃ L2 = ZF1 + · · · + ZFr.

We think that R(X;D1, . . . ,Ds) is graded by L1. We have

R(X;F1, . . . , Fr) = R(X;D1, . . . ,Ds)|L2 .

By Theorem 1.2,

(1.2) ωR(X;F1,...,Fr) = ωR(X;D1,...,Ds)|L2

if the lattice L2 contains an ample Cartier divisor.
If we take the graded dual on both sides of (1.2), we know that

(1.3) Hd+r
m2

(
R(X;F1, . . . , Fr)

)
= Hd+s

m1

(
R(X;D1, . . . ,Ds)

)
|L2 ,

where m1 (resp., m2) is the unique maximal homogeneous ideal of R(X;D1, . . . ,

Ds) (resp., R(X;F1, . . . , Fr)). Here note that the dimension of R(X;D1, . . . ,Ds)
(resp., R(X;F1, . . . , Fr)) is equal to d + s (resp., d + r). We obtain the equalities

Hd+s
m1

(
R(X;D1, . . . ,Ds)

)
= Hd+1

S+

(
R(X;D1, . . . ,Ds)

)
,

Hd+r
m2

(
R(X;F1, . . . , Fr)

)
= Hd+1

S+

(
R(X;F1, . . . , Fr)

)
in Remark 4.5. The equality (1.3) also follows from the above equalities.

In Example 5.3, we give an example where the equality (1.2) is not satisfied
if we remove the assumption that L2 contains an ample Cartier divisor.

Suppose that X is a normal projective variety with a finitely generated free
divisor class group. We may think that the Cox ring is graded by Cl(X). By
the exact sequence (1.1), Cox(X) is a unique factorization domain as in [2].
Therefore, the canonical module ωCox(X) is a Cl(X)-graded free Cox(X)-module
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of rank one if Cox(X) is a Noetherian ring. By Theorem 1.2, we can determine
the degree of the homogeneous generator of ωCox(X) as follows.

COROLLARY 1.5

Let X be a normal projective variety over a field. Assume that Cl(X) is a finitely
generated free abelian group and the Cox ring of X is Noetherian.

Then, the canonical module of the Cox ring is a rank one free Cl(X)-graded
module whose generator is of degree −KX ∈ Cl(X).

Suppose that D1, . . . , Ds are Q-divisors. Assume (1), (2), and (3) in Theorem 1.2.
Let H1 be the set of all the closed subvarieties of X of codimension one. Set

Di =
∑

V ∈H1

pi,V

qi,V
V,

where the pi,V ’s and qi,V ’s are integers such that (pi,V , qi,V ) = 1 and qi,V > 0 for
each V . (If pi,V = 0, then qi,V = 1.) Then, as in [11, Theorem 2.8], we obtain the
following corollary.

COROLLARY 1.6

With the notation as above,

ωR(X;D1,...,Ds) �
⊕

(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi + KX +
∑

V ∈H1

qV − 1
qV

V
))

,

where qV is the least common multiple of q1,V , . . . , qs,V for each V ∈ H1.

2. The canonical module of a local Zs-graded k-domain

DEFINITION 2.1

Let k be a field. R is called a local Zs-graded k-domain if the following conditions
are satisfied:

• R =
⊕

a∈Z
Ra is a Noetherian Zs-graded domain;

• R0 = k;
• suppose that m is the ideal of R generated by all the homogeneous elements

of R of degree different from 0; then m �= R.

Assume that R is a local Zs-graded k-domain. We remark that the ideal m as
above is the unique maximal homogeneous ideal of R. Further, R is of finite type
over k. Therefore, the height of m coincides with the dimension of R.

For a Zs-graded module M over a local Zs-graded k-domain R, ∗Homk(M,k)
denotes the graded dual of M ; that is, ∗Homk(M,k) is a Zs-graded R-module
such that ∗Homk(M,k)a = Homk(M−a, k).

DEFINITION 2.2

Let R be a local Zs-graded k-domain with the maximal homogeneous ideal m.
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Then,
∗Homk

(
HdimR

m (R), k
)

is called the canonical module of R and denoted by ωR. Here HdimR
m (R) is the

(dimR)th local cohomology group, and it has a natural structure of a Zs-graded
R-module.

We emphasize that ωR has a structure of a Zs-graded R-module. We refer the
reader to [5] and [9] for the general theory of Zs-graded rings.

LEMMA 2.3

Let X be a normal projective variety over a field k such that H0(X, OX) = k.
Assume that D1, . . . ,Ds are Weil divisors on X which satisfy assumptions (1)
and (3) in Theorem 1.2.

Then, R(X;D1, . . . ,Ds) is a local Zs-graded k-domain.

Proof
We denote the ring R(X;D1, . . . ,Ds) simply by R.

To prove that R is a local Zs-graded k-domain, we need to show that the ideal
m is not equal to R, where m is the ideal of R generated by all the homogeneous
elements of R of degree different from 0. Assume the contrary. Then, there exists
(n1, . . . , ns) �= (0, . . . ,0) such that

H0

(
X, OX

(∑
i

niDi

))
�= 0 and H0

(
X, OX

(
−

∑
i

niDi

))
�= 0.

Then, there exists an effective Weil divisor F1 that is linearly equivalent to∑
i niDi. Since D1, . . . ,Ds are linearly independent over Z in the divisor class

group Cl(X) by our assumption, F1 �= 0. In the same way, there exists a nonzero
effective Weil divisor F2 that is linearly equivalent to −

∑
i niDi. Then, the

nonzero effective Weil divisor F1 + F2 is linearly equivalent to 0. This is a con-
tradiction. �

REMARK 2.4

Suppose that assumptions (2) and (3) in Theorem 1.2 are satisfied. Set R =
R(X;D1, . . . ,Ds).

Suppose that D = a1D1 + · · · + asDs is an ample Cartier divisor, where
a1, . . . , as ∈ Z. Set

S =
⊕
n≥0

H0
(
X, OX(nD)

)
tn ⊂ k(X)[t].

We have a ring homomorphism S → R defined by ftn �→ f(ta1
1 · · · tas

s )n for f ∈
H0(X, OX(nD)). We think of S as a subring of R by this ring homomorphism.
Here X = Proj(S). Set X ′ = X \ Sing(X), and set D′

i = Di|X′ for i = 1, . . . , s.
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Replacing D by nD for a sufficiently large n (if necessary), we may assume
that there exist f1, . . . , f� ∈ H0(X, OX(D)) which satisfy the following two con-
ditions:

(1) X ′ =
⋃�

j=1 D+(fjt);
(2) D′

i is a principal divisor on D+(fjt) for any i and j.
Let (fjt

a1
1 · · · tas

s | j)R be the ideal of R generated by {fjt
a1
1 · · · tas

s | j =
1, . . . , �}. Then, we can show that

(2.1) the height of the ideal (fjt
a1
1 · · · tas

s | j)R is bigger than or equal to 2

as follows. Let H1 be the set of closed subvarieties of X of codimension one. For
V ∈ H1, we set

(2.2) PV =
⊕

(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi − V
))

tn1
1 · · · tns

s ⊂ R,

that is, PV = M−V . Then, as in [2, p. 632],

{PV | V ∈ H1}

coincides with the set of all the height one homogeneous prime ideals of R.
Here recall that PV ∩ S is equal to the defining ideal of V in the ring S. Since
V+((fjt | j)S) coincides with Sing(X), the ideal (fjt

a1
1 · · · tas

s | j)R is not contained
in any height one homogeneous prime ideal of R. Recall here that Sing(X) is a
closed subset of X of codimension bigger than or equal to 2.

Thus, we know that the height of the ideal (fjt
a1
1 · · · tas

s | j)R is bigger than
or equal to two.

3. A proof of the main theorem using the twisted inverse functor

We prove Theorem 1.2 in this section using the twisted inverse functor. We prove

ωR(X;D1,...,Ds) � MKX

without assuming Theorem 1.2(1). If we remove assumption (1) in Theorem 1.2,
the ring R(X;D1, . . . ,Ds) may not be a local Zs-graded k-domain. In this case, we
cannot define ωR(X;D1,...,Ds) by using local cohomologies as in Definition 2.2. In
this section, we give an alternative definition of ωR(X;D1,...,Ds) using the twisted
inverse functor as in Definition 3.1. Of course, both definitions coincide in the
case where R(X;D1, . . . ,Ds) is a local Zs-graded k-domain as in Remark 3.4.

DEFINITION 3.1

Let k be a field, let G be a finite-type group scheme over k, and let f : X → Speck

be a G-scheme which is separated of finite type. Then the dualizing complex IX

of X is defined to be f !OSpeck, where f ! denotes the (equivariant) twisted inverse
functor f ! : DLqc(G,Speck) → DLqc(G,X) (see [6, (20.5), Chapter 29]). Assume
that X is nonempty and connected. Then we define s := inf{i | Hi(IX) �= 0}
and ωX := Hs(IX). We call ωX the (G-equivariant) canonical sheaf of X . If,
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moreover, X = SpecA is affine, then Γ(X,ωX) is denoted by ωA and is called the
(G-equivariant) canonical module of A.

REMARK 3.2

Note that IX ∈ Db
Coh(G,X) and ωX ∈ Coh(G,X). Note also that if we forget the

G-action, then IX as an object of Db(X) is the dualizing complex of X and ωX

is the canonical sheaf of X in the usual sense. If X is Cohen-Macaulay, then
ωX [−s] ∼= IX in D(G,X), where s = inf{i | Hi(IX) �= 0}. (We use this fact freely
later for nonsingular varieties.) If X is equidimensional and U is a G-stable open
subset, then ωX |U ∼= ωU . In general, for a quasi-compact separated G-morphism
g : U → X , the canonical map u : ωX → g∗g∗ωX is (G, OX)-linear. If X is normal,
g is the inclusion from a G-stable open subset U , and the codimension of X \ U

in X is at least 2, then u is an isomorphism of coherent (G, OX)-modules. So we
have ωX

∼= g∗ωU this case.

REMARK 3.3

Let k be a field, let H be a finite-type k-group scheme, and let G := Gm × H .
A G-algebra R is nothing but a Z-graded k-algebra R =

⊕
i∈Z

Ri, which is also
an H-algebra such that each Ri is an H-submodule of R, where the Z-grading
is given by the Gm-action. Let R be a positively graded G-algebra. That is,
R =

⊕
i∈Z

Ri is a G-algebra such that Ri = 0 for i < 0 and R0 = k. Assume that
R is a finitely generated domain.

Let d = dimR, and let Θ = SpecR. Let θ be the unique G-stable closed point
of Θ corresponding to the unique graded maximal ideal m of R. Then ωΘ =
H−d(IΘ). By the equivariant local duality [8, (4.18)], for any F ∈ DCoh(G,Θ),

Hi
θ(F) ∼= HomOΘ

(
Ext−i

OΘ
(F, IΘ), E

)
,

where HomOΘ
denotes the sheaf-Hom in the category of (G, OΘ)-modules (see

[6, (2.24), Chapter 29]) and Ext−i
OΘ

its right-derived functor. Hi
θ denotes the

equivariant local cohomology (see [7, (7.7)]), and E = H0
θ(IΘ) is the G-sheaf of

Matlis of the G-local G-scheme (Θ, θ) (see [8]). Letting F = OΘ and i = d,

Hd
θ(OΘ) ∼= HomOΘ

(ωΘ, E ).

In other words,

Hd
m(R) ∼= HomR(ωR,E),

where E = H0(Θ, E ). By [8, Lemma 5.4, Remark 5.6], it is easy to see that (?)∨ =
HomR(?,E) is equivalent to ∗ Homk(?, k) as a functor from the full subcategory of
the category of (G,R)-modules consisting of modules whose degree i component
is a finite-dimensional k-vector space for each i ∈ Z (the Z-grading is given by
the Gm-action) to itself, and (?)∨(?)∨ is equivalent to the identity functor. Thus,
(Hd

m(R))∨ ∼= ωR.

Let H = Gs
m. Let ϕ : X → Y be an affine H-morphism between H-schemes.

Assume that the action of H on Y is trivial. Then ϕ∗ OX is a quasi-coherent
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(H, OY )-algebra in the sense that ϕ∗ OX is both a quasi-coherent (H, OY )-module
and an OY -algebra, and the unit map OY → ϕ∗ OX and the product ϕ∗ OX ⊗OY

ϕ∗ OX → ϕ∗ OX are (H, OY )-linear. This is equivalent to saying that ϕ∗ OX is a
Zs-graded OY -algebra. Conversely, for a given trivial H-scheme Y and a quasi-
coherent (H, OY )-algebra (i.e., a Zs-graded OY -algebra) A, letting X := SpecY A
and letting ϕ : X → Y be the canonical map, ϕ : X → Y is an affine H-morphism
such that ϕ∗ OX

∼= A. In this case, a quasi-coherent (H, OX)-module M yields
a graded A-module ϕ∗ M, and conversely, a graded A-module N determines a
quasi-coherent (H, OX)-module M such that ϕ∗ M ∼= N uniquely, up to isomor-
phisms.

REMARK 3.4

Let H = Gs
m, and let G = Gm × H = Gs+1

m .
Let R be a Zs-graded k-algebra. Then R is an H-algebra. Assume, moreover,

that R is a local Zs-graded k-domain (see Definition 2.1).
Then the convex polyhedral cone in Rs generated by {a ∈ Zs | Ra �= 0} does

not contain a line. So there is a linear function ϕ : Zs → Z such that R =
⊕

i∈Z
Ri

is a positively graded G-algebra; that is, R0 = k and Ri = 0 for i < 0, and each
Ri is an H-submodule of R, where Ri =

⊕
ϕ(a)=i Ra. Note that R is assumed to

be a finitely generated domain.
As in Remark 3.3, (Hd

m(R))∨ ∼= ωR as (G,R)-modules. In particular, they
are isomorphic as (H,R)-modules or Zs-graded R-modules.

This shows that our new definition of ωR as a graded R-module is consistent
with Definition 2.2.

We assume (2) and (3) in Theorem 1.2. Set R = R(X;D1, . . . ,Ds). Take an ample
Cartier divisor D, a subring S, and f1, . . . , f� ∈ H0(X, OX(D)) as in Remark 2.4.

We set

Y = SpecX′

( ⊕
(n1,...,ns)∈N0

s

OX′

(∑
i

niD
′
i

)
tn1
1 · · · tns

s

)
,

where N0 denotes the set of all nonnegative integers. Let π : Y → X ′ be the
structure morphism. Consider the open subscheme

(3.1) Z = SpecX′

( ⊕
(n1,...,ns)∈Zs

OX′

(∑
i

niD
′
i

)
tn1
1 · · · tns

s

)

of Y . Let i : Z → Y be the open immersion.
For each affine open subset U of X ′, we have a ring homomorphism

R −→
⊕

(n1,...,ns)∈Zs

H0

(
U, OX′

(∑
i

niD
′
i

))
tn1
1 · · · tns

s

induced by the restriction to the open set U of X ′. Therefore, we have a natural
morphism j : Z → Spec(R):



The canonical module of a Cox ring 863

(3.2)
Z

i−→ Y

↓ j ↓ π

Spec(R) \ V
(
(fjt

a1
1 · · · tas

s

∣∣ j)R
)

⊂ Spec(R) X ′

LEMMA 3.5

The morphism j : Z → Spec(R) coincides with the open immersion Spec(R) \
V ((fjt

a1
1 · · · tas

s | j)R) ⊂ Spec(R).

Proof
There exist αij ’s in k(X)× such that

R[(fjt
a1
1 · · · tas

s )−1] = Γ
(
D+(fjt), OX

)
[(α1jt1)±1, . . . , (αsjts)±1]

for each j. The ring corresponding to the affine open set (πi)−1(D+(fjt)) just
coincides with the above ring. Thus, we obtain

Z = Spec(R) \ V
(
(fjt

a1
1 · · · tas

s

∣∣ j)R
)
. �

The group (Gm)s acts on all the schemes in diagram (3.2). The action on X ′ is
trivial. All the morphisms in diagram (3.2) are compatible with the group action.

As in Definition 3.1, we can define the canonical sheaves with group action for
the schemes in diagram (3.2). That is, the canonical sheaves for all the schemes
in diagram (3.2) are Zs-graded.

Then, we have ωR|Z = ωZ by compatibility with open immersions (see Re-
mark 3.2). Since the height of (fjt

a1
1 · · · tas

s | j)R is bigger than 1 as in Remark 2.4,
we have an isomorphism

H0(Z,ωZ) = ωR

which is compatible with the group action (see Remark 3.2).
On the other hand, π : Y → X ′ is a smooth morphism of relative dimension

s that is compatible with the group action. Then, the sheaf of differentials ΩY/X′

naturally has a group action; that is, it has a structure of a Zs-graded sheaf. We
have

s∧
ΩY/X′ � π∗ OX′

(∑
i

D′
i

)
(−1, . . . , −1),

where (−1, . . . , −1) denotes the shift of degree.
Then, by [6, Theorem 28.11], we have

ωY =
s∧

ΩY/X′ ⊗OY
π∗ωX′

� π∗ OX′

(∑
i

D′
i

)
(−1, . . . , −1) ⊗OY

π∗ OX′ (KX′ )

= π∗ OX′

(∑
i

D′
i + KX′

)
(−1, . . . , −1).
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So we have

ωZ = i∗ωY = (πi)∗ OX′

(∑
i

D′
i + KX′

)
(−1, . . . , −1).

Then,

ωR = H0(Z,ωZ)

= H0
(
X ′, (πi)∗ωZ

)
= H0

(
X ′, (πi)∗(πi)∗ OX′

(∑
i

D′
i + KX′

)
(−1, . . . , −1)

)
.

By the equivariant projection formula ([6, Lemma 26.4]), we have

(πi)∗(πi)∗ OX′

(∑
i

D′
i + KX′

)
(−1, . . . , −1)

�
(

OX′

(∑
i

D′
i + KX′

)
⊗OX′ (πi)∗ OZ

)
(−1, . . . , −1)

=
(

OX′

(∑
i

D′
i + KX′

)
⊗OX′

[ ⊕
(n1,...,ns)∈Zs

OX′

(∑
i

niD
′
i

)])
(−1, . . . , −1)

=
( ⊕

(n1,...,ns)∈Zs

OX′

(∑
i

(ni + 1)D′
i + KX′

))
(−1, . . . , −1)

=
⊕

(n1,...,ns)∈Zs

OX′

(∑
i

niD
′
i + KX′

)
.

Thus, we obtain

ωR =
⊕

(n1,...,ns)∈Zs

H0

(
X ′, OX′

(∑
i

niD
′
i + KX′

))

=
⊕

(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi + KX

))
.

We have completed the proof of Theorem 1.2. �

4. Another proof of Theorem 1.2

In this section, we give another proof for Theorem 1.2 without using the twisted
inverse functor, and we have to assume that the scheme X ′ in Remark 2.4 is
smooth over k. Note that it is automatically satisfied if the base field k is perfect.

The idea of this proof is based on [10, Lemma 13]. In the proof in this section,
we have to assume that Theorem 1.2 is true if s = 1.

REMARK 4.1

In the case where s = 1, Theorem 1.2 is proved using Serre duality. Assume
that s = 1 and that a1D1 is a very ample Cartier divisor for some a1 > 0. Put
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R = R(X;D1). Then, we have⊕
n1∈Z

H0
(
X, OX(n1D1 + KX)

)
=

⊕
n1∈Z

HomOX

(
OX(−n1D1), ωX

)

=
⊕
n1∈Z

Homk

(
Hd(X, OX(−n1D1)), k

)
=

⊕
n1∈Z

Homk

(
Hd+1

R+
(R)−n1 , k

)

= ∗Homk

(
Hd+1

R+
(R), k

)
= ωR.

First, we prove a basic fact on class groups as follows. The authors guess that
it is well known; however, we do not know an adequate reference. Therefore, we
give a proof here.

LEMMA 4.2

Let U be a normal scheme. Let F1, . . . , Ft be Cartier divisors on U . Put

W = SpecU

( ⊕
m1,...,mt ∈Z

OU

( t∑
j=1

mjFj

))
.

Let π : W → U be the structure morphism.
Then, the sequence

0 −→ ZF1 + · · · + ZFt −→ Cl(U) π∗
−→ Cl(W ) −→ 0

is exact.

Proof
Recall that, since π : W → U is a flat morphism, the pullback map

π∗ : Cl(U) −→ Cl(W )

is defined as in [3].
Put

E = SpecU

( ⊕
m1,...,mt ≥0

OU

( t∑
j=1

miFi

))

= SpecU

(
SymOU

(OU (F1) ⊕ · · · ⊕ OU (Ft))
)
,

Ej = SpecU

( ⊕
mj ≥0

OU (mjFj)
)

= SpecU

(
SymOU

(OU (Fj))
)

for j = 1, . . . , t. Let

p : E −→ U,

pj : Ej −→ U,

qj : E −→ Ej
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be the natural morphisms. Remark that p = pjqj for any j. By [3, Theorem 3.3(a)],
the flat pullback map

p∗ : Cl(U) −→ Cl(E)

is an isomorphism. Let

sj : U −→ Ej

be the zero section of the vector bundle pj : Ej → U . Then,

W = E \
⋃
j

q−1
j

(
sj(U)

)
.

By [3, Proposition 1.8], we have the following exact sequence:

0 −→
∑

j Zq−1
j

(
sj(U)

)
−→ Cl(E) −→ Cl(W ) −→ 0

↑p∗

Cl(U)

Then sj(U) is linearly equivalent to p∗
j (−Fj) by [3, Example 3.3.2]. Therefore,

q−1
j (sj(U)) is linearly equivalent to −p∗(Fj). Thus, we have the desired exact

sequence. �

LEMMA 4.3

Suppose that Theorem 1.2(2) is satisfied.
Then, we have the following.

(1) The set

{MF | F is a Weil divisor on X }

just coincides with the set of divisorial fractional ideals which are Zs-graded
R(X;D1, . . . ,Ds)-submodules of k(X)[t±1

1 , . . . , t±1
s ].

(2) For Weil divisors F1 and F2, F1 is linearly equivalent to F2 if and only
if MF1 is isomorphic to MF2 as a Zs-graded module.

(3) Further, assume that R(X;D1, . . . ,Ds) is Noetherian. Any nonzero fi-
nitely generated Zs-graded reflexive R(X;D1, . . . ,Ds)-module of rank one is iso-
morphic to MG as a Zs-graded module for some Weil divisor G on X.

Proof
Set R = R(X;D1, . . . ,Ds).

First, we prove (1). Let F be a Weil divisor on X . We prove that MF is a
divisorial fractional ideal.

Since there exists an ample Cartier divisor in ZD1 + · · · + ZDs, we can
find atm1

1 · · · tms
s such that divX(a) +

∑
i miDi − F is an effective divisor, where

divX(a) is the principal Weil divisor corresponding to a ∈ k(X)×. By definition,
it is easy to check that, for a ∈ k(X)×,

(4.1) (atm1
1 · · · tms

s )MF = MF −divX(a)−
∑

i miDi
.

We have only to show that MF −divX(a)−
∑

i miDi
is a divisorial fractional ideal.
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We define H1 and PV as in Remark 2.4. Set

F − divX(a) −
∑

i

miDi = −
u∑

j=1

�jVj ,

where V1, . . . , Vu are distinct elements in H1. By the argument as above, all of
the �j ’s are positive integers.

For V ∈ H1, we define RV as in [2, p. 629]. (Here we use the symbol V instead
of F in [2].) In this case, we obtain

RPV
= (RV )αV RV

as in [2, p. 632]. Therefore, for any � > 0, we have

PV
(�) = PV

�RPV
∩ R = αV

�(RV )αV RV
∩ R = M−�V .

Then,

M−
∑

j �jVj
=

⋂
j

M−�jVj =
⋂
j

PVj

(�j).

Since the PVj ’s are homogeneous prime ideals of R of height one, M−
∑

j �jVj
is a

divisorial fractional ideal.
Conversely, let N be a divisorial fractional ideal that is a Zs-graded R-

submodule of k(X)[t±1
1 , . . . , t±1

s ]. Using (4.1), it is sufficient to prove that N

coincides with MF for some Weil divisor F in the case where N ⊂ R. Then, N

coincides with an intersection of symbolic powers of homogeneous prime ideals of
height one. Therefore, there exist V1, . . . , Vu ∈ H1 and positive integers �1, . . . , �u

such that

N =
⋂
j

PVj

(�j) =
⋂
j

M−�jVj = M−
∑

j �jVj
.

Assertions (2) and (3) are easily verified, so we omit the proofs. �

REMARK 4.4

Assume (2) in Theorem 1.2. Put R = R(X;D1, . . . ,Ds). The map p in (1.1) is
constructed as follows.

Let HDiv(R) be the free abelian group generated by all the homogeneous
prime divisors of Spec(R), that is,

HDiv(R) =
⊕

V ∈H1(X)

Z[Spec(R/PV )],

where [Spec(R/PV )] denotes the generator corresponding to the closed subscheme
Spec(R/PV ). Here we recall that{

PV

∣∣ V ∈ H1(X)
}

coincides with the set of all the homogeneous prime ideals of R of height one as
in [2, p. 632].

We define

ξ′ : Div(X) → HDiv(R)
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by

ξ′
( ∑

V ∈H1(X)

nV V
)

=
∑

V ∈H1(X)

nV [Spec(R/PV )].

(This map ξ′ is equal to ξ in [2, p. 631] if we identify [Spec(R/PV )] with PV .)
As in [2], ξ′ induces the map

ϕ′ : Cl(X) → A1
(
Spec(R)

)
satisfying

ϕ′
( ∑

V ∈H1(X)

nV V
)

=
∑

V ∈H1(X)

nV [Spec(R/PV )],

where A1(Spec(R)) denotes the Chow group of Spec(R) of codimension one.
Then, we have the following exact sequence:

0 −→ ZD1 + · · · + ZDs −→ Cl(X)
ϕ′

−→ A1
(
Spec(R)

)
−→ 0.

Let Cl(R) be the set of isomorphism classes of divisorial fractional ideals
of R. Then we have the isomorphism

i : A1
(
Spec(R)

)
−→ Cl(R)

defined by

i
( ∑

V ∈H1(X)

nV [Spec(R/PV )]
)

= −
∑

V ∈H1(X)

nV PV = M∑
V ∈H1(X) nV V ,

where PV (resp., M∑
V ∈H1(X) nV V ) denotes the isomorphism class containing PV

(resp., M∑
V ∈H1(X) nV V ).

We set p = iϕ′. Then,

p : Cl(X) → Cl(R)

is the map which satisfies p(F ) = MF for each Weil divisor F on X , and we have
the exact sequence (1.1).

We now start to prove Theorem 1.2 in the case where s ≥ 2. Suppose that all the
assumptions in Theorem 1.2 are satisfied. We assume that X ′ in Remark 2.4 is
smooth over k.

Since ωR is a finitely generated Zs-graded reflexive R-module of rank one,
there exists a Weil divisor G such that ωR is isomorphic to MG as a Zs-graded
module as in Lemma 4.3.

We want to show that G is linearly equivalent to KX . Assume the contrary,
that is, G − KX �= 0 in Cl(X).

Then, we can choose F1, . . . , Fs ∈ ZD1 + · · · + ZDs satisfying the following
three conditions:

(1) ZF1 + · · · + ZFs = ZD1 + · · · + ZDs;
(2) if b1F1 + · · · + bsFs is linearly equivalent to a nonzero effective divisor,

then bs > 0;
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(3) G − KX �∈ ZF1 + · · · + ZFs−1.

Here, recall that s is bigger than 1, and F1, . . . , Fs are linearly independent over
Z by assumption (1) in Theorem 1.2.

We define a map

ϕ : ZD1 + · · · + ZDs −→ Z

by

ϕ(b1F1 + · · · + bsFs) = bs.

The kernel of ϕ is equal to ZF1 + · · · + ZFs−1.
We think that R is a Z-graded ring by

deg(atn1
1 · · · tns

s ) = ϕ(n1D1 + · · · + nsDs).

Set T = Proj(R). Take an ample Cartier divisor D =
∑

i aiDi, a subring S, and
f1, . . . , f� as in Remark 2.4. Set Q = T \ V+((fjt

a1
1 · · · tas

s | j)R). In this section,
for an �-dimensional normal algebraic variety W over k which is smooth over k

in codimension one, we define

ωW =
( �∧

ΩW/k

)∗ ∗
.

However, for R we define ωR as in Definition 2.2.
Then, it is easy to see that Q coincides with

SpecX′

( ⊕
m1,...,ms−1∈Z

OX′

(s−1∑
j=1

mjF
′
j

))
,

where F ′
j = Fj |X′ . Since X \ X ′ = Sing(X), the natural restriction

(4.2) Cl(X) −→ Cl(X ′)

is an isomorphism. Let π : Q → X ′ be the structure morphism.
Then, by Lemma 4.2, we have the following exact sequence:

(4.3) 0 −→ ZF ′
1 + · · · + ZF ′

s−1 −→ Cl(X ′) π∗
−→ Cl(Q) −→ 0.

Since dimQ = d + s − 1, we have

ωT |Q = ωQ =
d+s−1∧

ΩQ/k.

Since X ′ is smooth over k and π : Q → X ′ is a smooth morphism, the sequence

0 −→ π∗ΩX′/k −→ ΩQ/k −→ ΩQ/X′ −→ 0

is exact. Therefore, we have

ωQ =
d+s−1∧

ΩQ/k

=
d∧

π∗ΩX′/k ⊗OQ

s−1∧
ΩQ/X′
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= π∗
d∧

ΩX′/k ⊗OQ
π∗ OX′ (F ′

1 + · · · + F ′
s−1)(4.4)

= π∗ωX′ ⊗OQ
OQ

= π∗ OX′ (KX′ )

since π∗ OX′ (F ′
1 + · · · + F ′

s−1) � OQ by the exact sequence (4.3).
On the other hand, we have

ωT =
( ⊕

(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi + G
)))∼

,

where the right-hand side is the coherent OT -module associated with the Z-
graded module ⊕

(n1,...,ns)∈Zs

H0

(
X, OX

(∑
i

niDi + G
))

,

that is, the canonical module of the Z-graded ring R. (Note that we used the
fact that Theorem 1.2 is true if s = 1.) Therefore, we obtain

ωQ = ωT |Q =
( ⊕

m1,...,ms−1∈Z

OX′

(s−1∑
j=1

mjF
′
j + G′

))∼
,

where G′ = G|X′ , and the right-hand side is a coherent OQ-module associated
with

⊕
m1,...,ms−1∈Z

OX′

(s−1∑
j=1

mjF
′
j + G′

)
,

that is, a sheaf of modules over the sheaf of algebras

⊕
m1,...,ms−1∈Z

OX′

(s−1∑
j=1

mjF
′
j

)

on X ′. Therefore, we have

(4.5) ωQ = π∗ OX′ (G′).

Here for Weil divisors E1 and E2 on X ′, we know that

π∗ OX′ (E1) � π∗ OX′ (E2) ⇐⇒ E1 ≡ E2 mod ZF ′
1 + · · · + ZF ′

s−1

by the exact sequence (4.3).
Thus, by (4.4) and (4.5), we obtain

G′ − KX′ ∈ ZF ′
1 + · · · + ZF ′

s−1.

Since the restriction (4.2) is an isomorphism, we know that

G − KX ∈ ZF1 + · · · + ZFs−1

in Cl(X). It is a contradiction.
We have completed the proof of Theorem 1.2. �
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REMARK 4.5

Suppose that all the assumptions in Theorem 1.2 are satisfied. We choose D,
S as in Remark 2.4. Put d = dimX . Then, dimR = d + s as in [2]. Let m be
the unique maximal homogeneous ideal of R. Let S+ be the maximal ideal of S

generated by all the homogeneous elements of positive degree. Then, we have

Hd+s
m (R) = ∗ Homk(ωR, k)

=
⊕

(n1,...,ns)∈Zs

Homk

(
H0

(
X, OX

(
−

∑
i

niDi + KX

))
, k

)

=
⊕

(n1,...,ns)∈Zs

Hd

(
X, OX

(∑
i

niDi

))

= Hd+1
S+

(R)

by Serre duality.
Note that there are many examples such that

Hd+s−1
m (R) �= Hd

S+
(R).

5. Some examples

In this section, we give some examples.

EXAMPLE 5.1

Let B = k[x, y, z] be a weighted polynomial ring over a field k with deg(x) = a,
deg(y) = b, and deg(z) = c, where a, b, c are pairwise coprime positive integers.

Let P be the kernel of the k-algebra homomorphism k[x, y, z] −→ k[t] defined
by x �→ ta, y �→ tb, z �→ tc.

Let π : X → Proj(B) be the blowup at V+(P ). Let A be an integral Weil
divisor on X satisfying OX(A) = π∗ OProj(B)(1). Put E = π−1(V+(P )). In this
case, Cl(X) is freely generated by A and E. We have

KX = E − (a + b + c)A.

Then, R(X; −E,A) coincides with the extended symbolic Rees ring

R = k[x, y, z, t−1, P t,P (2)t2, P (3)t3, . . .] ⊂ k[x, y, z, t, t−1].

R is a Z2-graded ring with deg(x) = (0, a), deg(y) = (0, b), deg(z) = (0, c),
deg(t) = (1,0). We know that

ωR = R
(

−1, −(a + b + c)
)
.

For positive integers α and β, we define

R(α,β) =
⊕

m1,m2∈Z

R(αm1,βm2).

Here, we remark that R(α,β) = R(X; −αE,βA). Therefore, ωR(α,β) is an R(α,β)-
free module if and only if α = 1 and β|(a + b + c).
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EXAMPLE 5.2

Let k be a field, and let t1, . . . , tr be rational distinct closed points in Pn
k . Let Ii

be the defining ideal of ti in the homogeneous coordinate ring B = k[x0, . . . , xn].
Recall that Ii is generated by linearly independent n-linear forms. Therefore, for
any � > 0,

I�
i = (I�

i )
sat = I

(�)
i ,

where (I�
i )

sat is the saturation of the ideal I�
i , and I

(�)
i is the �th symbolic power

of Ii.
Let m1, . . . ,mr be positive integers. Put

I = Im1
1 ∩ · · · ∩ Imr

r .

Let π : X → Pn
k be the blowup at t1, . . . , tr. Put Ei = π−1(ti) for i = 1, . . . , �.

Let A be a Weil divisor on X that satisfies OX(A) = π∗ OPn
k
(1). Then, Cl(X) is

freely generated by A, E1, . . . ,Er. In this case, we have

KX = (n − 1)(E1 + · · · + Er) − (n + 1)A.

Put

R = R(X; −m1E1 − · · · − mrEr,A).

Here, −m1E1 − · · · − mrEr + mA is an ample Cartier divisor for m � 0. Then,
R coincides with the extended symbolic Rees ring of I ; that is,

R = B[t−1, It, I(2)t2, I(3)t3, . . .] ⊂ B[t, t−1],

where

I(�) = I�m1
1 ∩ · · · ∩ I�mr

r .

Assume that R is Noetherian. Then, by Corollary 1.3, we know that

ωR � R ⇐⇒ KX ∈ Z(−m1E1 − · · · − mrEr) + ZA

⇐⇒
{

m1 = · · · = mr

m1 | (n − 1).

EXAMPLE 5.3

Here, we give an example where the equality (1.2) is not satisfied if we remove
the assumption that L2 contains an ample Cartier divisor.

Set X = P1
k × P1

k, A1 = P1
k × (1 : 0) and A2 = (1 : 0) × P1

k. Then, Cl(X) is
freely generated by A1 and A2. We know that

Cox(X) = R(X;A1,A2) = k[x0, x1, y0, y1],

where deg(x0) = deg(x1) = (1,0) and deg(y0) = deg(y1) = (0,1).
Then, we have

ωR(X;A1,A2) = R(X;A1,A2)(−2, −2)

since KX = −2A1 − 2A2.
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For a, b ∈ Z, we define

Sa,b = R(X;aA1 + bA2)

and

La,b = Z(aA1 + bA2) ⊂ ZA1 + ZA2.

Then, we have

Sa,b = R(X;A1,A2)|La,b
.

In this case, aA1 + bA2 is ample if and only if a > 0 and b > 0.
Therefore, if a > 0 and b > 0, then

ωSa,b
= ωR(X;A1,A2)|La,b

by (1.2). However, we have

ωR(X;A1,A2)|L1,0 = 0 �= ωS1,0 .

In the case where a > 0 and b > 0, Sa,b is the Segre product of k[x0, x1](a)

and k[y0, y1](b). Here, k[x0, x1](a) is the ath Veronese subring of k[x0, x1], that is,

k[x0, x1](a) =
⊕
n≥0

k[x0, x1]na.

Then, we have

ωSa,b
=

⊕
n>0

(k[x0, x1]na−2 ⊗k k[y0, y1]nb−2) = ωk[x0,x1](a)#ωk[y0,y1](b)

as in [4, Theorem (4.3.1)].

References

[1] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic

Geom. 4 (1995), 17–50.

[2] E. J. Elizondo, K. Kurano, and K.-i. Watanabe, The total coordinate ring of a

normal projective variety, J. Algebra 276 (2004), 625–637.

[3] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2,

Springer, Berlin, 1998.

[4] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan 30

(1978), 179–213.

[5] , On graded rings, II (Zn-graded rings), Tokyo J. Math. 1 (1978),

237–261.

[6] M. Hashimoto, “Equivariant twisted inverses” in Foundations of Grothendieck

Duality for Diagrams of Schemes, Lecture Notes in Math. 1960, Springer,

Berlin, 2009, 261–478.

[7] M. Hashimoto and M. Ohtani, “Local cohomology on diagrams of schemes” in

Special Volume in Honor of Melvin Hochster, Michigan Math. J. 57, Univ.

Michigan Math. Dept., Ann Arbor, 2008, 383–425.



874 Mitsuyasu Hashimoto and Kazuhiko Kurano

[8] , Equivariant Matlis and the local duality, J. Algebra 324 (2010),

1447–1470.

[9] Y. Kamoi, Noetherian rings graded by an abelian group, Tokyo J. Math. 18

(1995), 31–48.

[10] O. N. Popov, The Cox ring of a Del Pezzo surface has rational singularities,

preprint, arXiv:math/0402154v1 [math.AG].

[11] K.-i. Watanabe, Some remarks concerning Demazure’s construction of normal

graded rings, Nagoya Math. J. 83 (1981), 203–211.

Hashimoto: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya

464-8602, Japan; hasimoto@math.nagoya-u.ac.jp

Kurano: Department of Mathematics, School of Science and Technology, Meiji

University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan;

kurano@math.meiji.ac.jp


	Introduction
	The canonical module of a local Zs-graded k-domain
	A proof of the main theorem using the twisted inverse functor
	Another proof of Theorem 1.2
	Some examples
	References
	Author's Addresses

