The canonical module of a Cox ring

Mitsuyasu Hashimoto and Kazuhiko Kurano

To Professor Jun-ichi Nishimura on the occasion of his sixtieth birthday

Abstract

In this paper, we describe the graded canonical module of a Noetherian multisection ring of a normal projective variety. In particular, in the case of the Cox ring, we prove that the graded canonical module is a graded free module of rank one with the shift of degree K_{X}. We give two kinds of proofs. The first one utilizes the equivariant twisted inverse functor developed by the first author. The second proof is down-to-earth, which avoids the twisted inverse functor, but some additional assumptions are required in this proof.

1. Introduction

Cox [1] studied the total coordinate ring (Cox ring) of toric varieties. Cox rings of normal projective varieties have become such important and interesting objects that many mathematicians try to prove (in)finite generation or to study their ring-theoretic properties (generators, relations, syzygies, homological properties, etc.).

In this paper, we describe the graded canonical module of a Noetherian multisection ring of a normal projective variety in Theorem 1.2. Using this result, we give a necessary and sufficient condition for the canonical module to be a free module (see Corollary 1.3). Since the Cox ring is a unique factorization domain as in [2], its graded canonical module is a free module. We prove that the graded canonical module of the Cox ring of a normal projective variety X is a graded free module of rank one with the shift of degree K_{X} (see Corollary 1.5). Many mathematicians study syzygies of the Cox ring. One of the purposes of our study is to contribute to their study.

We give two kinds of proofs for Theorem 1.2 in this paper. In Section 3, we prove Theorem 1.2 by using the equivariant twisted inverse functor developed in [6]. The second proof is given in Section 4. The second proof is down-to-earth, which avoids the twisted inverse functor, but some additional assumptions are required in this proof.

From now on, we give precise definitions, and state our main theorem and corollaries.

DEFINITION 1.1

Let X be a d-dimensional normal projective variety over a field k. Let D_{1}, \ldots, D_{s} be Weil divisors on X. We define a ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ to be

$$
\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \subset k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right] .
$$

For a Weil divisor F on X, we set

$$
M_{F}=\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+F\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \subset k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]
$$

that is, M_{F} is a \mathbb{Z}^{s}-graded $R\left(X ; D_{1}, \ldots, D_{s}\right)$-module such that

$$
\left[M_{F}\right]_{\left(n_{1}, \ldots, n_{s}\right)}=H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+F\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}
$$

In this paper, for a normal variety X we denote by $\mathrm{Cl}(X)$ the class group of X, and for a Weil divisor F on X, we denote by \bar{F} the class of F in $\mathrm{Cl}(X)$.

In the case where $\mathrm{Cl}(X)$ is freely generated by $\overline{D_{1}}, \ldots, \overline{D_{s}}$, the ring $R\left(X ; D_{1}\right.$, $\left.\ldots, D_{s}\right)$ is called the Cox ring of X, and it is denoted by $\operatorname{Cox}(X)$. Recall that $\operatorname{Cox}(X)$ is uniquely determined by X up to isomorphisms, that is, independent of the choice of D_{1}, \ldots, D_{s}.

THEOREM 1.2

Let X be a normal projective variety over a field k such that $H^{0}\left(X, \mathcal{O}_{X}\right)=k$. Assume that D_{1}, \ldots, D_{s} are Weil divisors on X which satisfy the following three conditions.
(1) $\overline{D_{1}}, \ldots, \overline{D_{s}}$ are linearly independent over \mathbb{Z} in the divisor class group $\mathrm{Cl}(X)$.
(2) The lattice $\mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s}$ contains an ample Cartier divisor.
(3) The ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is Noetherian.

Then, $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is a local \mathbb{Z}^{s}-graded k-domain (see Definition 2.1), and we have an isomorphism

$$
\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)} \simeq M_{K_{X}}
$$

of \mathbb{Z}^{s}-graded $R\left(X ; D_{1}, \ldots, D_{s}\right)$-modules.
Let X be a normal projective variety, and let D_{1}, \ldots, D_{s} be Weil divisors on X. Then, $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is a Krull domain as in [2]. (In particular, if $R\left(X ; D_{1}, \ldots\right.$, $\left.D_{s}\right)$ is Noetherian, then it is a Noetherian integrally closed domain.) Therefore, the divisor class group of $R\left(X ; D_{1}, \ldots, D_{s}\right)$ can be defined. If Theorem 1.2(2) is satisfied, then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z} \overline{D_{1}}+\cdots+\mathbb{Z} \overline{D_{s}} \longrightarrow \mathrm{Cl}(X) \xrightarrow{p} \mathrm{Cl}\left(R\left(X ; D_{1}, \ldots, D_{s}\right)\right) \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

defined by $p(\bar{F})=\overline{M_{F}}$ for each Weil divisor F, where $\overline{M_{F}}$ stands for the isomorphism class containing M_{F}. We construct this map p explicitly in Remark 4.4.

Theorem 1.2 says that

$$
p\left(\overline{K_{X}}\right)=\overline{\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}}
$$

if (1), (2), and (3) in Theorem 1.2 are satisfied. In particular, we have the following corollary.

COROLLARY 1.3

Suppose that the assumptions in Theorem 1.2 are satisfied.
Then, $\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}$ is a free $R\left(X ; D_{1}, \ldots, D_{s}\right)$-module if and only if

$$
\overline{K_{X}} \in \mathbb{Z} \overline{D_{1}}+\cdots+\mathbb{Z} \overline{D_{s}}
$$

in $\mathrm{Cl}(X)$.
We give some examples (Example 5.1, Example 5.2) in Section 5.

REMARK 1.4

Suppose that the assumptions in Theorem 1.2 are satisfied. Put $d=\operatorname{dim} X$. Let F_{1}, \ldots, F_{r} be linearly independent elements in $\mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s}$. Put

$$
L_{1}=\mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s} \supset L_{2}=\mathbb{Z} F_{1}+\cdots+\mathbb{Z} F_{r}
$$

We think that $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is graded by L_{1}. We have

$$
R\left(X ; F_{1}, \ldots, F_{r}\right)=\left.R\left(X ; D_{1}, \ldots, D_{s}\right)\right|_{L_{2}}
$$

By Theorem 1.2,

$$
\begin{equation*}
\omega_{R\left(X ; F_{1}, \ldots, F_{r}\right)}=\left.\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}\right|_{L_{2}} \tag{1.2}
\end{equation*}
$$

if the lattice L_{2} contains an ample Cartier divisor.
If we take the graded dual on both sides of (1.2), we know that

$$
\begin{equation*}
H_{\mathfrak{m}_{2}}^{d+r}\left(R\left(X ; F_{1}, \ldots, F_{r}\right)\right)=\left.H_{\mathfrak{m}_{1}}^{d+s}\left(R\left(X ; D_{1}, \ldots, D_{s}\right)\right)\right|_{L_{2}}, \tag{1.3}
\end{equation*}
$$

where \mathfrak{m}_{1} (resp., \mathfrak{m}_{2}) is the unique maximal homogeneous ideal of $R\left(X ; D_{1}, \ldots\right.$, D_{s}) (resp., $\left.R\left(X ; F_{1}, \ldots, F_{r}\right)\right)$. Here note that the dimension of $R\left(X ; D_{1}, \ldots, D_{s}\right)$ (resp., $\left.R\left(X ; F_{1}, \ldots, F_{r}\right)\right)$ is equal to $d+s$ (resp., $\left.d+r\right)$. We obtain the equalities

$$
\begin{aligned}
H_{\mathfrak{m}_{1}}^{d+s}\left(R\left(X ; D_{1}, \ldots, D_{s}\right)\right) & =H_{S_{+}}^{d+1}\left(R\left(X ; D_{1}, \ldots, D_{s}\right)\right), \\
H_{\mathfrak{m}_{2}}^{d+r}\left(R\left(X ; F_{1}, \ldots, F_{r}\right)\right) & =H_{S_{+}}^{d+1}\left(R\left(X ; F_{1}, \ldots, F_{r}\right)\right)
\end{aligned}
$$

in Remark 4.5. The equality (1.3) also follows from the above equalities.
In Example 5.3, we give an example where the equality (1.2) is not satisfied if we remove the assumption that L_{2} contains an ample Cartier divisor.

Suppose that X is a normal projective variety with a finitely generated free divisor class group. We may think that the Cox ring is graded by $\mathrm{Cl}(X)$. By the exact sequence (1.1), $\operatorname{Cox}(X)$ is a unique factorization domain as in [2]. Therefore, the canonical module $\omega_{\operatorname{Cox}(X)}$ is a $\mathrm{Cl}(X)$-graded free $\operatorname{Cox}(X)$-module
of rank one if $\operatorname{Cox}(X)$ is a Noetherian ring. By Theorem 1.2, we can determine the degree of the homogeneous generator of $\omega_{\operatorname{Cox}(X)}$ as follows.

COROLLARY 1.5
Let X be a normal projective variety over a field. Assume that $\mathrm{Cl}(X)$ is a finitely generated free abelian group and the Cox ring of X is Noetherian.

Then, the canonical module of the Cox ring is a rank one free $\mathrm{Cl}(X)$-graded module whose generator is of degree $-\overline{K_{X}} \in \mathrm{Cl}(X)$.

Suppose that D_{1}, \ldots, D_{s} are \mathbb{Q}-divisors. Assume (1), (2), and (3) in Theorem 1.2. Let H_{1} be the set of all the closed subvarieties of X of codimension one. Set

$$
D_{i}=\sum_{V \in H_{1}} \frac{p_{i, V}}{q_{i, V}} V
$$

where the $p_{i, V}$'s and $q_{i, V}$'s are integers such that $\left(p_{i, V}, q_{i, V}\right)=1$ and $q_{i, V}>0$ for each V. (If $p_{i, V}=0$, then $q_{i, V}=1$.) Then, as in [11, Theorem 2.8], we obtain the following corollary.

COROLLARY 1.6
With the notation as above,

$$
\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)} \simeq \bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+K_{X}+\sum_{V \in H_{1}} \frac{q_{V}-1}{q_{V}} V\right)\right),
$$

where q_{V} is the least common multiple of $q_{1, V}, \ldots, q_{s, V}$ for each $V \in H_{1}$.

2. The canonical module of a local \mathbb{Z}^{s}-graded k-domain

DEFINITION 2.1
Let k be a field. R is called a local \mathbb{Z}^{s}-graded k-domain if the following conditions are satisfied:

- $R=\bigoplus_{\underline{a} \in \mathbb{Z}} R_{\underline{a}}$ is a Noetherian \mathbb{Z}^{s}-graded domain;
- $R_{0}=k$;
- suppose that \mathfrak{m} is the ideal of R generated by all the homogeneous elements of R of degree different from $\underline{0}$; then $\mathfrak{m} \neq R$.

Assume that R is a local \mathbb{Z}^{s}-graded k-domain. We remark that the ideal \mathfrak{m} as above is the unique maximal homogeneous ideal of R. Further, R is of finite type over k. Therefore, the height of \mathfrak{m} coincides with the dimension of R.

For a \mathbb{Z}^{s}-graded module M over a local \mathbb{Z}^{s}-graded k-domain $R,{ }^{*} \operatorname{Hom}_{k}(M, k)$ denotes the graded dual of M; that is, ${ }^{*} \operatorname{Hom}_{k}(M, k)$ is a \mathbb{Z}^{s}-graded R-module such that ${ }^{*} \operatorname{Hom}_{k}(M, k)_{\underline{a}}=\operatorname{Hom}_{k}\left(M_{-\underline{a}}, k\right)$.

DEFINITION 2.2
Let R be a local \mathbb{Z}^{s}-graded k-domain with the maximal homogeneous ideal \mathfrak{m}.

Then,

$$
{ }^{*} \operatorname{Hom}_{k}\left(H_{\mathfrak{m}}^{\operatorname{dim} R}(R), k\right)
$$

is called the canonical module of R and denoted by ω_{R}. Here $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ is the $(\operatorname{dim} R)$ th local cohomology group, and it has a natural structure of a \mathbb{Z}^{s}-graded R-module.

We emphasize that ω_{R} has a structure of a \mathbb{Z}^{s}-graded R-module. We refer the reader to [5] and [9] for the general theory of \mathbb{Z}^{s}-graded rings.

LEMMA 2.3

Let X be a normal projective variety over a field k such that $H^{0}\left(X, \mathcal{O}_{X}\right)=k$. Assume that D_{1}, \ldots, D_{s} are Weil divisors on X which satisfy assumptions (1) and (3) in Theorem 1.2.

Then, $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is a local \mathbb{Z}^{s}-graded k-domain.

Proof

We denote the ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ simply by R.
To prove that R is a local \mathbb{Z}^{s}-graded k-domain, we need to show that the ideal \mathfrak{m} is not equal to R, where \mathfrak{m} is the ideal of R generated by all the homogeneous elements of R of degree different from $\underline{0}$. Assume the contrary. Then, there exists $\left(n_{1}, \ldots, n_{s}\right) \neq(0, \ldots, 0)$ such that

$$
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) \neq 0 \quad \text { and } \quad H^{0}\left(X, \mathcal{O}_{X}\left(-\sum_{i} n_{i} D_{i}\right)\right) \neq 0
$$

Then, there exists an effective Weil divisor F_{1} that is linearly equivalent to $\sum_{i} n_{i} D_{i}$. Since $\overline{D_{1}}, \ldots, \overline{D_{s}}$ are linearly independent over \mathbb{Z} in the divisor class group $\mathrm{Cl}(X)$ by our assumption, $F_{1} \neq 0$. In the same way, there exists a nonzero effective Weil divisor F_{2} that is linearly equivalent to $-\sum_{i} n_{i} D_{i}$. Then, the nonzero effective Weil divisor $F_{1}+F_{2}$ is linearly equivalent to 0 . This is a contradiction.

REMARK 2.4
Suppose that assumptions (2) and (3) in Theorem 1.2 are satisfied. Set $R=$ $R\left(X ; D_{1}, \ldots, D_{s}\right)$.

Suppose that $D=a_{1} D_{1}+\cdots+a_{s} D_{s}$ is an ample Cartier divisor, where $a_{1}, \ldots, a_{s} \in \mathbb{Z}$. Set

$$
S=\bigoplus_{n \geq 0} H^{0}\left(X, \mathcal{O}_{X}(n D)\right) t^{n} \subset k(X)[t]
$$

We have a ring homomorphism $S \rightarrow R$ defined by $f t^{n} \mapsto f\left(t_{1}^{a_{1}} \cdots t_{s}^{a_{s}}\right)^{n}$ for $f \in$ $H^{0}\left(X, \mathcal{O}_{X}(n D)\right)$. We think of S as a subring of R by this ring homomorphism. Here $X=\operatorname{Proj}(S)$. Set $X^{\prime}=X \backslash \operatorname{Sing}(X)$, and set $D_{i}^{\prime}=\left.D_{i}\right|_{X^{\prime}}$ for $i=1, \ldots, s$.

Replacing D by $n D$ for a sufficiently large n (if necessary), we may assume that there exist $f_{1}, \ldots, f_{\ell} \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ which satisfy the following two conditions:
(1) $X^{\prime}=\bigcup_{j=1}^{\ell} D_{+}\left(f_{j} t\right)$;
(2) D_{i}^{\prime} is a principal divisor on $D_{+}\left(f_{j} t\right)$ for any i and j.

Let $\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R$ be the ideal of R generated by $\left\{f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j=\right.$ $1, \ldots, \ell\}$. Then, we can show that
(2.1) the height of the ideal $\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R$ is bigger than or equal to 2
as follows. Let H_{1} be the set of closed subvarieties of X of codimension one. For $V \in H_{1}$, we set

$$
\begin{equation*}
P_{V}=\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}-V\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \subset R, \tag{2.2}
\end{equation*}
$$

that is, $P_{V}=M_{-V}$. Then, as in [2, p. 632],

$$
\left\{P_{V} \mid V \in H_{1}\right\}
$$

coincides with the set of all the height one homogeneous prime ideals of R. Here recall that $P_{V} \cap S$ is equal to the defining ideal of V in the ring S. Since $V_{+}\left(\left(f_{j} t \mid j\right) S\right)$ coincides with $\operatorname{Sing}(X)$, the ideal $\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R$ is not contained in any height one homogeneous prime ideal of R. Recall here that $\operatorname{Sing}(X)$ is a closed subset of X of codimension bigger than or equal to 2 .

Thus, we know that the height of the ideal $\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R$ is bigger than or equal to two.

3. A proof of the main theorem using the twisted inverse functor

We prove Theorem 1.2 in this section using the twisted inverse functor. We prove

$$
\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)} \simeq M_{K_{X}}
$$

without assuming Theorem 1.2(1). If we remove assumption (1) in Theorem 1.2, the ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ may not be a local \mathbb{Z}^{s}-graded k-domain. In this case, we cannot define $\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}$ by using local cohomologies as in Definition 2.2. In this section, we give an alternative definition of $\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}$ using the twisted inverse functor as in Definition 3.1. Of course, both definitions coincide in the case where $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is a local \mathbb{Z}^{s}-graded k-domain as in Remark 3.4.

DEFINITION 3.1

Let k be a field, let G be a finite-type group scheme over k, and let $f: X \rightarrow \operatorname{Spec} k$ be a G-scheme which is separated of finite type. Then the dualizing complex \mathbb{I}_{X} of X is defined to be $f^{!} \mathcal{O}_{\text {Spec } k}$, where $f^{!}$denotes the (equivariant) twisted inverse functor $f^{!}: D_{\mathrm{Lqc}}(G, \operatorname{Spec} k) \rightarrow D_{\mathrm{Lqc}}(G, X)$ (see [6, (20.5), Chapter 29]). Assume that X is nonempty and connected. Then we define $s:=\inf \left\{i \mid H^{i}\left(\mathbb{I}_{X}\right) \neq 0\right\}$ and $\omega_{X}:=H^{s}\left(\mathbb{I}_{X}\right)$. We call ω_{X} the (G-equivariant) canonical sheaf of X. If,
moreover, $X=\operatorname{Spec} A$ is affine, then $\Gamma\left(X, \omega_{X}\right)$ is denoted by ω_{A} and is called the (G-equivariant) canonical module of A.

REMARK 3.2
Note that $\mathbb{I}_{X} \in D_{\text {Coh }}^{b}(G, X)$ and $\omega_{X} \in \operatorname{Coh}(G, X)$. Note also that if we forget the G-action, then \mathbb{I}_{X} as an object of $D^{b}(X)$ is the dualizing complex of X and ω_{X} is the canonical sheaf of X in the usual sense. If X is Cohen-Macaulay, then $\omega_{X}[-s] \cong \mathbb{I}_{X}$ in $D(G, X)$, where $s=\inf \left\{i \mid H^{i}\left(\mathbb{I}_{X}\right) \neq 0\right\}$. (We use this fact freely later for nonsingular varieties.) If X is equidimensional and U is a G-stable open subset, then $\left.\omega_{X}\right|_{U} \cong \omega_{U}$. In general, for a quasi-compact separated G-morphism $g: U \rightarrow X$, the canonical map $u: \omega_{X} \rightarrow g_{*} g^{*} \omega_{X}$ is $\left(G, \mathcal{O}_{X}\right)$-linear. If X is normal, g is the inclusion from a G-stable open subset U, and the codimension of $X \backslash U$ in X is at least 2, then u is an isomorphism of coherent $\left(G, \mathcal{O}_{X}\right)$-modules. So we have $\omega_{X} \cong g_{*} \omega_{U}$ this case.

REMARK 3.3

Let k be a field, let H be a finite-type k-group scheme, and let $G:=\mathbb{G}_{m} \times H$. A G-algebra R is nothing but a \mathbb{Z}-graded k-algebra $R=\bigoplus_{i \in \mathbb{Z}} R_{i}$, which is also an H-algebra such that each R_{i} is an H-submodule of R, where the \mathbb{Z}-grading is given by the \mathbb{G}_{m}-action. Let R be a positively graded G-algebra. That is, $R=\bigoplus_{i \in \mathbb{Z}} R_{i}$ is a G-algebra such that $R_{i}=0$ for $i<0$ and $R_{0}=k$. Assume that R is a finitely generated domain.

Let $d=\operatorname{dim} R$, and let $\Theta=\operatorname{Spec} R$. Let θ be the unique G-stable closed point of Θ corresponding to the unique graded maximal ideal \mathfrak{m} of R. Then $\omega_{\Theta}=$ $H^{-d}\left(\mathbb{I}_{\Theta}\right)$. By the equivariant local duality $[8,(4.18)]$, for any $\mathbb{F} \in D_{\operatorname{Coh}}(G, \Theta)$,

$$
\underline{H}_{\theta}^{i}(\mathbb{F}) \cong \underline{\operatorname{Hom}}_{\mathcal{O}_{\Theta}}\left(\underline{\operatorname{Ext}}_{\mathcal{O}_{\Theta}}^{-i}\left(\mathbb{F}, \mathbb{I}_{\Theta}\right), \mathcal{E}\right),
$$

where $\underline{\operatorname{Hom}}_{\mathcal{O}_{\Theta}}$ denotes the sheaf-Hom in the category of $\left(G, \mathcal{O}_{\Theta}\right)$-modules (see [6, (2.24), Chapter 29]) and $\underline{E x t}_{\mathcal{O}_{\ominus}}^{-i}$ its right-derived functor. $\underline{H}_{\theta}^{i}$ denotes the equivariant local cohomology (see $[7,(7.7)]$), and $\mathcal{E}=\underline{H}_{\theta}^{0}\left(\mathbb{I}_{\Theta}\right)$ is the G-sheaf of Matlis of the G-local G-scheme (Θ, θ) (see [8]). Letting $\mathbb{F}=\mathcal{O}_{\Theta}$ and $i=d$,

$$
\underline{H}_{\theta}^{d}\left(\mathcal{O}_{\Theta}\right) \cong \underline{\operatorname{Hom}}_{\mathcal{O}_{\Theta}}\left(\omega_{\Theta}, \mathcal{E}\right)
$$

In other words,

$$
H_{\mathfrak{m}}^{d}(R) \cong \operatorname{Hom}_{R}\left(\omega_{R}, E\right)
$$

where $E=H^{0}(\Theta, \mathcal{E})$. By [8, Lemma 5.4, Remark 5.6], it is easy to see that $(?)^{\vee}=$ $\operatorname{Hom}_{R}(?, E)$ is equivalent to ${ }^{*} \operatorname{Hom}_{k}(?, k)$ as a functor from the full subcategory of the category of (G, R)-modules consisting of modules whose degree i component is a finite-dimensional k-vector space for each $i \in \mathbb{Z}$ (the \mathbb{Z}-grading is given by the \mathbb{G}_{m}-action) to itself, and (? $)^{\vee}(?)^{\vee}$ is equivalent to the identity functor. Thus, $\left(H_{\mathfrak{m}}^{d}(R)\right)^{\vee} \cong \omega_{R}$.

Let $H=\mathbb{G}_{m}^{s}$. Let $\varphi: X \rightarrow Y$ be an affine H-morphism between H-schemes. Assume that the action of H on Y is trivial. Then $\varphi_{*} \mathcal{O}_{X}$ is a quasi-coherent
$\left(H, \mathcal{O}_{Y}\right)$-algebra in the sense that $\varphi_{*} \mathcal{O}_{X}$ is both a quasi-coherent $\left(H, \mathcal{O}_{Y}\right)$-module and an \mathcal{O}_{Y}-algebra, and the unit map $\mathcal{O}_{Y} \rightarrow \varphi_{*} \mathcal{O}_{X}$ and the product $\varphi_{*} \mathcal{O}_{X} \otimes_{\mathcal{O}_{Y}}$ $\varphi_{*} \mathcal{O}_{X} \rightarrow \varphi_{*} \mathcal{O}_{X}$ are $\left(H, \mathcal{O}_{Y}\right)$-linear. This is equivalent to saying that $\varphi_{*} \mathcal{O}_{X}$ is a \mathbb{Z}^{s}-graded \mathcal{O}_{Y}-algebra. Conversely, for a given trivial H-scheme Y and a quasicoherent $\left(H, \mathcal{O}_{Y}\right)$-algebra (i.e., a \mathbb{Z}^{s}-graded \mathcal{O}_{Y}-algebra) \mathcal{A}, letting $X:=\operatorname{Spec}_{Y} \mathcal{A}$ and letting $\varphi: X \rightarrow Y$ be the canonical map, $\varphi: X \rightarrow Y$ is an affine H-morphism such that $\varphi_{*} \mathcal{O}_{X} \cong \mathcal{A}$. In this case, a quasi-coherent $\left(H, \mathcal{O}_{X}\right)$-module \mathcal{M} yields a graded \mathcal{A}-module $\varphi_{*} \mathcal{M}$, and conversely, a graded \mathcal{A}-module \mathcal{N} determines a quasi-coherent $\left(H, \mathcal{O}_{X}\right)$-module \mathcal{M} such that $\varphi_{*} \mathcal{M} \cong \mathcal{N}$ uniquely, up to isomorphisms.

REMARK 3.4

Let $H=\mathbb{G}_{m}^{s}$, and let $G=\mathbb{G}_{m} \times H=\mathbb{G}_{m}^{s+1}$.
Let R be a \mathbb{Z}^{s}-graded k-algebra. Then R is an H-algebra. Assume, moreover, that R is a local \mathbb{Z}^{s}-graded k-domain (see Definition 2.1).

Then the convex polyhedral cone in \mathbb{R}^{s} generated by $\left\{\underline{a} \in \mathbb{Z}^{s} \mid R_{\underline{a}} \neq 0\right\}$ does not contain a line. So there is a linear function $\varphi: \mathbb{Z}^{s} \rightarrow \mathbb{Z}$ such that $R=\bigoplus_{i \in \mathbb{Z}} R_{i}$ is a positively graded G-algebra; that is, $R_{0}=k$ and $R_{i}=0$ for $i<0$, and each R_{i} is an H-submodule of R, where $R_{i}=\bigoplus_{\varphi(\underline{a})=i} R_{\underline{a}}$. Note that R is assumed to be a finitely generated domain.

As in Remark 3.3, $\left(H_{\mathfrak{m}}^{d}(R)\right)^{\vee} \cong \omega_{R}$ as (G, R)-modules. In particular, they are isomorphic as (H, R)-modules or \mathbb{Z}^{s}-graded R-modules.

This shows that our new definition of ω_{R} as a graded R-module is consistent with Definition 2.2.

We assume (2) and (3) in Theorem 1.2. Set $R=R\left(X ; D_{1}, \ldots, D_{s}\right)$. Take an ample Cartier divisor D, a subring S, and $f_{1}, \ldots, f_{\ell} \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ as in Remark 2.4.

We set

$$
Y=\operatorname{Spec}_{X^{\prime}}\left(\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{N}_{0} s} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}\right)
$$

where \mathbb{N}_{0} denotes the set of all nonnegative integers. Let $\pi: Y \rightarrow X^{\prime}$ be the structure morphism. Consider the open subscheme

$$
\begin{equation*}
Z=\operatorname{Spec}_{X^{\prime}}\left(\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}\right) \tag{3.1}
\end{equation*}
$$

of Y. Let $i: Z \rightarrow Y$ be the open immersion.
For each affine open subset U of X^{\prime}, we have a ring homomorphism

$$
R \longrightarrow \bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(U, \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}
$$

induced by the restriction to the open set U of X^{\prime}. Therefore, we have a natural morphism $j: Z \rightarrow \operatorname{Spec}(R)$:

LEMMA 3.5
The morphism $j: Z \rightarrow \operatorname{Spec}(R)$ coincides with the open immersion $\operatorname{Spec}(R) \backslash$ $V\left(\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R\right) \subset \operatorname{Spec}(R)$.

Proof
There exist $\alpha_{i j}$'s in $k(X)^{\times}$such that

$$
R\left[\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}}\right)^{-1}\right]=\Gamma\left(D_{+}\left(f_{j} t\right), \mathcal{O}_{X}\right)\left[\left(\alpha_{1 j} t_{1}\right)^{ \pm 1}, \ldots,\left(\alpha_{s j} t_{s}\right)^{ \pm 1}\right]
$$

for each j. The ring corresponding to the affine open set $(\pi i)^{-1}\left(D_{+}\left(f_{j} t\right)\right)$ just coincides with the above ring. Thus, we obtain

$$
Z=\operatorname{Spec}(R) \backslash V\left(\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R\right) .
$$

The group $\left(\mathbb{G}_{m}\right)^{s}$ acts on all the schemes in diagram (3.2). The action on X^{\prime} is trivial. All the morphisms in diagram (3.2) are compatible with the group action.

As in Definition 3.1, we can define the canonical sheaves with group action for the schemes in diagram (3.2). That is, the canonical sheaves for all the schemes in diagram (3.2) are \mathbb{Z}^{s}-graded.

Then, we have $\left.\omega_{R}\right|_{Z}=\omega_{Z}$ by compatibility with open immersions (see Remark 3.2). Since the height of $\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R$ is bigger than 1 as in Remark 2.4, we have an isomorphism

$$
H^{0}\left(Z, \omega_{Z}\right)=\omega_{R}
$$

which is compatible with the group action (see Remark 3.2).
On the other hand, $\pi: Y \rightarrow X^{\prime}$ is a smooth morphism of relative dimension s that is compatible with the group action. Then, the sheaf of differentials $\Omega_{Y / X^{\prime}}$ naturally has a group action; that is, it has a structure of a \mathbb{Z}^{s}-graded sheaf. We have

$$
\bigwedge^{s} \Omega_{Y / X^{\prime}} \simeq \pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}\right)(-1, \ldots,-1)
$$

where $(-1, \ldots,-1)$ denotes the shift of degree.
Then, by [6, Theorem 28.11], we have

$$
\begin{aligned}
\omega_{Y} & =\bigwedge^{s} \Omega_{Y / X^{\prime}} \otimes_{\mathcal{O}_{Y}} \pi^{*} \omega_{X^{\prime}} \\
& \simeq \pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}\right)(-1, \ldots,-1) \otimes_{\mathcal{O}_{Y}} \pi^{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \\
& =\pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1) .
\end{aligned}
$$

So we have

$$
\omega_{Z}=i^{*} \omega_{Y}=(\pi i)^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1) .
$$

Then,

$$
\begin{aligned}
\omega_{R} & =H^{0}\left(Z, \omega_{Z}\right) \\
& =H^{0}\left(X^{\prime},(\pi i)_{*} \omega_{Z}\right) \\
& =H^{0}\left(X^{\prime},(\pi i)_{*}(\pi i)^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1)\right) .
\end{aligned}
$$

By the equivariant projection formula ([6, Lemma 26.4]), we have

$$
\begin{aligned}
& (\pi i)_{*}(\pi i)^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1) \\
& \quad \simeq\left(\mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right) \otimes_{\mathcal{O}_{X^{\prime}}}(\pi i)_{*} \mathcal{O}_{Z}\right)(-1, \ldots,-1) \\
& \quad=\left(\mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right) \otimes_{\mathcal{O}_{X^{\prime}}}\left[\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}\right)\right]\right)(-1, \ldots,-1) \\
& \quad=\left(\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} \mathcal{O}_{X^{\prime}}\left(\sum_{i}\left(n_{i}+1\right) D_{i}^{\prime}+K_{X^{\prime}}\right)\right)(-1, \ldots,-1) \\
& \quad=\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
\omega_{R} & =\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)\right) \\
& =\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+K_{X}\right)\right) .
\end{aligned}
$$

We have completed the proof of Theorem 1.2.

4. Another proof of Theorem 1.2

In this section, we give another proof for Theorem 1.2 without using the twisted inverse functor, and we have to assume that the scheme X^{\prime} in Remark 2.4 is smooth over k. Note that it is automatically satisfied if the base field k is perfect.

The idea of this proof is based on [10, Lemma 13]. In the proof in this section, we have to assume that Theorem 1.2 is true if $s=1$.

REMARK 4.1

In the case where $s=1$, Theorem 1.2 is proved using Serre duality. Assume that $s=1$ and that $a_{1} D_{1}$ is a very ample Cartier divisor for some $a_{1}>0$. Put
$R=R\left(X ; D_{1}\right)$. Then, we have

$$
\begin{aligned}
& \bigoplus_{n_{1} \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(n_{1} D_{1}+K_{X}\right)\right)=\bigoplus_{n_{1} \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}\left(-n_{1} D_{1}\right), \omega_{X}\right) \\
= & \bigoplus_{n_{1} \in \mathbb{Z}} \operatorname{Hom}_{k}\left(H^{d}\left(X, \mathcal{O}_{X}\left(-n_{1} D_{1}\right)\right), k\right)=\bigoplus_{n_{1} \in \mathbb{Z}} \operatorname{Hom}_{k}\left(H_{R_{+}}^{d+1}(R)_{-n_{1}}, k\right) \\
= & { }^{*} \operatorname{Hom}_{k}\left(H_{R_{+}}^{d+1}(R), k\right)=\omega_{R} .
\end{aligned}
$$

First, we prove a basic fact on class groups as follows. The authors guess that it is well known; however, we do not know an adequate reference. Therefore, we give a proof here.

LEMMA 4.2

Let U be a normal scheme. Let F_{1}, \ldots, F_{t} be Cartier divisors on U. Put

$$
W=\operatorname{Spec}_{U}\left(\bigoplus_{m_{1}, \ldots, m_{t} \in \mathbb{Z}} \mathcal{O}_{U}\left(\sum_{j=1}^{t} m_{j} F_{j}\right)\right)
$$

Let $\pi: W \rightarrow U$ be the structure morphism.
Then, the sequence

$$
0 \longrightarrow \mathbb{Z} \overline{F_{1}}+\cdots+\mathbb{Z} \overline{F_{t}} \longrightarrow \mathrm{Cl}(U) \xrightarrow{\pi^{*}} \mathrm{Cl}(W) \longrightarrow 0
$$

is exact.

Proof
Recall that, since $\pi: W \rightarrow U$ is a flat morphism, the pullback map

$$
\pi^{*}: \mathrm{Cl}(U) \longrightarrow \mathrm{Cl}(W)
$$

is defined as in [3].
Put

$$
\begin{aligned}
E & =\operatorname{Spec}_{U}\left(\bigoplus_{m_{1}, \ldots, m_{t} \geq 0} \mathcal{O}_{U}\left(\sum_{j=1}^{t} m_{i} F_{i}\right)\right) \\
& =\operatorname{Spec}_{U}\left(\operatorname{Sym}_{\mathcal{O}_{U}}\left(\mathcal{O}_{U}\left(F_{1}\right) \oplus \cdots \oplus \mathcal{O}_{U}\left(F_{t}\right)\right)\right) \\
E_{j} & =\operatorname{Spec}_{U}\left(\bigoplus_{m_{j} \geq 0} \mathcal{O}_{U}\left(m_{j} F_{j}\right)\right)=\operatorname{Spec}_{U}\left(\operatorname{Sym}_{\mathcal{O}_{U}}\left(\mathcal{O}_{U}\left(F_{j}\right)\right)\right)
\end{aligned}
$$

for $j=1, \ldots, t$. Let

$$
\begin{array}{r}
p: E \longrightarrow U, \\
p_{j}: E_{j} \longrightarrow U, \\
q_{j}: E \longrightarrow E_{j}
\end{array}
$$

be the natural morphisms. Remark that $p=p_{j} q_{j}$ for any j. By [3, Theorem 3.3(a)], the flat pullback map

$$
p^{*}: \mathrm{Cl}(U) \longrightarrow \mathrm{Cl}(E)
$$

is an isomorphism. Let

$$
s_{j}: U \longrightarrow E_{j}
$$

be the zero section of the vector bundle $p_{j}: E_{j} \rightarrow U$. Then,

$$
W=E \backslash \bigcup_{j} q_{j}^{-1}\left(s_{j}(U)\right)
$$

By [3, Proposition 1.8], we have the following exact sequence:

$$
0 \longrightarrow \sum_{j} \mathbb{Z} \overline{q_{j}^{-1}\left(s_{j}(U)\right)} \longrightarrow \underset{\substack{\uparrow p^{*} \\ \mathrm{Cl}(U)}}{\mathrm{Cl}(E) \longrightarrow \mathrm{Cl}(W) \longrightarrow 0}
$$

Then $s_{j}(U)$ is linearly equivalent to $p_{j}^{*}\left(-F_{j}\right)$ by [3, Example 3.3.2]. Therefore, $q_{j}^{-1}\left(s_{j}(U)\right)$ is linearly equivalent to $-p^{*}\left(F_{j}\right)$. Thus, we have the desired exact sequence.

LEMMA 4.3
Suppose that Theorem 1.2(2) is satisfied.
Then, we have the following.
(1) The set

$$
\left\{M_{F} \mid F \text { is a Weil divisor on } X\right\}
$$

just coincides with the set of divisorial fractional ideals which are \mathbb{Z}^{s}-graded $R\left(X ; D_{1}, \ldots, D_{s}\right)$-submodules of $k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]$.
(2) For Weil divisors F_{1} and F_{2}, F_{1} is linearly equivalent to F_{2} if and only if $M_{F_{1}}$ is isomorphic to $M_{F_{2}}$ as a \mathbb{Z}^{s}-graded module.
(3) Further, assume that $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is Noetherian. Any nonzero $f_{i}-$ nitely generated \mathbb{Z}^{s}-graded reflexive $R\left(X ; D_{1}, \ldots, D_{s}\right)$-module of rank one is isomorphic to M_{G} as a \mathbb{Z}^{s}-graded module for some Weil divisor G on X.

Proof
Set $R=R\left(X ; D_{1}, \ldots, D_{s}\right)$.
First, we prove (1). Let F be a Weil divisor on X. We prove that M_{F} is a divisorial fractional ideal.

Since there exists an ample Cartier divisor in $\mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s}$, we can find $a t_{1}^{m_{1}} \cdots t_{s}^{m_{s}}$ such that $\operatorname{div}_{X}(a)+\sum_{i} m_{i} D_{i}-F$ is an effective divisor, where $\operatorname{div}_{X}(a)$ is the principal Weil divisor corresponding to $a \in k(X)^{\times}$. By definition, it is easy to check that, for $a \in k(X)^{\times}$,

$$
\begin{equation*}
\left(a t_{1}^{m_{1}} \cdots t_{s}^{m_{s}}\right) M_{F}=M_{F-\operatorname{div}_{X}(a)-\sum_{i} m_{i} D_{i}} \tag{4.1}
\end{equation*}
$$

We have only to show that $M_{F-\operatorname{div}_{X}(a)-\sum_{i} m_{i} D_{i}}$ is a divisorial fractional ideal.

We define H_{1} and P_{V} as in Remark 2.4. Set

$$
F-\operatorname{div}_{X}(a)-\sum_{i} m_{i} D_{i}=-\sum_{j=1}^{u} \ell_{j} V_{j}
$$

where V_{1}, \ldots, V_{u} are distinct elements in H_{1}. By the argument as above, all of the ℓ_{j} 's are positive integers.

For $V \in H_{1}$, we define R_{V} as in [2, p. 629]. (Here we use the symbol V instead of F in [2].) In this case, we obtain

$$
R_{P_{V}}=\left(R_{V}\right)_{\alpha_{V} R_{V}}
$$

as in [2, p. 632]. Therefore, for any $\ell>0$, we have

$$
P_{V}^{(\ell)}=P_{V}^{\ell} R_{P_{V}} \cap R=\alpha_{V}^{\ell}\left(R_{V}\right)_{\alpha_{V} R_{V}} \cap R=M_{-\ell V} .
$$

Then,

$$
M_{-\sum_{j} \ell_{j} V_{j}}=\bigcap_{j} M_{-\ell_{j} V_{j}}=\bigcap_{j} P_{V_{j}}{ }^{\left(\ell_{j}\right)}
$$

Since the $P_{V_{j}}$'s are homogeneous prime ideals of R of height one, $M_{-\sum_{j} \ell_{j} V_{j}}$ is a divisorial fractional ideal.

Conversely, let N be a divisorial fractional ideal that is a \mathbb{Z}^{s}-graded R submodule of $k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]$. Using (4.1), it is sufficient to prove that N coincides with M_{F} for some Weil divisor F in the case where $N \subset R$. Then, N coincides with an intersection of symbolic powers of homogeneous prime ideals of height one. Therefore, there exist $V_{1}, \ldots, V_{u} \in H_{1}$ and positive integers $\ell_{1}, \ldots, \ell_{u}$ such that

$$
N=\bigcap_{j} P_{V_{j}}\left(\ell_{j}\right)=\bigcap_{j} M_{-\ell_{j} V_{j}}=M_{-\sum_{j} \ell_{j} V_{j}} .
$$

Assertions (2) and (3) are easily verified, so we omit the proofs.

REMARK 4.4

Assume (2) in Theorem 1.2. Put $R=R\left(X ; D_{1}, \ldots, D_{s}\right)$. The map p in (1.1) is constructed as follows.

Let $\operatorname{HDiv}(R)$ be the free abelian group generated by all the homogeneous prime divisors of $\operatorname{Spec}(R)$, that is,

$$
\operatorname{HDiv}(R)=\bigoplus_{V \in H_{1}(X)} \mathbb{Z}\left[\operatorname{Spec}\left(R / P_{V}\right)\right],
$$

where $\left[\operatorname{Spec}\left(R / P_{V}\right)\right]$ denotes the generator corresponding to the closed subscheme $\operatorname{Spec}\left(R / P_{V}\right)$. Here we recall that

$$
\left\{P_{V} \mid V \in H_{1}(X)\right\}
$$

coincides with the set of all the homogeneous prime ideals of R of height one as in [2, p. 632].

We define

$$
\xi^{\prime}: \operatorname{Div}(X) \rightarrow \operatorname{HDiv}(R)
$$

by

$$
\xi^{\prime}\left(\sum_{V \in H_{1}(X)} n_{V} V\right)=\sum_{V \in H_{1}(X)} n_{V}\left[\operatorname{Spec}\left(R / P_{V}\right)\right] .
$$

(This map ξ^{\prime} is equal to ξ in [2, p. 631] if we identify $\left[\operatorname{Spec}\left(R / P_{V}\right)\right]$ with P_{V}.) As in [2], ξ^{\prime} induces the map

$$
\varphi^{\prime}: \mathrm{Cl}(X) \rightarrow \mathrm{A}^{1}(\operatorname{Spec}(R))
$$

satisfying

$$
\varphi^{\prime}\left(\sum_{V \in H_{1}(X)} n_{V} V\right)=\overline{\sum_{V \in H_{1}(X)} n_{V}\left[\operatorname{Spec}\left(R / P_{V}\right)\right]} \text {, }
$$

where $\mathrm{A}^{1}(\operatorname{Spec}(R))$ denotes the Chow group of $\operatorname{Spec}(R)$ of codimension one. Then, we have the following exact sequence:

$$
0 \longrightarrow \mathbb{Z} \overline{D_{1}}+\cdots+\mathbb{Z} \overline{D_{s}} \longrightarrow \mathrm{Cl}(X) \xrightarrow{\varphi^{\prime}} \mathrm{A}^{1}(\operatorname{Spec}(R)) \longrightarrow 0 .
$$

Let $\mathrm{Cl}(R)$ be the set of isomorphism classes of divisorial fractional ideals of R. Then we have the isomorphism

$$
i: \mathrm{A}^{1}(\operatorname{Spec}(R)) \longrightarrow \mathrm{Cl}(R)
$$

defined by

$$
i\left(\overline{\sum_{V \in H_{1}(X)} n_{V}\left[\operatorname{Spec}\left(R / P_{V}\right)\right]}\right)=-\sum_{V \in H_{1}(X)} n_{V} \overline{P_{V}}=\overline{M_{\sum_{V \in H_{1}(X)} n_{V} V}}
$$

where $\overline{P_{V}}$ (resp., $\overline{M_{\sum_{V \in H_{1}(X)} n_{V} V}}$) denotes the isomorphism class containing P_{V} (resp., $M_{\sum_{V \in H_{1}(X)} n_{V} V}$.

We set $p=i \varphi^{\prime}$. Then,

$$
p: \mathrm{Cl}(X) \rightarrow \mathrm{Cl}(R)
$$

is the map which satisfies $p(\bar{F})=\overline{M_{F}}$ for each Weil divisor F on X, and we have the exact sequence (1.1).

We now start to prove Theorem 1.2 in the case where $s \geq 2$. Suppose that all the assumptions in Theorem 1.2 are satisfied. We assume that X^{\prime} in Remark 2.4 is smooth over k.

Since ω_{R} is a finitely generated \mathbb{Z}^{s}-graded reflexive R-module of rank one, there exists a Weil divisor G such that ω_{R} is isomorphic to M_{G} as a \mathbb{Z}^{s}-graded module as in Lemma 4.3.

We want to show that G is linearly equivalent to K_{X}. Assume the contrary, that is, $\overline{G-K_{X}} \neq 0$ in $\mathrm{Cl}(X)$.

Then, we can choose $F_{1}, \ldots, F_{s} \in \mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s}$ satisfying the following three conditions:
(1) $\mathbb{Z} F_{1}+\cdots+\mathbb{Z} F_{s}=\mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s}$;
(2) if $b_{1} F_{1}+\cdots+b_{s} F_{s}$ is linearly equivalent to a nonzero effective divisor, then $b_{s}>0$;
(3) $\overline{G-K_{X}} \notin \mathbb{Z} \overline{F_{1}}+\cdots+\mathbb{Z} \overline{F_{s-1}}$.

Here, recall that s is bigger than 1 , and F_{1}, \ldots, F_{s} are linearly independent over \mathbb{Z} by assumption (1) in Theorem 1.2.

We define a map

$$
\varphi: \mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s} \longrightarrow \mathbb{Z}
$$

by

$$
\varphi\left(b_{1} F_{1}+\cdots+b_{s} F_{s}\right)=b_{s} .
$$

The kernel of φ is equal to $\mathbb{Z} F_{1}+\cdots+\mathbb{Z} F_{s-1}$.
We think that R is a \mathbb{Z}-graded ring by

$$
\operatorname{deg}\left(a t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}\right)=\varphi\left(n_{1} D_{1}+\cdots+n_{s} D_{s}\right)
$$

Set $T=\operatorname{Proj}(R)$. Take an ample Cartier divisor $D=\sum_{i} a_{i} D_{i}$, a subring S, and f_{1}, \ldots, f_{ℓ} as in Remark 2.4. Set $Q=T \backslash V_{+}\left(\left(f_{j} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid j\right) R\right)$. In this section, for an ℓ-dimensional normal algebraic variety W over k which is smooth over k in codimension one, we define

$$
\omega_{W}=\left(\bigwedge_{\bigwedge}^{\ell} \Omega_{W / k}\right)^{* *}
$$

However, for R we define ω_{R} as in Definition 2.2.
Then, it is easy to see that Q coincides with

$$
\operatorname{Spec}_{X^{\prime}}\left(\bigoplus_{m_{1}, \ldots, m_{s-1} \in \mathbb{Z}} \mathcal{O}_{X^{\prime}}\left(\sum_{j=1}^{s-1} m_{j} F_{j}^{\prime}\right)\right),
$$

where $F_{j}^{\prime}=\left.F_{j}\right|_{X^{\prime}}$. Since $X \backslash X^{\prime}=\operatorname{Sing}(X)$, the natural restriction

$$
\begin{equation*}
\mathrm{Cl}(X) \longrightarrow \mathrm{Cl}\left(X^{\prime}\right) \tag{4.2}
\end{equation*}
$$

is an isomorphism. Let $\pi: Q \rightarrow X^{\prime}$ be the structure morphism.
Then, by Lemma 4.2, we have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z} \overline{F_{1}^{\prime}}+\cdots+\mathbb{Z} \overline{F_{s-1}^{\prime}} \longrightarrow \mathrm{Cl}\left(X^{\prime}\right) \xrightarrow{\pi^{*}} \mathrm{Cl}(Q) \longrightarrow 0 \tag{4.3}
\end{equation*}
$$

Since $\operatorname{dim} Q=d+s-1$, we have

$$
\left.\omega_{T}\right|_{Q}=\omega_{Q}=\bigwedge^{d+s-1} \Omega_{Q / k}
$$

Since X^{\prime} is smooth over k and $\pi: Q \rightarrow X^{\prime}$ is a smooth morphism, the sequence

$$
0 \longrightarrow \pi^{*} \Omega_{X^{\prime} / k} \longrightarrow \Omega_{Q / k} \longrightarrow \Omega_{Q / X^{\prime}} \longrightarrow 0
$$

is exact. Therefore, we have

$$
\begin{aligned}
\omega_{Q} & =\bigwedge^{d+s-1} \Omega_{Q / k} \\
& =\bigwedge^{d} \pi^{*} \Omega_{X^{\prime} / k} \otimes \mathcal{O}_{Q} \bigwedge^{s-1} \Omega_{Q / X^{\prime}}
\end{aligned}
$$

$$
\begin{align*}
& =\pi^{*} \bigwedge^{d} \Omega_{X^{\prime} / k} \otimes_{\mathcal{O}_{Q}} \pi^{*} \mathcal{O}_{X^{\prime}}\left(F_{1}^{\prime}+\cdots+F_{s-1}^{\prime}\right) \tag{4.4}\\
& =\pi^{*} \omega_{X^{\prime}} \otimes_{\mathcal{O}_{Q}} \mathcal{O}_{Q} \\
& =\pi^{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right)
\end{align*}
$$

since $\pi^{*} \mathcal{O}_{X^{\prime}}\left(F_{1}^{\prime}+\cdots+F_{s-1}^{\prime}\right) \simeq \mathcal{O}_{Q}$ by the exact sequence (4.3).
On the other hand, we have

$$
\omega_{T}=\left(\underset{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}}{\bigoplus^{0}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+G\right)\right)\right)^{\sim}
$$

where the right-hand side is the coherent \mathcal{O}_{T}-module associated with the \mathbb{Z} graded module

$$
\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+G\right)\right)
$$

that is, the canonical module of the \mathbb{Z}-graded ring R. (Note that we used the fact that Theorem 1.2 is true if $s=1$.) Therefore, we obtain

$$
\omega_{Q}=\left.\omega_{T}\right|_{Q}=\left(\bigoplus_{m_{1}, \ldots, m_{s-1} \in \mathbb{Z}} \mathcal{O}_{X^{\prime}}\left(\sum_{j=1}^{s-1} m_{j} F_{j}^{\prime}+G^{\prime}\right)\right)^{\sim}
$$

where $G^{\prime}=\left.G\right|_{X^{\prime}}$, and the right-hand side is a coherent \mathcal{O}_{Q}-module associated with

$$
\bigoplus_{m_{1}, \ldots, m_{s-1} \in \mathbb{Z}} \mathcal{O}_{X^{\prime}}\left(\sum_{j=1}^{s-1} m_{j} F_{j}^{\prime}+G^{\prime}\right)
$$

that is, a sheaf of modules over the sheaf of algebras

$$
\bigoplus_{m_{1}, \ldots, m_{s-1} \in \mathbb{Z}} \mathcal{O}_{X^{\prime}}\left(\sum_{j=1}^{s-1} m_{j} F_{j}^{\prime}\right)
$$

on X^{\prime}. Therefore, we have

$$
\begin{equation*}
\omega_{Q}=\pi^{*} \mathcal{O}_{X^{\prime}}\left(G^{\prime}\right) \tag{4.5}
\end{equation*}
$$

Here for Weil divisors E_{1} and E_{2} on X^{\prime}, we know that

$$
\pi^{*} \mathcal{O}_{X^{\prime}}\left(E_{1}\right) \simeq \pi^{*} \mathcal{O}_{X^{\prime}}\left(E_{2}\right) \Longleftrightarrow \overline{E_{1}} \equiv \overline{E_{2}} \quad \bmod \mathbb{Z} \overline{F_{1}^{\prime}}+\cdots+\mathbb{Z} \overline{F_{s-1}^{\prime}}
$$

by the exact sequence (4.3).
Thus, by (4.4) and (4.5), we obtain

$$
\overline{G^{\prime}-K_{X^{\prime}}} \in \mathbb{Z} \overline{F_{1}^{\prime}}+\cdots+\mathbb{Z} \overline{F_{s-1}^{\prime}} .
$$

Since the restriction (4.2) is an isomorphism, we know that

$$
\overline{G-K_{X}} \in \overline{\mathbb{Z}} \overline{F_{1}}+\cdots+\mathbb{Z} \overline{F_{s-1}}
$$

in $\mathrm{Cl}(X)$. It is a contradiction.
We have completed the proof of Theorem 1.2.

REMARK 4.5

Suppose that all the assumptions in Theorem 1.2 are satisfied. We choose D, S as in Remark 2.4. Put $d=\operatorname{dim} X$. Then, $\operatorname{dim} R=d+s$ as in [2]. Let \mathfrak{m} be the unique maximal homogeneous ideal of R. Let S_{+}be the maximal ideal of S generated by all the homogeneous elements of positive degree. Then, we have

$$
\begin{aligned}
H_{\mathfrak{m}}^{d+s}(R) & ={ }^{*} \operatorname{Hom}_{k}\left(\omega_{R}, k\right) \\
& =\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} \operatorname{Hom}_{k}\left(H^{0}\left(X, \mathcal{O}_{X}\left(-\sum_{i} n_{i} D_{i}+K_{X}\right)\right), k\right) \\
& =\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{d}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) \\
& =H_{S_{+}}^{d+1}(R)
\end{aligned}
$$

by Serre duality.
Note that there are many examples such that

$$
H_{\mathfrak{m}}^{d+s-1}(R) \neq H_{S_{+}}^{d}(R) .
$$

5. Some examples

In this section, we give some examples.

EXAMPLE 5.1

Let $B=k[x, y, z]$ be a weighted polynomial ring over a field k with $\operatorname{deg}(x)=a$, $\operatorname{deg}(y)=b$, and $\operatorname{deg}(z)=c$, where a, b, c are pairwise coprime positive integers.

Let P be the kernel of the k-algebra homomorphism $k[x, y, z] \longrightarrow k[t]$ defined by $x \mapsto t^{a}, y \mapsto t^{b}, z \mapsto t^{c}$.

Let $\pi: X \rightarrow \operatorname{Proj}(B)$ be the blowup at $V_{+}(P)$. Let A be an integral Weil divisor on X satisfying $\mathcal{O}_{X}(A)=\pi^{*} \mathcal{O}_{\operatorname{Proj}(B)}(1)$. Put $E=\pi^{-1}\left(V_{+}(P)\right)$. In this case, $\mathrm{Cl}(X)$ is freely generated by \bar{A} and \bar{E}. We have

$$
K_{X}=E-(a+b+c) A .
$$

Then, $R(X ;-E, A)$ coincides with the extended symbolic Rees ring

$$
R=k\left[x, y, z, t^{-1}, P t, P^{(2)} t^{2}, P^{(3)} t^{3}, \ldots\right] \subset k\left[x, y, z, t, t^{-1}\right] .
$$

R is a \mathbb{Z}^{2}-graded ring with $\operatorname{deg}(x)=(0, a), \operatorname{deg}(y)=(0, b), \operatorname{deg}(z)=(0, c)$, $\operatorname{deg}(t)=(1,0)$. We know that

$$
\omega_{R}=R(-1,-(a+b+c)) .
$$

For positive integers α and β, we define

$$
R^{(\alpha, \beta)}=\bigoplus_{m_{1}, m_{2} \in \mathbb{Z}} R_{\left(\alpha m_{1}, \beta m_{2}\right)} .
$$

Here, we remark that $R^{(\alpha, \beta)}=R(X ;-\alpha E, \beta A)$. Therefore, $\omega_{R^{(\alpha, \beta)}}$ is an $R^{(\alpha, \beta)}{ }_{-}$ free module if and only if $\alpha=1$ and $\beta \mid(a+b+c)$.

EXAMPLE 5.2

Let k be a field, and let t_{1}, \ldots, t_{r} be rational distinct closed points in \mathbb{P}_{k}^{n}. Let I_{i} be the defining ideal of t_{i} in the homogeneous coordinate ring $B=k\left[x_{0}, \ldots, x_{n}\right]$. Recall that I_{i} is generated by linearly independent n-linear forms. Therefore, for any $\ell>0$,

$$
I_{i}^{\ell}=\left(I_{i}^{\ell}\right)^{\mathrm{sat}}=I_{i}^{(\ell)},
$$

where $\left(I_{i}^{\ell}\right)^{\text {sat }}$ is the saturation of the ideal I_{i}^{ℓ}, and $I_{i}^{(\ell)}$ is the ℓ th symbolic power of I_{i}.

Let m_{1}, \ldots, m_{r} be positive integers. Put

$$
I=I_{1}^{m_{1}} \cap \cdots \cap I_{r}^{m_{r}} .
$$

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be the blowup at t_{1}, \ldots, t_{r}. Put $E_{i}=\pi^{-1}\left(t_{i}\right)$ for $i=1, \ldots, \ell$. Let A be a Weil divisor on X that satisfies $\mathcal{O}_{X}(A)=\pi^{*} \mathcal{O}_{\mathbb{P}_{k}^{n}}(1)$. Then, $\mathrm{Cl}(X)$ is freely generated by $\bar{A}, \overline{E_{1}}, \ldots, \overline{E_{r}}$. In this case, we have

$$
K_{X}=(n-1)\left(E_{1}+\cdots+E_{r}\right)-(n+1) A .
$$

Put

$$
R=R\left(X ;-m_{1} E_{1}-\cdots-m_{r} E_{r}, A\right) .
$$

Here, $-m_{1} E_{1}-\cdots-m_{r} E_{r}+m A$ is an ample Cartier divisor for $m \gg 0$. Then, R coincides with the extended symbolic Rees ring of I; that is,

$$
R=B\left[t^{-1}, I t, I^{(2)} t^{2}, I^{(3)} t^{3}, \ldots\right] \subset B\left[t, t^{-1}\right],
$$

where

$$
I^{(\ell)}=I_{1}^{\ell m_{1}} \cap \cdots \cap I_{r}^{\ell m_{r}} .
$$

Assume that R is Noetherian. Then, by Corollary 1.3, we know that

$$
\begin{aligned}
\omega_{R} \simeq R & \Longleftrightarrow \overline{K_{X}} \in \mathbb{Z} \overline{\left(-m_{1} E_{1}-\cdots-m_{r} E_{r}\right)}+\mathbb{Z} \bar{A} \\
& \Longleftrightarrow\left\{\begin{array}{l}
m_{1}=\cdots=m_{r} \\
m_{1} \mid(n-1)
\end{array}\right.
\end{aligned}
$$

EXAMPLE 5.3

Here, we give an example where the equality (1.2) is not satisfied if we remove the assumption that L_{2} contains an ample Cartier divisor.

Set $X=\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}, A_{1}=\mathbb{P}_{k}^{1} \times(1: 0)$ and $A_{2}=(1: 0) \times \mathbb{P}_{k}^{1}$. Then, $\mathrm{Cl}(X)$ is freely generated by $\overline{A_{1}}$ and $\overline{A_{2}}$. We know that

$$
\operatorname{Cox}(X)=R\left(X ; A_{1}, A_{2}\right)=k\left[x_{0}, x_{1}, y_{0}, y_{1}\right],
$$

where $\operatorname{deg}\left(x_{0}\right)=\operatorname{deg}\left(x_{1}\right)=(1,0)$ and $\operatorname{deg}\left(y_{0}\right)=\operatorname{deg}\left(y_{1}\right)=(0,1)$.
Then, we have

$$
\omega_{R\left(X ; A_{1}, A_{2}\right)}=R\left(X ; A_{1}, A_{2}\right)(-2,-2)
$$

since $K_{X}=-2 A_{1}-2 A_{2}$.

For $a, b \in \mathbb{Z}$, we define

$$
S_{a, b}=R\left(X ; a A_{1}+b A_{2}\right)
$$

and

$$
L_{a, b}=\mathbb{Z}\left(a A_{1}+b A_{2}\right) \subset \mathbb{Z} A_{1}+\mathbb{Z} A_{2}
$$

Then, we have

$$
S_{a, b}=\left.R\left(X ; A_{1}, A_{2}\right)\right|_{L_{a, b}} .
$$

In this case, $a A_{1}+b A_{2}$ is ample if and only if $a>0$ and $b>0$.
Therefore, if $a>0$ and $b>0$, then

$$
\omega_{S_{a, b}}=\left.\omega_{R\left(X ; A_{1}, A_{2}\right)}\right|_{L_{a, b}}
$$

by (1.2). However, we have

$$
\left.\omega_{R\left(X ; A_{1}, A_{2}\right)}\right|_{L_{1,0}}=0 \neq \omega_{S_{1,0}} .
$$

In the case where $a>0$ and $b>0, S_{a, b}$ is the Segre product of $k\left[x_{0}, x_{1}\right]^{(a)}$ and $k\left[y_{0}, y_{1}\right]^{(b)}$. Here, $k\left[x_{0}, x_{1}\right]^{(a)}$ is the a th Veronese subring of $k\left[x_{0}, x_{1}\right]$, that is,

$$
k\left[x_{0}, x_{1}\right]^{(a)}=\bigoplus_{n \geq 0} k\left[x_{0}, x_{1}\right]_{n a} .
$$

Then, we have

$$
\omega_{S_{a, b}}=\bigoplus_{n>0}\left(k\left[x_{0}, x_{1}\right]_{n a-2} \otimes_{k} k\left[y_{0}, y_{1}\right]_{n b-2}\right)=\omega_{k\left[x_{0}, x_{1}\right](a)} \# \omega_{\left.k\left[y_{0}, y_{1}\right]\right]^{(b)}}
$$

as in [4, Theorem (4.3.1)].

References

[1] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50.
[2] E. J. Elizondo, K. Kurano, and K.-i. Watanabe, The total coordinate ring of a normal projective variety, J. Algebra 276 (2004), 625-637.
[3] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
[4] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213.
[5] , On graded rings, II (\mathbf{Z}^{n}-graded rings), Tokyo J. Math. 1 (1978), 237-261.
[6] M. Hashimoto, "Equivariant twisted inverses" in Foundations of Grothendieck Duality for Diagrams of Schemes, Lecture Notes in Math. 1960, Springer, Berlin, 2009, 261-478.
[7] M. Hashimoto and M. Ohtani, "Local cohomology on diagrams of schemes" in Special Volume in Honor of Melvin Hochster, Michigan Math. J. 57, Univ. Michigan Math. Dept., Ann Arbor, 2008, 383-425.
[8] , Equivariant Matlis and the local duality, J. Algebra 324 (2010), 1447-1470.
[9] Y. Kamoi, Noetherian rings graded by an abelian group, Tokyo J. Math. 18 (1995), 31-48.
[10] O. N. Popov, The Cox ring of a Del Pezzo surface has rational singularities, preprint, arXiv:math/0402154v1 [math.AG].
[11] K.-i. Watanabe, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83 (1981), 203-211.

Hashimoto: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan; hasimoto@math.nagoya-u.ac.jp

Kurano: Department of Mathematics, School of Science and Technology, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan;
kurano@math.meiji.ac.jp

