Big arithmetic divisors on the projective
spaces over 7

Atsushi Moriwaki

Abstract In this paper, we observe several properties of an arithmetic divisor D on Py
and give the exact form of the Zariski decomposition of D on PL. Further, we show that,

if n > 2 and D is big and non-nef, then for any birational morphism f : X — IP% of pro-
jective, generically smooth, and normal arithmetic varieties, we cannot expect asuitable

Zariski decomposition of f* (D). We also give a concrete construction of Fujita’s approx-
imation of D.

0. Introduction

Let P} =Proj(Z[To, 11, ..., Ty]), H; ={T; =0}, and z; =T, /T, for i =0,1,...,n.
Let us fix a sequence a = (ag, a1, ...,a,) of positive numbers. We define an Hy-
Green function g, of (C° NPSH)-type on P*(C) and an arithmetic divisor D,
of (C*° NPSH)-type on P} to be
ga :=log(ag + ay|z1|* + -+ + anlzal?) and Dg := (Ho, ga)-

In this paper, we observe several properties of D, and give the exact form of
the Zariski decomposition of D, on PL. Further, we show that, if n > 2 and D,
is big and not nef, then for any birational morphism f: X — P} of projective,
generically smooth, and normal arithmetic varieties, we cannot expect a suitable
Zariski decomposition of f*(D,). In this sense, the results in [10] are nothing
short of miraculous, and arithmetic linear series are very complicated and have
a richer structure than we expected. We also give a concrete construction of
Fujita’s approximation of Dg. The following is a list of the main results of this

paper.

MAIN RESULTS
Let @q :Rggl — R be a function given by

n n
Ca(To,T1,..., %) 1= —Zmi log x; + le loga;,
=0 i=0
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Figure 1. Geography of D, on P

and let
Oq := {(xl,...,x”) cA, | Va(l—a1 — =Ty, T1,. .., %) ZO},

where A, :={(z1,...,2n) € R, |21+ -+, <1}. Then the following proper-
ties hold for Dg.

(1)  Dq is ample if and only if ag > 1,a1 > 1,...,a, > 1.

(2) Daq is nef if and only if ap > 1,40 > 1,...,a, > 1.

(3) Da is big if and only if ap+a1 + -+ a, > 1.

(4) D is pseudoeffective if and only if ag +ay + -+ an > 1.

(5)  We have HO(P2,ID,) # {0} if and only if 18, NZ" #0. As a conse-
quence, we have the following.

(5.1) We assume that a9+ a1 + -+ + a, = 1. For a positive integer I,

{O,:I:zlla1 coezlany iflay, .. lay, €7,

HO(P2,ID,) =
(P2 1Da) {{O} otherwise.

In particular, if a ¢ Q"L then ﬁO(P’Z’, IDg) = {0} for all 1 >1.
(5.2) For any positive integer 1, there exists a € Qggl such that Dg is big

and
H°(P%,kDq) = {0}
for all k with 1 <k <I.
6) We have (HO®L,Da))s= B, ooyesouran L5250 if 104 1
7" +£).
(7)  (Integral formula) The following formulae hold:

— (n+1)!

vol(D,) = 5 / wall—21 — —Tp,21,...,2,)dxy - dy,
(S

and

— n+1)!
deg(DaH):%/ wa(l—a1 —+ — Ty, T1,...,%,)dxy - dy.
Ay
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In particular, d/e\g(ﬁffrl) = \751(5&) if and only if Dy is nef. Yuan points out
that pq coincides with the concave function Gy, F) in [2] due to Boucksom and
Chen, so that the above two formulae are the special cases of the main results
of [2]. Yuan also constructs a similar function in [12].

(8) (Zariski decomposition forn=1) We assume that n=1. The Zariski
decomposition of D exists if and only if ag + a1 > 1. Moreover, the positive part
of Dg is given by (o Hy — Vo H1,pa), where ¥q = inf O, 0, =supO,, and

Vg log |21]? if |z1] < M’

pa(21) = Qlog(ao +ar|a1[?) if /o t0le < |a| < | [ 00fe
O log |21 if |21 > ) e

In particular, if ag + a1 =1, then the positive part is fal(/z\l).

(9) (Impossibility of Zariski decomposition for n>2) We assume that
n>2. If Dg is big and not nef (i.e., ag+---+a, >1 and a; <1 for some i),
then for any birational morphism f: X — Py of projective, generically smooth,
and normal arithmetic varieties, there is no decomposition f*(Dg) = P+ N with
the following properties.

(9.1) P is a nef and big arithmetic R-divisor of (C° N PSH)-type on X .

(9.2) N is an effective arithmetic R-divisor of C°-type on X.

(9.3) For any horizontal prime dwvisor T' on X (i.e., T is a reduced and
irreducible divisor on X such that T is flat over Z),

multr (V)
< inf{multr (f*(Ho) + (1/1)(¢)) | 1 € Zxo,¢ € H°(1f*(Da)) \ {0} }.
(10) (Fujita’s approzimation) We assume that Dg is big. Let Int(0,) be the
set of interior points of ©4. We choose 1, ...,z, € Int(O4) N Q™ such that

(n+1)! —
T /(;) ¢(21,épa(51))7-~~:(zmwa(57‘))(x) dx > VOI(Da) — €,
where © := Conv{zy,...,z,} and
P(@1.0a (@)@ 00 @) (T)
=max{t ER| (z,t) € Conv{(z1,9a(Z1)),. .., (Tr, 0a(@,)) } CR" x R}

for € © (see Conventions and terminology (2) for the definition of Z1,...,Z,).
Using the above points x1,...,2z,., we can construct a birational morphism w :
Y — P} of projective, generically smooth, and normal arithmetic varieties, and
a nef arithmetic Q-divisor P of (C° NPSH)-type on Y such that

P<u*(Dy)  and  vol(P) > vol(Dg) — ¢

(for details, see Section 6).
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Conventions and terminology

(1) For & = (x1,...,2,) € R", the ith entry x; of « is denoted by z(i). We
define |z| to be |z| =21 + - + z,.

(2) For z = (x1,...,7,) €ER" and m € R, we define 2" € R™"* to be

~m
T =(m—x1 — =Xy, L1, ..., Tp).

Note that || = m. For simplicity, in the case where m = 1, we denote T by Z.

(3) Let e=(e1,...,e,) €ZL, and I =|e|. A monomial 27" ---z;" is denoted

by 2¢. The multinomial coefficient 1!/(e1!---e,!) is denoted by (1).
(4) We freely use the notation in [10].

1. Fundamental properties of the characteristic function

Let P} = Proj(Z[Ty, 11, .., Tv]), H; ={T; =0}, and 2z, =T;/Tp for i=0,...,n.
Let us fix a = (ag,a1,...,a,) ER’;#. We set

hu:a0+a1|z1|2+~--+an\zn|27 Ja =10g ha, and Wa:ddc(ga,>
on P*(C), that is,
Ga = —1C’g|TO|2 + log(ao|T0|2 +oe an|Tn|2)~

PROPOSITION 1.1

(1) The form wq is positive. In particular, gq is an Ho-Green function of
(C* NPSH)-type.
(2) If we set g =wl™, then

B, — (\/—_l)nn!aom

a
P dzy ANdZL A - ANdzy, AdZ,

2T thrl
and
/ Bo=1.
P (C)
Proof
(1) Note that
V=1 /e~ a; Q022
=y L dz Adz — Mdlmd--).
Ya T Tor (;ha(z) s a > ha (2)? Zi N dz;
If we set

Q; a,-ajéizj

A= (6 _ ‘ ’
(omta = o iz

then it is easy to see that

A1 _ _
a0 sy a2 aiaglzg — 2N

ha(2)?

An
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Thus w, is positive definite.
(2) The first assertion follows from the following claim.

CLAIM 1.11
For aq,...,a, €C,

n
det(dijt; — ;@) 1<i<n =t1tn — Z ity -ty - tigr b
1<j<n i=1

Proof

We denote (8;;t; — ;@) 1<i<n by B. If t; =t; =0 for i # j, then the ith column
15j<n
and the jth column of B are linearly dependent, so that det B = 0. Therefore we

can set
n
detB:tl"'tn_zcitl"'tifl 'ti+1"'tn
i=1

for some ci,...,¢, € C. It is easy to see that det B = —|o;|? if t; =0 and ¢, =
"‘:ti_1:t7;+1:"':tn:1. ThUSCi:|CKi|2. O

Let | - | be a C*°-Hermitian metric of O(1) given by

I Tila = 2 2 2

Vaol P + ar[ T2 + -+ + an| T,
for i=0,...,n. Then ¢;(O(1),|]a) = wa. Thus the second assertion of Proposi-
tion 1.1 follows. O

We define a function @ : RZST — R to be

n n
Pa (T, ..., Tn) = _in logx; + Zmz logai,
i=0 i=0

which is called the characteristic function of go. The function ¢, plays a key

v
role in this paper. Here note that g(0,...,1,...,0) =loga; for i =0,...,n.
Moreover, ¢, is concave because xlogx is convex. Notably, the characteristic
function is very similar to the entropy function in coding theory.

LEMMA 1.2
For (zq,...,2n) ER’ZL# with xg +x1 4+ - +x, =1,

Pa(T0;- -, n) <log(ag + a1+ -+ +ayn),
and the equality holds if and only if
xo=aop/(ap+ a1+ - +apn),...,tn=an/(ag+a1 +- -+ ay).

Proof
Let us begin with the following claim.
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CLAIM 1.2.1
For ay,...,ap,B1,...,0r,t1,...,tr ERsg with ay + -+, =1,

Z a;logt; <log (Z &-ti) + Z a;log %7
i=1 i=1 i=1 Bi
and the equality holds if and only if (B1/c1)t1 =+ = (8] )t,.

Proof
Note that if we set t; = (8;/a;)t; for i=1,...,r, then

ZT: ajlogt; — log (XT: ﬁiti) = XT: a;logt; — log (ZT: ait;) + XT: a;log %
i=1 i=1 i=1 i=1 i=1 v

Thus we may assume that a; = §; for all 7. In this case, the inequality is nothing
more than Jensen’s inequality for the strictly concave function log. |

We set I ={i|x; #0}. Then, using the above claim, we have
S ntogas <log(Ya) + i logn,
icl iel iel
and hence
©a(T0,. .. Tn) = Z —xz;logz; + sz loga;
icl iel
< log(z ai) <log(ap+ -+ an).
iel
In addition, the equality holds if and only if a;/x; = a;/z; for all 4,5 € I and
a; =0 for all ¢ ¢ I. Thus the assertion of Lemma 1.2 follows. ]

Note that
HO(P,iH)) = @ 2Z2°

eEZgo,\e|§l

(for the definition of |e| and 2%, see Conventions and terminology (1), (3)).
According to [10], | |iga, || - [liga > and (-, )14, are defined by

|¢‘lga = |¢|exp(—lga/2), ||¢||lga = Sup{|¢|lga (CC) ’ T e ]p"((c)}

and
(6 D)1gn = / b exp(—1ga) o,
P (C)
where ¢, € HO(P*(C),lH,).

PROPOSITION 1.3
Let | be a positive integer, and let e = (e1,...,e,),€' = (e],...,e}) € ZZ, with
e, le| <.
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(1) We have ||ze|\l2ga = exp(—lpa(€'/1)). (For the definition of €, see Con-
ventions and terminology (2).)

(2) We have
, 0 ife#é,

<Ze’ze >lga: 1 ife:e'

(" (&)

(for the definition of (Ell ), see Conventions and terminology (3)).

Proof
(1) By the definition of |2®|;g, , we can see

log |ze\12ga =eglog|To|® + - - + enlog [T}, | — llog(ag|To|* + - - + an|Th|?),
where eg =1 —e; —---—e, and where (T : ---: T,) is a homogeneous coordinate

of P*(C) such that z; =T;/Ty. Here we set e, =e;/l for i =0,...,] and I = {i|
e; #0}. Then by using Claim 1.2.1,

1
7 log ‘Ze|l2ga < ZG; log |T'1|2 - log(z aZ|TZ|2> < 7900-(667 (R B;L)'
iel el
Moreover, if we set T; = +/e}/a; for i =0,...,n, then the equality holds. Thus
(1) follows.
(2) First of all, by Proposition 1.1,

(2,2, :<\/—1)n/ nlag---an2°2¢ dzy Adz A -+ Adz, A dZ,
’ g 2m P~ (C) (ap +a1]z1]2 + - + an|zn|2)HHL 7

If we set z; = x3/2 exp(2my/—16;), then the above integral is equal to

/ nlag - an [T, 2, exp(2my/=T(e: — e})
RZ,x[0,1]™ (a0+a1x1 +"'+an$n)"+l+1

dzy -~ dn dy - db,,

and hence
0 ife#£é,

’

e
nlag--an,zyt-xim
\]iRn

n : — p/
(aotarzi+-+anx, ) HHL day---dr, ife=e’.

It is easy to see that

< ax™ m!
/0 (107 = e = D =) (=) —m = 1)

for a,b € Ry and n,m € Z>o with n —m > 2. Thus we can see that

(25 2%), = nley! - eq!
e T (D (A1) (eo + Dai - -al al’
where eg =1 — e; — --- — e,,. Therefore the assertion follows. O

Next, we observe the following lemma.
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LEMMA 1.4
If we set A, =(n+2)/2 and By, (n—|—2)log\/27r—|—(n—|—2)/12 then
1 il oo k., ko 1
o8 (o k) — a0 )( 7(Anlogl+ Bn)

holds for all 1 > 1 and (ko,. .., kn) GZTZL'(';l with ko + -+ ky, = 1.

Proof
First of all, note that, for m > 1,

m! = V2mm e fm/12m (0<b,<1)
em
by Stirling’s formula. We set I ={i|k; #0}. Then

log(!') =log(v2nl) +llogl — 1 + G

1207
O,
log(k;!) = log(\/2mk;) + k;logk; — 12k (1el).
Therefore,
]. l! k:o k’"
Ilog(ko ol “)
kO kn 1 el 1 9k
= —_— e, = —log(v2ml — — —log(+/27k; -
pa( o ) + 7 loa(vERD + 1o 26;(1 og(v/2mki) + 12lk)
which yields the assertion. O

Let Dg be an arithmetic divisor of (C° N PSH)-type on P} given by
D, = (Ho, ga) = (Ho,log(ag + ai|z1]* + -+ + an|z,]?)).
Moreover, for A € R, O, ) is defined to be
Oan = {(z1,...,2,) €Ay ‘ Ca(l =1 =+ — @y, T1,...,Ty) = A},

where A, = {(z1,...,2,) €ERYy |21+ -+ 1z, <1}. Note that O, ) is a compact
convex set because ¢, is concave. For simplicity, we denote ©4 ¢ by ©Og4; that is,

GQ:{(xl,...,xn)eAn|cpa(l—xl—~~—xn,x1,...,xn)20}.

Finally, we consider the following proposition.

PROPOSITION 1.5
Let us fix a positive integer I. Then we have the following:

(1) 1O NZ" # 0 if and only if there is a nonzero rational function ¢ on
P2 such that IHg + (¢) >0 and ||¢14, < e ;
(2) if I@gxNZ#D, then

({6 € Rat(P)* | LHo + (9) 20, [$llg <e ), = D Z2°.

eclO®, ANZ"
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Proof
Let us begin with the following claim.

CLAIM 1.5.1
Let ¢ be a nonzero rational function on Py such that IHy+ (¢) >0 and ||¢||1g, <
e~ If we write

o= Z cez® (ce €7Z),

e€Zy.le|<l

then {e|ce #0} ClOg .

Proof

The following proof, which is easier than the original, was pointed out by the
referees. Let N be a positive integer with N > [, and let { be the primitive
Nth root of unity, that is, ¢ = exp(2mv/—1/N). For ¢ € Clz,...,
zn] and @ = (aq,...,a,) € Z", we define 9y € Clz1,...,2,] to be (21,
ceszn) = (0¥ 21, ..., (% 2y,); that is, if we set ¢ = ZeeZQO bez€, then 1o =
Zeezgo ¢l@€bez®, where (,) is the standard inner product. Note that, for

B=(f1,...,0n) EZ" with —-N <1 <N,...,—N< S, <N,
5 Cmm_{N” if 8=(0,...,0),
ae{0,1 N—1}n 0 otherwise.

Thus for eg € 2%, with leg] <1,
Z C*(Q,e())(;sa _ Z < Z C(Ot;efe()))CeZe _ Nnceo Zeo’
ac{0,....N—1}" e€Zyy,le|l<l a€{0,..,N—-1}"

which yields
1 _ _
w2 I Gallig = 9l < e

ac{0,1,...,.N—1}n

l[ceq 2 lliga <

Therefore, if ce, # 0, then [[2%°]/;4, < e~"*. Thus the claim follows by Proposi-
tion 1.3. 0

Let us go back to the proof of Proposition 1.5(1), (2). By Proposition 1.3,

12 g = exp(z%(fl)).

Thus (1) and (2) follow from the above claim. O
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REMARK 1.6
Let o be a Hermitian inner product of H°(P"(C), Opx (1)) given by
1/ag 0 .- 0 0
0 1l/az --- 0 0
0 0 - 1/ap-1 O
0 0o - 0 1/an,

Let pg be the quotient C*°-Hermitian metric of Opn (1) induced by p, and the
canonical surjective homomorphism

H°(P"(C), Opn (1)) ® Opn — Opn (1).
Then gq = —1og pa(T0,To)-

REMARK 1.7
Hajli [7] pointed out that, for (x1,...,z,) € Ay,

—a(l—x1 — - — Xy @1,y Tp)
is the Legendre-Fenchel transform of log(ag + a1€* + -+ - 4+ ane”"); that is,
—pa(l—x1 — =T, &1, .., Tp)
= sup{ulxl + o+ upx, —log(ag + ar1e™ + -+ - 4+ ane™) ‘ (Ugy... Uy) € R"}.
This can be easily checked by Claim 1.2.1.

2. Integral formula and Geography of D,

Let X be a d-dimensional, generically smooth, normal and projective arithmetic
variety. Let D = (D, g) be an arithmetic R-divisor of C%-type on X. Let ® be
an Fuo-invariant volume form on X (C) with fX((C) ® = 1. Recall that (¢,v), and

||¢||g,L2 are given by

(6,0), = /X o OTeRa)e ol =100,

for ¢,1p € H°(X, D). We set
0% (X,D):={¢pc H'(X,D) | ||y <1}.

Let us begin with the following lemmas.

LEMMA 2.1

— o
We have vol(D) = lim;_, o, log #H 2 (X,ID)

14 /dl

Proof
First of all, note that

—~ . log#HY(X,ID
vol(D) = lim %
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(see [10, Theorem 5.2.2]). Since HO(X,ID) C ﬁgg (X,ID), we have

—~ — . log#HY,(X,ID)
vol(D) < 11££f M

On the other hand, by using Gromov’s inequality (see [10, Proposition 3.1.1]),
there is a constant C such that | - ||sup < CI197| - ||z2 on H(X,ID). Thus for
any positive number €, || - |lsup < exp(le/2)| - ||z2 holds for I > 1. This implies
that

HY,(X,ID) C H*(X, (D + (0,¢)))
for [ > 1, which yields

log #HY,(X,ID)
li L
P 14/d1
Therefore, by virtue of the continuity of \751, we have

< \7(;1(5+ (0,€)).

lim sup

e 19/d!

and hence the lemma follows. O

LEMMA 2.2

Let © be a compact conver set in R™ such that vol(©) > 0. For each | € Z>1,
let A = (ae,e’ )eerclionzn e a positive definite symmetric real matriz indexed by
1©N7Z", and let K; be a subset of RIONZ" ~ R#UONL™) given by

Kl — {(xe) c Rl@ﬂz" Z Oe.e' Tele! S 1}
e.e’€lONZ™

We assume that there are positive constants C and D and a continuous function
@ :0 —R such that

’log( L >flgp(§)’§010g(l)+D

Ue.e

foralll€Z>y andeclONZ". Then we have

1 K,NnzZPenz"y 1
liminf 08 #( ln+1 ) > —/ o(x) de.
l—o0 l 2 o

Moreover, if Ay is diagonal and all entries of A; are less than or equal to 1 (i.e.,
teer <1, Ve,e' €lONZ™) for each l, then

. log#(K;NZe™M") 1
A [t ) /@ pl@)dz.

Proof
By Minkowski’s theorem,

log #(K; NZ°"%") > log (vol(K;)) — mylog(2),
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where m; = #(I0 NZ"). Note that
1
log(vol(K;)) = -5 log(det(4;)) + log Vi, ,

where V,. =vol({(z1,...,2,) ER" |23 +--- +22 < 1}). Moreover, by Hadamard’s
inequality,
det(Al) < H Gee-
eclONZ™

Thus
1

n 1
log #(K,NZ'™") > 2 3~ log(
eclONZ”

) +log Vi, — my log(2).

Ge.e

Further, there is a positive constant ¢; such that m; < c¢I™ for [ > 1. Thus we
can see

Jim log(V,,) JI" T =0.

Therefore, it is sufficient to show that

&;)5Awmm.

. 1
fin g 2 o
eclONZn

By our assumption, we have

@(E> - %(Clogl—i—D) < %log( L

l Gee

)<e(3)+ %(Clogl + D).
Note that

iy 3 e(f)=jm = [l

eclONZ” rcON(1/1)zZn

On the other hand, since m; < ¢11™, we can see

. 1

Thus the first assertion follows.
Next, we assume that A; is diagonal for each . Then, since

[ 1 [ 1
Kl g H |:_ ) :| )
eclONZ™ Gese Gese

we have
o ore) < ( )
g#(KiNZ )< > log(2 aee+1
eclONZ” ’
Thus
n 1 1
1 1ONZ < Z 1 ( ) 1
og# (K, NZ )< 5 Z og Gos + my log(3)

ecloONZm
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because ae e <1 and 2t 41 <3t for ¢t > 1. Therefore, as before,

L) 1 [,
©

lim sup
l— o0

ln+1 - 5 O

From now on, we use the same notation as in Section 1. The purpose of this
section is to prove the following theorem.

THEOREM 2.3
(1) (Integral formula) The following formulae hold.
\70\1(ﬁ,,,) = (n—gl)! / Yall—x1 — - — Xy, 1, Tp)day - day
and )
d/eTg(ﬁZH) = (n—|2— 1! /A Ca(l =1 — - — Xy, 1,...,2y) dxy - - dxy

)

o s ample if and only if a(i) > 1 for all i=0,...,n.
o 18 nef if and only if a(i) > 1 for all i =0,...,n.

o 18 big if and only if la| > 1.

o 18 pseudoeffective if and only if a] > 1.

If la| =1, then

ot w
ol Sl Sl S

~ o~ o~ —~ —
(=) I
NSRS AN AN AN

{0, 2200 laty p g e Zn

70 /mn 71y
H(P%,1Da) = {{0} if la ¢ 7M1,

(7) We have d/e\g(ﬁzﬂ) = \751(55,) if and only if D, is nef.

Proof
First, let us consider the essential case (1).

CLAIM 2.3.1
If la| > 1, then vol(Da) = “FL [ g () dt.

Proof
In this case, vol(Q4) > 0. By using Proposition 1.5,

Pz, Da) {0 @ 22| (60N, <1} C AL (PE,IDa),
eclO,NZ"
which yields

1i IOg #{¢ € @eel@aﬁZ" Zze|<¢a ¢>l9e S 1}
1m

vol(Dg) = (n+1)! Jim I

by Lemma 2.1. If we set

Kl:{(x )eRl@““Z"‘ x4eNg1},
‘ eelgz:ﬂzn (l-;n) (El’)a'el
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then by Proposition 1.3,
#{(be @ Zze ‘ <¢7¢>lga Sl}:#(KllegaﬁZ">.

ecl®,NZ"
On the other hand, for e € 10, NZ",

l+n l 8! 1 gl
R JE)) >
() (@) - = oo(() 2

Moreover, by Lemma, 1.4, there are positive constants A and B such that

10g(<l Z") (é) aEl> - 1%(51/1)’ < Alogl+ B

holds for all I € Z>; and e € I©,NZ". Thus the assertion follows from Lemma 2.2.

a
Next, let us consider the following claim.
CLAIM 2.3.2
If s,t e Ry and a, B € R with a+ B #0, then
aDig + fDsa = (4 B)D (1o 56)1/ (a4
Proof
This is a straightforward calculation. O

We now prove cases (2) and (3). First of all, w, is positive by Proposition 1.1. Let
v; be a 1-dimensional closed subscheme given by HoN---NH;_1NH; 1 1N---NH,.
Then it is easy to see that d/eg(bahi) = (1/2)log(a(i)). Therefore we have the
“only if” part of (2) and (3).

We assume that a(i) > 1 for all . Then ¢, is positive on

{(.ro,...,xn)ERggl |x0_|_...+33n:1}.

Thus, for e € Z%, with |e] <1, 2° is a strictly small section by Proposition 1.3,
which shows that D, is ample; that is, Hy is ample, the first Chern form of Dy
is positive, and H(P%, Hy) is generated by strictly small sections.

Next, we assume that a(i) > 1 for all é. Let v be a 1-dimensional closed
integral subscheme of IP7;. Then we can find H; such that v Z H;. Note that

—

Dg + (2) = (Hi,og(a(0)|wo|* + - - - + a(n)|w,[?)),
where wy, =Ty /T; (k=0,...,n). Therefore deg(Daly) > 0 because
log(a(0)[wol* + - +a(n)|wa]?) > 0.

In case (6), ©q = {(a(1),...,a(n))} and @q(a) =0 by Lemma 1.2. Moreover,
if la € Z"*!, then

Hzl(a(l),...,a(n))Hnga — exp(_l%(a)) -1
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by Proposition 1.3. Thus the assertion follows from Proposition 1.5.
In order to see (4) and (5) using (6), it is sufficient to show the following:

i) Dg is big if |a| > 1;

iil) D, is pseudoeffective if |a| > 1;

(
(i) D
(iii) Dq is not pseudoeffective if |a] < 1.
(i) It follows from Claim 2.3.1 because vol(64) > 0.

(ii) We choose a real number t such that t > 1 and Dy, is ample. By
Claim 2.3.2,

Dy +€Dyq = (1+ €)Ete/(l+€)a.

For any € > 0, since /049 |a| > 1, (1 + €)D;e/a+04 is big by (i), which shows
that D, is pseudoeffective.

(iii) Let us choose a positive real number ¢ such that Dy, is ample. We also
choose a positive number € such that if we set a’ =t/(1*<)a, then |a’| < 1. We
assume that D, is pseudoeffective. Then

Dg +€Dig = (14 €)Dg

is big by [10, Proposition 6.3.2], which means that D/ is big. On the other
hand, as |a’| < 1, we have O4 = 0. Thus H°(PE,nDg) = {0} for all n>1 by
Proposition 1.5. This is a contradiction.

For the first formula of case (1), we may assume that |a| <1 by Claim 2.3.1.
In this case, D, is not big by (4) and O, is either 0 or {(ay,...,a,)}. Thus the
assertion follows. For the second formula, the arithmetic Hilbert-Samuel formula
(see [5], [1]) yields

deg(Di™) . R(HO(PZ,1H), (, )ig.)
—_— = 1IN 2 .
(n—|— 1)! l—o00 (n+1

On the other hand,

~ n l+n l ~1
X(H(Pg,1Ho),( , Yig,) = Z log< < n > (g) ae)+10gV#(lAmZn)~

eclA,NZ"

Thus, in the same way as the proofs of Lemma 2.2 and Claim 2.3.1, we can see
the second formula.

Case (7) follows from (1) and (3). This concludes the proof of Theorem 2.3.

O

Finally, let us consider the following proposition.

PROPOSITION 2.4

For any positive integer 1, there exists a € Q;L'gl such that |a| > 1 and I:IO(IP”ZL,
kD,) ={0} fork=1,...,L.
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Proof
Let us choose positive rational numbers af, ..., ;L such that a] +---+a), <1
and o} <1/l,...,a}, <1/l. Weset aj=1—a} —---—a), and @' = (ag,...,a,).

Moreover, for a rational number \ > 1, we set
Kyx={z €A, |pa(®@)+logh>0},
where A, = {(z1,...,2,) ERYy |21 + - + 2, <1}

CLAIM 2.4.1
We can find a rational number A > 1 such that K C (0,1/1)™.

Proof

We assume that Ky (1/m) € (0,1/1)" for all m € Z>1; that is, we can find x,,, €
Ki4(1/m) \ (0,1/1)™ for each m > 1. Since A,, is compact, there is a subsequence
{Zm,} of {x,,} such that x =lim; . Z,,, exists. Note that = ¢ (0,1/1)™ because
T, € (0,1/0)" for all i. On the other hand, since g/ (Z.,,) +log(1+ (1/m;)) >0
for all 4, we have @4/ (Z) > 0, and hence = (af,...,a]) by Lemma 1.2. This is a
contradiction. O

We choose a rational number A > 1 as in the above claim. Here we set a = \a’.
Then, as ¢q = @a +10g A, we have O, C (0,1/1)™. We assume that HO(P}, kDg) #
{0} for some k with 1 < k <{. Then, by Proposition 1.5, thereise = (ey,...,e,) €
kO NZ™; that is, e/k € ©4. Thus 0 < e;/k < 1/1 for all 4. This is a contradiction.

O

3. Asymptotic multiplicity
Let X be a d-dimensional, projective, generically smooth and normal arithmetic
variety. Let D be an arithmetic R-divisor of C°-type on X. We set
N(D)={l€Z-o| H*(X,ID) # {0} }.
We assume that N(D) # (. Then p, (D) for z € X is defined to be
ftz(D) := inf {mult, (D + (1/1)(¢)) | L € N(D),¢ € H°(X,ID)\ {0} },

which is called the asymptotic multiplicity of D at z. The following proposition
states the fundamental properties of the asymptotic multiplicity.

PROPOSITION 3.1 ([10, PROPOSITIONS 6.5.2, 6.5.3])
Let D and E be arithmetic R-divisors of C°-type such that N(D) # 0 and N(E) #
(). Then we have the following:

(1) o (E + E) < p12(D) + p1 (E);

2) if D<E, then pz(E) < piz (D) 4+ mult, (E — D);
3) pa(D - ( (6)) = pz(D) for ¢ € Rat(X)*;

4) pr(aD)=ap ( D) for a € Qso;

5) is nef and big, then (D) = 0.

~ o~~~

(D-
«(a
if D is
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Moreover, we have the following lemma.

LEMMA 3.2

For each 1 € N(D), let {¢1.1,..., b1} be a subset of H(X,ID)\ {0} such that
I—AIO(X, ID) C{¢11,--- 1)z Let x be a point of X such that the Zariski closure
{z} of {x} is flat over Z. Then

12(D) = inf{multw (D + (%)(@,i)) ‘ le N(D)i=1,. ..,7‘1}.

Proof
Clearly,

11.(D) < inf{multm (D + (%) (qsl,i)) ‘ le N(D),i=1,.. .,rl}.

Let us consider the converse inequality. For [ € N(D) and ¢ € H(X,ID)\ {0},
we set ¢ =" ¢;¢; for some ¢y, ..., ¢, €Z. Note that

mult, ((¢ 4+ ¢)) > min{mult, ((¢)), mult,((¥))} and mult, ((a)) =0
for ¢,9 € Rat(X)* and a € Q* with ¢+ # 0. Thus we can find ¢ such that
mult, ((¢)) > mult, ((¢1,)),

and hence the converse inequality holds. O

4. Zariski decomposition of D, on P}

We use the same notation as in Section 1. We assume that n = 1. In this section,
we consider the Zariski decomposition of D, on P} = Proj(Z[Ty,T}]). Note that
O, is a closed interval in [0,1]. For simplicity, we denote the affine coordinate 21
by z; that is, z =T /Tp.

THEOREM 4.1

The Zariski decomposition of Dg ezists if and only if ag + a1 > 1. Moreover, if
we set Vg =1inf O, Oy =sup Oy, Py =0,Ho —9,H,, and

Valog| 22 if 12| < |/ 80 .
pa(z) = log(ao +a1l=?) if /iy < |2l < \/arfies
0 log |2|* if |2l > /o tile,

then the positive part of Dg is Pg = (Py,pa), where \/(aobs)/(a1(1—6,)) is
treated as oo if g = 1.

Proof
First, we consider the case where D, is big, that is, where ag + a; > 1 by Theo-
rem 2.3. In this case, 0 <19, < 6, < 1. The existence of the Zariski decomposition
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follows from [10, Theorem 9.2.1]. Here we consider functions

a00a
: EPl C ‘ < 7} R
n:{zeP Ol </ T ) -
and
aoﬂa
: E]P)l C ‘ > 7} R
T2 {Z ( ) |Z| al(lf’ﬂa) -
given by
) 0 if |2] < \/ e,
m\z) = : a a
—dalogef® +log(ao +arl2?) if |/ ofle s <ol </t
and
: Va Oa
ro(z) = —balog|z|” +log(ao +arlz*) if /Sy <ol < /ot
0 if |2| > ,/al‘(lff‘ba).
Note that
Jalog|z? +71(2) on |2| < /5%,
pa(z - 2 ag?.
Oglog|z|* +12(2) on |z] > PG

Thus, to see that pg is a P,-Green function of (C° N PSH)-type on P1(C), it is
sufficient to check that r; and ro are continuous and subharmonic on each area.
Let us show that ry is continuous and subharmonic. If 9, = 0, then the assertion
is obvious, so that we may assume that J, > 0. First of all, as ¢4 (1 —4,9,) =0,
we have 71(z) =0 if |2| = \/(a0Va)/(a1(1 — V4)), and hence r; is continuous. It
is obvious that r; is subharmonic on

{zec ’ S al(iofaﬂa) juizec| \ al((im—?aﬁa) <<y al(iofaea) b

By using Claim 1.2.1,

g log|z|? = (1 — ¥g)log(1) + g log|z|?
<log(ag + a1|z[*) + @a(l — Va,¥a) =log(ao + a1|2[?).
Thus 71 > 0. Therefore, if |z| = \/(ao¥s)/(a1(1 — Ya)), then

2m

1
ri(z)=0< Py r1(z 4 ee¥V ) dt
0

for a small positive real number €, and hence 71 is subharmonic at z with |z| =

\/(aoﬁa)/(al(l —14)). In a similar way, we can check that 74 is continuous and
subharmonic.
Next, let us show that P, is nef. As r;(0) =0 and r2(c0) = 0, we have

deg(Palm,) = deg(Palm,) = 0.



Big arithmetic divisors on the projective spaces 521

Note that

P, + ﬁa(/z\) = ((9,, —04)Ho,pa(z) — 94 log |z|2)

ri(z) if 2] < /5200,
Pa(2) — alog |2? = . )
(0a —Va)log|2[? if [2] > | /-0l

o~

Therefore, pq(2) —Yq log |22 > 0 on P!(C), which means that P, +¥U4(2) is effec-
tive. Let v be a 1-dimensional closed integral subscheme of P% with v # Hg, H;.
Then

and

deg(Pal,) = deg(((6a — Ya)Ho, pa — alog|2[?)]) > 0.

By using Proposition 1.5, we have pg, (Dq) = 1—04 and pp, (Dg) = U4. Thus
the positive part of D, can be written as a form (P,,q), where g is a P,-Green
function of (C°NPSH)-type on P1(C) (see [10, Claim 9.3.5.1, Proposition 9.3.1]).
Note that P, is nef and P, < D, so that

pa(2) < q(2) <log(ag + a1|2[?).
We choose a continuous function w such that ps +u =¢. Then u(z) =0 on

agVq

—— — < <
ar1(1—Ua) <lzl<

Moreover, since g(z) = g log |2|? +u(z) on |z| < v/(ao¥a)/(a1(1 — ¥a)), u is sub-
harmonic on |z| < v/(agUa)/(a1(1 —J4)). On the other hand, u(0) =0 because
deg((Pa,q)| ;) = u(0) = 0.

Therefore, u =0 on |2| < +/(ag¥a)/(a1(1 —Vq)) by the maximal principle. In a
similar way, we can see that u =0 on |z > \/(aoba)/(a1(1 — 64)).
Next, we consider the case where ag + a; = 1. By Claim 1.2.1,

aq log|z|2 <log(ag + a1|z|2)

on PY(C). Thus —ay(z) < D,, and hence the Zariski decomposition of D, exists
by [10, Theorem 9.2.1]. Let P be the positive part of D,. Then fal(/z\) <P.

Let us consider the converse inequality. Let ¢ be a real number with ¢ >
1. Since P < D4 < Dyq, we have P < P,, because P, is the positive part of
Diya by the previous observation. Since ¢, = g + log(t), we have lim;_.; ¥4 =
lim; .1 01 = a1. Therefore, we can see

}ini Pio =Py = —al(/,;;\).

—~

Thus P < —ay(2).

Finally, we consider the case where ag + a; < 1. Then, by Theorem 2.3, D,
is not pseudoeffective. Thus the Zariski decomposition does not exist by [10,
Proposition 9.3.2]. O
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5. Weak Zariski decomposition of D,

Let X be a d-dimensional, projective, generically smooth, and normal arithmetic
variety. Let D be a big arithmetic R-divisor of C?-type on X. A decomposition
D = P+ N is called a weak Zariski decomposition of D if the following conditions
are satisfied:

(1) P is a nef and big arithmetic R-divisor of (C° N PSH)-type;

(2) N is an effective arithmetic R-divisor of C-type;

(3) multr(N) < ur(D) for any horizontal prime divisor I' on X; that is, T
is a reduced and irreducible divisor I' on X such that I' is flat over Z.

Note that the Zariski decomposition of a big arithmetic R-divisor of C%-type on
an arithmetic surface is a weak Zariski decomposition (see [10, Claim 9.3.5.1]).
Property (3) above implies that multp(N) = ur(D) for any horizontal prime
divisor I" on X. Indeed, by Proposition 3.1(2) and (5),

pur(D) < pr(P) + multp (N) = multp(N) < ur(D).

From now on, we use the same notation as in Section 1. Let us begin with
the following lemma.

LEMMA 5.1

Let f: X =Py and g:Y — X be birational morphisms of projective, generi-
cally smooth, and normal arithmetic varieties. If f*(Dg) admits a weak Zariski
decomposition, then g*(f*(Dyg)) also admits a weak Zariski decomposition.

Proof

Let f*(Dq) = P+ N be a weak Zariski decomposition of f*(Dg). We denote
birational morphisms Xqo — Pg and Yo — Xq by fg and gg, respectively. We
set

Oa = {€€R™! |c€O,},

fo(Hi) =3 a:;Dj for i=0,....,n and N =}_,b;D; on Xg, where the D;’s are
reduced and irreducible divisors on Xg. Since

IHo+ (2°)=(I—e(l)—---—e(n))Ho +e(1)Hy +--- +e(n)H,
for e €1©, NZ", by Lemma 3.2, we have

pp, (f*(Da)) = min{z T,
i=0

(Jco,...,xn)eéa}.

Thus

n
b]' S mln{z TiQ55

=0

(20, Tn) Eéa}

for all j.
Here let us show that g*(f*(Da)) = g*(P) + g*(N) is a weak Zariski
decomposition. For this purpose, it is sufficient to show that multr(g*(N)) <
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pr (9% (f*(Da))) for any horizontal prime divisor I on Y. If we set ¢; = multr (96(Dj)),
then

d; ;= multr (gQ fQ Za”cj
For (zg,...,z,) € éa,
Z]J,‘di = Z (Z xiaij)cj Z ijCj = multr (g&(N)),
i j i j
which yields pir (9% (f*(Dq))) > multp(g* (V). O

Next, let us consider the following lemma.

LEMMA 5.2
Let © be a compact conver set in R, and let p: R™ — R~ be the projection
given by p(x1,...,2,) = (X1,...,&n—1). Then p(O) is a compact convex set in

R~ and there exist a concave function 6 on p(©) and a convex function 9 on

p(©) such that

_ Wl (@1, 1) € p(O),
@_{(m17~..7xn17mn)€R 19("1/‘1,..'7;6”71)gxnge(xl,..'7xn 1) .

Proof
Obviously p(©) is a compact convex set in R*~!. For (z1,...,7,_1) € p(0), we
set

O(x1,...,xp—1) :=max{x, ER|(z1,...,Tpn_1,2,) €O},
’19(1’1, , Tp— 1) —mln{l’n € ]R| (1’17 1’71_1,1’7,,) S @}

Clearly,

_ n (zl,...,zn_l)Ep(G),
6_{(331""’9:"_1’:6”)ER Wzt 1) <@ <O0(x1,...,00-1) )

We need to show that 6 (resp., 9) is a concave (resp., convex) function. Since
(@1, @p1,0(x1,. .. 2po1)), (2, 21, 0(2, ... 2l,_1)) €O
for (z1,...,Zn-1),(x},...,20,_1) € p(O), we have
Mz, @1, 0(21, .o pm1)) + (L= N) (2], .. 2l _1,0(2h, ... 2),_1)) €O
for 0 < X\ <1, which shows that
AN(z1y.. s Tp1) + (1= N)O(2), .. 2l )
<O @1,y Tp1) + (L= A) (], 2, _q)).

Thus 6 is concave. Similarly, we can see that ¥ is convex. O

REMARK 5.3
If p(©) is a polytope in Lemma 5.2, then § and ¢ are continuous on p(©) (see
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[4]). In general,  and 9 are not necessarily continuous on p(©). Indeed, let us
consider the following set:

@z{(m,y,z)€R3’0§y§1,0§z§1,x2§yz}.

Since

— 2 2
deu = P () ()

we can easily see that © is a compact convex set in R3. Let p:R3 — R? be the
projection given by p(x,y,z) = (x,y). Then

p(©)={(z,y) eR*|2* <y <1}.
Moreover, ¥ is given by
_ 2 y if (z,y) #(0,0),
ﬁ(xay) - .
0 if (z,y) = (0,0),
and hence 9 is not continuous at (0, 0).
Note that ©, is a compact convex set of R™. We say that a hyperplane ayx; +
o+ ape, =0 in R™ is a supporting hyperplane of ©4 at (b1,...,b,) € O4 if
Op C{a1z1 + -+ + anzy, > 5} and arby + -+ apb, = 0.

PROPOSITION 5.4
Let (by,...,bn) € 0(Og); that is, (b1,...,by) is a boundary point of O4. We set
bp=1—0by—---—b,. We assume the following:

ap+ar+-+ap>1 and #{i]0<i<n,b; =0} <1.

Then Oy has a unique supporting hyperplane at (by,...,b,). Moreover, in the
case where b; =0, the supporting hyperplane is given by

xl—i——i—xn:l Zfb():O,
z; =0 if b; =0 for some i with 1 <i<mn.

Proof
Here we set
a1, s Tn)=pa(l—21 — - —Tp,Z1,...,Zy)
on Ay ={(21,...,2,) ERLy[21 + -+ + 2, <1} Then
O = {(xl,...,xn) e, ’ Ga(T1,. .y Tp) 20}.

First, we assume that (by,...,b,) ¢ 0(A,). Then ¢q(b,...,b,) =0. Note
that, for (z1,...,2n) € Ay \ 0(Ay),

(Pa)ay (1, cyxn) == (ba)x, (X1,...,2s) =0

= )= (— )
L1y...,T = gy
1 n a0+...+an a0+...+an
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and

ay (07 )
ey =log(ap+---+a,)>0.
¢a(ao+"'+an ap+ - +ay, g(O )

Thus we have
((qba)zl(bl,...,bn),...7(¢a)x1(b17...,bn)) #(0,...,0),

which means that ©, has a unique supporting hyperplane at (by,...,b,).
Next, we assume that (by,...,b,) € (A,). Considering the linear transfor-

mations
I _
, fL‘l—fL‘]_,
L1 =T,
I _
, T; = Tp,
xn—l = Tn—1,
;o
T, =1—x1 — - — 2y, )
xn:xi,

we may assume that b, = 0. Note that (b1,...,bp—1) € Ap_1 \ 9(Ap_1). Let
p:R®™ — R""! be the projection given by p(z1,...,7,) = (z1,...,Zn_1). By
Lemma 5.2, there are a concave function 6 on p(©,) and a convex function ¢ on
p(©4) such that

Oum [l | ) 0O |

Nty ooy p1) <zp <O(x1,...,Tp_1)

CLAIM 5.4.1
The point (b1,...,by—1) is an interior point of p(©4). In particular, ¥ is contin-

wous around (by,...,bp_1) (see [6, Theorem 2.2]).

Proof
Let us consider a function ¢ : [0,1—by —---—b,_1] — R given by 9(t) = ¢q (b1, . . .,
bn—1,t). Note that
1= by— by

'(t) =log 22 : e

Y'(t) =log o ( ; ) >0
on (0, (an(1 —by — -+ —by_1))/(ao + ay)). Thus

an(l—by— - — by
¢a(b1;-..ybn—l7 ( a10+an 1)) >¢a(b1,._.,bn—1,0)20.

Therefore, as (by,...,bp—1,(an(1 —b1 — - —bn_1))/(ap+an)) € A\ O(A,,), we
can find a sufficiently small positive number € such that

n—1
n(l—=0by —- - —b,_ n(l—=0by —-—b,_
H(bi—e,bi—i—e)X(a( 1 1)_6’a( 1 1)+6)
Py ag + an, ap + an,
is a subset of ©4, and hence
n—1

(b1, bu1) € [ ] (b — €, + €) C p(Oa).

i=1
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We set @' = (ag,...,a,—1). Then
O = {(xl,...,xn_l) eR"! | (1‘1,...737”_1,0) € @a}-
Clearly, (b1,...,bp—1) €4 and ¥ =0 on O, .

CLAIM 5.4.2

¥ is a continuously differentiable function around (by,...,b,—1) such that
By (b1, sbp1) ==y, (b1,...,bp—1)=0.

Proof

By Claim 5.4.1, there is a positive number € such that
b17€>0,...,bn_1*€>0, (b1+6)+"'+(bn_1+€)<1,

and ¥ is continuous on U = H;:ll(bi —ebi+e). If (x1,...,2p-1) €U\ Oy, then
HNx1,...,2p—1) >0, and hence

¢a(a:1,...,xn_l,ﬂ(xl,...,xn_l)) =0
for (z1,...,2n—1) €U\ Oq. Note that

a; (=21 ——zy
1 L =1 7( )
( ) (¢a) i 0og a0 7
Since ¥(by,...,b,—1) =0 and ¥ is continuous at (by,...,b,—1), choosing a smaller

€ if necessary, we may assume that

((ba)xn (,131, .. ,xn_l,ﬁ(xl, .. 733"”_1)) >0
for all (x1,...,2,-1) €U \ O4:. Thus, by using the implicit function theorem, 9
is a C°°-function on U \ O4 and
(Pa)z, (15 s Tp-1,9(T1,. .., Tn-1))
(d)a.)zn (.’I:l, L 7337171719('@17 .. 7$n71)) .
Let us consider a function v; on U given by

(2) Vi (X150, Tpey) = —

0 if (1,...,2n-1) EUNBOgs,
Vi(@1,. o Tn1) = .
193“(.’1717...,3?”,1) if (ml,...,l‘nfl)EU\@a/.

Then, by using (1) and (2), it is easy to see that ; is continuous on U. Thus
the claim follows. O

Claim 5.4.2 shows that ©, has the unique supporting hyperplane at (by,...,b,)
and that it is given by x,, =0. This proves Proposition 5.4. |

COROLLARY 5.5

We assume that ag <1 and ag+ay +---+a, >1. Let ay,...,a, € Ryg and
(b1,...,bp) € ©f be such that

oa1by + -+ anby, :min{a1x1 + oy, ‘ (T1,..., %) e@a}.
Then (by,...,bn) € O(A,).
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Proof
We prove it by induction on n. If n =1, then the assertion is obvious, so that
we may assume that n > 1. If a9 +--- 4+ a, =1, then

aq (47%%
6u={( ).
a0+...+an a0+...+an

In this case, the assertion is also obvious. Thus we may assume that ag + -+ +
an > 1.

We assume that b; = 0 for some 1 <7 <n. Then, since O, N{x; =0} # 0, we
have

ay+--+ai—1+ a1+ +ap > 1.
Thus by the hypothesis of induction,
bl#ov"'vbifl#ov b’H’l#Ow"?bn#O? b1++b’n7é]-

Therefore, by Proposition 5.4, we have the unique supporting hyperplane x; =0
of ©4 at (b1,...,b,). On the other hand, ajx1 + -+ + apxy = a1by + -+ + anby
is also a supporting hyperplane of O, at (by,...,b,). This is a contradiction.
Next, we assume that by +---+ b, = 1. Since b; # 0 for all 7, by Proposi-
tion 5.4, the unique supporting hyperplane of O, at (by,...,b,) is 21+ -+ 2, =

1, which yields a3 = -+ = o, and hence ©4 C {1 + -+ 2z, = 1}. This is a
contradiction because
( ! o an )e@a,
a0+...+an a0+...+an
as required. O
THEOREM 5.6

We assume that n > 2 and Dg is big. Then Dg is nef if and only if there is
a birational morphism f: X — Py of projective, generically smooth, and normal
arithmetic varieties such that f*(Dg) admits a weak Zariski decomposition on X .

Proof

If D, is nef, then D, = D, + (0,0) is a weak Zariski decomposition. Next, we
assume that D, is not nef and there is a birational morphism f: X — P2 of
projective, generically smooth, and normal arithmetic varieties such that f*(Dg)
admits a weak Zariski decomposition f*(D,) = P+ N on X. By our assumptions,
ag+---+a, >1and a; <1 for some i. Renumbering the homogeneous coordinate
To,- .., Ty, we may assume that ag < 1. Let £ be the generic point of HyN---NH,;
that is, £=(1:0:---:0) € P*(Q). Let L; be the strict transform of H; by
f for i=0,...,n. We denote the birational morphism Xq — Pg by fg. Let
f': X’ — P¥ be the blowup along H; N---N H,. By using Lemma 5.1 and [8],
we may assume the following.

(1) Let ¥ be the exceptional set of fg: Xqg — Pg. Then ¥ is a divisor on
Xg and (X4 (Lo)g + - + (Ln)g)red is a normal crossing divisor on Xg.
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(2) There is a birational morphism ¢ : X — X’ such that the following dia-
gram is commutative:

CLAIM 5.6.1
There are &' € X(Q) and a reduced and irreducible divisor E on Xg with the
following properties:

(a) fo(§)=¢E and & € EN(Ly)g;

(b) E and (Ly)q are nonsingular at §';

(c) E is exceptional with respect to fog: Xo — Pg;
(d) there are positive integers aq,...,a, such that

fo(Hi) = a; E + (the sum of divisors which do not pass through &')
fori=1,....n—1 and

fo(Hy) = (Ln)g + anE + (the sum of divisors which do not pass through &').

Proof

Let L/, be the strict transform of H,, by f’, and let ¥’ be the exceptional set of
fo: X —Py. Then X' =Pg~! and D' := (L))o NY' =Py~ Let h: L, — L,
and hg : (Ln)g — (L))o be the birational morphisms induced by ¢g: X — X’ and
9o : Xg— X@, respectively. Let D be the strict transformation of D’ by hg. As
before, let ¥ be the exceptional set of fg: X — Pg. Let

(C+ (LoJat -+ (Ln)a),oq = (Lodo + -+ + (Ln)a + Eo + -+ + Ey

be the irreducible decomposition such that the F;’s are exceptional with respect
to fo. Since D C (L, )gNX, there is E; such that D C (L, )N E;. Renumbering
Ey,...,E;, we may assume that E; = E;. As (Lo)go+ -+ (Ln)o+Eo+ -+ Ej
is a normal crossing divisor on Xg, we have

DN Sing((Ln)g) S D, D N Sing(E) D,
DN (L)gCD (i=0,...,n—1),
DNE,CD  (j=0,...,1—1).

Note that D(Q) is dense in D because D — D’ is birational. Thus we can find
¢ € D(Q) such that
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n—1 -1
¢ ¢ (DN Sing((Ln)g)) U (D NSing(E)) U | J (DN (Li)g) U | J(DNEy).
i=0 j=0
Therefore the claim follows. O
Note that
Fo(tHo + (55 25)) = f3 (= €1 — - — en)Ho + er Hy + -+ + en )

=en(Lp)o+ (e + -+ anen)E
+ (the sum of divisors which do not pass through ¢’).
Therefore, by Lemma 3.2,
per (£*(Da)) = min{aix1 + - + ap_1Tn—1 + (n + Dy | (¥1,...,70) € O},
pe(f*(Da)) =min{aixy + - + apxy | (21,...,2,) € O},
pr, (f*(Da)) =min{z, | (z1,...,7,) € Og}.

Further, as 0 < multp(N) = ur(f*(Dq)) = 0 for any horizontal prime divisor T
with T'Z Supp(f*(Ho + - -- + H,)) we have

multe (N) = mult g (N) +multz, (N) < pg(f*(Da)) + pz, (f*(Da))-
By Proposition 3.1(2) and (5),
0=y’ (P) = pigr (f*(Da)) — multes (N).
Therefore, if we set
A=min{ogz1 + -+ ap_1Tn-1+ (@n + D)y | (21,...,2,) €O4},
B=min{oa121 + -+ antp | (£1,...,2n) € Oa},
C =min{z, | (z1,...,%,) € Og},
then we have 0 > A — B — C. We choose (by,...,b,) € O, such that
A=a1by + -+ ap_1bp—1 + (@ + 1)b,.
Thus, as a1b1 + - - + by, > B and b, > C, we have
0>A-B-C
>arby +- -+ ap—1bn—1 + (an +1)by, — (b1 + -+ - + ayby) — by, =0,

which implies that o161 + -+ + apb, = B and b, = C. On the other hand,
by Corollary 5.5, (b1,...,b,) ¢ O(A,,), and hence there is a unique supporting
hyperplane of ©, at (b1,...,b,) by Proposition 5.4. This is a contradiction
because

a1z + -+ ap_1Zp_1 + (a0 + 1)z, = A,
oz + o 1Tp—1 + anT, = B,
z, =C
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are distinct supporting hyperplanes of O, at (b1,...,b,). This proves Theo-
rem 5.6. |

6. Fujita’s approximation of D,

Fujita’s approximation of arithmetic divisors was established by Chen and Yuan
(see [3], [11], [9], [10]). In this section, we consider Fujita’s approximation of Dg
in terms of rational interior points of ©,.

First of all, we fix notation. Let z,...,z, € R™ and ¢1,...,¢, € R. We
define a function ¢z, ¢.),....(@,,6,) O © = Conv{zy,...,z,} to be

T=3" ANy,
Ay A €R50, 300 A =1

Plzr.61).r(@r ) (E) 7= maX{ZLl Xigi
In other words, ¢z,,4.),...,(,.4,) 1S given by

P(@r,61),.0 (@ 60) (Z)
=max{¢ €R ‘ (z,¢) € Conv{(z1,1),...,(x,,¢r)} CR" x R}.
Thus we can easily see that ¢z, ¢,),. . (z.,¢.) 15 @ continuous function on ©
(see [4]).
Let ¢ be a continuous concave function on ©. Clearly, ¢(z, o(z1)).,....@z, o) <

. Moreover, for a positive number ¢, if we add sufficiently many points , 1, ...,
Z, €0 to {z,...,2.}, then

P = €S D@1 ,0@))ns (@0 @))s (@t 1,0 @ ri1)) s (@ p (@) S P

From now on, we use the same notation as in Section 1. We assume that D,
is big.

CLAIM 6.1
For a given positive number €, we can find rational interior points 1,...,Z, of
Og, that is, Z1,...,%, € Int(04) NQ" such that
(n+1)! —~
3 ), PEipa@)(npe @) (@) dz > vol(Da) — ¢,
where © = Conv{zy,...,z,}.
Proof

First of all, we can find z1,...,2,» € Int(04) N Q™ such that

(n J; D! /@%(i) dz > vol(Da) — €,

where © = Conv{z,...,2}. Thus, adding more points z, y1,...,2. € @ NQ"
to {z1,...,2,}, we have

(n+1)! —
3 ), PEipaE) e (npe@) (@) d2 > vol(Da) —c. 0

We choose a sufficiently small positive number § such that
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(a) ©® CO,-s54 and

(b) (n + 1)'/2 j‘@ ¢($11996*%(51))7"'»(‘”“‘95*5:.(5”)(z) dx > VOl(Da) — €.
We set a’ = e %a. By virtue of [10, Theorem 3.2.3], we can find positive integer
lo such that

(c) logdist(H°(IHp) ® C;logar) < lod and
(d) lo.’l}l, . ,loﬂ?r € Zgo

Let us consider the following Z-module:

T
V=P z" C HO(Py, 1o H).
i=1
Then we have a birational morphism p : Y — P7 of projective, generically smooth,
and normal arithmetic varieties such that the image of

V @z Oy — Oy (u*(loHp))
is invertible; that is, there is an effective Cartier divisor F' on Y such that
V @z Oy — Oy (u*(loHo) — F)

is surjective. Here we set

Q = N*(ZOHO) - Fa
r = p*(—logdist(V ® C;loga) + 0d),
9q = 1t*(logar +logdist(V @ C;logar)).

CLAIM 6.2

(i)  We have gg + gr = 1*(l09a) - B

(ii) The function gg is a Q-Green function of (C*° NPSH)-type, and Q :=
(Q.9q) is nef

(iii) The function g is an F-Green function of C*°-type and gr > 0.

(iv) If we set P=(P,gp) = (1/1p)Q, then, fore € IONZ", u*(2¢) € H°(IP)
and

1 (22) 7, < exp(—ld(y o @), s@rpnr @) (€/1))-

Proof

(i) is obvious. (ii) is a consequence of Lemma 6.1 below. The first assertion of

(iii) follows from (i) and (ii), and the second follows from the above condition (c).
(iv) Let us consider arbitrary A,..., A, € R such that e/l = Mz1+- -+ Nz,

and Ay + -+ A = 1. Then, since Q + (u*(z!0%¢)) > 0 for all i,

P+ (1 (=) = (/1)Q + > Nill/lo) (" (z1=))
i=1

= X(l/10)(Q + (u*(27"))) >0,

=1



532 Atsushi Moriwaki

and hence p*(2¢) € H°(IP). Moreover, by using [10, Proposition 3.2.1] and
Proposition 1.3,

|1 (2%)lig, = 1" (=) exp(=(1/10)9q)

= [L 0w =)

z)w/zo) exp(—11*(gar))
w*(dist(V @ C;loga )/t

2 r

T |Zl03i ing Ai(1/1o) .
- " ol < 0|2 \\i(l/lo)
E“ <dist(V®<C;loga,)> —E(Ilz 2 o)
- ~ (11 r _
| T
i=1 P
Thus (iv) follows. .

LEMMA 6.1

Let 1Y — X be a birational morphism of projective, generically smooth, and
normal arithmetic varieties. Let D be an arithmetic R-divisor of CO-type on X,
and let S be a subset of H(X, D). We assume that there is an effective R-divisor
E on'Y with the following properties:

(1) p*(D)— EeDiv(Y); that is, p*(D) — E is a Cartier divisor;
(2) p*(s) e HO(Y,u*(D) —E) for all s€ S and
() Supp(1*(D) = E + (" (s))) = 0.
ses
We set

M:=p*(D)-FE and  gu = p* (g +logdist((S)c; 9))-
Then gpr is an M-Green function of (C°° NPSH)-type and (M, gpr) is nef.

Proof

Let eq,...,en be an orthonormal basis of (S)c with respect to (, ),. We fix
y€Y(C). Let f be alocal equation of u*(D) — E around y. We set s; = u*(e;) f
for j=1,...,N. Then s1,...,sy are holomorphic around y and s;(y) # 0 for
some j. On the other hand,

N N
gm = log(z Iu*(ej)|2) = —log|fI? +log(z |sj\2)
Jj=1 j=1

around y. Thus gps is an M-Green function of (C* N PSH)-type. By virtue of
[10, Proposition 3.1], we have

s[5 < (s, 5)g dist((S)c; g) < dist((S)c3 9),

which yields p*(s) € H(Y, M) for all s€ S. Let C be a 1-dimensional closed
integral subscheme on Y. Then there is s € S such that C' Z Supp (M + (1 (s))).

Thus deg((M, gar)lc) > 0. O
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Finally, let us show that \781(?) > \;gl(ﬁa) —e. We fix an F-invariant volume
form ® on Y with fy(c) ® =1. Using ® and lgp, we can give the inner product

{(,)igp on H(IP). Then, by Claim 6.2(iv),

* * e
(" (2%), 1™ (2%))igp < exp (—l¢<m1,w@1)),...,(«:7-,%/(%T))(7))'

Here we consider positive definite symmetric real matrices A; = (de,e’)e.e’clonzn
/ / 3
and A} = (ag ¢ )e.e’clonzn given by

’

Gee’ = <N* (Ze)vu*(ze )>lgp

and
o PG @) v @) (€/1) e =€,

e <M*(Ze)7.u“*(ze )>lgp ife7£e/'
Then, since

Z Ue e’ Tele! < Z aéve/xexe’a
e €lONZ e.e’€lONZ™

we have

#HY, IP) > #1 (z¢) € zenz” Oe e Teler <1
L ;
e.e’€lONZ™

> #{(we) €27 | N dgmere <1},

e.e’€lONZ"

On the other hand, by Lemma 2.2,

lim inf log #{(ze) € z'ent” | Ze,e’el@ﬂzn a;,elxexe/ <1}
[0 "t/ (n+41)!

(n+1)!
5, e @) @rpw @) (@) s

and hence \7(;1(?) > \ﬁ(ﬁa) — € by Lemma 2.1 and (b) in the proof of Claim 6.1.

>
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