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CYCLIC WEIGHTED SHIFT MATRIX WITH
REVERSIBLE WEIGHTS

PENG-RUEI HUANG'" and HIROSHI NAKAZATO?
Communicated by I. M. Spitkovsky

ABSTRACT. We characterize a class of matrices that is unitarily similar to a
complex symmetric matrix via the discrete Fourier transform.

1. Introduction

The numerical range W(A) of an n x n matrix A is defined as
W(A) = {€ A€ : € € T €% = 1},

Toeplitz introduced the compact set W(A), and Hausdorff proved its convexity.
Kippenhahn developed a birational algebraic-geometric method to study the set
W (A). He introduced a real ternary homogeneous form

Fu(z,y, z) = det(zR(A) + yS(A) + z1,,),

where R(A) = (A + A*)/2, S(A) = (A — A*)/(2¢) for the conjugate transpose
A* of A. He showed that the form F4 completely determines the range W (A).
In particular, he showed that the convex hull of the points z = x¢ + iyo (with
(70,70) € R?), for which the line zox + yoy + 1 = 0 is a tangent of the real
affine curve Fu(x,y,1) = 0 at some point, coincides with the range W (A). The
real form Fa(z,y, z) satisfies F'4(0,0,1) = 1, and every solution of the equation
Fa(z1,y1,2) = 0 in z is real for every (z1,y;) € R% Recently, Plaumann and
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Vinzant [13] proved that a ternary form F(z,y, z) possessing the above property
is expressed as

F(z,y,2) =det(xH, + yHsy + z1,,)

by using some real Hermitian matrices Hy, Hy. Their proof is rather elementary.
Lentzos and Pasley [11] proved that the matrices H; 4+ iHs can be taken as a
cyclic weighted shift matrix if the hyperbolic form F' is weakly circular invariant.
A strict assertion for an arbitrary hyperbolic form

F(z,y,z) = det(xzSy +ySa + z1,,)

has been proved by Helton and Vinnikov in [10]. Using the result in [10], Helton
and Spitkovsky [9] proved that the numerical range W (A) of an arbitrary n x n
matrix A has some n x n complex symmetric matrix S satisfying W (A) = W(.9).
These results provide new motivation for considering the following question: What
matrix A is unitarily similar to a complex symmetric matrix? In particular, what
cyclic weighted shift matrix is unitarily similar to a symmetric matrix? In addi-
tion, complex symmetric matrices or operators have been widely studied over the
past decade (see [1], [6], [7]). Chien, Liu, Nakazato, and Tam [4] recently pro-
vided some unitary matrices which uniformly turn Toeplitz matrices into sym-
metric matrices. We wish to provide another class of matrices satisfying a similar
property.

An n xn matrix A = (aij)gszl with the entries ajp = wy, a03 = wa, ..., Ap_1, =
Wy—1, Ap1 = Wy, a;; = 0 for (i, j) other than (¢, j) = (1,2),...,(n—1,n),(n,1) is
called a weighted shift matriz. It is given by

wq
Wa
0 W3

? (1'1)

Wp—1

| Wn 0 i

where the w;’s are called weights. Various interesting properties are known for
weighted shift matrices (see [8], [14]). As it was shown in [5], the weighted shift
matrix

o OO
o O oo
o o O

is not unitarily similar to a complex symmetric matrix.
The characteristic polynomial of a weighted shift matrix is given by

A" —wiwy - - wy,.
Hence if none of the w;’s vanish, then the weighted shift matrix is similar to a

diagonal matrix

(wywy - - - wy) Y™ diag(1,w,w?, ..., w" )

?



74 P.-R. HUANG and H. NAKAZATO

by an invertible matrix g € GL(n : C), where (wjw; - --w,)"™ is one of the nth

root of wywy - - - wy, in the field C and w = exp(27y/—1/n). In the case where one
of the w;’s vanishes, the weighted shift matrix S is nilpotent. So various studies
of weighted shift matrices are usually based on the different methods according
to whether wyws - - - w,, # 0 or wyws - - - w, = 0. However, the method used in this
article does not need the assumption wyws - --w, # 0. A weighted shift matrix
satisfying this condition is called cyclic. A weight sequence W = (wq, ws, . .., wy,)
is called reversible if w,, 11 = wy for k =1,2,...,n. We mainly treat the matrix
(1.1) with reversible weights.

2. Main result

The Fourier transform A of an n x n matrix A is defined as U* AU, where U is
the n x n unitary matrix defined by

1 1 1 1 1
1 w w? w3 wnt
11 WP w? w8 w21
U—% 1 Wl Wb WP W31 |
1 Wl p2n-1) 3=l w(n71)2

where w = exp(2rv/—1/n). The (k,{)-entry by, of the Fourier transform B = A
of an n x n matrix A = (a,,) is given by

n
BM = by = Z w*(kfl)(pfl)w(f*1)((171)%7(1.
p,q=1
We present our main theorem.

Theorem 2.1. Let A = (a,,) be an n x n complex matriz. Then the Fourier
transform B = U*AU of A is a complex symmetric matriz if and only if a1 p11 =

Ap—k+1,1 ONA Q14140 = Api1—tmt1—k for all k, 0 =1,2,... ., n—1. That is,
aii ‘ aiz -+ Qin
A1n
A= . ~ )
: A
a2

where A is an (n — 1) x (n — 1) complex matriz which is symmetric with respect
to the main skew-diagonal line.

For the 5 x 5 case, A is of the following form:

aii ‘ a2 G413 G4 dis
ais Q22 Q23 24 A25
A= |au 32 Q33 A34 A4
ai3 Qg2 Q43 G33 (23

12 G52 Q42 Q32 A22
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Proof. Suppose that B = U*AU is a complex symmetric matrix. Note that A =
(apq) can be divided by the following:

Z (apq) + Z (apg) +-+ Z (@pq)-

qg—p=1 q—p=2 q—p=n
mod n mod n mod n

For instance, when n = 4, A can be divided by

0 a19 0 0 0 0 a13 0
0 0 93 0 + 0 0 0 24
0 0 0 34 a13 0 0 0
41 0 0 0 L 0 24 0 0
0 0 0 ay] an 0 0 0
a921 0 0 0 0 9292 O 0
L0 a 0 oflT]0 0 ay 0
0 0 ays 0 ] 0 0 0 agq
Fixm =1,...,n, and let bgn) be the (7, j)-entry of (a,,) under the discrete Fourier
transform, where m satisfies ¢ — p = m (mod n). Therefore,
m 1 ES
bz('j )= n (Ui
[ a1,m+1 ]
a2, m+2
an—m n
>< 3
an—m—l—l,l
Ap—m+2,2
L an,m |
X U*j
wm(j_l)

= (al,m-‘rl + a2,m+2w(j_i) + e+ CLn—m,mw(n_m—"_l)(j_i)
n

+ Ayt 1w(n—m)(j—i) + Gnemgo 2w(n—m—1)(j—i) + -t anm nw(n—l)(j—i))

a1,m+1
a2 m+2
m(j—1
— w ( )U an—m,m 7
n Qp—m+1,1
an—m+2,2

L anfm,n _ Jfl‘i’l
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and we have the (j — i + 1)th component of the above vector, where

*\ —(—1) , —2(i—1) —(n—1)(i-1)
(Ui = [Lw , W N ]

and
1
wi—1
Uy = )
L(n-DG-1)
Similarly,
m(j—1)
m w j—1 n—m j—1
bgz ) - n (an—m-i-l,l + an—m,nw(] ) +- a2,m+2w( G

+ a4 m+1w(nfm)(jfi) +a, mw(nfmfl)(j*i) + ot Ao 2w(n71)(j71‘))

anferl,l

Qp—m,n

_ U a2,m+42
n a1,m+1

QAn,m

_an—m+2,2_ j—2+1

Let A,, be the following column vector, and let A,,(j) be the jth component of
this vector. We have

a1 m+1 Ap—m+1,1 a1.m+1 — Op—m+1,1
a2 m+2 Apn—m,n A2 m+2 — Qp—m,n
Am U anfm,m o a2,m+2 U anfm,m - a2,m+2 ) (21)
Ap—m+1,1 a1 m+1 Ap—m+1,1 — @1, m+1
anfm+2,2 an,m anfm+2,2 - an,m
| An—m,;n | | An—m+2,2 | | An—m,n — Gn—m+2,2 |

Note that if 7 — 7+ 1 < 0, then we can choose j — i + 1 to be k, where k£ €
{1,2,...,n} which satisfies j —i+1 = k (mod n). Applying the above argument,
we have

"o ,mi-1)
w .
m=1
Hence, if a1 k41 = Qp—kt1,1 A0 Q14p 140 = Qpg1—tnt+1—k forallk,/=1,2,...,n—1,

then A,,(j) =0 for all j,m =1,2,...,n. So b;; — bj; = 0, and this establishes the
“if” part.
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On the other hand, if B is a complex symmetric matrix, then, since w’~! #
and n # 0, (2.2) becomes

n o me1)G-1)

0= An(j =i+ 1), (2.3)

We fix k € {1,2,...,n} with j —i4+ 1=k (mod n) for all i, = 1,2,...,n. Using
both that j varies from 1 to n and (2.3), we have that

m=1

Ay (k)
Ax (k)

Ay (k)

U

is a zero vector. This implies that A,,(k) = 0 for all k,m = 1,2,...,n as U is
invertible. Again, using the invertibility of U in (2.1), we have that

a1,m+1 Ap—m+1,1
a2,m+2 anfm,n
Qp—m,m . a2 m+2
Ap—m+1,1 a1,m+1
an7m+2,2 Cln,m
L an—m,n ] _an—m+2,2_
is a zero vector for all k,m = 1,2,...,n. SO a1 441 = Qp_ty11 and a4 140 =
Apy1—en+1—k for all k, 0 =1,2,...,n — 1. This establishes the “only if” part and
completes the proof. O

The following result can be deduced easily from Theorem 2.1.

Corollary 2.2. A weighted shift matrix with reversible weights is unitarily similar
to a complex symmetric matrix.

We provide some examples of the matrix A = (a,,) satisfying Theorem 2.1,
where m satisfies ¢ — p = m (mod n).

Ezxample 2.3. When n =6, m = 2,

0 0 w, 0 0 07
0 0 0 w, 0 0
A_ |0 0 0 0 w0
0 0 0 0 0 w
wy 0 0 0 0 0
[ 0wy, 0O 0 0 0
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Ezample 2.4. When n =6, m = 3,

0 0 0 w 0 07
0 0 0 0 wy O
A 0 0 0 0 0 w
wy 0 0 0 0 0
0O w3 O O 0O O
0 0 wsy O O 0
Ezxample 2.5. When n =6, m =1,
0 w, 0 0 0 07
0 0 wy 0O 0 O
A 0 0 0 w3 0O O
0 0 0 0 w3 O
0 0 0 0 0 w
lwy, 0O 0 0 0 0
Ezample 2.6. When n =7, m =1,
0w, 0 0 0 0 07
0O 0 wy O O 0 O
0O 0 0 ws O 0 O
A=|0 0 O O wgy O O
0O 0 0 0 0 ws O
0O 0 0 0 0 0 w
lwy, O O O O 0 0]
Ezxample 2.7. When n =5, m =5,
wy 0 0 0 0
0O wy O 0 O
A=10 0 w3y 0 O
0 0 0 ws3 O

0 0 0 0 we

The authors wonder if weighted shift matrices are essentially determined by the
ternary form Fy (x,y, z). Such a hypothesis is related with the inverse problem
of the construction of a matrix W from the Fy (z,y, z). The formula obtained by
Helton and Vinnikov [10] and by Plaumann, Sturmfels, and Vinzant [12] provides
a strong tool to treat this subject (see also [3]). The following result would be the
first step of our study along this line.

Corollary 2.8. Let W be an n X n weighted cyclic shift matriz with reversible

weight wy,ws, . . ., ws, wi, and let n be odd. Suppose that the curve Fy (x,y,z) =0

has no singular points and that S(W') has n distinct nonzero eigenvalues fy, s,
.., Bn. Then there exists a real symmetric matriz Sy satisfying

det(xSl + ydlag(ﬂlu 62a s 7571) + ZIn) = FW(J:’ Y, Z>7

where Sy is provided by the Helton—Vinnikov theorem (see [10, Theorem 4]) and
S1 + idiag(B1, Ba, - - ., Bn) is unitarily similar to W.
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Proof. By Theorem 2.1, the matrix W is unitarily similar to a complex symmetric
matrix. Under this condition and the assumption that the curve Fy(x,y,2) =0
has no singular points, Theorem 7 of [12] guarantees that there is one pair of real
symmetric matrices S7 and S, satisfying

det(xS1 + ySs + 21,,) = det (zR(W) + yS(W) + 21,,)

and that S} + 55 is unitarily similar to W. To apply this theorem, we assume
that one standard condition (W) has n distinct nonzero roots. O

Remark 2.9. The condition that “n be odd” in the above corollary is crucial. In
the case where n is even, the curve Fyy (z,y, 2) has singular points provided that
the weights of W are reversible (see [2]).
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