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Abstract. We investigate the convergence rate of the generalized Bochner–

Riesz means Sδ,γ
R on Lp-Sobolev spaces in the sharp range of δ and p (p ≥ 2).

We give the relation between the smoothness imposed on functions and the

rate of almost-everywhere convergence of Sδ,γ
R . As an application, the corre-

sponding results can be extended to the n-torus Tn by using some transference
theorems. Also, we consider the following two generalized Bochner–Riesz multi-
pliers, (1−|ξ|γ1)δ+ and (1−|ξ|γ2)δ+, where γ1, γ2, δ are positive real numbers. We
prove that, as the maximal operators of the multiplier operators with respect
to the two functions, their L2(|x|−β)-boundedness is equivalent for any γ1, γ2
and fixed δ.

1. Introduction

Let R > 0. We consider the generalized Bochner–Riesz means Sδ,γ
R on the

Euclidean space Rn defined via the Fourier transform by

(Sδ,γ
R f)

∧
(ξ) =

(
1− |ξ|γ

Rγ

)δ

+
f̂(ξ), (1.1)

where δ and γ are two real numbers satisfying δ > −1 and γ > 0. Also, we
may initially assume that the f ’s are functions in the Schwartz class S (Rn). The
function (1 − |ξ|γ)δ+ is called the generalized Bochner–Riesz multiplier, and we
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denote it by mδ,γ. The kernel Bδ,γ
R of Sδ,γ

R is defined by

Bδ,γ
R (x) =

∫
Rn

(
1− |ξ|γ

Rγ

)δ

+
e2πiξ·x dξ =

((
(1− | · |γ)δ+

)∨)
1/R

.

We may write Sδ,γ
R as a convolution operator

Sδ,γ
R f = Bδ,γ

R ∗ f.

The associated maximal operator of Sδ,γ
R is defined by

(Sδ,γ
∗ f)(x) = sup

R>0

∣∣(Sδ,γ
R f)(x)

∣∣.
When γ = 2, the classical Bochner–Riesz means that Sδ,2

R is one of the most
significant and awesome operators in analysis since it is connected to a large
number of important conjectures in harmonic analysis, such as the Bochner–Riesz
conjecture, the disk conjecture, and the Kakeya conjecture, among many others.
Hence, research on Sδ,2

R has attracted many authors (we direct the reader to
[23], [20], [5], [3], [1], [26], [13], [6], [14], [15] and the references therein, among

numerous research papers). In particular, the study of the convergence of Sδ,2
R is a

long-standing subject in the classical theory of Fourier analysis. The number δ0 =
(n− 1)/2 is called the critical index of L1. When δ > δ0, limR→∞ Sδ,2

R f(x) = f(x)
almost everywhere for any f ∈ L1(Rn), while Stein [19] found an L1(Rn)-function

f for which lim supR→∞ |Sδ0,2
R f(x)| = ∞ almost everywhere. Finding a suitable

subspace of L1(Rn) related to almost-everywhere convergence of Sδ0,2
R (f)(x) thus

became an open problem, which was solved in 1982 by Lu, Taibleson, and Weiss
[16] when they introduced the block space (see the related work of Stein [21]
and Fefferman [9]). Also, for δ > δ0, Stein, Taibleson, and Weiss [22] considered

the weak-type boundedness for maximal operators of S
δp,2
R on the Hardy space

Hp, and they proved that limR→∞ S
δp,2
R f(x) = f(x) almost everywhere for any

f ∈ Hp, where 0 < p < 1 and δp = n/p−(n+1)/2. The most challenging research
involves the case in which δ is below the critical index δ0. In this case, we list two
famous conjectures below.

Conjecture 1.1 (Bochner–Riesz Conjecture 1, (see [21, p. 390])). For 0 < δ <
(n− 1)/2,

‖Sδ,2
R f‖Lp � ‖f‖Lp

if and only if
2n

n+ 1 + 2δ
< p <

2n

n− 1− 2δ
.

Conjecture 1.2 (Bochner–Riesz Conjecture 2, (see [21, p. 390], [11, Section 5.5])).
If 0 < δ < (n− 1)/2, f ∈ Lp, and

2n

n+ 1 + 2δ
< p <

2n

n− 1− 2δ
,

then

lim
R→∞

Sδ,2
R f(x) = f(x), a.e.
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The second conjecture was partially solved by Carbery, Rubio de Francia, and
Vega [2] in the range [2, 2n

n−1−2δ
) of index p. To reach the conclusion, they consid-

ered the boundedness of Sδ,2
∗ on the weighted space L2(Rn, |x|−β dx) and estab-

lished the following Theorem A. Then invoking Theorem A, they obtained The-
orem B below, which is the desired conclusion.

Theorem A ([2, p. 514]). Let δ > 0 and 0 ≤ β < 1 + 2δ ≤ n. Then there is a
constant C = C(β, δ, n) such that∫

Rn

∣∣(Sδ,2
∗ f)(x)

∣∣2|x|−β dx ≤ C2

∫
Rn

∣∣f(x)∣∣2|x|−β dx

for all functions f ∈ S (Rn).

Theorem B ([2, p. 513]). Let δ > 0 and n ≥ 2. Then for all f in Lp(Rn) with
2 ≤ p < 2n

n−1−2δ
, we have

lim
R→∞

Sδ,2
R f(x) = f(x)

for almost all x ∈ Rn.

Besides the convergence problem, another interesting question is to study the
convergence rate of Sδ,γ

R f(x) if f satisfies some smoothness condition. At the crit-
ical index δ0, this problem was studied by Lu and Wang [17] and Fan and Zhao
[7], who introduced the block Sobolev space Iλ(Bq)(Rn) to study the convergence

speed of the generalized Bochner–Riesz means Sδ0,γ
R . Thus, the relation between

the smoothness imposed on functions in the block space and the rate of almost-
everywhere convergence of Sδ0,γ

R is addressed. For δ > δ0, Fan and Zhao [8] studied

the convergence of Sδ,γ
R with δ = δp on the Hardy–Sobolev spaces Iλ(H

p)(Rn) and
revealed the relation between the smoothness imposed on the Hardy spaceHp(Rn)
and the rate of almost-everywhere convergence of the generalized Bochner–Riesz
means. As the authors mentioned in [8], the study of generalized Bochner–Riesz

means Sδ,γ
R on some corresponding Sobolev-type spaces is not merely a simple

extension of using γ to replace 2, but rather it is naturally raised from the approx-
imation theory in order to enhance the saturation of approximation.

The Sobolev-type spaces mentioned above, the block Sobolev space Iλ(Bq)(Rn),
the Hardy–Sobolev spaces Hp(Rn), and the Lp-Sobolev spaces Iλ(L

p)(Rn) were
introduced by Strichartz [24], [25] in a more general setting. Let Iλ denote the
Riesz potential operators of order λ on Rn for λ ∈ R, which may act on functions
or tempered distributions. The Fourier transform of a Schwartz function (or even

a tempered distribution f) satisfies (Iλf)
∧(ξ) = |ξ|−λf̂(ξ). If X is any function

space or a space of tempered distributions, one can define Sobolev spaces based
on X using Iλ(X) to be the image of X under Iλ. Thus, by this definition in [25,
p. 129], we know that Iλ(L

p)(Rn) are the classical homogeneous Sobolev spaces
for p ≥ 1 and that Iλ(H

p)(Rn) are the Hardy–Sobolev spaces for 0 < p ≤ 1.
Now we are in a position to state our main results in this article. We will study

the convergence rate of Sδ,γ
R f in the sharp range of p and δ as in Theorem B,

when the index δ is below the critical index. Precisely, our first aim is to analyze

the convergence rate of the Bochner–Riesz means Sδ,γ
R f on Lp-Sobolev spaces
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and to obtain the relation between the smoothness imposed on functions and the
rate of almost-everywhere convergence. As an application, by using a transference
theorem by Kenig and Tomas [12] for 1 < p ≤ ∞, we will transfer our results to
the n torus T n.

Below we formulate our main theorems. They are new even when γ = 2.

Theorem 1.3. Let δ > 0, let n ≥ 2, and let 2 ≤ p < 2n
n−1−2δ

. If f is in Iλ(L
p)(Rn),

then for 0 ≤ λ < γ,

(Sδ,γ
R f)(x)− f(x) = o(1/Rλ), a.e. as R → ∞,

and for λ = γ,

(Sδ,γ
R f)(x)− f(x) = O(1/Rγ), a.e. as R → ∞.

Moreover, the rate O(1/Rγ) is sharp at the endpoint λ = γ.

Clearly, Theorem 1.3 recovers Theorem B when λ = 0. We consider the maxi-
mal function

(M δ,γ
λ f)(x) = sup

R>0

∣∣Rλ
{
(Sδ,γ

R f)(x)− f(x)
}∣∣.

Let g := I−λf . Define the operator T δ,γ
R,λ by

(T δ,γ
R,λg)(x) =

∫
Rn

ĝ(ξ)
(1− | ξ

R
|γ)δ+ − 1

| ξ
R
|λ

e2πix·ξ dξ,

and (Mγg)(x) = supR>0 |(T
δ,γ
R,λg)(x)|. We have M δ,γ

λ f = Mγg.
To prove Theorem 1.3, we will need the following estimate on Mγg.

Theorem 1.4. Let δ > 0 and 0 ≤ β < 1 + 2δ ≤ n. Then there is a constant
C = C(β, δ, n) such that∫

Rn

∣∣(Mγg)(x)
∣∣2|x|−β dx ≤ C2

∫
Rn

∣∣g(x)∣∣2|x|−β dx, (1.2)

for all functions g ∈ S (Rn).

Remark 1.5. Moreover, Mγ has a unique bounded sublinear extension Mγ on

L2(Rn, |x|−β dx) which also satisfies (1.2). Also, for each R > 0, T δ,γ
R,λ has a

unique bounded linear extension T δ,γ
R,λ on L2(Rn, |x|−β dx) and the relationship

(Mγg)(x) = supR>0 |(T
δ,γ
R,λg)(x)| holds for all g ∈ L2(Rn, |x|−β dx). In the follow-

ing, for simplicity, we denote T δ,γ
R,λ by T δ,γ

R,λ and we denote Mγ by Mγ.

Our idea is mainly inspired from Fan and Zhao’s previous work (see [7], [8]).

Precisely, observe that the Fourier transform of Rλ{(Sδ,γ
R f)−f} is µ(·/R) ĝ, where

g := I−λf and the multiplier µ is given by

µ(ξ) =
(1− |ξ|γ)δ+ − 1

|ξ|λ
, ξ 6= 0 and µ(0) = lim

t→0+

(1− tγ)δ+ − 1

tλ
.
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Hence we will decompose the multiplier µ as a sum of µ0, µ1, µ∞, centralizing at
0, 1, and near ∞, respectively. Then each corresponding kernel will be carefully
estimated.

Here we make some further comments about Theorem 1.4. In the proof of
Theorem 1.4, we essentially prove that the L2(|x|−β)-boundedness of Sδ,γ

∗ can be
reduced to the L2(|x|−β)-boundedness of Sδ,2

∗ so that Theorem A can be employed.
Consider the following two generalized Bochner–Riesz multipliers, mδ,γ1 = (1 −
|ξ|γ1)δ+ and mδ,γ2 = (1− |ξ|γ2)δ+, where γ1, γ2, δ are positive real numbers. As the
maximal operators of the multiplier operators with respect to mδ,γ1 and mδ,γ2 ,
does the L2(|x|−β)-boundedness of Sδ,γ1

∗ imply the L2(|x|−β)-boundedness of Sδ,γ2
∗ ?

Furthermore, is the L2(|x|−β)-boundedness of Sδ,γ1
∗ and Sδ,γ2

∗ equivalent for any
γ1, γ2, and fixed δ? Our second aim gives it a positive answer by proving the
following.

Theorem 1.6. Let δ > 0 and let 0 ≤ β < 1 + 2δ ≤ n. Suppose that γ1, γ2, δ
are positive real numbers. Then the L2(|x|−β)-boundedness of Sδ,γ1

∗ and Sδ,γ2
∗ is

equivalent for any γ1, γ2, and fixed δ.

We were informed by the referee of the following result closely related to this
article.

Theorem C ([4, p. 87]). Let δ > 0 and n ≥ 2. If f is in Iλ(L
2)(Rn), then for

0 ≤ λ < γ,

(Sδ,γ
R f)(x)− f(x) = o(1/Rλ), a.e. as R → ∞,

and for λ = γ,

(Sδ,γ
R f)(x)− f(x) = O(1/Rγ), a.e. as R → ∞.

It is worth comparing our Theorem 1.3 to Theorem C. In fact, for a fixed
δ > 0 and 2 ≤ p < 2n

n−1−2δ
, in Theorem 1.3 we obtain the almost-everywhere

convergence of (Sδ,γ
∗ f)(x) for all f ∈ Iλ(L

p)(Rn), while Theorem C only states
the result for f ∈ Iλ(L

2)(Rn). Also, our proof for Theorem 1.3 is quite different
from that of Theorem C.

This article is organized as follows. In Section 2, we define some necessary
notation, definitions, and lemmas that will be used throughout this work. Since
the proofs of Theorems 1.3 and 1.4 are based on Theorem 1.6, we first prove
Theorem 1.6 in Section 3. Theorems 1.3 and 1.4 will be proved in Section 4. In
Section 5, we extend Theorems 1.3 and 1.4 on Rn to the n-torus Tn. We use the
letter C throughout to denote positive constants that may vary at each occurrence
but are independent of the essential variables. Also, the statement A ∼ B denotes
that there exist positive constants C, C0 such that C0 ≤ A/B ≤ C, and the
statement f � g denotes that there exists a positive constant C such that f ≤ Cg.

2. Some preliminaries

We begin with some preliminaries. A multi-index α is an ordered n-tuple of
nonnegative integers. For a multi-index α = (α1, . . . , αn), ∂

α
x f or ∂αf denotes

the derivative ∂α1
1 · · · ∂αn

n f . Let |α| = α1 + · · · + αn and α! = α1! · · ·αn!. The
number |α| indicates the total order of differentiation of ∂α

x f . For x ∈ Rn and
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α = (α1, . . . , αn) a multi-index, we set xα = xα1
1 · · · xαn

n . Let β = (β1, . . . , βn) be
a multi-index. The notation α ≤ β means that β ranges over all multi-indices
satisfying 0 ≤ αj ≤ βj for all 1 ≤ j ≤ n (for more details, see [10, p. 104]). Let [r]
be the greatest integer less than or equal to the real number r. Given a function ϕ
on Rn and ε > 0, we denote by ϕε the following function: ϕε(x) = ε−nϕ(ε−1x). For
the sake of conciseness, we denote L2(|x|−β) = L2(Rn, |x|−β dx) and Lp = Lp(Rn)
for 1 < p < ∞.

Let φ0, φ1, φ∞ ∈ C∞(Rn) be radial functions satisfying the following conditions:
(i) φ0 is supported on the set {ξ ∈ Rn : |ξ| < 1/2}, φ1 is supported on the annulus
{ξ ∈ Rn : 1/4 < |ξ| < 2}, and φ∞ is supported on the set {ξ ∈ Rn : |ξ| > 3/2};
(ii) φ0(ξ) + φ1(ξ) + φ∞(ξ) = 1, 0 ≤ φj(ξ) ≤ 1 for j = 0, 1,∞, and

φ0(ξ) =

{
1, |ξ| ≤ 1/4,

0, |ξ| ≥ 1/2,
φ1(ξ) =

{
1, 1/2 ≤ |ξ| ≤ 3/2,

0, |ξ| ≤ 1/4 and |ξ| ≥ 2,

φ∞(ξ) =

{
1, |ξ| ≥ 2,

0, |ξ| ≤ 3/2.

Let Ψ∞(ξ) = φ1(ξ) + φ∞(ξ). Obviously, Ψ∞ ∈ C∞(Rn) is supported on the set
{ξ : |ξ| > 1/4} satisfying 0 ≤ Ψ∞(ξ) ≤ 1 and Ψ∞(ξ) = 1 on the set {ξ : |ξ| ≥
1/2}. Assume that the kernel Bδ,γ

R of Sδ,γ
R is defined by

Bδ,γ
R (x) =

∫
Rn

(
1− |ξ|γ

Rγ

)δ

+
e2πiξ·x dξ.

We rewrite Sδ,γ
R as a convolution operator

Sδ,γ
R f = Bδ,γ

R ∗ f.

Let g := I−λf , T
δ,γ
R,λg := Rλ{(Sδ,γ

R f) − f}. Then the Fourier transform of the

function T δ,γ
R,λg can be written as mδ,γ

λ,0(·/R)ĝ +mδ,γ
λ,1(·/R)ĝ −mδ,γ

λ,∞(·/R)ĝ, where

mδ,γ
λ,0(ξ) =

φ0(ξ)

|ξ|λ
((
1− |ξ|γ

)δ
+
− 1

)
, mδ,γ

λ,1(ξ) =
φ1(ξ)

|ξ|λ
(
1− |ξ|γ

)δ
+
,

mδ,γ
λ,∞(ξ) =

Ψ∞(ξ)

|ξ|λ
.

Here and in what follows, for simplicity, we define the operators

(T δ,γ
R,λ,jg)

∧(ξ) = mδ,γ
λ,j(ξ/R)ĝ(ξ),

and we denote by (Kδ,γ
λ,j )1/R(x) = RnKδ,γ

λ,j (Rx) the kernel of T δ,γ
R,λ,j, where

Kδ,γ
λ,j (x) = mδ,γ

λ,j

∨
(x) =

∫
Rn

mδ,γ
λ,j(ξ)e

2πiξ·x dξ, j = 0, 1,∞.

Then

T δ,γ
R,λg = T δ,γ

R,λ,0g + T δ,γ
R,λ,1g − T δ,γ

R,λ,∞g
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and each operator T δ,γ
R,λ,jg can be written as a convolution operator

T δ,γ
R,λ,jg(x) = (Kδ,γ

λ,j )1/R ∗ g(x),

for j = 0, 1,∞. Let Mγg be the maximal function defined by

(Mγg)(x) = sup
R>0

∣∣∣∫
Rn

ĝ(ξ)
(1− | ξ

R
|γ)δ+ − 1

| ξ
R
|λ

e2πiξ·x dξ
∣∣∣.

Then we have

(M δ,γ
λ f)(x) = sup

R>0

∣∣Rλ
{
(Sδ,γ

R f)(x)− f(x)
}∣∣

= sup
R>0

∣∣(T δ,γ
R,λg)(x)

∣∣
≤

∑
j=0,1,∞

(Mγ,jg)(x),

where Mγ,jg are the associated maximal operators

(Mγ,jg)(x) = sup
R>0

∣∣(T δ,γ
R,λ,jg)(x)

∣∣, j = 0, 1,∞.

We next introduce the following two useful lemmas, both of which can be found
in [7]; they play a crucial role in the proof of Theorem 1.4.

Lemma 2.1 ([7, Lemma 2]). For 0 ≤ λ < γ and δ > −1, we have∣∣Kδ,γ
λ,0(x)

∣∣ � 1

(1 + |x|)n+γ−λ
,

and for λ = γ, we have∣∣Kδ,γ
γ,0(x)

∣∣ � 1

(1 + |x|)L
for any L > 0.

Lemma 2.2 ([7, Lemma 3]). For λ > 0 and δ > −1, we have∣∣Kδ,γ
λ,∞(x)

∣∣ � 1

|x|n−λ
if |x| < 1,

and if |x| ≥ 1, then we have∣∣Kδ,γ
λ,∞(x)

∣∣ � 1

|x|L
for any L > n.

We also need the following lemma which can be found in [10].

Lemma 2.3 ([10, p. 92]). If a function ϕ has an integrable radially decreasing
majorant Φ, then the estimate

sup
t>0

∣∣(f ∗ ϕt)(x)
∣∣ ≤ ‖Φ‖L1M(f)(x)

is valid for all locally integrable functions f on Rn, where M is the Hardy–
Littlewood maximal operator.
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3. Proof of Theorem 1.6

The main purpose of this section is to establish Theorem 1.6. To do this, we
first state an auxiliary result in [18]. Our idea is also partially motivated from
[18].

Lemma 3.1 ([18, Lemma 7]). For any ρ > 0, δ > 0, we have [(1 + | · |ρ)−δ
]
∨
∈

L1(Rn).

Proof of Theorem 1.6. By symmetry, we just need to give the implication rela-
tionship on one side. Without loss of generality, we suppose that Sδ,γ1

∗ is bounded
on L2(|x|−β). Its proof can be completed by an iteration argument. Pick a positive
integer k such that 2kγ2 > max{n+ 1, γ1}. Recall that φ1 ∈ S (Rn) is supported
on the annulus {ξ ∈ Rn : 1/4 < |ξ| < 2} and that it satisfies

φ1(ξ) =

{
1, 1/2 ≤ |ξ| ≤ 3/2,

0, |ξ| ≤ 1/4 and |ξ| ≥ 2.

We can decompose the generalized Bochner–Riesz multiplier mδ,2kγ2 as

mδ,2kγ2 =
(
1− |ξ|2kγ2

)δ
+

'
(1− |ξ|2kγ2

1− |ξ|γ1
)δ

φ1(ξ)
(
1− |ξ|γ1

)δ
+
+
(
1− |ξ|2kγ2

)δ
+

(
1− φ1(ξ)

)
=: mI +mII . (3.1)

For mII , from the assumption 2kγ2 > n + 1 and the definition of φ1, we obtain
that mII is supported on the disk {ξ ∈ Rn : 0 ≤ |ξ| ≤ 1/2} and mII ∈ Cn+1

c (Rn).
Integrating by parts n+1 times, we see that [mII (·)]∨ ∈ L1(Rn). Hence, Lemma 2.3
and Young’s inequality yield that

sup
R>0

∣∣([mII (·)
]∨)

1/R
∗ g(x)

∣∣ � M(g)(x).

Invoking the L2(|x|−β)-boundedness of M when −n < β < n, we obtain that∫
Rn

∣∣sup
R>0

∣∣([mII (·)
]∨)

1/R
∗ g(x)

∣∣∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx. (3.2)

For the first term mI , we have

sup
R>0

∣∣([mI(·)
]∨)

1/R
∗ g(x)

∣∣
� sup

R>0

∣∣∣{((1− | · |2kγ2
1− | · |γ1

)δ

φ1(·)
)∨}

1/R

∣∣∣ ∗ (Sδ,γ1
∗ g)(x), (3.3)

where

(Sδ,γ1
∗ g)(x) = sup

R>0

∣∣(Sδ,γ1
R g)(x)

∣∣ = sup
R>0

∣∣(Bδ,γ1
R ∗ g)(x)

∣∣
and

Bδ,γ1
R =

((
(1− | · |γ1)δ+

)∨)
1/R

.
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First, define the function F by

F (t) =

{
1−tν

1−t
, t 6= 1,

ν, t = 1.

Then it is easy to see that F ∈ C∞(R) and that it is infinitely differentiable at

the point t = 1. Pick ν = 2kγ2
γ1

, t = |ξ|γ1 . Invoking the assumption 2kγ2 > γ1 and

the definition of φ1(ξ), we have (F (|ξ|γ1))δφ1(ξ) ∈ C∞
c (Rn) ⊆ S (Rn); that is,

(1−|ξ|2kγ2

1−|ξ|γ1 )
δ

φ1(ξ) ∈ S (Rn). Therefore, we obtain that((1− | · |2kγ2
1− | · |γ1

)δ

φ1(·)
)∨

∈ S (Rn) ⊆ L1(Rn). (3.4)

From (3.4), using Lemma 2.3 combined with (3.3), we can reach the conclusion
that

sup
R>0

∣∣([mI(·)
]∨)

1/R
∗ g(x)

∣∣ � M(Sδ,γ1
∗ g)(x).

Again, invoking the L2(|x|−β)-boundedness of M when −n < β < n, and by the
hypothesis of Theorem 1.6 that Sδ,γ1

∗ is bounded on L2(|x|−β), we obtain that for
δ > 0 and 0 ≤ β < 1 + 2δ ≤ n,∫

Rn

∣∣sup
R>0

∣∣([mI(·)
]∨)

1/R
∗ g(x)

∣∣∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx. (3.5)

Combining (3.1), (3.2), and (3.5), we obtain that∫
Rn

∣∣sup
R>0

∣∣([mδ,2kγ2(·)
]∨)

1/R
∗ g(x)

∣∣∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx,

which yields the inequality∫
Rn

∣∣(Sδ,2kγ2
∗ g)(x)

∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx. (3.6)

Decompose the multiplier mδ,2k−1γ2 as(
1− |ξ|2k−1γ2

)δ
+
=

(
1 + |ξ|2k−1γ2

)−δ(
1− |ξ|2kγ2

)δ
+
;

that is, mδ,2k−1γ2 = (1 + |ξ|2k−1γ2)−δmδ,2kγ2 . Using Lemmas 3.1 and 2.3, we have

Sδ,2k−1γ2
∗ g � M(Sδ,2kγ2

∗ g)(x).

Recalling the L2(|x|−β)-boundedness of M when −n < β < n and (3.6), we
further obtain that∫

Rn

∣∣(Sδ,2k−1γ2
∗ g)(x)

∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx. (3.7)

Write mδ,2k−2γ2 = (1 + |ξ|2k−2γ2)−δmδ,2k−1γ2 . From (3.7), we have∫
Rn

∣∣(Sδ,2k−2γ2
∗ g)(x)

∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx.
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Repeating the process of the above argument k − 2 times, we finally obtain that∫
Rn

∣∣(Sδ,γ2
∗ g)(x)

∣∣2|x|−β dx �
∫
Rn

∣∣g(x)∣∣2|x|−β dx,

which concludes the proof of Theorem 1.6. �

4. Proofs of Theorem 1.3 and Theorem 1.4

We postpone the proof of Theorem 1.4 until the end of this section. First, let us
describe how we can complete the proof of Theorem 1.3 by virtue of Theorem 1.4.
We need the following lemma.

Lemma 4.1 ([11, p. 410]). Let 0 < r < p < ∞ and let n(1− r
p
) < β < n. Then

Lp(Rn) is contained in Lr(Rn) + Lr(Rn, |x|−β).

Proof. For any g ∈ Lp(Rn), write g = g1 + g2, where g1 = gχ|·|≤1, g2 = gχ|·|>1.
Noting that 0 < r < p < ∞, n(1 − r

p
) < β < n, and combining with Hölder’s

inequality, it is easy to check that g1 ∈ Lr(Rn) and g2 ∈ Lr(Rn, |x|−β). �

Now we explain how to deduce Theorem 1.3 from Lemma 4.1 and Theorem 1.4.

Proof of Theorem 1.3. For any given function f ∈ Iλ(L
p)(Rn), let g := I−λf .

Then g ∈ Lp(Rn). For 2 ≤ p < 2n
n−1−2δ

, from Lemma 4.1 we can choose β satisfying

0 ≤ n(1 − 2
p
) < β < 1 + 2δ < n, for which Lp ⊆ L2 + L2(|x|−β)). We have the

decomposition formula

g = g1 + g2,

where g1 ∈ L2(Rn) and g2 ∈ L2(Rn, |x|−β). Accordingly,

f = f1 + f2, (4.1)

where f1 = Iλg1 ∈ Iλ(L
2(Rn)) and f2 = Iλg2 ∈ Iλ(L

2(Rn, |x|−β)). Since S (Rn) ∩
Iλ(L

2)(Rn) is dense in Iλ(L
2)(Rn), for any ε > 0, we choose an l1 ∈ S (Rn) ∩

Iλ(L
2)(Rn) such that h1 = f1 − l1 and

‖h1‖Iλ(L2)(Rn) < ε.

Since l1 ∈ S (Rn), for any fixed s > 0, we conclude that∣∣{x ∈ Rn : lim
R→∞

∣∣Rλ
(
(Sδ,γ

R l1)(x)− l1(x)
)∣∣ > s/2

}∣∣ = 0.

Let h̃1 = I−λh1. Then

‖h̃1‖L2(Rn) = ‖I−λh1‖L2(Rn) = ‖h1‖Iλ(L2(Rn)).

Making use of the sublinearity of the maximal function, together with Theo-
rem 1.4, it follows that for any s > 0,∣∣{x ∈ Rn : (M δ,γ

λ f1)(x) > s
}∣∣

=
∣∣{x ∈ Rn : lim

R→∞

∣∣Rλ
(
(Sδ,γ

R f1)(x)− f1(x)
)∣∣ > s

}∣∣
≤

∣∣{x ∈ Rn : (M δ,γ
λ h1)(x) > s/2

}∣∣
=

∣∣{x ∈ Rn : (Mγh̃1)(x) > s/2
}∣∣
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�
(‖h̃1‖L2(Rn)

s

)2

=
(‖h1‖Iλ(L2(Rn))

s

)2

<
(ε
s

)2

.

Letting ε → 0, we deduce that∣∣{x ∈ Rn : (M δ,γ
λ f1)(x) > s

}∣∣ = 0,

which concludes that

(Sδ,γ
R f1)(x)− f1(x) = o(1/Rλ), a.e. x ∈ Rn as R → ∞.

Since the measure |x|−β dx is absolutely continuous with respect to the Lebesgue
measure, we have

(Sδ,γ
R f2)(x)− f2(x) = o(1/Rλ), a.e. x ∈ Rn as R → ∞.

Thus, recalling (4.1), we can obtain that for any given function f ∈ Iλ(L
p)(Rn),

0 ≤ λ ≤ γ, we have

(Sδ,γ
R f)(x)− f(x) = o(1/Rλ), a.e. x ∈ Rn as R → ∞.

Let us now consider the sharpness of the convergence rate O(1/Rγ) in the case
λ = γ. For any fixed δ > 0, we pick an f ∈ S (Rn)∩Iλ(L

2)(Rn) and f 6≡ 0. There

exists a point x0 satisfying (| · |γ f̂)∨(x0) 6= 0; that is,∫
Rn

f̂(ξ)|ξ|γe2πiξ·x0 dξ 6= 0.

Using the continuity of the Fourier transform, we have∫
Rn

f̂(ξ)|ξ|γe2πiξ·x dξ 6= 0 (4.2)

in a neighborhood of x0. Write

Rγ
{
(Sδ,γ

R f)(x)− f(x)
}
= Rγ

∫
Rn

((
1−

∣∣∣ ξ
R

∣∣∣γ)δ

+
− 1

)
f̂(ξ)e2πix·ξ dξ

= Rγ

∫
|ξ|<R

((
1−

∣∣∣ ξ
R

∣∣∣γ)δ

+
− 1

)
f̂(ξ)e2πix·ξ dξ

+Rγ

∫
|ξ|≥R

((
1−

∣∣∣ ξ
R

∣∣∣γ)δ

+
− 1

)
f̂(ξ)e2πix·ξ dξ

=: IR(x) + IIR(x).

Since f ∈ S (Rn), we have |IIR(x)| � Rγ
∫
|ξ|≥R

|f̂(ξ)| dξ � R−L, for any L > 0.

By Taylor’s expansion, we notice that(
1− |ξ|γ

)δ
+
− 1 = δ|ξ|γ +O

(
|ξ|2γ

)
,
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where γ > 0 and |ξ| ≤ 1. Then for |ξ| ≤ R,(
1−

∣∣∣ ξ
R

∣∣∣γ)δ

+
− 1 = δ

∣∣∣ ξ
R

∣∣∣γ +O
(∣∣∣ ξ

R

∣∣∣2γ).
So we have

IR(x) = −δ

∫
|ξ|<R

|ξ|γ f̂(ξ)e2πix·ξ dξ +O
( 1

Rγ
·
∫
|ξ|<R

|ξ|2γ f̂(ξ)e2πix·ξ dξ
)

= −δ

∫
|ξ|<R

|ξ|γ f̂(ξ)e2πix·ξ dξ +O
( 1

Rγ

)
.

Thus,∣∣Rγ
{
(Sδ,γ

R f)(x)− f(x)
}∣∣ = ∣∣∣δ ∫

|ξ|<R

|ξ|γ f̂(ξ)e2πix·ξ dξ
∣∣∣+O

( 1

Rγ

)
+R−L,

for any L > 0. From (4.2), we obtain that

lim
R→∞

Rγ
(
(S

δp,γ
R f)(x)− f(x)

)
6= 0

in a set of positive measure. This concludes the proof of Theorem 1.3. �

Now we return to prove Theorem 1.4.

Proof of Theorem 1.4. The sublinearity of the maximal function Mγg leads to

(Mγg)(x) ≤
∑

j=0,1,∞

(Mγ,jg)(x), (4.3)

where Mγ,jg is the associated maximal operator

(Mγ,jg)(x) = sup
R>0

∣∣(T δ,γ
R,λ,jg)(x)

∣∣.
Invoking Lemmas 2.1 and 2.2, we know that for any 0 ≤ λ ≤ γ, Kλ,j ∈ L1(Rn)
for j = 0,∞. Combining with Lemma 2.3, we have

Mγ,jg(x) � M(g)(x), j = 0,∞,

which says that Mγ,jg (j = 0,∞) can be dominated by the Hardy–Littlewood
maximal function. Taking note of the fact that when −n < β < n, the Hardy–
Littlewood maximal function operator is bounded on L2(Rn, |x|−β dx) (see [10,
Theorem 7.1.9, Example 7.1.7]), we know that

‖Mγ,jg‖L2(|x|−β) � ‖g‖L2(|x|−β) for j = 0,∞. (4.4)

Invoking (4.3) and (4.4), to prove Theorem 1.4 it suffices to show that

‖Mγ,1g‖L2(|x|−β) � ‖g‖L2(|x|−β). (4.5)

Thus, we mainly pay attention to the estimate of Mγ,1g. Let

Φ(x) =
(φ1(·)
| · |λ

)∨
,
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and let Φ1/R(x) = RnΦ(Rx) for R > 0. Then

(T δ,γ
R,λ,1g)(x) = Φ1/R ∗Bδ,γ

R ∗ g(x)

and

(Mγ,1g)(x) = sup
R>0

∣∣(T δ,γ
R,λ,1g)(x)

∣∣
≤ sup

R>0
|Φ1/R| ∗ (Sδ,γ

∗ g)(x)

� M(Sδ,γ
∗ g)(x),

where M is the Hardy–Littlewood maximal operator, since Φ is a Schwartz func-
tion by its choice. Invoking the L2(|x|−β)-boundedness of M when −n < β < n,
we have

‖Mγ,1g‖L2(|x|−β) �
∥∥M(Sδ,γ

∗ g)
∥∥
L2(|x|−β)

� ‖Sδ,γ
∗ g‖L2(|x|−β).

Thus, in order to prove (4.5), we only need to show that

‖Sδ,γ
∗ g‖L2(|x|−β) � ‖g‖L2(|x|−β). (4.6)

From Theorem 1.6, we know that the L2(|x|−β)-boundedness of Sδ,2
∗ implies the

L2(|x|−β)-boundedness of Sδ,γ
∗ . Recalling Theorem A, we deduce the L2(|x|−β)-

boundedness of Sδ,γ
∗ in (4.6). This finishes the proof of Theorem 1.4. �

5. Generalized Bochner–Riesz means on the torus

In this section, we study the generalized Bochner-Riesz means operators on the
torus Tn. Let m = (m1,m2, . . . ,mn) ∈ Zn, and let |m| = (m2

1+m2
2+ · · ·+m2

n)
1/2.

Functions on Tn are functions f̃ on Rn that satisfy f̃(x) = f̃(x+m) for all x ∈ Rn

and m ∈ Zn. For a complex-valued function f̃ in L1(Tn) and m ∈ Zn, we define

the mth Fourier coefficient of f̃ by cm =
∫
Tn f̃(x)e

−2πim·x dx. The Fourier series of

f̃ at x ∈ Tn is the series f̃(x) ∼
∑

m∈Zn cme
2πim·x. The Riesz potential Ĩ−λ of order

λ ≥ 0 is defined as Ĩ−λ(f̃)(x) ∼
∑

m∈Zn |m|λcme−2πim·x, where {cm} is the set of

Fourier coefficients of f̃ . For the sake of simplicity, without loss of generality, we

initially consider functions f̃ ∈ C∞(Tn), that is, f̃ is a C∞-function satisfying

f̃(x) = f̃(x+m)

for any x ∈ Rn and m ∈ Zn. Similar to the definition established in (1.1) on

Rn, the generalized Bochner–Riesz means Sδ,γ
R of order δ on the torus Tn is the

operator

(S̃δ,γ
R f̃)(x) =

∑
m∈Zn

|m|≤R

(
1− |m|γ

Rγ

)δ

cme
2πim·x
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defined on integrable functions f̃ on Tn, where δ and γ are two real numbers
satisfying δ > −1 and γ > 0. Denote (mδ,γ)∨(y) by Lδ,γ(y), where y ∈ Rn. Then
we have

(S̃δ,γ
R f̃)(x) =

∑
l∈Zn

|l|≤R

mδ,γ
( l

R

)
cle

2πil·x = f̃ ∗ B̃δ,γ
R (x),

for any integrable function f̃ on Tn and x ∈ Tn, where B̃δ,γ
R is a function whose

sequence of Fourier coefficients is {mδ,γ( l
R
)}l∈Zn . By the Poisson summation for-

mula (see [10, Theorem 3.2.8]), we have

B̃δ,γ
R (x) =

∑
k∈Zn

mδ,γ
( k

R

)
e2πik·x = Rn

∑
l∈Zn

Lδ,γ
(
(x+ l)R

)
.

By Fubini’s theorem, it is easy to check that Rλ{(S̃δ,γ
R f̃) − f̃} can be written as

the Fourier series

Rλ
{
(S̃δ,γ

R f̃)− f̃
}
(x) =

∑
l∈Zn

|l|λclµ
( l

R

)
e2πil·x,

where {cl} is the set of Fourier coefficients of f̃ and µ is the same as in Section 1.
Precisely, the multiplier µ is given by

µ(ξ) =
(1− |ξ|γ)δ+ − 1

|ξ|λ
, ξ 6= 0 and µ(0) = lim

t→0+

(1− tγ)δ+ − 1

tλ
.

Denote by Kδ,γ,λ the inverse Fourier transform of µ, that is, Kδ,γ,λ(y) = µ∨(y) =∫
Rn µ(ξ)e

2πiξ·y dξ, where y ∈ Rn. Let g̃ := Ĩ−λf̃ and T̃ δ,γ
R,λg̃ := Rλ{(S̃δ,γ

R f̃) − f̃},
and let the associated maximal operator of T̃ δ,γ

R,λg̃ be defined by (M̃γ g̃)(x) =

supR>0 |(T̃
δ,γ
R,λg̃)(x)|. We can write

T̃ δ,γ
R,λg̃(x) = Rλ

{
(S̃δ,γ

R f̃)− f̃
}
(x) = K̃δ,γ,λ

R ∗ g̃(x),

where

K̃δ,γ,λ
R (x) ∼

∑
l∈Zn

µ
( l

R

)
e2πil·x = Rn

∑
l∈Zn

Kδ,γ,λ
(
(x+ l)R

)
.

For the convolution operator ϕt ∗ f(x), one can define its periodic version via
the Fourier series by

ϕ̃t ∗ f̃(x) ∼
∑
k∈Zn

ckϕ̂(tk)e
−2πik·x,

where ck is the mth Fourier coefficient of f̃ . We recall the following result on the
transference of maximal multipliers.
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Theorem D ([12, Theorem 1]). Let 1 < p ≤ ∞. Suppose that ϕ̂ is a bounded
and continuous function on Rn. If∥∥ sup

0<t≤1
|ϕt ∗ g|

∥∥
Lp(Rn)

� ‖g‖Lp(Rn)

for all g ∈ Lp(Rn) ∩ S(Rn), then we have∥∥ sup
0<t≤1

|ϕ̃t ∗ g̃|
∥∥
Lp(Tn)

� ‖g̃‖Lp(Tn)

for all g̃ ∈ Lp(Tn).

Using Theorem D, we have the following theorem.

Theorem 5.1. Let δ > 0, p ≥ 2. If f̃ is in Ĩλ(L
p)(Tn), then for 0 ≤ λ < γ,

(S̃δ,γ
R f̃)(x)− f̃(x) = o(1/Rλ), a.e. as R → ∞,

and for λ = γ,

(S̃δ,γ
R f̃)(x)− f̃(x) = O(1/Rγ), a.e. as R → ∞.

Moreover, the rate O(1/Rγ) is sharp at the endpoint λ = γ in the sense that
O(1/Rγ) cannot be replaced by o(1/Rγ).

The sharpness of the theorem easily follows the same argument as in the proof of
Theorem 1.3. For the proof of convergence, by checking the proof for Theorem 1.3,
it suffices to prove the following result.

Theorem 5.2. Let δ > 0. If f̃ is in Ĩλ(L
2)(Tn), then

‖M̃γ g̃‖L2(Tn) � ‖g̃‖L2(Tn). (5.1)

Proof. From Theorem 1.4, taking β = 0, we obtain thatMγ is bounded on L2(Rn).
To prove Theorem 5.2, it is easy to see that µ is a bounded and continuous function
on Rn. Then by Theorem C we obtain the transference result (5.1). �

Now we return to explain how to deduce Theorem 5.1 from Theorem 5.2.

Proof of Theorem 5.1. By standard arguments as in the proof of Theorem 1.3,
Theorem 5.2 implies that

(S̃δ,γ
R f̃)(x)− f̃(x) = o(1/Rλ), a.e. as R → ∞,

for f̃ in Ĩλ(L
2)(Tn). For p ≥ 2, we note that Ĩλ(L

p)(Tn) ⊆ Ĩλ(L
2)(Tn) because Tn

is compact. In fact, if f̃ ∈ Ĩλ(L
p)(Tn), then by Hölder’s inequality we have

‖f̃‖Ĩλ(L2)(Tn) = ‖Ĩλf̃‖L2(Tn) � ‖Ĩλf̃‖Lp(Tn) = ‖f̃‖Ĩλ(Lp)(Tn).

Since Ĩλ(L
p)(Tn) ⊆ Ĩλ(L

2)(Tn) for any p ≥ 2, we have

(S̃δ,γ
R f̃)(x)− f̃(x) = o(1/Rλ), a.e. as R → ∞,

for any f̃ ∈ Ĩλ(L
p)(Tn), p ≥ 2. �
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