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Abstract. We construct topological bases in spaces of Whitney functions on
Cantor sets, which were introduced by the first author. By means of suitable
individual extensions of basis elements, we construct a linear continuous exten-
sion operator, when it exists for the corresponding space. In general, elements
of the basis are restrictions of polynomials to certain subsets. In the case of
small sets, we can present strict polynomial bases as well.

1. Introduction

This article is supplementary to [5], where the extension problem is discussed
for equilibrium Cantor sets K(γ) introduced in [4]. The set K(γ) is defined by
means of a sequence of parameters γ = (γs)

∞
s=0 and can be considered as a gen-

eralization of the classical quadratic Julia set, but as opposed to Julia sets, it is
more flexible with respect to its features.

Following [10] (see also [1] and [2]), we say that a compact set K ⊂ Rd has the
extension property (EP) if, for the space E(K) of Whitney jets on K, there exists
a linear continuous extension operator W : E(K) → C∞(Rd). In [5], we present
a characterization of EP for K(γ) and, by means of local Newton interpolations,
construct an operator W , when it exists. This approach goes back to [8] (see also
[9]), so we can say that W is a local version of the Paw lucki–Pleśniak operator.
Here, we construct topological bases in the spaces E(K(γ)). The construction
follows [3]. Besides, for K(γ) with EP, we present an extension operator W by
individual extensions of basis elements.
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The article is organized as follows. Section 2 contains definitions and some
auxiliary results about the sets K(γ). In Sections 3 and 4, we show that the
method from [3] can be adapted to our case as well. In Section 5, by means of
extension of basis elements, we construct an extension operator W for the spaces
E(K(γ)), provided K(γ) has EP. In the case when the space has a Faber basis,
the operator W coincides with the operator presented in [5].

For a finite set A ⊂ R, let #(A) be the cardinality of A. Given x ∈ R, by
dk(x,A) we denote distances from x to the points of A arranged in nondecreasing
order, so dk(x,A) = |x − amk

| ↗. Also, bac is the greatest integer less than or
equal to a, and |A| is the diameter of A.

2. Uniform distribution of points

As in [5], we consider γ = (γs)
∞
s=1 with 0 < γs ≤ 1/32 and

∑∞
s=1 γs < ∞.

Let r0 = 1, let P2(x) = x(x − 1), and let rs = γsr
2
s−1, P2s+1 = P2s(P2s + rs)

where s ∈ N. Then Es := {x ∈ R : P2s+1(x) ≤ 0} =
⋃2s

j=1 Ij,s, where the sth
level basic intervals Ij,s are disjoint. Since Es+1 ⊂ Es, we have a Cantor-type set
K(γ) :=

⋂∞
s=0Es.

For the length `j,s of the interval Ij,s, by Lemma 6 in [4], we have

δs < `j,s < C0δs for 1 ≤ j ≤ 2s, (2.1)

where δ0 := 1, δs := γ1γ2 · · · γs for s ∈ N and C0 = exp(16
∑∞

k=1 γk). Clearly,

rk = δkδk−1δ
2
k−2δ

4
k−3 · · · δ2

k−1

0 . (2.2)

Each Ij,s contains two adjacent basic subintervals I2j−1,s+1 and I2j,s+1. Let hj,s =
`j,s − `2j−1,s+1 − `2j,s+1 be the distance between them. As in [4], Lemma 4,

hj,s ≥ 7/8 · `j,s > 7/8 · δs (2.3)

for all s and 1 ≤ j ≤ 2s and

`2j−1,s+1 + `2j,s+1 < 4`j,s. (2.4)

We decompose the zeros of P2s into s groups: X0 = {x1, x2} = {0, 1}, X1 =
{x3, x4} = {`1,1, 1− `2,1}, . . . , Xk = {`1,k, `1,k−1 − `2,k, . . . , 1− `2k,k} for k ≤ s− 1,
so Xk contains all zeros of P2k+1 that are not zeros of P2k . If Ys =

⋃s
k=0Xk, then

P2s(x) =
∏

xk∈Ys−1
(x − xk). Clearly, #(Xs) = 2s for s ∈ N and #(Ys) = 2s+1 for

s ∈ Z+. The elements of Xs are called sth-type points.
We put all points (xk)∞k=1 from

⋃∞
k=0 Xk in order by means of the rule of increase

of type. The order of (xk)4k=1 is given above. To put the points from X2 in order,
we increasingly arrange the points from Y1, so Y1 = {x1, x3, x4, x2}. After this we
increase the index of each point by 4. This gives the ordering X2 = {x5, x7, x8, x6}.
Similarly, indices of increasingly arranged points from Yk−1 = {xi1 , xi2 , . . . , xi

2k
}

define the ordering Xk = {xi1+2k , xi2+2k , . . . , xi
2k

+2k}. We see that xj+2k = xj ±
`m,k, where the sign and m are uniquely defined by j.

A useful feature of this order is that for each N , the points Z := (xk)Nk=1 are
distributed uniformly on K(γ) in the following sense. Suppose that 2n ≤ N <
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2n+1. Then the binary representation

N = 2n + 2m + · · · + 2i + · · · + 2w with 0 ≤ w < · · · < i < · · · < m < n (2.5)

generates the decomposition Z = Zn ∪ Zm ∪ · · · ∪ Zw with Zn = Yn−1 and Zm ∪
· · · ∪ Zw ⊂ Xn. Here, #(Zi) = 2i for i ∈ N := {w, . . . ,m, n}, and each basic
interval of ith level contains just one point from Zi. Also, for each s and i, j ≤ 2s,∣∣#(Z ∩ Ii,s) − #(Z ∩ Ij,s)

∣∣ ≤ 1. (2.6)

In what follows, we will associate with a number N not only the sets Z and N ,
but also the product

∏
i∈N ri, where ri is defined in (2.2). We combine together

all the δk’s that constitute this product and arrange them in nondecreasing order:∏
i∈N ri =

∏N
m=1 ρm =

∏n
k=0 δ

sk(N)
k with

∑n
k=0 sk(N) = N, ρm ≤ ρm+1. For exam-

ple, N = 2n gives
∏N

m=1 ρm = rn, whereas N = 21 generates N = {0, 2, 4} and∏21
m=1 ρm = δ4δ3δ

3
2δ

5
1δ

11
0 . For each N ≥ 1 and k ≥ 0, the corresponding degrees

are given by the formula

sk(N) =
⌊
2−k−1(N + 2k)

⌋
.

From here it follows that, for N +1 = 2m(2p+1), the values sk(N) and sk(N +1)
coincide for all k except k = m, where sm(N+1) = sm(N)+1. We choose similarly
the set Z = (xk,j,s)

N
k=1 on any Ij,s. If 2n ≤ N < 2n+1, then Z includes 2n zeros of

P2s+n on Ij,s and N−2n points of the type s+n. Let ri,s = δs+iδs+i−1δ
2
s+i−2 · · · δ2

i−1

s

and
∏

i∈N ri,s =
∏N

m=1 ρm,s. We estimate the sup-norm of fN(x) =
∏N

k=1(x−xk,j,s)
on K(γ) ∩ Ij,s in terms of the last product.

Lemma 2.1. In the above notation,

(7/8)N
N∏
k=1

ρk,s ≤ |fN |0,K(γ)∩Ij,s ≤ CN
0

N∏
k=1

ρk,s.

Proof. For brevity, let us consider the interval Ij,s = [0, 1], since the proof for the
general case is the same. Thus, we drop the subscripts j and s. For x ∈ K(γ), we

have |fN(x)| =
∏N

k=1 |x−xk| =
∏

i∈N
∏

xk∈Zi
|x−xk|. For each i ∈ N , we consider

the chain of basic intervals containing x: x ∈ Ij0,i ⊂ Ij1,i−1 ⊂ · · · ⊂ Iji,0 = [0, 1].
Since the points from Zi are uniformly distributed, the interval Ij0,i contains just
one point from Zi, as well as Ij1,i−1\Ij0,i. Also, #(Z∩(Ijk,i−k \Ijk−1,i−k+1)) = 2k−1

for 1 ≤ k ≤ i. Therefore,
∏

xk∈Zi
|x − xk| ≤ `j0,i`j1,i−1`

2
j2,i−2 · · · `2

i−1

ji,0
< C2i

0 ri, by

(2.1) and (2.2). From this, |fN(x)| ≤ CN
0

∏
i∈N ri and

|fN |0,K(γ) ≤ CN
0

N∏
k=1

ρk. (2.7)

The bound (2.7) is sharp with respect to the product
∏N

k=1 ρk. Indeed, let us
consider |fN(xN+1)|. As above, xN+1 ∈ Ij0,n ⊂ Ij1,n−1 ⊂ · · · ⊂ Ijn,0 = [0, 1].

Hence,
∏

xk∈Zn
|xN+1 − xk| ≥ `j0,nhj1,n−1h

2
j2,n−2 · · ·h2n−1

jn,0 > (7/8)2
n
rn, by (2.3).

As for
∏

xk∈Zm
|xN+1 − xk|, we observe that the point xN+1 must be in some

interval Ij,m+1 which is free of points from A := Zm ∪ · · · ∪ Zw. Indeed, the set
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{xN+1} ∪A contains at most 2m+1 points that are uniformly distributed, so each
Ij,m+1 contains at most one point from this set. Thus, xN+1 and its closest point
from Zm are located in distinct intervals of the (m+1)th level. Arguing as above,

we see that
∏

xk∈Zm
|xN+1 − xk| ≥ hj0,mhj1,m−1h

2
j2,m−2 · · ·h2m−1

jm,0 > (7/8)2
m
rm.

In a similar fashion,
∏

xk∈Zi
|xN+1 − xk| > (7/8)2

i
ri for each i ∈ N . Therefore,

|fN |0,K(γ) ≥
∣∣fN(xN+1)

∣∣ ≥ (7/8)N
N∏
k=1

ρk. (2.8)

�

Remark. Given x ∈ K(γ), we have |fN(x)| =
∏N

k=1 dk(x, Z). The lengths of
basic intervals of the same level may be rather different (we can say only that
`j,s < C0`i,s, by (2.1)). For this reason, as k increases and x, y belong to different
parts of K(γ), the values dk(x, Z) and dk(y, Z) may increase in quite different

fashions. Nevertheless, the product
∏N

k=1 ρk is defined by N only, so it does not
depend on the choice of x.

In the following technical lemmas, we use the decomposition (2.5). Let 2n ≤
N < 2n+1 and a basic interval I = Ij,s be given. Suppose that Z = (xk)Nk=1

and Z̃ = (xk)N+1
k=1 are chosen on I by the rule of increase of type. Write C1 =

8/7 · (C0 + 1).

Lemma 2.2. For each x ∈ R with dist(x,K(γ) ∩ Ij,s)) ≤ δs+n and z ∈ Z̃, we

have δs+n

∏N
k=2 dk(x, Z) ≤ CN

1

∏N+1
k=2 dk(z, Z̃).

Proof. As above, for brevity, we take s = 0, j = 1. Let x̃ ∈ K(γ) realize the
distance above. Also, let xp ∈ Zp ⊂ Z be such that d1(x, Z) = |x−xp|. Of course,
xp may coincide with x̃. Clearly,

δn

N∏
k=2

dk(x, Z) =
∏

i∈N ,i 6=p

2i∏
k=1

dk(x, Zi) ·
(
δn

2p∏
k=2

dk(x, Zp)
)
.

For i 6= p, let x̃ ∈ Ij0,i ⊂ Ij1,i−1 ⊂ · · · ⊂ Iji,0 = I. As in Lemma 2.1, for fixed q
with 1 ≤ q ≤ i we consider 2q−1 points xk from the set Ijq ,i−q \Ijq−1,i−q+1. For each
of them we have |x− xk| ≤ |x− x̃| + `jq ,i−q ≤ (C0 + 1)δi−q. A similar estimation

is valid for xk ∈ Ij0,i. Combining these gives
∏

xk∈Zi
|x − xk| ≤ (C0 + 1)2

i
ri.

The terms dk(x, Zp) for 2 ≤ k ≤ 2p can be handled in much the same way:∏2p

k=2 dk(x, Zp) ≤ (C0+1)2
p−1 rp

δp
. This yields δn

∏N
k=2 dk(x, Z) ≤ (C0+1)N

∏
i∈N ri,

as δn ≤ δp.
It is sufficient to show that

N+1∏
k=2

dk(z, Z̃) ≥ (7/8)N
∏
i∈N

ri. (2.9)

The case N + 1 = 2n+1 follows immediately by the argument of Lemma 2.1.
Suppose that N + 1 < 2n+1. First consider w = 0 in (2.5), so N = 2n + 2m +
· · · + 2u + 2v−1 + 2v−2 + · · · + 2 + 1 with some 1 ≤ v < u and, correspondingly,
N+1 = 2n+· · ·+2u+2v. Fix z ∈ Z̃ and the chain z ∈ Ij0,n ⊂ Ij1,n−1 ⊂ · · · ⊂ Ijn,0.
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Here, z is an endpoint of Ij0,n. Suppose that z ∈ Zn and that another endpoint

of Ij0,n is zp ∈ Zp ⊂ Z̃. We estimate separately
∏

xk∈Zq
|z − xk| for each q from

the binary decomposition of N + 1.
For q = n we have, as in Lemma 2.1, d1(z, Zn) = `j1,n−1, d2(z, Zn) ≥ hj2,n−2, . . . ,

and
∏

xk∈Zn
|z − xk| > (7/8)2

n−2rn/δn.

If p < q ≤ m, then
∏

xk∈Zq
|z − xk| ≥ (7/8)2

q
rq. Indeed, zp ∈ Ijn−q−1,q+1, which

may contain at most one point from the set Zq∪· · ·∪Zp∪· · ·∪Zv. Hence, the point
xk ∈ Zq which is closest to z belongs to the adjacent interval of the (q+1)th level
and d1(z, Zq) ≥ hjn−q ,q. Continuing in this fashion, by (2.3), we get the desired
bound for given q.

We now handle the case q = p. Here, d1(z, Zp) = |z−zp| = `j0,n > δn. Since zp ∈
Ijn−p,p, this interval cannot contain another point from Zp. Therefore, d2(z, Zp) ≥
hjn−p+1,p−1 ≥ 7/8δp−1 and

∏
xk∈Zp

|z − xk| ≥ (7/8)2
p
rpδn/δp.

To deal with indices q < p, let us take the nearest to z point zp1 from the set

Z̃ \ (Zn ∪Zm ∪ · · · ∪Zp) = Zt ∪ · · · ∪Zp1 ∪ · · · ∪Zv. If p1 < q ≤ t, then, as above,∏
xk∈Zq

|z − xk| ≥ (7/8)2
q
rq. If q = p1, then

∏
xk∈Zp1

|z − xk| ≥ (7/8)2
p1rp1δp/δp1 .

Indeed, the interval Ijn−p−1,p+1 contains zp, so it cannot contain another point
from Zp ∪ · · · ∪ Zp1 ∪ · · · ∪ Zv. Therefore, z and zp1 must be in different intervals
of the (p + 1)th level. Then d1(z, Zp1) ≥ hjn−p,p. Now Ijn−p1 ,p1

contains zp1 , so
d2(z, Zp1) ≥ hjn−p1+1,p1−1. The values dk(z, Zp1) for k > 2 we estimate in much
the same way as in the case q = p.

We continue in this way and combine all bounds up to pk = v together:

(8/7)N ·
N+1∏
k=2

dk(z, Z̃) ≥ rn
δn

rm · · · rp
δn
δp
rt · · · rp1

δp
δp1

· · · rp2
δp1
δp2

· · · rpk
δpk−1

δpk

= rn · · · rurv/δv =
∏
i∈N

ri = rn · · · rurv−1 · · · r1r0,

since rv−1rv−2 · · · r1r0 = rv/δv, as is easy to check. This yields (2.9). The cases
z ∈ Zp ⊂ Z̃ and w > 0 are very similar. �

In the next lemma we consider the same N and Z̃ as above, but we now
arrange the points in increasing order. Thus, Z̃ = (zk)N+1

k=1 ⊂ I with zk ↗. For
q = 2m − 1 with m < n and 1 ≤ j ≤ N + 1 − q, let J = {zj, . . . , zj+q} consist of

2m consecutive points from Z̃. Given j, we consider all possible chains of strict
inclusions of segments of natural numbers:

[j, j + q] = [a0, b0] ⊂ [a1, b1] ⊂ · · · ⊂ [aN−q, bN−q] = [1, N + 1], (2.10)

where ak = ak−1, bk = bk−1 + 1 or ak = ak−1 − 1, bk = bk−1 for 1 ≤ k ≤ N − q.
Every chain generates the product

∏N−q
k=1 (zbk − zak). For fixed J , let Π(J) denote

the minimum of such products for all possible chains.

Lemma 2.3. For each J ⊂ Z̃, there is z̃ ∈ J such that
∏N+1

k=q+2 dk(z̃, Z̃) ≤ Π(J).
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Proof. We take I = [0, 1], as the corresponding change of indices gives the proof
in the general case. Fix J ⊂ Z̃. Let Jk = [zak , zbk ]. Then (2.10), which defines

Π(J), generates inclusions J ⊂ J1 ⊂ · · · ⊂ JN−q = I with Π(J) =
∏N−q

k=1 |Jk|.
Clearly, #(Z̃ \ J) = N − q and each z ∈ Z̃ \ J appears as an endpoint of

some Jk. Let wk be the endpoint of Jk in its first appearance. This gives an
enumeration of Z̃ \ J . We aim to find z̃ ∈ J and a permutation (wik)N−q

k=1 such

that for 1 ≤ k ≤ N−q we have dq+1+k(z̃, Z̃) ≤ |Jik |. Multiplying these inequalities

yields the result. Given z̃, let dk be shorthand for dk(z̃, Z̃).
Recall that 2n + 1 ≤ #(Z̃) ≤ 2n+1, Yn−1 ⊂ Z̃ ⊂ Yn, and #(J) = 2m. The

points from Z̃ are distributed uniformly on I. Hence, for each basic interval of
the (n−m + 1)th level, we have

2m−1 ≤ #(Z̃ ∩ Ij,n−m+1) ≤ 2m. (2.11)

We observe that J may be located on v consecutive intervals of this level with
1 ≤ v ≤ 3. Indeed, if J ⊂ I1∪I2∪I3∪I4 with J∩Ik 6= ∅, then all points from Z̃ in
I2 ∪ I3 are included in J and, by (2.11), #(J) ≥ 2m + 2, which is a contradiction.
Let us consider all possible values of v.

(1) Let J ⊂ I1 := Ij,n−m+1 for some j. Here, J = Z̃ ∩ I1 and any point z ∈ J
may serve as z̃, since distances dk for 1 ≤ k ≤ 2m are implemented on certain
points of the set I1. If q+ 2 ≤ k ≤ N + 1, then dk is |z̃−wik | for some wik ∈ Z̃ \J
and dk < |Jik |, since z̃ ∈ Jik and wik is an endpoint of this interval.

(2) Let J ⊂ I1 ∪ I2. Suppose first that these intervals are adjacent, that is,
I1 = I2j−1,n−m+1 and I2 = I2j,n−m+1. Let p := #(J ∩ I1); that is, zj, . . . , zj+p−1

belong to I1, whereas zj+p, . . . , zj+q ∈ I2. Suppose, for definiteness, that p ≤
2m−1; that is, at least a half of J is in the right interval. The right endpoint
of I2 belongs to Yn−1, so it is zj+r for some r with r ≥ q. Thus, #(Z̃ ∩ I2) =

r − p + 1, where r − q of these points are from Z̃ \ J . We take z̃ = zj+p, the
left endpoint of I2. Then dk = zj+p+k−1 − z̃ for 1 ≤ k ≤ r − p + 1, since the
lengths of basic intervals are smaller than the gaps between them. In particular,
dr−p+1 = zj+r − z̃ = |I2|. The next distances will be realized on the points from

I1 : dr−p+2 = z̃ − zj+p−1, . . . , dr+1 = z̃ − zj. Since #(Z̃ ∩ I2) ≤ 2m ≤ r + 1, the
value d2m is z̃ − zj+i for some i with j ≤ i ≤ j + p− 1.

Now, for dk with q + 1 ≤ k ≤ r + 1 we take wik = zj+k−1 on I2. Then |Jik | >
zj+k−1 − zj > dk = z̃ − zj+r−k+1, as zj+k−1 > z̃ and zj+r−k+1 ≥ zj. Note that the
next values of dk (for r + 2 ≤ k ≤ N + 1) will be implemented on certain points
of the set wik ∈ Z̃ \ J . As in the first case, dk < |Jik |.

The same reasoning applies to the case of nonadjacent intervals. Let I1 =
I2j−2,n−m+1 and I2 = I2j−1,n−m+1 ⊂ Ij,n−m. Then we take z̃ as the endpoint of an
interval containing at least half of J , let it be again I2. Here, p points from I1∩J
realize some dM+1, . . . , dM+p and we put into correspondence to them the first p
points from Ij,n−m \ J . All other dk’s are realized on some wik with dk < |Jik |.

(3) Let J ⊂ I1∪I2∪I3. Here, I2 is completely filled with points of J . One of the
endpoints of I2 belongs to Yn−m−1. We take this point as z̃, which, analogously
to the previous cases, satisfies the desired condition. �
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Lemma 2.4. Let 2n ≤ N < 2n+1 and let Z = (xk,j,s)
N
k=1 be chosen in Ij,s by the

rule of increase of type. Suppose that x, y ∈ Ii,s+n−q ⊂ Ij,s for some q < n (in gen-

eral, x, y /∈ K(γ)). Then
∏N

k=m+1
dk(y,Z)
dk(x,Z)

≤ exp(2q), where m = #(Ii,s+n−q ∩ Z).

Proof. For brevity, let Ij,s = [0, 1], Z = (xk)Nk=1. Fix q < n, any Ii,n−q, and
x, y in this interval. Recall that Ii,n−q may contain from 2q to 2q+1 points of Z.
The distances dk(y, Z) and dk(x, Z) for 1 ≤ k ≤ m are realized on points from
Z ∩ Ii,n−q, so we can consider |y − xp|/|x − xp| for xp ∈ Z \ Ii,n−q only. Let
Ii,n−q ⊂ Ii1,n−q−1 ⊂ · · · ⊂ Iin−q ,0. If xp ∈ Ii1,n−q−1 \ Ii,n−q, then |y−xp| ≤ `i1,n−q−1,
|x−xp| ≥ hi1,n−q−1, and |y−xp|/|x−xp| ≤ 8/7, by (2.3). There are at most 2q+1

such points xp. They contribute (8/7)2
q+1

into the common product. For the next
step, when xp ∈ Ii2,n−q−2 \ Ii+1,n−q−1, we have |y − xp| ≤ |x − xp| + `i,n−q with
|x − xp| ≥ hi2,n−q−2 ≥ 7/8li2,n−q−2. Here, |y − xp|/|x − xp| ≤ 1 + 8/7 · 4−2, by
(2.4). Similarly, we get at most 2q+k terms in the general product, each of them

bounded above by 1 + 8/7 · 4−k. Here, 2 ≤ k ≤ n − q. Thus,
∏N

k=m+1
dk(y,Z)
dk(x,Z)

≤
(8/7)2

q+1 ∏n−q
k=2(1 + 8/7 · 4−k)2

q+k
, which does not exceed exp(2q). �

As in [5], we use Bk = 2−k−1 · log 1
δk

. By Theorem 5.3 in [5], K(γ) has the

extension property if and only if Bn+s/
∑n+s

k=s Bk → 0 as n → ∞ uniformly with
respect to s. This condition can be written as

∀M ∃m, k0: M ·Bk ≤ Bk−m + · · · + Bk for k ≥ k0. (2.12)

Here we will use a stronger one

∀M,Q ∃m, k0: Q + M ·Bk ≤ Bk−m + · · · + Bk for k ≥ k0, (2.13)

which will provide continuity of the extension operator constructed by interpola-
tion of functions on the whole set.

When constructing a Faber basis in the space E(K(γ)), we also use the clause

∀Q ∃m, k0: Q ≤ Bk−m + · · · + Bk for k ≥ k0. (2.14)

These conditions have “geometric” forms in terms of (δk). For example, (2.13) is

∀M,Q ∃m, k0: Q2k · δ2mk−m · · · δ2k−1 · δk ≤ δMk for k ≥ k0.

Let us illustrate the difference between conditions (2.12)–(2.14) for the case of
a monotone sequence (Bk)∞k=1. Since only γs ≤ 1/32 are allowed here, we have
Bk ≥ log 32 · k2−k−1. On the other hand, the values of Bk may be as large as
we wish for small sets K(γ). Condition (2.12) is valid if Bk ↘, Bk ↗ B < ∞,
or Bk ↗ ∞, but slowly, with subexponential growth (i.e., k−1 logBk → 0), by
Theorem 7.1 in [5]. In turn, we have (2.13) for Bk ↘ B > 0, Bk ↗ B < ∞, or
Bk ↗ ∞ of subexponential growth, whereas (2.14) is satisfied with Bk ↘ B > 0
and any Bk ↗. Thus, the sequence of constants Bk satisfies all three conditions.
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3. Faber bases in the space E(K(γ))

We equip the Whitney space E(K(γ)) with the norms

‖f‖q = |f |q,K(γ)

+ sup
{∣∣(Rq

yf)(k)(x)
∣∣ · |x− y|k−q : x, y ∈ K(γ), x 6= y, k = 0, 1, . . . , q

}
for q ∈ Z+, where |f |q,K(γ) = sup{|f (k)(x)| : x ∈ K(γ), k ≤ q} and Rq

yf(x) =
f(x) − T q

y f(x) is the Taylor remainder. By the open mapping theorem, for any q
there exist r ∈ N, C > 0 such that

‖|f‖|q ≤ C‖f‖r (3.1)

for any f ∈ E(K). Here, ‖|f‖|q = inf |F |q,[0,1], where the infimum is taken over all
possible extensions of f to F ∈ C∞[0, 1] (see [5] for more details; for more insight
into the theory of Whitney spaces, see [12] and [6]).

Here we adjust the construction from [3], where the case of symmetric Cantor

sets was considered. Let e0 ≡ 1 and eN(x) =
∏N

1 (x − xk) for N ∈ N, where
the points (xk)∞1 are chosen in K(γ) by the rule of increase of type. The divided
differences define linear continuous functionals ξN(f) = [x1, x2, . . . , xN+1]f on
E(K(γ)). By standard properties of divided differences, the system (eN , ξN)∞N=0 is
biorthogonal and the functionals (ξN)∞N=0 are total on E(K(γ)); that is, whenever
ξN(f) = 0 for all N , then f = 0. We show that (eN)∞N=0 is a topological basis
in the space E(K(γ)) provided the set K(γ) is sufficiently small. Thus, for small
sets K(γ), the space E(K(γ)) possesses a strict polynomial basis. Recall that a
polynomial topological basis (Pn)∞n=0 in a functional space is called a Faber (or
strict polynomial) basis if degPn = n for all n. Due to a classical result of Faber,
the space C[a, b] does not have such a basis.

Lemma 3.1. Let p = 2u < N/2. Then ‖eN‖p ≤ C ·CN
0 Np ·

∏N
k=2p+1 ρk, where C

does not depend on N and
∏N

k=1 ρk is the product generated by N .

Proof. By Lemma 2.1, for Ij,s = [0, 1], we have |eN |q,K(γ) ≤ CN
0

∏N
k=1 ρk for q = 0.

Our first goal is to generalize it to q < N . Let us show that

|eN |q,K(γ) ≤ CN−q
0 N q

N∏
k=q+1

ρk. (3.2)

Fix x. Then |eN(x)| =
∏N

k=1 dk(x, Z) and the qth derivative of eN at x is the sum
of N !

(N−q)!
products, where each product contains N−q terms of the form (x−xk).

Hence, |e(q)N (x)| ≤ N q
∏N

k=q+1 dk(x, Z). Here, for each k, we take the smallest

m = m(k) with dk(x, Z) ≤ `jm,i−m < C0δi−m. By the remark after Lemma 2.1,
δi−m ≤ ρk. The last inequality may be strict if we take x in a part of the set with
a high density of points xk, for example, near the origin. To deal with ‖eN‖p, let
us fix i ≤ p and x 6= y in K(γ). For brevity, let R := (Rp

xeN)(i)(y). We consider
two cases: (a) x, y belong to the same interval or (b) two different intervals of the
level n− u.
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In the first case, let x, y ∈ Ij,n−u. By the Lagrange form for the Taylor remain-

der, we have |R| · |x − y|i−p ≤ |e(p)N (θ)| + |e(p)N (x)| for some θ ∈ Ij,n−u. Let
m := #(Ij,n−u∩Z). Since the points from Z are distributed uniformly on K(γ), we

have p ≤ m ≤ 2p. Hence, |e(p)N (θ)| ≤ Np ·
∏N

k=p+1 dk(θ, Z) ≤ Np ·
∏N

k=m+1 dk(θ, Z),
as all distances here do not exceed 1. By Lemma 2.4 and the argument in the

proof of (3.2), |e(p)N (θ)| ≤ epNp ·
∏N

k=m+1 dk(x, Z) ≤ epNpCN−m
0 ·

∏N
k=m+1 ρk.

On the other hand, |e(p)N (x)| ≤ NpCN−p
0 ·

∏N
k=p+1 ρk. Thus, in the first case,

|R| · |x − y|i−p ≤ 2epNpCN
0 ·

∏N
k=2p+1 ρk, since the last product dominates the

products of ρk involved in the estimation of both terms.
In the second case, let y /∈ Ij,n−u, so |x − y| ≥ hj1,n−u−1, where x ∈ Ij,n−u ⊂

Ij1,n−u−1. By (2.3), |x− y| > 7/8 · δn−u−1. Now,

|R| · |x− y|i−p ≤
∣∣e(i)N (y)

∣∣ · |x− y|i−p +

p∑
k=i

∣∣e(k)N (x)
∣∣ · |x− y|k−p

(k − i)!
.

By (3.2), |e(k)N (x)| · |x− y|k−p ≤ CN−k
0 Nk

∏N
m=k+1 ρm · (8/7)p−kδk−p

n−u−1. Recall that

Ij,n−u contains at least p points from Z. Therefore, ρk+1 · · · ρp ≤ δp−k
n−u−1 and

|e(k)N (x)| · |x− y|k−p ≤ (8/7)pCN
0 Nk

∏N
m=p+1 ρm. Clearly, N i +

∑p
k=i

Nk

(k−i)!
< Npe.

Combining these yields |R| · |x − y|i−p ≤ (8/7)pCN
0 Np

∏N
m=p+1 ρm. The result

follows from a comparison of the estimates in both cases. �

We proceed to estimate |ξN(f)| for f ∈ E(K(γ)), ξN(f) = [z1, . . . , zN+1]f . As
in Lemma 2.3, Z̃ = (zk)N+1

k=1 is the set (xk)N+1
k=1 arranged in increasing order. Here,

N generates the product
∏N

k=1 ρk =
∏n

k=0 δ
sk(N)
k , whereas for N + 1 we have∏N+1

k=1 ρ̃k =
∏

k=0 δ
sk(N+1)
k with sk(N) = sk(N + 1) for all k except one value,

which is not larger than n + 1. Therefore,

N+1∏
k=1

ρ̃k ≥
N∏
k=1

ρk · δn+1. (3.3)

Lemma 3.2. For each N and q = 2m − 1 < N , we have

∣∣ξN(f)
∣∣ ≤ (16/7)N‖|f‖|q

N∏
k=q+1

ρ−1
k .

Proof. As in (17) from [5],∣∣ξN(f)
∣∣ ≤ 2N−q‖|f‖|q

(
Π(J0)

)−1
, (3.4)

where Π(J0) = min1≤j≤N+1−q Π(J) for Π(J) defined in Lemma 2.3, so it is enough

to estimate from below
∏N+1

k=q+2 dk(z, Z̃) uniformly for z ∈ Z̃.

Arguing as in the proof of (2.8), we see that for each x ∈ K(γ)

∣∣eN+1(x)
∣∣ =

N+1∏
k=1

dk(x, Z̃) ≥ d1(x, Z̃) · (7/8)N
N+1∏
k=2

ρ̃k.
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Similarly,
∏N+1

k=q+2 dk(x, Z̃) ≥ (7/8)N−q−1
∏N+1

k=q+2 ρ̃k, due to the correspondence

between dk(x, Z̃) and ρ̃k for 1 ≤ k ≤ N + 1. Removing q + 1 smallest terms from

both parts of (3.3) gives
∏N+1

k=q+2 ρ̃k ≥
∏N

k=q+1 ρk, and the lemma follows. �

The following is Theorem 1 from [3] adapted to our case.

Theorem 3.3. Suppose that (Bk)∞k=1 satisfies (2.14). Then the sequence (eN)∞N=0

is a Schauder basis in the space E(K(γ)).

Proof. By the Dynin–Mityagin criterion (see [7, Theorem 9]), it is enough to show
that for each p there is r such that the sequence (‖eN‖p · |ξN |−r)

∞
N=0 is bounded.

Here, | · |−r is the dual norm: for ξ ∈ E ′(K(γ)), let |ξ|−r = sup{|ξ(f)|, ‖f‖r ≤ 1}.
We consider only p of the form p = 2u. In order to apply Lemma 2.3, we have to

take q of the type q = 2k − 1. For this reason, given arbitrary u, let q = 2v+1 − 1,
where v = v(u) will be specified later. Then r = r(q) is defined by (3.1).

Fix N with 2n ≤ N < 2n+1. We take N so large that Lemmas 3.1 and 3.2 can
be applied. Then |ξN |−r ≤ C(16/7)N

∏N
k=q+1 ρ

−1
k for C defined by (3.1), and

‖eN‖p · |ξN |−r ≤ C̃(3C0)
NNp

q∏
k=2p+1

ρk ≤ C̃(3C0)
NNp

2v∏
k=2p+1

ρk, (3.5)

where C̃ does not depend on N . We can decrease the upper index of the product
above as all ρk’s do not exceed 1.

The product
∏2v

k=2p+1 ρk takes its maximal value in the case of minimal density
of points of Z, when each basic interval of the level n − u contains p points
from Z. At worst, ρ1, . . . , ρp do not exceed δn−u, whereas ρp+1, . . . , ρ2p = δn−u−1,
ρ2p+1, . . . , ρ4p = δn−u−2, and so on. On the other hand, values N close to 2n+1 will
give maximal density of Z on K(γ) with ρ1, . . . , ρp ≤ δn−u+1, ρp+1, . . . , ρ2p = δn−u,

and so on. Thus,
∏2v

k=2p+1 ρk ≤ δ2pn−u−2δ
4p
n−u−3 · · · δ2

v−1

n−v = exp[−2n(Bn−u−2 + · · · +

Bn−v)]. We claim that the right-hand side of (3.5) is bounded for a suitable v.
It suffices to prove that N log(3C0) + p logN ≤ 2n(Bn−u−2 + · · · + Bn−v). Since
N < 2n+1, it is reduced to 2 log(3C0) + (n + 1)2−np log 2 ≤ Bn−u−2 + · · · + Bn−v,
which is valid for large n if we take v = m + u + 2, where m is chosen in (2.14)
for Q = 2 log(3C0) + 1. �

Remarks.

1. Under the stronger assumption (2.13), the set K(γ) has, in addition, the
extension property. The second part of the proof of Theorem 5.3 from [5]
(for j = 1, s = 0) actually shows that the sequence (‖ẽN‖p · |ξN |−r)

∞
N=0 is

bounded. Here, ẽN is a suitable extension of eN . Since for each extension
f̃ of f ∈ E(K(γ)) we have ‖f‖p ≤ 3|f̃ |p (by means of the Lagrange form
for the Taylor remainder), this proof implies also that (eN)∞N=0 is a basis
provided (2.13).

2. We conjecture that using analytic properties of P2s , one can replace CN
0

in Lemma 3.1 with NQ for some Q. It would be interesting to analyze
whether one can replace the exponential growth of the constant in (3.4)
by a polynomial growth.
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4. Local polynomial bases

In general, the system (eN , ξN)∞N=0 is not a basis. Following [3], we use local
interpolations to construct bases for any considered case. Suppose we are given

a nondecreasing sequence of natural numbers (ns)
∞
s=0. Let Ns = 2ns ,M

(l)
s =

Ns−1/2 + 1,M
(r)
s = Ns−1/2 for s ≥ 1 and M0 = 0. Here, (l) and (r) mean left

and right, respectively. We choose, as above, Ns points (xk,j,s)
Ns
k=1 in each sth level

basic interval Ij,s. Set eN,1,0(x) =
∏N

k=1(x− xk,1,0) =
∏N

k=1(x− xk) for x ∈ K(γ)

and N = 0, 1, . . . , N0. Given s ≥ 1 and j with 1 ≤ j ≤ 2s, for M
(a)
s ≤ N ≤ Ns

we take eN,j,s(x) =
∏N

k=1(x − xk,j,s) if x ∈ K(γ) ∩ Ij,s and eN,j,s = 0 on K(γ)
otherwise. Here, the superscript a in Ms is l for odd j and a = r if j is even.
Thus, we interpolate a function f on the interval Ij,s up to degree Ns, where-
upon we continue this process on subintervals, preserving the previous nodes of
interpolation. All xk,j,s’s are taken from the sequence (xk)∞1 .

As above, Z = (xk,j,s)
N
k=1 and (zk,j,s)

N
k=1 is the same set arranged in increasing

order. The functionals ξN,j,s(f) = [z1,j,s, . . . , zN+1,j,s]f are biorthogonal to ek,i,s for

N, k ∈ [M
(a)
s , Ns] and i, j ∈ [1, 2s]. But, in general, the ξN,j,s are not biorthogonal

to ek,i,q. For example, ξN,1,s+1(eNs,1,s) 6= 0 for M
(l)
s+1 ≤ N ≤ Ns. For this reason,

as in [3], we consider the functionals

ηN,j,s(f) = ξN,j,s(f) −
Ns−1∑
k=N

ξN,j,s(ek,i,s−1)ξk,i,s−1(f) (4.1)

for Ij,s ⊂ Ii,s−1 and N = M
(a)
s ,M

(a)
s + 1, . . . , Ns. We see that the subtrahend

in ηN,j,s is a kind of biorthogonal projection of ξN,j,s in the dual space on the

subspace spanned by (ξk,i,s−1)
Ns−1

k=N . Also, let ηN,1,0 = ξN,1,0 for 0 ≤ N ≤ N0. By

Lemma 2 in [3], the system (e, η) := (eN,j,s, ηN,j,s)
∞,
s=0,

2s,
j=1,

Ns
N=Ms

is biorthogonal.
Increasing N by 1 means an inclusion of one more point into the interpolation
set, so, if ηN,j,s(f) = 0 for all functionals, then f(xk) = 0 for all k. Since the set
under consideration is perfect, the functionals η are total on E(K(γ)). Provided
a suitable choice of the sequence (ns)

∞
0 , the system (e, η) has the basis property.

As in [5], let n0 = n1 = 2 and ns = blog2 log 1
δs
c for s ≥ 2. Then ns ≤ ns+1 and

1

2
log

1

δs
< Ns ≤ log

1

δs
for s ≥ 2. (4.2)

In the next lemma, we consider any s, Ij,s ⊂ Ii,s−1 and N, k, as in (4.1), that

is, M
(a)
s ≤ N ≤ k ≤ Ns−1. Also,

∏N
m=1 ρm,s corresponds (in the sense of the proof

of (2.8)) to the product
∏N

m=1 dm(xN+1,j,s, Z), whereas
∏k

m=1 ρm,s−1 does so for∏k
m=1 dm(xk+1,i,s−1,W ), where the points W = (xm,i,s−1)

k
m=1 are chosen by the

same rule as Z, but in the interval Ii,s−1. Let q < N .

Lemma 4.1. In the above notation, δk−N
s−1

∏N
m=q+1 ρm,s ≤

∏k
m=q+1 ρm,s−1.

Proof. We have Ns−1/2 ≤ Ms ≤ N ≤ Ns−1, so 2n ≤ N ≤ 2n+1 with n := ns−1 − 1.

We can omit the case N = 2n+1 with
∏N

m=1 ρm,s = δn+s+1δn+sδ
2
n+s−1 · · · δ2

n

s ,
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since then k = N and
∏k

m=1 ρm,s−1 = δn+sδn+s−1δ
2
n+s−2 · · · δ2

n

s−1, so the desired
inequality is evident. Therefore, 2n ≤ N < 2n+1, ρm,s ∈ {δn+s, . . . , δs}, whereas
ρm,s−1 ∈ {δn+s, . . . , δs−1} for all considered m.

Let U = W ∩ I2i−1,s and V = W ∩ I2i,s. Let us show that #(U) ≤ #(Z)
and #(V ) ≤ #(Z). By that, the densities of points from W on each sth level
subinterval of Ii,s−1 do not exceed that of Z and ρm,s ≤ ρm,s−1 for 1 ≤ m ≤ N .
Since the number of points of W in the interval adjacent to Ij,s is not smaller
than k −N , the result follows.

Suppose that Ij,s is the right subinterval of Ii,s−1; that is j = 2i. If k = 2q + 1,
then #(Z) = N ≥ q + 1. Here, #(U) = q + 1 and #(V ) = q. If k = 2q, then
N ≥ q = #(U) = #(V ). Similarly, for j = 2i − 1 and k = 2q + 1 we have
N ≥ q+1 = #(U) with #(V ) = q, whereas k = 2q gives #(U) = #(V ) = q ≤ N .

Since 2n ≤ N < 2n+1, the set Z contains all points of the (n + s − 1)th level
on Ij,s and at least one point of the (n + s)th level is not included in the set.
Therefore, ρ1,s = δn+s, ρ2,s = δn+s−1 and ρ3,s ∈ {δn+s−1, δn+s−2} depending on N .

As in Section 2, we have
∏N

m=1 ρm,s =
∏s+n

r=s δ
sr(N)
r . But #(W ∩ I) ≤ #(Z), where

I is the subinterval of the sth level containing xk+1,i,s−1. As was mentioned in
Section 2, the distribution of points from W ∩ I is uniform or bilateral symmetric
to uniform. This means that ρm,s−1 ≥ ρm,s for 1 ≤ m ≤ N and the degrees sr(k) in

the representation
∏N

m=1 ρm,s−1 =
∏s+n

r=s−1 δ
sr(k)
r do not exceed the corresponding

sr(N), except for the value r = s− 1 if #(W ∩ Ij,s) < #(Z). In addition, we have
ρN+1,s−1 = · · · = ρk,s−1 = δs−1. This completes the proof. �

We are able to give an analogue of Theorem 2 from [3].

Theorem 4.2. Let (ns)
∞
s=0 be chosen as above. Then the system

(eN,j,s, ηN,j,s)
∞,
s=0,

2s,
j=1,

Ns
N=Ms

is a Schauder basis in the space E(K(γ)).

Proof. Since in the proofs of Lemmas 3.1 and 3.2 we use only (2.1), (2.3), and
the properties of uniformly distributed points, the same reasoning applies to the
local case. For 2n ≤ N < 2n+1 with N > 2p we have

‖eN,j,s‖p ≤ C · CN
0 Np ·

N∏
m=2p+1

ρm,s,

where the values ρm,s belong to the set {δn+s, . . . , δs} and correspond to the points
Z = (xm,j,s)

N
m=1 ⊂ Ij,s. In the proof, we use the notation C for any constant that

does not depend on N , s, and j.
As in Lemma 3.2, |ξN,j,s(f)| ≤ (16/7)N‖|f‖|q

∏N
m=q+1 ρ

−1
m,s for N > q + 1 with q

of the form 2m − 1. In order to estimate the subtrahend in (4.1), we use (8) from
[3]: ∣∣ξN,j,s(ek,i,s−1)

∣∣ =
|e(N)

k,i,s−1(θ)|
N !

≤
(
k

N

)
`k−N
i,s−1 ≤ (2C0)

kδk−N
s−1 ,
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since for each θ ∈ Ij,s we have |e(N)
k,i,s−1(θ)| ≤ k!

(k−N)!

∏k
m=N+1 dm(θ, Z) and

the distances dm do not exceed `i,s−1. As above, |ξk,i,s−1(f)| ≤ (16/7)k‖|f‖|q ×∏k
m=q+1 ρ

−1
m,s−1. By Lemma 4.1, |ξN,j,s(ek,i,s−1)| · |ξk,i,s−1(f)| ≤ (32C0/7)k‖|f‖|q ×∏N

m=q+1 ρ
−1
m,s.

There are at most Ns−1 terms of this type in the sum in (4.1). Hence, by

(3.1), |ηN,j,s|−r ≤ C
∏N

m=q+1 ρ
−1
m,s[(16/7)N +Ns−1(32C0/7)Ns−1 ]. The expression in

brackets is less than 2Ns(5C0)
Ns . Therefore,

‖eN,j,s‖p|ηN,j,s|−r ≤ CNp+1
s CNs

2

q∏
m=2p+1

ρm,s

with C2 = 5C2
0 . Here we can use a rough bound ρm,s ≤ δs that implies

‖eN,j,s‖p|ηN,j,s|−r ≤ C exp
[
(p + 1) logNs + Ns logC2 + (q − 2p) log δs

]
,

which is bounded, by (4.2), if we take q > 2p + logC2 and r that corresponds to
this q in the sense of the bound (3.1). �

Remark. The argument of the theorem can be applied as well to any sequence
(ns)

∞
s=0 with ns ↑ ∞ (nonstrictly) and 2ns ≤ log 1

δs
. This gives a variety of bases

in the space E(K(γ)). The question about quasiequivalence of these bases (see [3,
p. 359]) is open.

5. Extension operators for E(K(γ))

Suppose that the space E(K) has a topological basis (en)∞n=1 and that W is a
continuous linear extension operator for this space. Then, clearly, W (f) can be
given by means of individual extensions W (en). Conversely, if K has EP, then
proper extensions of basis elements will define an extension operator. This method
goes back to [7] (see also [11] for the case of compact sets with nonempty interior).
Here we construct the desired operator following this approach.

Theorem 5.1. Suppose that K(γ) has the extension property. Then an extension
operator can be defined by means of proper individual extensions of basis vectors.

Proof. As is shown in [5], the condition (2.12) is a characterization of EP for
K(γ), so we suppose that (2.12) is valid. We aim to show that the operator

W : E
(
K(γ)

)
→ C∞(R) :

f =
∞∑
s=0

2s∑
j=1

Ns∑
N=Ms

ηN,j,s(f)eN,j,s 7→
∞∑
s=0

2s∑
j=1

Ns∑
N=Ms

ηN,j,s(f)ẽN,j,s

is bounded, provided there is an appropriate choice of extensions for basis ele-
ments given in Theorem 4.2. As in [5], given s, j, and N with 2n ≤ N < 2n+1, we
take a C∞-function u(x) = u(x, δs+n, Ij,s ∩K(γ)) with supx∈R |u(p)(x)| ≤ cpδ

−p
s+n,

where cp ↗, u ≡ 1 on Ij,s ∩ K(γ), and u(x) = 0 if the distance from x to the
set Ij,s ∩K(γ) is larger than δs+n. Now we consider eN,j,s as a polynomial on the
whole line and define ẽN,j,s as eN,j,s · u.
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It suffices to show that for each p ∈ N there exists r such that for each f ∈
E(K(γ)) and x ∈ R, we have the bound

∞∑
s=0

2s∑
j=1

Ns∑
N=Ms

∣∣ηN,j,s(f)
∣∣ · ∣∣ẽ(p)N,j,s(x)

∣∣ ≤ Ap‖f‖r, (5.1)

where Ap depends only on p. Given p, let us take M = logC2 + p + 3 (with
C2 = 5C2

0) and m that corresponds to M in the sense of (2.12). Next, we take
q = 2m+2 − 1 and the corresponding r from (3.1).

By Lemma 5.2 in [5], |ẽ(p)N,j,s(x)| ≤ Cδ−p+1
s+n Np

∏N
k=2 dk(x, Z). As above, C stands

for any constant that does not depend on s, j, and N . As in Lemma 3.1, we
have dk(x, Z) ≤ C0ρk,s, so |ẽN,j,s|p ≤ CCN

0 δ−p+1
s+n Np

∏N
k=2 ρk,s, where the ρk,s’s are

defined after (4.2). By the proof of Theorem 4.2,

∣∣ηN,j,s(f)
∣∣ ≤ 2NsC

Ns
2 ‖|f‖|q

N∏
k=q+1

ρ−1
k,s.

Because of the choice of parameters, the function ẽN,j,s vanishes on all intervals
Ii,s for i 6= j. Hence, for each fixed x, we get at most one nonzero term in the
sum with respect to j in (5.1). The sum with respect to N contains at most
Ns terms. Thus it remains to show that s2Np+2

s CNs
2

∏q
k=2 ρk,s is bounded. As in

Theorem 3.3, we replace the upper index q in the product by the more convenient
index 2m+1.

The product
∏2m+1

k=1 ρk,s takes its maximal possible value when the density of
points (xk,j,s)

N
k=1 is minimal, that is, in the case N = Ms = 2n with n := ns−1−1.

Then
∏2m+1

k=2 ρk,s = δs+n−1δ
2
s+n−2 · · · δ2

m

s+n−m−1. By (2.12) and the choice of m, this
does not exceed δMs+n−1 for large enough s. Also we have n ≥ 2 and δs+n−1 ≤ δs ≤
e−Ns , by (4.2). Therefore, it is enough to show that s2Np+2

s CNs
2 e−MNs is bounded,

which is valid due to the choice of M and the inequality s2δs < 1. �

The condition (2.14) means that the set K(γ) is so small that the space E(K(γ))
possesses a Faber basis. On the other hand, (2.14) is compatible with (2.12),
which characterizes EP. We consider now the case when both conditions are valid,
that is, (2.13) is satisfied. Thus we deal with an extension operator Wgl which
corresponds to global interpolations of functions, that is, with the operator W
from the previous theorem for s = 0, j = 1. On the other hand, Wgl is equal to
the accumulation part of the operator (11) from [5]. Therefore, Wgl coincides with
the Paw lucki–Pleśniak operator, provided (xk)Nk=1 is the Fekete set. Following the
proof of Theorem 5.1, we take u(x) = u(x, δn, K(γ)), ẽN = eN · u and

Wgl : E
(
K(γ)

)
→ C∞(R) : f =

∞∑
N=0

ξN(f)eN 7→
∞∑

N=0

ξN(f)ẽN .

Clearly, the sum
∑M

N=0 ξNeN is the interpolating operator LM for the set Z =
(xk)M+1

k=1 . The parameter δn of u corresponds to the values 2n ≤ N < 2n+1. This
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gives the representation

Wgl(f, x) = f(0) · u(x, δ0) +
∞∑
n=0

2n+1−1∑
N=2n

(LN − LN−1)(f, x) · u(x, δn), (5.2)

as L0(f, x) = f(0). After cancellation of equal terms, we get

Wgl(f, x) = lim
k→∞

{ k∑
n=1

L2n−1(f, x) ·
[
u(x, δn−1)−u(x, δn)

]
+L2k+1−1(f, x) ·u(x, δk)

}
.

Lemma 5.2. If (2.12) is valid, then there are A and n0 such that δAn−1 ≤ δn for
n ≥ n0.

Proof. We use (2.12) for M = 2 : δ2
m

n−m · · · δ2n−1 ≤ δn for n ≥ n0. Clearly, the
left-hand side here is larger than δ2

m

n−1, so we can take A = 2m for m = m(2). �

Theorem 5.3. The extension operator Wgl is bounded provided (2.13).

Proof. We use the representation (5.2). Here, (LN − LN−1)(f, x) · u(x, δn) =

AN,1,0(f, x) in the notation of [5]. For each p, we want to find r with |A(p)
N,1,0(f, x)| ≤

N−2‖f‖r. Given p, we take q = 2m+1 − 1, where m will be defined later, and
r = r(q) will be given by (3.1).

By (18) in [5], |A(p)
N,1,0(f, x)| ≤ C‖|f‖|qδ−p

n Np(2C1)
N
∏q+1

k=2 ρk. The product∏q+1
k=2 ρk can be handled as in Theorem 5.1. We are reduced to proving that the

expression δ−p
n Np+2(2C1)

Nδn−1δ
2
n−2 · · · δ2

m

n−m−1 is bounded. Since (2.13) is stronger

than (2.12), we can apply Lemma 5.2. Hence, δ−p
n < δ−pA

n−1 = exp(2npABn−1). As
before, δn−1δ

2
n−2 · · · δ2

m

n−m−1 is equal to exp[−2n(Bn−1 + · · ·+Bn−m−1)]. The prob-
lem now reduces to establishing that

2npABn−1 + (p + 2) logN + N log(2C1) < 2n(Bn−1 + · · · + Bn−m−1),

which is valid for large n if we define m by (2.13) for M = pA and Q =
2 log(2C1) + 1, as N < 2n+1. �
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