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ABSTRACT. Let

L1(@) = =575 S 0au()31) (@) + V(@) (0)

be the degenerate Schrédinger operator, where w is a weight from the Muck-
enhoupt class A; and V is a nonnegative potential that belongs to a cer-
tain reverse Holder class with respect to the measure w(x) dz. Based on some

smoothness estimates of the Poisson semigroup e*tﬁ, we introduce the area

function S% associated with e~tVL to characterize the Hardy space associated
with L.

1. INTRODUCTION

As a special class of Calderon-Zygmund singular integrals, the area function
is a useful way of building bridges between real analysis and complex analysis.
In harmonic analysis, the area function is an important tool to characterize the
function spaces. In [7], Fefferman and Stein proved that the area function and the
nontangential maximal function are equivalent in the sense of LP(IR"); they also
established the area function characterization of the Hardy spaces H?(R"). From
then on, the Hardy space was extended to other settings. (We refer the reader to
3], [2], [8], [18], [10], and the references therein, which investigate more general
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Hardy space than that found in [7]; however, those texts did not give the area
function characterization of these Hardy spaces.) The aim of our present paper
is to continue this research in this direction.

Let L be a degenerate Schrodinger operator on R™ defined as

Lf(z) = —ﬁzai(aij()@f)(:c) FVf(a), (1.1)

where a;j(x) is a real symmetric matrix satisfying
Clw(@)[gf* < D ay(2)6€; < Cwla)lef?
12

with w being a nonnegative weight from the Muckenhoupt class A; and V' > 0
belonging to a reverse Holder class with respect to the measure dy = w(x) dz.
Denote by £(f, g) the Dirichlet form associated with L; that is,

£0) = [ a0 @agla) o+ [ V(@)1 duta).

In the following, we use the area function generated by the Poisson semigroup
e VI to characterize the Hardy spaces associated to L. The Hardy spaces are
widely used for various fields of analysis and partial differential equations. Let A
be the Laplace operator on R™. Tt is well known that H'(R") can be characterized
by the maximal function sup,., e **f(z)| (see Stein [17]). In a sense, H(R")
can be seen as the Hardy space associated with the operator —A. Let L be a
general differential operator such as second-order elliptic self-adjoint operators in
divergence form, degenerate Schrédinger operators with nonnegative potential,
Schrodinger operators with nonnegative potential, and so on. In recent years, the
Hardy spaces associated with L became one of the predominant issues in harmonic
analysis (see [5], [4], [3], [10], [1], [12], [11], [14], [15], [20], [21], and the references
therein). In particular, [4] and [21] deal with the Hardy spaces associated with
the degenerate Schrédinger operators.

Let L be a degenerate Schrodinger operator. Denote by {T}}i~0 == {€e £ }i=0
the heat semigroup generated by — L. The kernel of {7}} is denoted by K;(x,y);
that is,

Tif(z) = | Ki(z,y)f(y)du(y).

R’VL
In [4], Dziubanski introduced the Hardy space associated with L.

Definition 1.1. An L'(du) function f belongs to Hj (dp) if the maximal function
Mf is exactly in L'(du), where

M (x) = sup|T; f(z)|.

t>0

The corresponding Hj-norm is defined by || fllz1 = [|Mf|l1(ap)-

In order to characterize the above Hardy space H;(du), Dziubanski [4] intro-
duced the following H}-atoms.
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Definition 1.2. A function a is an H}-atom associated with a ball B(z,r) if

(1) 7 < p(x), suppa C B(x,7), [lallz= < p(B(z,r))™"

(2) if r < p(x)/4, then [a(y)du(y) = 0.
The atomic norm || - [|g1_atom is defined by || fl[g1 atom = inf >~ [A;], where the
infimum is taken over all decompositions f = > ;Ajaj and {a;} is a sequence of
Hj-atoms and {\;} is a sequence of scalars.

One of the main results of [4] is the following proposition.

Proposition 1.3 ([4, Theorem 2.1]). Assume that w € (RD), N D, N Ay with
2<v<~. LtV e By,,q>7/2. Then there exists a constant C > 0 such that

1
6‘|f“Hi-atom < HfHHi < CHfHHi-atom'

Now we state our main result briefly. Let S% be the area function associated
with the Poisson semigroup generated by L (see (3.2) below). Our aim is to
establish the area function characterization of H} (du). On the one hand, for any
Hi-atom a, we obtain that the area function Sk(a) € L'(du). Proposition 1.3
implies that |[SE(f)||z1(u) < Cllflluy- Conversely, if Sp(f) € L'(dy), by means
of the tent space T3, then we prove that such f can be represented as the linear
combination of Hj-atoms (see Theorems 3.11 and 3.14 for the details).

In the proof of Theorem 3.14, one of main tools is a reproducing formula
(3.4) related to L in the distributional sense. We point out that our reproducing
formula (3.4) holds for the elements in (BMOp(du))*, which is a subclass of the
Schwartz tempered distribution spaces &’. The reason lies in the fact that the
kernel Ky(-,-) only satisfies some Lipschitz condition for a general potential V'
(see Proposition 3.1). If 9*K; /0t (-, ) still has a Gaussian upper bound, then the
reproducing formula can be extended to all tempered distributions under this
assumption.

Remark 1.4.

(i) Yang and Zhou [21] developed a theory of localized Hardy spaces H;(X )
associated with the admissible function p, where X is a RD-space. The
Hardy space H}(dpu) in this paper is a special case of H}(X). In [21], the
authors also give several maximal function characterizations of H;(X )
without the area function characterization. We will focus on the latter in
this article.

(ii) Our main results can be seen as the generalization of the classical case. It is
n 52
i=1 922>

the space H) is exactly the classical space H'(R™). It is well known that
the Hardy space H'(R™) has the area integral characterization associated
with the heat semigroup e~*.

easy to see that, for the special case w(z)dr =drand L = A =)

Throughout this article, we will use ¢ and C' to denote the positive constants
which are independent of main parameters and may be different at each occur-
rence. By B; ~ By, we mean that there exists a constant C' > 1 such that
L<h <o

_— 32 i .



730 J. HUANG, P. LI, and Y. LIU

2. PRELIMINARIES

A nonnegative function w is an element of the Muckenhoupt class A, if there
exists a constant C' > 0 such that, for every ball B,

(%/Bw(x) d:);) (%,/Bw_l(as) d:v) <C. (2.1)

Here and subsequently, |B| denotes the volume of the ball B with respect to
the Lebesgue measure dz. It is well known that (2.1) implies that the measure
du(zr) = w(x) dr satisfies the doubling condition; that is, there exists a constant
Cy > 0 such that, for every x € R™, r > 0,

1(B(z,2r)) < Cou(B(z,r)). (2.2)

Using the notation from [13], we say that w € D, v > 0 if there is a constant
C > 0 such that, for every t > 1,

p(B(z,tr)) < Ct'pu(B(z,r)).

Let us note that (2.2) guarantees the existence of such a 7.
Similarly, w € (RD), if, for every t > 1,

t'u(B(z,r)) < Cu(B(z,tr)).

A nonnegative potential V' belongs to the reverse Holder class B, ,, ¢ > 1 with
respect to the measure dp if there exists a constant C' > 0 such that, for every
Euclidean ball B, one has

(%B)/BV"(y) du(y)>l/q - C(ﬁ/,gv(y) ()

From now on we will assume that w € A, N D, N (RD),, 2 < v < 7, du(z) =
w(z)dr,and V € By, ¢ > 3. Weset 0 =2 — 2.

In order to establish a reproducing formula (3.4) in Section 3, we need the
following bounded mean oscillation space associated with L, which was introduced
by Yang, Yang, and Zhou in [19]. For any ball B, let fp denote the mean of f
on B; that is,

1
fB= m/ﬂf(y) du(y).

Definition 2.1. A function f € L} (dp) is said to be in the space BMOy,(du) if
1

[ fllBMOy () i=  sup W/B(m)!f(y)—fB(x,mIdu(y)

B(z,r)r<p(z) M

1
+ sup

o ; |
Blamr=p(x) M(B(z,1)) /B (m)!f(y)l puly) < oo

(We refer the reader to [19] for further information on the space BMOy (dpu).)
In Definitions 1.2 and 2.1, we have used the auxiliary function m(z, V) defined
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by

7’2

plz) =m(z, V)™ = i‘iﬁ{m/m V(y) du(y) < 1},

which plays an important role in the estimate of the fundamental solution of
Schrodinger operators L (see [16]). The Hardy space H}(du) has been given in
Section 1. The dual space of H}(du) is exactly the BMO-type space BMOp (du)
(see [19]).

It is easy to see that, via a perturbation formula,

O S Kt(x>y) S ht($,y),

where hy(x,y) are the integral kernels of the semigroup {S;};~o on L?(du) gener-
ated by —Lg, where

Lof(x) = —ﬁ Z 95(ai; 9;f) ().

It is known that the kernels h.(z,y) satisfy the Gaussian estimates
R s O (o)
w(B(x, V1)) Cat u(B(z, V1)) Cat

for all x,y € R™. Then we conclude that the kernels K;(z,y) have a Gaussian

upper bound. Furthermore, Dziubanski in [4] proves the following pointwise esti-
mate.

Lemma 2.2 ([4, Theorem 2.2]). There exists a constant C' > 0 such that, for
every N > 0, there exists a constant C'y such that

Cy VEN-N NN 2
w(B(z, V1)) <1 * p(:c)> (1 + @) exp(—Clz —y|*/t) (2.4)

for all x,y € R™.

) < hile,y) <

Kt(xa y) S

In [9], Hebisch and Saloff-Coste proved the following estimates for the heat
kernels of Ly:

‘ht(x, y)—hy(z, z)| <

¢ ly — 2]\ ,
u(B(:c,\/E))< NG ) exp(—(Jr—y|—2ly—=2|), /ct) (2.5)

for all z,y, z € R™ with constants o > 0, ¢ > 0, C' > 0, and

O el )| < exp(—|z —y|*/ct)

G

u(B(x, V1))
for all z,y € R™. In the rest of this section, we state some properties of the
function m(x, V') which will be used in the proofs of the main results.

Lemma 2.3 ([13, Lemma 2|). Assume that w € D,, V € B,, with ¢ > /2.
Then there exists a constant C' > 0 such that, for every 0 < r < R < oo and
y € R, we have

r? r R?

w(B(y,r)) /B(y,r) V(x)dp(r) < C<R) (Bl R) /B(%R) V(x)du(x).
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Lemma 2.4 ([13, Lemma 3]). Under the assumptions of Lemma 2.3, for every
constant Cy > 1, there exists a constant Cy > 1 such that if

1 r? /

i G Viy)d < (4,

Cl - /L(B(l’,?’)) B(z,r) (y> lu(y) =
then Cy' < rm(x, V) < Cy.

Lemma 2.5 ([13, Lemma 4]). Under the assumptions of Lemma 2.3, for every

constant C, > 1 there is a constant Cy > 1 such that CLQ < ZSQ < Cy for

|z —y| < Cip(x). Moreover, there exist constants ko, C,c > 0 such that
m(y, V) < C(L+ |z = ylm(z, V) “m(z, V)

and such that
m(y,V) > em(, V)(l + |z — y|m(z, V))—ko/(l—&—ko)'
Lemma 2.6 ([4, Lemma 4.4]). There ezist constants |,C > 0 such that
RZ
1(B(x, R))

Lemma 2.7 ([4, Corollary 4.5]). For any constants ¢,C’ > 0 there exists a
constant C > 0 such that

/ e c T vty () du(y) < Ot~ (Vim(z, V))6 for Vt < C'm(x, V).

/ V(y)du(y) < C(Rm(z, V))l provided R > m(x, V).
B(z,R)

(B(z, V1))
Lemma 2.8. For V € By, and | > 0 there exists a constant C > 0 such that
1 o2 C/ Vt!
—V(2)ew * du(z) < —(—= ), tzp:vQ.
[ Rreevade © <7 (a) @)

Proof. We have

6—c\x—z\2/t €—c|x—z|2/t
Je¥ 95ty = Ut )iy
=11+ I.

For I, using Lemma 2.6, we have

(V1) C/VEN!
h= tu(B(x, V1)) /Bu,ﬁ) Vie dulz) < 7<M) '

Similarly, for I, we have

o = 2P\
"= jgo (B, \/7_5)) /2j\/£§|x_z|<2j+1\/gv<z) (1 * t > dp(z)
: jzo w(B(x, /1)) (14 22)N /xz<2j+1\/£V(z) dp(2)
N —i(N=v=2) (951 [Em (& ! g ﬁ 1
<22 (i V) < 5 (5) ]

=0
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3. AREA FUNCTION CHARACTERIZATION ASSOCIATED TO THE POISSON
SEMIGROUP

3.1. Smoothness estimates of the semigroup {e~*VZ}. Let L be the de-
generate Schrodinger operator defined by (1.1). In this section, we give some
smoothness estimates for Poisson semigroup associated with L. At first, we state
several smoothness results about the heat semigroup e~**. In a manner similar
to Dziubarniski and Zienkiewicz’s steps in [5] and [6], we can prove the following
two propositions.

Proposition 3.1. For every 0 < ¢’ < 6y = min{a, 0, v} there exists a constant
Cyr such that, for every M >0 and |h| < V/t,

|Kt<x7y + h’) - Kt(x7y)‘

m 5 1 —clz—y[2/t ﬁ -M ﬁ M
<) e Ceom) (o)
Proposition 3.2. Let Qi(z,y) = P2K.(z,y)lp and let Q.(z,y) =
888K8<x>y>'

(a) For N > 0 there exists a constant Cx > 0 such that

|Qs(2,y)| < We—x—ylz/s@ 4 T@)N(l N r\/j)>N

(b) Let 0 < & < &g, and let |h| < /s, where §g appears in Proposition 3.1.
For any N > 0, there exists a constant C > 0 such that

ve-cle-ul?/s : SN SN
e em =@l < e () (0 55) ()™

(¢) For any N > 0, there exists a constant Cy > 0 such that
Vs Vs >N

Qs(7,y) du(y)’ <Oy (@)6(1 e

Proposition 3.3. Let {e‘tﬁ}bo be the semigroup of linear operators generated

by —V/'L. Denote by PE(x,y) the integral kernel of e ™Vt We have the following
estimate:

/.

PHay)| < 1
t

T (@ e =y (B, /B 1 Az — )

Proof. By the functional calculation, we have

e_t\/ff(x) = c/ooo %e‘ﬁf(x) du.

By (2.4), we can see that

Kp(z,y) < C e~ 1Cule—vI*/E,
4u

(B, t/v/4u))
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Setting v = (1 + 40‘3” ul® Ju, we have

o0 —u

Pf(:lj‘,y) = o \/—Kt2/4u<x y) du
e U 1 4Cule—y[?
< Cyc — e 2 du
MoV u(B(x, t /)
C't

<
S Ik T

/ / Vo u(B \/t2—|—4Cv|x—y| /\/ﬂ))

= Il + IQ.

For I5, using v > 1 and the doubling condition of the measure u, we have

t C’ eV N
R | T T T e e AV AVER M
< t (O
(24 4lx — y[)V? W Bz, /2 + Az — yP?))
Next we estimate the term [;. Because 0 < v < 1 and the measure y € (RD),,
for t > 1 we have t"u(B(z,r)) < Cu(B(x,tr)) and

(1/V4&0) 1u(B(z, /12 + 4|z — y|?)) < u(B(x, /2 + 4z — y[2/V&)).

Then we could get

t

C/ 1 efv
I < Vav) dv
P @+ Ar — ) y(Ba, T+ Az — y]?) /o ﬁ( )
< t 07
= P+l — PP u(Ble, /P + Az — g) -

Proposition 3.4. There exists a constant C., such that, for every M > 0,
| P ()]

< Crt L (1+ ! )_M(1+ ! >_M
T (B -y pu(Br, B+ Al —yP) N pla) ply)/
Proof. The estimate (2.4) and the functional calculation imply that

| 5

—u 4Cu|x y|2/t?

" M
V@i Vi) O

</ o~ u(1H4C o~ y|2/t2)uM—1/2< t >M< ¢ )*
~Jo p(z) py)
1

w(Bla, o))
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Taking the change of variables, we can get

‘ L ‘ <ﬁ) vM1 2
PE(x,y)| < On-2Z / / dv
\/t2 + 4C|$ —yl? \/t2+i4/%z y|2>>
= [3 -+ 14.
For I3, because 0 < v <1 and u € (RD),, we have

C 1 1 v C
I; < / M=tz v dy < z .
u(B(x, /12 + 4]z —y[?)) Jo p(B(x, /12 + 4]z — y]?))
For Iy, it can be deduced from v > 1 and p € D, that
I, < ¢ / e M 2TE gy < &y )
p(B(@,/1* + 4|z —y[?)) )1 p(B(x,/1* + 4|z — y]?))

Therefore, we get

P < ‘ —=Gw) G
CTNT (B, /B Ale =) P+ Az — g2 \p(2) ple)/
Now we have proved the following two estimates:

t \M(_t \M|pL c t
{<p<§>) G 1F2 (x’cy)’Su(B(mwt2+4|x—y|2>>w2+4x—y2’ (3.1)
|PH(z,y)] <
w(

B(a,\/t2+4lz—y[?)) /12 +4]z—y[>’

Because the choice of M is arbitrary, we have

<1+ ! >M<1+ ! )M]PL( )| < ¢ !

— — z,y)| < .
p(x) P(y) t p(B(z, /12 + Az — y[?)) /12 + 4z — y|?
This completes the proof of Proposition 3.4. 0

Proposition 3.5. For every 0 < §' < &y = min{«,d}, there exists a constant
C such that, for every N > 0, there exists a constant C > 0 such that, for

\h| < V4,
}R‘,L(‘Ta Y+ h) - PtL<x7y>|
Cu(|R|/t)* t t NN N
= u(B(x, /12 + Az —y?)) ( + |z —y)V/? <1 i p(w)> (1 i p(y)> '

Proof. Recall that e VL = ¢ [ ‘f\/fe_t L/(4) qu. By Proposition 3.1, we have

u

|PtL £E7y+h) _Pt (flf,y)’

o0 p—u |h| ¢ e~ 4lz—yl?/t? -M t -M
—C/o ﬁ<t/¢@> n(B(z, >>< mp( >) <1+mp<y>) "

|R[\NO /£ N"M b M SRR s T T W ¥ 1
<(7) Gwm) Ga) / e

< (Rl (/@) ™ (t/p(y) ™ et

V2t 4z =yl
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1 o0 o8 /2-1/24M g,
[+ ) e T
o J1 /T u(B(z,\/t? + 4|z —y[2/Viv))
=I5 + I,

where in the last inequality we have used the change of variable (1 +
4|z — y[*/t*)u = v. A direct computation gives

1 .
I;<C ! / e~VpEtETEEM ()
w(B(z, /1 + 4]z — y|?)) Jo
C,

= B /B o)

and

Iy < C ! / e’”v%#%’%“w dv < 5 Cy INY
w(B(z, /12 + 4z — y|?)) /i u(B(t* + 4|z — y[?))

Now we have proved
|P15L(x7y + h) - PtL(xvy)‘
C(lhl/t)” t
T Bz, /2 + 4l —yl?) V2 + Al -y

Similarly, we can also get

= (t/p(x) " (t/ o)

‘PtL(x,y +h) — PF(x, y)} < C’/OOO %} [Kt2/4u(x, y+h)— Kt2/4u(x,y)} } du

< O(%y / e T A Sy
0

c(nl/t)” t
~ u(Ba, /B4 A —yP) VB + A -y

We could complete the proof of Proposition 3.5 in a manner similar to Proposi-
tion 3.4. M

As in [6, Corollary 6.2], we can use (2.3) to obtain the following lemma.

Lemma 3.6. The semigroup has the (unique) extension to a holomorphic semi-
group Ty on L*(e"*~¥dx) in the sector Ny = {£ @ |argé| < m/4}. Moreover,
there exist constants C,c’ > 0 such that, for every n > 0, we have

/0n2
||T£||L2(e"7‘1*y| dm)%[ﬁ(e”?lﬂﬂ*y\ dx) S Cecn Reﬁl

Lemma 3.7. There exists a constant ¢ > 0 such that, for every M > 0, there
exists a constant C' > 0 such that, for everyn >0 and y € R", we have

! —M
1(B(y, VRe§)) (1+ VRe&/p(y)

/ | Ke(w, y) "€V dp() < e e
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Proof. Let t = Re{. We have K¢(z,vy) = [Te—i/106/10(-, y)] (). Using Lemma, 2.2,
we have

[ 1) e duta)
o—clu—y[*/t et e =yl dp(u)
e (B VD) (L+ VE/p(w))PM (L+ Ve ()™
Vi

< Ot (1 M —clu—yl|* /t+nlu—y| 4
= oW ‘ i)

<C

For every w € B(y, V), B(y, Vi) C B(u, [y — u] + /D). Set

By = {u:|u—y| <2vt+nt};
B ={u:2Vt+nt <|u—y|l <2Vt +nt}, k=1,2,....

We can get

[ 15w e aua

60’77215 \/E —2M 1 = e—C1 (2kV/t+nt)? /t M(B(yv 2k+1\/¥ + 77t))
<o) BT 72
ViMoo Pt o . e (2 +nV1)?
<c(i+205) BV 20T
s 1 ﬁ —2M
<ot o) O

Lemma 3.8. There exists a constant ¢ > 0 such that, for every M > 0, there is
a constant Cyy > 0 such that, for any § € Ays,

Cuy VRe&\—M JREE\ -M e
(B(y,\/RTi))(1+ p(x)> <1+ p(y)> e clrylt/Reg,

| Ke(z,y)] < ’
Proof. We have
| Ke(z,y) ]
B ’/Kf/2(x>“)Ks/2(u, y) du(u)
< </|K5/2(:c,u)\2e2nlm—ul du(u)>1/2 (/‘Kg/z(u7y)|262ny—u| du(u)>1/2

1 o e VREE\ M JReg\ M
< VD BT ) o)

Set n = |z — y|(Re &)™, where ¢ is a sufficiently small constant. Then we have

e'Me=yl
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| K, )|/ R
—clz—y|?/ Re £ -M -M
< C 1/2 - 1/2 (1 Ve (1 + ﬁ)
p(B(z,vRe&))Y? u(B(y, vRe))Y p(y)

M —c'Jo—y|?/ Re VENM VENM
Su(B(m(,jm»e o £<”Ta§>> (5

Similarly, we can prove

C , -M -M
[Ke(a,g)] <~ memsimet (1 VY VYT
1(B(y, vVRe§)) p(x) p(y)
This completes the proof of Lemma 3.8. O

We have the following proposition.

Proposition 3.9. Set DL f(x) = t292e VL f(x) = 2Le VL. Denote by DE(x, 1)
the kernel of DE.
(1) For N > 0 there exists a constant Cx > 0 such that

| D (2, y)]

< Cnt L (1+ ! >_N<1+L)_N.
T (e —yP)V2 u(Blx, /2 + |z — y[?)) p(r) p(y)

(2) Let 0 < &' < &g and let |h| < t. For any N > 0, there exists a constant
Cn > 0 such that

|D}(z + h,y) — D} (z,y)|

(|hl/t) 1 t NN £ \-N
=Cn 1+ 1+ —) .
(t + |z = yI)'V2 y(B(z, /2 + |x—y|2))< p(a:)> ( p(y))
(3) For any N > 0 there exists a constant Cy > 0 such that

L J 1
DE(w,y) du(y)| < Cn (t/p(x) SO

/.

Proof. (1) Because of Lemma 3.8, we have

a: O o—cla—yf?/Reg (1, VReS Re&y =
Kl < B, o) (i) (5

By use of a direct Computation we can see that

|P§xy|—‘/ ng 4u )du‘

e 17 —4lz—y|?u/ Re €
= Ve, g
VEReg VReg )
X(l VIup(z) ) ( \/@p(ﬂc)>
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< CM \/RGfZ
~ pu(B(z, /Re&® + [z —yl?)) VRe & + 4|z — y|?
(1 YRSy | YRy

p(z) p(y)

The above estimate gives

L= | L [ ER@y)
|Df (z,y)| = ‘27rz' /|£t:; (& —1)° dé‘
Cus !

<
T u(Ba, /2 +Alr = y]?) V4 Az —yP?
toN-M to\N-M
X |\1+—= 1+ — .
( p(iv)> ( p(y)>
Now we prove (2). We can see that
| DY (z + h,y) = D (2, y)]

< Cx [ [Plute -+ how) = Pl )| Do, )] di)

A\ (1+t/p(x)~
C’ L)
= ( ¢ ) (/|:c—w|>y—w| +/|y—w|>|x—w> w(B(x, /1 + |z — w|?))
(L+t/p(y)™ t tdp(w)
(B(w, /12 4 [w — y[?)) /12 + 4|z — w]? /12 + djw — y[?

=) (1 ) (o ) e

We first estimate the term I, which can be divided into the following two parts:

1
T A e
o—wl>ly—wlly—w|>t  Jr—w|>ly—wlly—w|<t! L(B(z,\/t* + |v —w]?))
1 t t
X dp(w
1(B(w, /12 + [w — y[2)) /12 + 4|z — w]? /12 + 4w — y[? ()

=1I; + I3

For I2, we can see that |x —w| > |y — w| implies here that 2|z —w| > |z — y| and
cu(B(w,t)) < p(B(w, \/t? + 4|y — w|?)). On the other hand, because u € B(y, t)
implies that |w — u| < 2t, we have u(B(y,t)) < u(B(w,2t)). Then pu(B(y,t)) <
27 (B(w,t)). We can get

oo ot/ ]z —yl’) / t dp(w)
"7 (B B+ [r = y?) Jywier VB Jy — w2 u(B(w, 1))

c, t

: (B, /T + | — y[2)) (2 + [z —y[)1/2
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Now we estimate 7. Because |z — w| > |y — w|, we have |z — w| > 1|z — y|. By
the doubling property of the measure p, we obtain

Il < ! E:/ 27 dp(w)
7_MM%M??ETT»W+M—M V2 2 oty iy 1(B(w, 250))
C’Y

< S VT

Finally, we have

q, t
I7 < 2 2\1/2°
w(B(x, /2 + & — y[?) @+ |z —y[>)V

Now we estimate Is. Comparably to I7, we write

1
VRS AR e
ly—w|>le—wllr—w|>t  Jy—w|>z—w||e—w|<t! p(B(x, \/1? + |2 —w|?))

1 t t
2 2 2 2 2 2d'u(w)
w, /82 + [w = y[2)) /1 + Az — w]? /12 + 4w — y]

=1 + I3

It is easy to see that |y —w| > |z —w| implies that |y —w| > 5|z —y|. Also, by the
doubling property of p, we can get p(B(x,/t?+ |z —y|?) < C,u(B(w

V12 + |y — wl|?)). These estimates imply that

Il < Ct//t* + |z —y]? / 1 tdp(w)
8—MB@V@:EtT%>MMNm (@ o —w)) 2+ |z — w]
Ct/\/t2+ |z — |2 = 1 /
< dp(w
W(B(z, /12 + |z —y] % x/t2+22k (B (@, 25)) Jyawj<arrs (w)
Ct 1

2+ Jo =y p(Blz, /B +[x —y))
The estimate for 12 is similar. Since |y—w| > |z —w] implies that |[y—w| > 3|z —y],
we have 2 < \/t2+\ x I3 ,, where
) / 2 + 4y — w|? t dp(w)
IS, = :
C o ywzle—wle—wl<e p(B(x, /12 + Az — w]?) /2 + 4z — w]?
It is easy to see that

{MB@¢+M—MDSCMBWAﬁTﬂ?j53%|y—MZt2M—wh

p(B(z,t + |z —y))) < Cp(B(w, V2 + ly —wl?)), [z —w| <[y —w[<t.

Then we conclude that

2o 1 / dp(w) < C .
ST (B, /2 A [z — y?) Jiomwl<e #(B(,8) T u(B(x, /B + [z — y]?))
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Finally, we get
DEe 4 hg) — Do )] < O (UEHP@) 05 t/0l0) ™ (/1)

p(B(z,/C+]z—yP?) VE+]z—y[>

At last, we prove (3). Notice that

DE(z,y) / 82K ~uy 2 du.

If p(x) < t, by condition ( ) of Prop081t10n 3.2, we have

/ DE(z,y) du(y / / QQt/\/@x y) du(y )‘ U2 dy

< On(t/p())’ m

If p(x) > t, then

DE(z,y) du(y) / ‘/ Qt/\/@ ,y) duly)|e”
<Oy [ (L i
< <1+t(jp< e (110()

where in the last inequality we have used the fact that 0 < (§ +1)/2 < 1. This
completes the proof of Proposition 3.9. 0

Uy 12 dy

‘ R’n

3.2. The area function characterization via the Poisson semigroup. Let
SE and g% be the Lusin function and Littlewood-Paley function generated by the

Poisson semigroup e_tﬁ respectively. Precisely,
du(y) dt \1/2
Sk () / / )P N (3.2)
" . y\<t tu(B(z, t))>
dt
i) = ([ !fo@)\?;) . (33
0

We first prove the L2-boundedness of S& and gk.

Theorem 3.10. Suppose thatV € B, ,, q > 1. Let L be the degenerate Schrodin-
ger operator defined by (1.1). Then the operators S5 and g5 are bounded on
L3(R",du); that is,

lgpf (|2 = cllflle and — |[SEf]] . < Cllfll2e.

Proof. By functional calculus, we have

Len2 > 4d2PSL 4d2P8L dt
R R G I R

:/ [/ mze%mﬂ dE; 1 (\) = | f]| .
0

0
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Next we estimate the norm of ||SLf]|;2. Notice that if |z — y| < ¢, u(B(y,t)) <
w(B(x,2t)), then we get B (lmt) < B 2: 5y~ Hence we have

Isisl<c [ [ /lr y 2—t;;~t;;;j§g)}du<x>

<C|lg5f|[z. < Cllf e 0

Theorem 3.11. Suppose thatV € B, ,, q > 1. Let L be the degenerate Schrodin-
ger operator defined by (1.1). If f € Hi(du), then S5(f) € L'(du).

Proof. We only need to prove that, for any H}-atom, ||S5al|z: < C. We denote
by Xr(z)(y,t) the character function of the cone I'(z) = {(y,t) € R" : |y —z| < t}.
Because |y — x| < t and z € B(y,t), by Theorem 3.10 we can get

L du() du(y) dt
HSPCL||L2(R"du)<C / / / ‘D ‘XP (v, (B(y,t)) t

<o [ [0 |Dfa<y>\2M
& ([ Jatw P dutw) < Cu(Br) ™

Notice that supp a(x) = B(z, 7). We can get

IS%a|,, = / [Skate)]dna) + / |S5a(a)| du(x) == I + II.
B(xo,47) B¢(xo,4r)

Clearly, the L®-boundedness of S& implies that

IA

I < pu(B(xo, 47) )1/2”5 aHL2 < Cyu(B(a:O,4r))1/2u(B(x,7"))_1/2 <.

For the estimate of II, we divide the discussion into two cases.
Case I: r < p(x The atom a has the canceling property. Then we can get

L L L 2 du(y)dt 11/2
Sha(o) = [ / » [ [Pk = Do) )| it
< Iy + Iy,

where

|z—zg|

m=(f /|| </B<x0,r)‘D F.2) =Dy <y’x0>‘u<g@§? r>>>2t;%2,d )

and
.= (/'oo/ (], [P =pie) e ) e )

For II,, because 0 < t < @ and |z — y| < t imply that |z — y| < “_—;‘)I, we
can get |y — xo| ~ |z — x¢|. Then, for z € B(xo,r) and x € B°(xg,4r), we have

ly — xo| > 4r and |zg— 2| <7 < w. Hence, by part (2) of Proposition 3.9 and
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the symmetry of the kernel D (x,y), we have
Ct(|z — wol/)” (L +t/p(y)) ™ (1 +t/p(x0))

VEFly —mol? p(B(wo, VI + |y = xo[?))

The above estimate of DL gives

1
I, <
p(B(xo, /12 + |2 — 930|2))

|lz— zo\

2" du(y)dt \1/2
/ /lzy<t |5’3 > ( ) m>

— i B(xo, |x — o)) [ — xol‘s"

|Df (y, 2) = Dy (y, x0)| <

Now we deal with 7. Because |z — zo| <17 < |z — 2¢|/2 < t, we apply condition
(2) of Proposition 3.9 to deduce that

il / / (r/t)* 2 dp(y) dt )1/2
= o 960\/2 lo—y|<t (B \/t2 + |y — z0]2))2 8% + |y — zoP tu(B(x, 1))

~ w(B(zo, !:C — Zo|)) |z — :Uo\‘;"
The estimates of I, and II, show that

3 Y dula)
Sha(z)| du(x) < / r : H <c.
/BC(xo,4r)| Fa(e)] dile) kz:; sbr<fe—ao|<ab+iy (A7) p(B(zo, 4F7)) = 7

Case II: p(xg) <1 < 4p(xp). In this case, the atom a has no canceling property.

We have
d,u Cdp(y)dt
S a(x // Q 2
r lo— y|<t‘ CIN (B, )

4 oo
S</ J +/ / o)
0 lz—y|<t r/2 lz—y|<t ‘I%ml |lz—y|<t

dp(y) dt
x |QFaly e LI
QWIS B, o)
2:[[3—|—][4+[]5.

We begin to estimate I1;, i = 1,2, 3, separately. For |z — x¢| > 4r and |z — y| <
t <r/2, we have |y — x| > 7r/2. By condition (1) of Proposition 3.9, we get

Cnt 1

+ [z = y) 2 (B, /1 + 2 — y[?))
x <1+$) <1+$) .

| D} (z,y)| < G
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|z— :co|

On the one hand, because |rg — z| <1 < , we have |y — z| ~ | — x¢|. Then

the term I15 can be estimated as follows:

" t 1 dp(y) dt
I3 < 5 5
0 Jmyl<t 2 F |7 = 202 u(Bla, /B + & — 2o]?))? ti(B(z, 1))

/2 to\2 1 du(y) dt
SA AWQ<M—%O/AM%M—MMFWéZJW

For every z € B(x, |x — x¢|), we have that |z — y| < |x — zo| + |zo — y|. Because
ly— x| <t <r/2, wehave |y —xo| < r/2 < glo— x| for x € B(x0,4r). Then we
conclude that |y — xo| ~ |x — x| and that u(B(zg, |x —x0|)) < w(B(y, 2|z — x¢])).

@a@—xm>2dm>ﬁ
X<u(@Mw—%m> tu(B(w, 1))

< B )
— w(B(xo, [ = xo]))* Nz — xol /-
For I1,, because z € B(zg,r) implies that |z — xo| < r < 4p(xg), we have

p(xg) ~ p(z). Also, for r/2 <t < @ and |z — x| < r < @, it holds that
|y — z| ~ |z — ¢|. Then, by condition (1) of Proposition 3.9, we obtain
2 dp(y)dit

A" 1+t/p(fvo)) M t duly) dt
/ /|x sl<t By, [ = x0]))? 2 + |2 — wol* tu(B(x, 1))
For every z € B(z, |x — x¢]), we have |y — z| < | — y| + |z — xo|. Then, by use
of the fact that \a: -yl <t< |”T_4—x°‘, we have |y — z| < 2|z — xo|. By the double
property of the measure u, we get i

. Taking M large

1 < s
B(y.Jlz—=ol)) — u(B(zo,|z—=ol))
enough, we have

< /Iu’v xo|/4 1 2 (1 N t )—2Mdt
L < - i
r/2 w(B(z, |z — xo]))? | — wo[? p(xo) t

1 T 2
< B )

At last, we estimate I15. Because |z — x| < r < 4p(zo) implies that p(zo) ~ p(z),
then similarly we have

> (1 +¢/p(x))~™ du(z)  \? dp(y)dt
Hs = //|| </B<$o,r) "Bl JE o —o) WBG0 ) w(B(wD)

1 () \?M (B, | — wo]))? dt
SMB@Mx—mmALﬁWK 7)) G T
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For every z € B(xg, |z — x¢]), we have pu(B(xo, |x — x¢])) S p(B(z, 2|z — x0])). If
t > 2|x — x|, by use of p(zg) < r, then we have
2M 1

II5 < .
P o = 2o u(Blxo, [& — ao]))?

If t < 2|x—x0l|, then (u(B(xg, |2 — x0|))/u(B(x,t)))? < (2|x — 20|/t)*, and hence

I 1 r 2M
< (e
= (Bl Je 2o e~ 7o

Z/Qw O e %)M}#%
i -
k=

Finally, we obtain

/ Ska(x
Be(xo,4r)

1 1
<D 5t m <O
k=2
This completes the proof of Theorem 3.11. |

Now we give the converse of Theorem 3.11. First, we need a reproducing formula
associated with DF. We introduce the following weak-type convergence related
to the dual of BMOy(du).

Definition 3.12. We say that f € (BMOy(du))* is equal to zero weakly at oo

associated with L if ;
oo t

hm (DtL>2f(x)_ =0,
ey ) t

where the above limit holds in the sense of (BMOy (du))*.
We can prove the following reproducing formula.

Theorem 3.13. Suppose that f is equal to zero weakly at oo associated with L.

We have
dt

f(z) =8 / R (3.4)

t Y
where the integral means, in (BMOy(du))*,

lim lim e;/A(l),fL)ij(gc)ﬁ

e—0 A—00 c t

= f(z).
Proof. 1t is easy to see that

s [ obrs@G = [0k -8 [ 0@ = h- L

Because f is equal to zero weakly at oo associated with L, we have lim4_,,, Is = 0.
For any ¢ € BMOy (du),

(s [ 00T o) = (a)s [~ 0FPo)T) = (), 0(0)

€

The last equality holds since lim,_,o 8 [ (Df)?% = I in the sense of (BMOp,(dy))*
and I is the identity operator in (BMOL(du)) O
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For the converse of Theorem 3.11, we assume that f € (BMOg(du))* N LY (du).
On the one hand, if f € H'(du), then it is obvious that f € (BMOy(du))* N
LY(dp). Theorem 3.11 guarantees that SL(f) € L'(du). Conversely, if f €
(BMOg(du))* N LY(du) and SE(f) € L*(dp), we will use the reproducing formula
(3.4) to derive that f can be represented as the linear combination of H'-atoms
and the scalars. By Proposition 1.3, this means that f € H}(du). Precisely, we
have the following theorem.

Theorem 3.14. Suppose that V € B, ,,q > 1. Let L be the degenerate Schro-
dinger operator defined by (1.1) for every f € (BMOy(du))*NL' (du) and equal to
zero weakly at oo associated with L. If S5 f € L' (du), then we have f € H}(du).

Proof. We can see that

[Istr@ane = [ ([7]  ptswl i) an)

and so DF f(z) belongs to the tent space Ty. By the atomic decomposition of Ty,
we have D} f(x) = Y, Miai(z,t), where a;(x,t) are T)-atoms and >, |\;| < oo.
We assume that the atom a(x,t) is supported on B(zg,r). By the reproducing
formula (3.4),
flz) = /OO DE (i Niai(z, t)) . > Nia(x),
0 i=1 t i=1
where a;(z) = [¥ Dfa;(z,t)%. We have

Hsup | e—tL tL
t>0

12 = l[Gsuple™ (@) [)xa- | + [[(suple™ al@)]) x|,
=1 —i—[2.

For I, we use Holder’s inequality to deduce that
> dty -
ol = s [ (| Dfa(x,t)—>ﬁ(:r) du(x)
1Bll2<1 JR

- // thdp //|DL gdtdu( )>1/2
_||/3||2<1 n

< sup p(B)” 1/2\!5H2<M(B)71/2»
I6l2<1

which gives I, < u(B*)Y2u(B)~Y2 < C,,.
Now we deal with I5. For s > 0, by functional calculus, we have

> dt
‘e’SL (/ Dla(z, t)—) ‘
0 t
O[T 2 dt
= ‘c/ / e—e_TuLt2Le_SLa(x,t)—du‘

//m;sﬂ;/‘%ww\l y.1) |M.
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By condition (1) of Proposition 3.9, we have

_SL/ Dla xtdt>‘
LG L) s
=)y Vu s+ 24w/ p(B(x,\/s + t2/4u))?
_ 2lz—y|? 1/2
X e s+t2?/l4ud'u dt //| |2du g;)dt) du

o0 o—u
= —[2’1 X 12’2 du.
I

Clearly,

du(y) dt\1/2 _
122— //‘ 2 N ) S,u(B(a:o,T)) vz

For x € B¢(x,2r) and y € B(xg,7), we have |z —y| ~ |x — xg|. Therefore, by the
doubling property of the measure u, we get

’ t2 2 1 _2la—ol dyy(y) diy1/2
I < e s+t2/4u
2= </O/B<s+t2/4u> wu(B(x, /s + t?/4u))? t )

u /T t*/4u 2|z — x| _2la—wgl? ¢\ 1/2
: ([ settor 2oty sy
M<B($07 |37—:U0’)) 0 8+t2/4u S—I—t2/4u

t
([ pawa)
0
o —U s 2 _ 2|z—x
S/ Ve (/ #(1+M> e ma/azﬂ) "
o H(B 150,|517_350|)) o s+t*/4du Vs +t2/4u t

< I(u) du,
/0 (B xo,|x—o:o|>>”

"t /4u 2|z — x| 1 dt\1/2
I(u) = | _
() (/0 s—i—t2/4u( * ‘/75“2/41) (11 =zl ;)

s+t2/4u

Choose [ large enough. We have

s ([ Ly
= o du(s+t?/4u+ |z —x0)?) t ~ Vulr — x|

and hence

e dt 1 b T 1
eSL/ DEa(z,t)— ‘< / ue ‘———du
() e S s b VR

T 1
<

= |z = xo| p(B(wo, |z — wol))’
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Finally, we get

r 1
I S/
Be(or) |2 — ol p(B(zo, |2 — 20l))
o\~ L (B0, 24Mr))
T = 28 p(B(xo, 2¢r))

du(z)

<C.

This completes the proof of Theorem 3.14. 0
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