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Abstract. K. M. R. Audenaert (2010), R. A. Horn and F. Zhang (2010),
Z. Huang (2011), A. R. Schep (2011), A. Peperko (2012), and D. Chen and
Y. Zhang (2015) have proved inequalities on the spectral radius and the oper-
ator norm of Hadamard products and ordinary matrix products of finite and
infinite nonnegative matrices that define operators on sequence spaces. In the
present article, we extend and refine several of these results, and we also prove
some analogues for the numerical radius.

1. Introduction

In [20], X. Zhan conjectured that, for nonnegative (n× n)-matrices A and B,
the spectral radius ρ(A ◦B) of the Hadamard product satisfies

ρ(A ◦B) ≤ ρ(AB),

where AB denotes the usual matrix product of A and B. This conjecture was
confirmed by K. M. R. Audenaert in [1] by proving

ρ(A ◦B) ≤ ρ
1
2

(
(A ◦ A)(B ◦B)

)
≤ ρ(AB). (1.1)
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These inequalities were established via a trace description of the spectral radius.
Using the fact that the Hadamard product is a principal submatrix of the Kro-
necker product, R. A. Horn and F. Zhang proved in [12] the inequalities

ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ(AB) (1.2)

and also the right-hand side of the inequality in (1.1). Applying the techniques
of [12], Z. Huang proved that

ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1A2 · · ·Am) (1.3)

for nonnegative (n × n)-matrices A1, A2, . . . , Am (see [13]). A related inequality
for nonnegative (n× n)-matrices was shown in [8]:

ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1)ρ(A2) · · · ρ(Am). (1.4)

In [17] and [18], A. R. Schep extended inequalities (1.1) and (1.2) to nonnegative
matrices that define bounded operators on sequence spaces (in particular, on lp

spaces, 1 ≤ p < ∞). In Schep’s proofs, certain results on the Hadamard product
from [5] were used. It was claimed in [17, Theorem 2.7] that

ρ(A ◦B) ≤ ρ
1
2

(
(A ◦ A)(B ◦B)

)
≤ ρ

1
2 (AB ◦BA) ≤ ρ(AB). (1.5)

However, the proof of [17, Theorem 2.7] actually demonstrates that

ρ(A ◦B) ≤ ρ
1
2

(
(A ◦ A)(B ◦B)

)
≤ ρ

1
2 (AB ◦ AB) ≤ ρ(AB). (1.6)

It turned out that ρ(AB ◦BA) and ρ(AB ◦AB) may in fact be different and that
(1.5) is false in general. This error was corrected in [18] and [16]. Moreover, it
was proved in [16] that, for nonnegative matrices that define bounded operators
on sequence spaces, the inequalities

ρ(A ◦B) ≤ ρ
1
2

(
(A ◦ A)(B ◦B)

)
≤ ρ(AB ◦ AB)

1
4ρ(BA ◦BA)

1
4 ≤ ρ(AB) (1.7)

and (1.3) hold.
In [4], by applying the techniques of [1], the inequality (1.3) in the case of

nonnegative (n× n)-matrices was interpolated as

ρ(A1 ◦ A2 ◦ · · · ◦ Am)

≤
[
ρ(A1 ◦ A2 ◦ · · · ◦ Am)

]1− 2
m

×
[
ρ
(
(A1 ◦ A1)(A2 ◦ A2) · · · (Am ◦ Am)

)] 1
m

≤ ρ(A1A2 · · ·Am)

(1.8)

for m ≥ 2.
The article is organized as follows. In Section 2, we introduce some defini-

tions and facts, and we recall some results from [5] and [15], which we will need
in our proofs. In Section 3, we extend and/or refine several inequalities from
[13], [16], [4], [5], and [15] (including the inequalities (1.3) and (1.8)) to nonnega-
tive matrices that define bounded operators on sequence spaces. More precisely,
in Theorem 3.1 we prove a version of inequality (1.3) which is valid for arbitrary
positive kernel operators on Banach function spaces. In Theorem 3.2, we refine
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inequality (1.3) and prove analogues for the operator norm and the numerical
radius. Consequently, Corollary 3.4 generalizes and refines (1.8). In Theorem 3.6,
we refine the inequality (1.4) and prove analogue results for the operator norm
and the numerical radius. We generalize and refine some additional results from
[13] and [4] in Corollary 3.5 and Theorem 3.9. We conclude the article by apply-
ing the spectral mapping theorem to obtain additional results (Theorem 3.13,
Corollaries 3.14 and 3.15). Several inequalities in the article appear to be new,
even in the case of nonnegative (n× n)-matrices.

2. Preliminaries

Let R denote either the set {1, . . . , n} for some n ∈ N or the set N of all
natural numbers. Let S(R) be the vector lattice of all complex sequences (xi)i∈R.
A Banach space L ⊆ S(R) is called a Banach sequence space if x ∈ S(R), y ∈ L
and |x| ≤ |y| imply that x ∈ L and ‖x‖L ≤ ‖y‖L. The cone of all nonnegative
elements in L is denoted by L+.

Let us denote by L the collection of all Banach sequence spaces L satisfying
the property that ei = χ{i} ∈ L and ‖ei‖L = 1 for all i ∈ R. Standard examples
of spaces from L are Euclidean spaces, the well-known spaces lp(R) (1 ≤ p ≤ ∞),
and the space c0 of all null-convergent sequences, equipped with the usual norms.
The set L also contains all Cartesian products L = X×Y for X,Y ∈ L, equipped
with the norm ‖(x, y)‖L = max{‖x‖X , ‖y‖Y }.

A matrix A = [aij]i,j∈R is called nonnegative if aij ≥ 0 for all i, j ∈ R. Given
matrices A and B, we write A ≤ B if the matrix B−A is nonnegative. Note that
the matrices here need not be finite-dimensional.

By an operator on a Banach sequence space L we always mean a linear operator
on L. We say that a nonnegative matrix A defines an operator on L if Ax ∈ L
for all x ∈ L, where (Ax)i =

∑
j∈R aijxj. Then Ax ∈ L+ for all x ∈ L+, and so

A defines a positive operator on L. Recall that this operator is always bounded;
that is, its operator norm

‖A‖ = sup
{
‖Ax‖L : x ∈ L, ‖x‖L ≤ 1

}
= sup

{
‖Ax‖L : x ∈ L+, ‖x‖L ≤ 1

}
(2.1)

is finite. Also, its spectral radius ρ(A) is always contained in the spectrum. We will
frequently use the equality ρ(ST ) = ρ(TS) that holds for all bounded operators
S and T on a Banach space.

If A = [aij] is a nonnegative matrix that defines an operator on l2(R), then the
matrix AT = [aji] defines its adjoint operator on a Hilbert space l2(R), so that
we have

‖A‖2 = ‖AAT‖ = ‖ATA‖ = ρ(AAT ) = ρ(ATA). (2.2)

Given nonnegative matrices A = [aij]i,j∈R and B = [bij]i,j∈R, let A ◦ B =
[aijbij]i,j∈R be the Hadamard (or Schur) product of A and B, and let A(t) =
[atij]i,j∈R be the Hadamard (or Schur) power of A for t ≥ 0. Here we use the

convention 00 = 1.
The following result was proved in [5, Theorem 3.3] and [15, Theorem 5.1 and

Remark 5.2] by using only basic analytic methods and elementary facts.



INEQUALITIES ON THE SPECTRAL RADIUS OF HADAMARD PRODUCTS 803

Theorem 2.1. Given L ∈ L, let {Aij}k,mi=1,j=1 be nonnegative matrices that define
operators on L. If α1, α2, . . . , αm are positive numbers such that

∑m
j=1 αj ≥ 1,

then the matrix A := (A
(α1)
11 ◦ · · · ◦ A(αm)

1m ) · · · (A(α1)
k1 ◦ · · · ◦ A(αm)

km ) also defines an
operator on L and it satisfies the inequalities

A ≤ (A11 · · ·Ak1)
(α1) ◦ · · · ◦ (A1m · · ·Akm)

(αm), (2.3)

‖A‖ ≤ ‖A11 · · ·Ak1‖α1 · · · ‖A1m · · ·Akm‖αm , (2.4)

ρ(A) ≤ ρ(A11 · · ·Ak1)
α1 · · · ρ(A1m · · ·Akm)

αm . (2.5)

The following special case of Theorem 2.1 (k = 1) was considered in the finite-
dimensional case by several authors using different methods (see, e.g., [8], [6], [5],
[15] for references).

Corollary 2.2. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define
operators on L, and let α1, α2, . . . , αm be positive numbers such that

∑m
i=1 αi ≥ 1.

Then we have

‖A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ‖ ≤ ‖A1‖α1‖A2‖α2 · · · ‖Am‖αm (2.6)

and

ρ(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ ρ(A1)

α1ρ(A2)
α2 · · · ρ(Am)

αm . (2.7)

The following special case of Theorem 2.1 was also proved in [5, Proposition 3.1]
and [15, Lemma 4.2].

Proposition 2.3. Given L in L, let A1, . . . , Am be nonnegative matrices that

define operators on L. Then, for any t ≥ 1 and i = 1, . . . ,m, A
(t)
i also defines an

operator on L, and the following inequalities hold:

A
(t)
1 · · ·A(t)

m ≤ (A1 · · ·Am)
(t), (2.8)

‖A(t)
1 · · ·A(t)

m ‖ ≤ ‖A1 · · ·Am‖t, (2.9)

ρ(A
(t)
1 · · ·A(t)

m ) ≤ ρ(A1 · · ·Am)
t. (2.10)

Note that Theorem 2.1 and its special cases proved to be quite useful in different
contexts (see, e.g., [7], [8], [5], [15], [6], [17], [16], [4]). It will also be one of the
main tools in the current article.

Banach sequence spaces are special cases of Banach function spaces. As proved
in [5] and [15], the inequalities in Theorem 2.1 and Corollary 2.2 can be extended
to positive kernel operators on Banach function spaces, provided that∑m

i=1 αi = 1. Since our first theorem in the next section gives an inequality
for these general spaces, we shortly recall some basic definitions and results from
[5] and [15].

Let µ be a σ-finite positive measure on a σ-algebra M of subsets of a nonvoid
set X. Let M(X,µ) be the vector space of all equivalence classes of (almost
everywhere equal) complex measurable functions on X. A Banach space L ⊆
M(X,µ) is called a Banach function space if f ∈ L, g ∈ M(X,µ), and |g| ≤ |f |
imply that g ∈ L and ‖g‖ ≤ ‖f‖. We will assume that X is the carrier of L; that
is, there is no subset Y of X of strictly positive measure with the property that
f = 0 almost everywhere on Y for all f ∈ L (see [19]). Observe that a Banach
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sequence space is a Banach function space over a measure space (R, µ), where µ
denotes the counting measure on R (and for L ∈ L, the set R is the carrier of L).

As before, by an operator on a Banach function space L we always mean a linear
operator on L. An operator T on L is said to be positive if it maps nonnegative
functions to nonnegative ones. Given operators S and T on L, we write S ≥ T if
the operator S − T is positive.

In the special case L = L2(X,µ), we can define the numerical radius w(T ) of
a bounded operator T on L2(X,µ) by

w(T ) = sup
{∣∣〈Tf, f〉∣∣ : f ∈ L2(X,µ), ‖f‖2 = 1

}
.

If, in addition, T is positive, then it is easy to prove that

w(T ) = sup
{
〈Tf, f〉 : f ∈ L2(X,µ)+, ‖f‖2 = 1

}
.

From this it follows easily that w(S) ≤ w(T ) for all positive operators S and T
on L2(X,µ) with S ≤ T .

An operator K on a Banach function space L is called a kernel operator if there
exists a (µ × µ)-measurable function k(x, y) on X × X such that, for all f ∈ L
and for almost all x ∈ X,∫

X

∣∣k(x, y)f(y)∣∣ dµ(y) < ∞ and (Kf)(x) =

∫
X

k(x, y)f(y) dµ(y).

One can check that a kernel operator K is positive if and only if its kernel k
is nonnegative almost everywhere. For the theory of Banach function spaces we
refer the reader to the book [19].

Let K and H be positive kernel operators on L with kernels k and h, respec-
tively, and α ≥ 0. The Hadamard (or Schur) product K ◦H of K and H is the
kernel operator with kernel equal to k(x, y)h(x, y) at point (x, y) ∈ X ×X that
can be defined (in general) only on some order ideal of L. Similarly, the Hadamard
(or Schur) power K(α) of K is the kernel operator with kernel equal to (k(x, y))α

at point (x, y) ∈ X ×X that can be defined only on some ideal of L.
Let K1, . . . , Kn be positive kernel operators on a Banach function space L, and

let α1, . . . , αn be positive numbers such that
∑n

j=1 αj = 1. Then the Hadamard

weighted geometric mean K = K
(α1)
1 ◦K(α2)

2 ◦· · ·◦K(αn)
n of the operatorsK1, . . . , Kn

is a positive kernel operator defined on the whole space L, since K ≤ α1K1 +
α2K2+· · ·+αnKn by the inequality between the weighted arithmetic and geomet-
ric means. Let us recall the following result, which was proved in [5, Theorem 2.2]
and [15, Theorem 5.1].

Theorem 2.4. Let {Aij}k,mi=1,j=1 be positive kernel operators on a Banach function
space L. If α1, α2, . . ., αm are positive numbers such that

∑m
j=1 αj = 1, then the

inequalities (2.3), (2.4), and (2.5) hold.
If, in addition, L = L2(X,µ), then

w
(
(A

(α1)
11 ◦ · · · ◦ A(αm)

1m ) · · · (A(α1)
k1 ◦ · · · ◦ A(αm)

km )
)

(2.11)
≤ w(A11 · · ·Ak1)

α1 · · ·w(A1m · · ·Akm)
αm .

The following result is a special case of Theorem 2.4.
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Theorem 2.5. Let A1, . . . , Am be positive kernel operators on a Banach function
space L, and let α1, . . . , αm be positive numbers such that

∑m
j=1 αj = 1. Then the

inequalities (2.6) and (2.7) hold.
If, in addition, L = L2(X,µ), then

w(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ w(A1)

α1w(A2)
α2 · · ·w(Am)

αm . (2.12)

3. Results

We begin with a new proof of (1.3) that is based on the inequality (2.7).

Theorem 3.1. Let A1, . . . , Am be positive kernel operators on a Banach function
space L. Then

ρ(A
( 1
m
)

1 ◦ A( 1
m
)

2 ◦ · · · ◦ A( 1
m
)

m ) ≤ ρ(A1A2 · · ·Am)
1
m . (3.1)

If, in addition, L ∈ L (and so A1, . . . , Am can be considered as nonnegative
matrices that define operators on L), then

ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1A2 · · ·Am). (3.2)

Proof. The block matrix

T = T (A1, A2, . . . , Am) :=



0 A1 0 0 . . . 0 0
0 0 A2 0 . . . 0 0
0 0 0 A3 . . . 0 0
...

...
...

. . . . . .
...

...
...

...
...

...
. . . . . .

...
0 0 0 0 . . . 0 Am−1

Am 0 0 0 . . . 0 0


defines a positive kernel operator on the Cartesian product of m copies of L. Since
Tm has a diagonal form,

Tm = diag(A1A2 · · ·Am, A2A3 · · ·AmA1, A3A4 · · ·AmA1A2, . . . ,

AmA1A2 · · ·Am−1),

we have ρ(T )m = ρ(Tm) = ρ(A1A2 · · ·Am).
Now define Tk := T (Ak, Ak+1, . . . , Am, A1, . . . , Ak−1) for k = 1, 2, . . . ,m. Then

ρ(Tk)
m = ρ(A1A2 · · ·Am) for each k. Using the inequality (2.7) we obtain that

ρ(T
( 1
m
)

1 ◦ T ( 1
m
)

2 ◦ · · · ◦ T ( 1
m
)

m ) ≤
(
ρ(T1)ρ(T2) · · · ρ(Tm)

) 1
m = ρ(A1A2 · · ·Am)

1
m .

Since

ρ(T
( 1
m
)

1 ◦ T ( 1
m
)

2 ◦ · · · ◦ T ( 1
m
)

m ) = ρ(A
( 1
m
)

1 ◦ A( 1
m
)

2 ◦ · · · ◦ A( 1
m
)

m ),

the inequality (3.1) is proved.
If, in addition, L ∈ L, then we apply the inequality

ρ(T1 ◦ T2 ◦ · · · ◦ Tm) ≤ ρ(T1)ρ(T2) · · · ρ(Tm),
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which is a special case of the inequality (2.7). We then observe that ρ(T1 ◦ T2 ◦
· · · ◦Tm) = ρ(A1 ◦A2 ◦ · · · ◦Am) and ρ(T1)ρ(T2) · · · ρ(Tm) = ρ(A1A2 · · ·Am). This
completes the proof. �

It should be mentioned that the special case of inequality (3.1) for pairs of
operators on Lp-spaces was already given in [17, Theorem 2.8].

The following theorem generalizes the inequalities (1.6) to several matrices, and
it provides an alternative proof of the inequality (3.2). We also establish related
inequalities for the operator norm and the numerical radius.

Theorem 3.2. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define

operators on L. For t ∈ [1,m] and i = 1, . . . ,m, put Pi = A
(t)
i A

(t)
i+1 · · ·

A
(t)
m A

(t)
1 A

(t)
2 · · ·A(t)

i−1. Then

ρ(A1 ◦ · · · ◦ Am) ≤ ρ(P
( 1
t
)

1 ◦ · · · ◦ P ( 1
t
)

m )
1
m

≤ ρ(A
(t)
1 · · ·A(t)

m )
1
t (3.3)

≤ ρ
(
(A1 · · ·Am)

(t)
) 1

t ≤ ρ(A1 · · ·Am)

and∥∥(A1 ◦ · · · ◦ Am)
m
∥∥

≤ ‖P ( 1
t
)

1 ◦ · · · ◦ P ( 1
t
)

m ‖

≤
(
‖P1‖ · · · ‖Pm‖

) 1
t

≤
(∥∥(A1A2 · · ·Am)

(t)
∥∥∥∥(A2 · · ·AmA1)

(t)
∥∥ · · · ∥∥(AmA1 · · ·Am−1)

(t)
∥∥) 1

t

≤ ‖A1A2 · · ·Am‖‖A2 · · ·AmA1‖ · · · ‖AmA1 · · ·Am−1‖.

(3.4)

If, in addition, L = l2(R) and t = m, then

w
(
(A1 ◦ · · · ◦ Am)

m
)

≤ w(P
( 1
m
)

1 ◦ · · · ◦ P ( 1
m
)

m ) ≤
(
w(P1) · · ·w(Pm)

) 1
m

≤
(
w
(
(A1A2 · · ·Am)

(m)
)
w
(
(A2 · · ·AmA1)

(m)
)
· · ·

× w
(
(AmA1 · · ·Am−1)

(m)
)) 1

m .

(3.5)

Proof. Similarly as for Pi, we define the Hadamard product

Hi = A
(t)
i ◦ A(t)

i+1 ◦ · · · ◦ A(t)
m ◦ A(t)

1 ◦ A(t)
2 ◦ · · · ◦ A(t)

i−1

= (Ai ◦ Ai+1 ◦ · · · ◦ Am ◦ A1 ◦ A2 ◦ · · · ◦ Ai−1)
(t) = (A1 ◦ · · · ◦ Am)

(t),

so that, in fact, H1 = H2 = · · · = Hm. Let us prove the inequalities (3.3). Since
m
t
≥ 1, we apply the inequality (2.3) to obtain the inequality

(A1 ◦ · · · ◦ Am)
m = H

( 1
t
)

1 · · ·H( 1
t
)

m ≤ P
( 1
t
)

1 ◦ · · · ◦ P ( 1
t
)

m .

Therefore, we have

ρ(A1 ◦ · · · ◦ Am)
m = ρ

(
(A1 ◦ · · · ◦ Am)

m
)
≤ ρ(P

( 1
t
)

1 ◦ · · · ◦ P ( 1
t
)

m ),
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proving the first inequality in (3.3). Since m
t
≥ 1, for the proof of the second

inequality in (3.3) we can apply the inequality (2.7) to obtain that

ρ(P
( 1
t
)

1 ◦ · · · ◦ P ( 1
t
)

m ) ≤
(
ρ(P1) · · · ρ(Pm)

) 1
t = ρ(A

(t)
1 · · ·A(t)

m )
m
t .

Using the inequalities (2.8) and (2.10) we prove the remaining inequalities in
(3.3):

ρ(A
(t)
1 · · ·A(t)

m ) ≤ ρ
(
(A1 · · ·Am)

(t)
)
≤ ρ(A1 · · ·Am)

t.

The inequalities (3.4) and (3.5) are proved in a similar way. �

Corollary 3.3. Given L ∈ L, let A and B be nonnegative matrices that define
operators on L. Then, for every t ∈ [1, 2],

ρ(A◦B) ≤ ρ
(
(A(t)B(t))(

1
t
)◦(B(t)A(t))(

1
t
)
) 1

2 ≤ ρ(A(t)B(t))
1
t ≤ ρ

(
(AB)(t)

) 1
t ≤ ρ(AB)

and ∥∥(A ◦B)2
∥∥ ≤

∥∥(A(t)B(t))(
1
t
) ◦ (B(t)A(t))(

1
t
)
∥∥ ≤

(
‖A(t)B(t)‖‖B(t)A(t)‖

) 1
t

≤
(∥∥(AB)(t)

∥∥∥∥(BA)(t)
∥∥) 1

t ≤ ‖AB‖‖BA‖.

If, in addition, L = l2(R), then

w
(
(A ◦B)2

)
≤ w

(
(A(2)B(2))(

1
2
) ◦ (B(2)A(2))(

1
2
)
)

≤
(
w(A(2)B(2))w(B(2)A(2))

) 1
2 ≤

(
w
(
(AB)(2)

)
w
(
(BA)(2)

)) 1
2 .

As a consequence of Theorem 3.2, we obtain the following infinite-dimensional
generalization and refinement of (1.8), which was the main result of [4].

Corollary 3.4. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define

operators on L. For t ∈ [1,m] and i = 1, . . . ,m, put Pi = A
(t)
i A

(t)
i+1 · · ·

A
(t)
m A

(t)
1 A

(t)
2 · · ·A(t)

i−1. Then

ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1 ◦ A2 ◦ · · · ◦ Am)
1− t

mρ(P
( 1
t
)

1 ◦ · · · ◦ P ( 1
t
)

m )
t

m2

≤ ρ(A1 ◦ A2 ◦ · · · ◦ Am)
1− t

mρ(A
(t)
1 · · ·A(t)

m )
1
m

≤ ρ(A1 ◦ A2 ◦ · · · ◦ Am)
1− t

mρ
(
(A1 · · ·Am)

(t)
) 1

m

≤ ρ(A1A2 · · ·Am).

(3.6)

Proof. Since

ρ(A1 ◦ A2 ◦ · · · ◦ Am) = ρ(A1 ◦ A2 ◦ · · · ◦ Am)
1− t

mρ(A1 ◦ A2 ◦ · · · ◦ Am)
t
m ,

the result follows by applying (3.3). �

By applying Theorems 2.1 and 3.2, we obtain the following result, which gen-
eralizes [4, Proposition 2.4] and generalizes and refines [13, Theorem 4].
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Corollary 3.5. Let A1, . . . , Am be nonnegative matrices that define operators

on l2(R) and t ∈ [1,m]. If we denote Si = AiA
T
i and Ti = S

(t)
i S

(t)
i+1 · · ·

S
(t)
m S

(t)
1 S

(t)
2 · · ·S(t)

i−1 for i = 1, . . . ,m, then

‖A1 ◦ A2 ◦ · · · ◦ Am‖2 ≤ ρ(S1 ◦ S2 ◦ · · · ◦ Sm) ≤ ρ(T
( 1
t
)

1 ◦ · · · ◦ T ( 1
t
)

m )
1
m

≤ ρ(S
(t)
1 · · ·S(t)

m )
1
t (3.7)

≤ ρ
(
(S1 · · ·Sm)

(t)
) 1

t ≤ ρ(S1 · · ·Sm).

Proof. By Theorem 2.1, we have

(A1 ◦ A2 ◦ · · · ◦ Am)(A1 ◦ A2 ◦ · · · ◦ Am)
T

= (A1 ◦ A2 ◦ · · · ◦ Am)(A
T
1 ◦ AT

2 ◦ · · · ◦ AT
m)

≤ (A1A
T
1 ) ◦ (A2A

T
2 ) ◦ · · · ◦ (AmA

T
m) = S1 ◦ S2 ◦ · · · ◦ Sm,

and so it follows by (2.2) and Theorem 2.1 that

‖A1◦A2◦· · ·◦Am‖2 = ρ
(
(A1◦A2◦· · ·◦Am)(A1◦A2◦· · ·◦Am)

T
)
≤ ρ(S1◦S2◦· · ·◦Sm),

which proves the first inequality (3.7). Now the result follows by applying (3.3).
�

The following Cauchy–Schwarz-type inequality for the spectral radius of non-
negative (n×n)-matrices was proved in [4, Proposition 2.6] using the trace descrip-
tion: if A, B are nonnegative (n× n)-matrices, then

ρ(A ◦B) ≤ ρ(A ◦ A)1/2ρ(B ◦B)
1
2 . (3.8)

This result has already been implicitly known and also applied (see, e.g., the
proof of [16, Theorem 3.7]). Moreover, an easy application of Corollary 2.2 gives
the following infinite-dimensional generalization of (3.8) and its analogues for the
operator norm and the numerical radius.

Theorem 3.6. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define
operators on L. Define functions r,N : [1,∞) 7→ R by

r(t) =
(
ρ(A

(t)
1 )ρ(A

(t)
2 ) · · · ρ(A(t)

m )
)1/t

and

N(t) =
(
‖A(t)

1 ‖‖A(t)
2 ‖ · · · ‖A(t)

m ‖
) 1

t .

Then the function r is decreasing on [1,∞), and ρ(A1 ◦A2 ◦ · · · ◦Am) is its lower
bound on the interval [1,m]. Similarly, the function N is decreasing on [1,∞),
and ‖A1 ◦ A2 ◦ · · · ◦ Am‖ is its lower bound on the interval [1,m].

If, in addition, L = l2(R), then

w(A1 ◦ A2 ◦ · · · ◦ Am) ≤
(
w(A

(m)
1 )w(A

(m)
2 ) · · ·w(A(m)

m )
) 1

m . (3.9)

If, in addition, L = Cn and A1, . . . , Am are nonnegative (n×n)-matrices, then
the functions t 7→ r(t) and t 7→ N(t) are well-defined decreasing functions on
(0,∞), with lower bounds on the interval (0,m] equal to ρ(A1 ◦A2 ◦ · · · ◦Am) and
‖A1 ◦ A2 ◦ · · · ◦ Am‖, respectively.
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Proof. The expression ρ(A
(t)
i )

1
t is decreasing in t ∈ [1,∞). Indeed, if s ≥ t > 0,

then the inequality (2.10) implies that

ρ(A
(s)
i )

1
s = ρ

(
(A

(t)
i )(

s
t
)
) 1

s ≤ ρ(A
(t)
i )

1
t .

So, it follows that the function r is decreasing.
If 1 ≤ t ≤ m, then m

t
≥ 1, and so we have, by (2.7),

r(t) ≥ ρ
(
(A

(t)
1 )(1/t) ◦ (A(t)

2 )(1/t) ◦ · · · ◦ (A(t)
m )(1/t)

)
= ρ(A1 ◦ A2 ◦ · · · ◦ Am).

Therefore, on the interval [1,m] the function r is bounded below by ρ(A1 ◦ A2 ◦
· · · ◦ Am).

In a similar manner, one can show the properties of the function N . Further-
more, the inequality (3.9) follows from the inequality (2.12).

In the case L = Cn, the proof above remains correct, if we replace the intervals
[1,∞) and [1,m] with (0,∞) and (0,m], respectively. �

Remark 3.7. In general, we do not have that ρ(A1◦A2◦· · ·◦Am) ≤ r(t) for t > m.

For example, in the casem = 1, take A1 =
[
1 1
1 1

]
. Then ρ(A1) = 2 > ρ(A

(t)
1 )

1
t = 2

1
t

for t > 1. This matrix can also be used in the general case m ≥ 2. Setting
Ak := A1 for k = 2, . . . ,m we have ρ(A1 ◦ A2 ◦ · · · ◦ Am) = ρ(A1) = 2 >

(ρ(A
(t)
1 )ρ(A

t)
2 ) · · · ρ(A

(t)
m ))

1
t = 2

m
t for t > m.

Note that the limit µ(A) := limk→∞ ρ(A(t))
1
t plays (at least in the case of

nonnegative (n × n)-matrices) the role of the spectral radius in the algebraic
system max algebra (see, e.g., [2], [14], [8], [7], [10], [9], [3], [11], and the references
cited therein for various applications).

Remark 3.8. We can use an example from [5] to show that the product(
w(A

(t)
1 )w(A

(t)
2 ) · · ·w(A(t)

m )
) 1

t

is not necessarily decreasing in t. Let L = C2 and

A =

[
0 1
0 0

]
.

Then A(t) = A for all t > 0, w(A) = 1
2
, and so w(A(t)) = 1

2
> (1

2
)t = w(A)t for

t > 1. Therefore, choose A1 = · · · = Am = A above.

The following result generalizes [13, Theorem 5].

Theorem 3.9. Let A1, . . . , Am be nonnegative matrices that define operators on
l2(R). If m is even, then

‖A1 ◦ A2 ◦ · · · ◦ Am‖2

≤ ρ(AT
1A2A

T
3A4 · · ·AT

m−1Am)ρ(A1A
T
2A3A

T
4 · · ·Am−1A

T
m) (3.10)

= ρ(AT
1A2A

T
3A4 · · ·AT

m−1Am)ρ(AmA
T
m−1 · · ·A4A

T
3A2A

T
1 ).

If m is odd, then

‖A1 ◦ A2 ◦ · · · ◦ Am‖2

≤ ρ(A1A
T
2A3A

T
4 · · ·Am−2A

T
m−1AmA

T
1A2A

T
3A4 · · ·AT

m−2Am−1A
T
m).

(3.11)
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Proof. If m is even, we have, by (2.3),(
(A1 ◦ A2 ◦ · · · ◦ Am)

T (A1 ◦ A2 ◦ · · · ◦ Am)
)m

2

= (AT
1 ◦ AT

2 ◦ · · · ◦ AT
m)(A2 ◦ · · · ◦ Am ◦ A1)(A

T
3 ◦ AT

4 ◦ · · · ◦ AT
m ◦ AT

1 ◦ AT
2 )

× (A4 ◦ · · · ◦ Am ◦ A1 ◦ A2 ◦ A3) · · · (AT
m−1 ◦ AT

m ◦ AT
1 ◦ · · · ◦ AT

m−2)

× (Am ◦ A1 ◦ · · · ◦ Am−1)

≤ (AT
1A2A

T
3A4 · · ·AT

m−1Am) ◦ (AT
2A3A

T
4A5 · · ·AT

mA1)

◦ · · · ◦ (AT
m−1AmA

T
1A2 · · ·AT

m−3Am−2) ◦ (AT
mA1A

T
2A3 · · ·AT

m−2Am−1).

It follows by (2.5) that

‖A1 ◦ A2 ◦ · · · ◦ Am‖m

= ρ
(
(A1 ◦ A2 ◦ · · · ◦ Am)

T (A1 ◦ A2 ◦ · · · ◦ Am)
)m

2

≤ ρ
(
(AT

1A2A
T
3A4 · · ·AT

m−1Am) ◦ (AT
2A3A

T
4A5 · · ·AT

mA1)

◦ · · · ◦ (AT
m−1AmA

T
1A2 · · ·AT

m−3Am−2)

◦ (AT
mA1A

T
2A3 · · ·AT

m−2Am−1)
)

≤ ρ(AT
1A2A

T
3A4 · · ·AT

m−1Am)ρ(A
T
2A3A

T
4A5 · · ·AT

mA1)

× · · · ρ(AT
m−1AmA

T
1A2 · · ·AT

m−3Am−2)ρ(A
T
mA1A

T
2A3 · · ·AT

m−2Am−1)

= ρ
m
2 (AT

1A2A
T
3A4 · · ·AT

m−1Am)ρ
m
2 (A1A

T
2A3A

T
4 · · ·Am−1A

T
m),

(3.12)

which proves (3.10).
If m is odd, then we have, by (2.3),(
(A1 ◦ A2 ◦ · · · ◦ Am)

T (A1 ◦ A2 ◦ · · · ◦ Am)
)m

= (AT
1 ◦ AT

2 ◦ · · · ◦ AT
m)(A2 ◦ · · · ◦ Am ◦ A1)(A

T
3 ◦ AT

4 ◦ · · · ◦ AT
m ◦ AT

1 ◦ AT
2 )

× (A4 ◦ · · · ◦ Am ◦ A1 ◦ A2 ◦ A3) · · ·
× (Am−1 ◦ Am ◦ A1 ◦ · · · ◦ Am−2)(A

T
m ◦ AT

1 ◦ · · · ◦ AT
m−1)

× (A1 ◦ A2 ◦ · · · ◦ Am)(A
T
2 ◦ · · · ◦ AT

m ◦ AT
1 )(A3 ◦ A4 ◦ · · · ◦ Am ◦ A1 ◦ A2)

× · · · (AT
m−1 ◦ AT

m ◦ AT
1 ◦ · · · ◦ AT

m−2)(Am ◦ A1 ◦ · · · ◦ Am−1)

≤ (AT
1A2A

T
3A4 · · ·Am−1A

T
mA1A

T
2A3A

T
4 · · ·AT

m−1Am)

◦ (AT
2A3A

T
4 · · ·AT

m−1AmA
T
1A2A

T
3A4 · · ·Am−1A

T
mA1)

◦ · · · ◦ (AT
mA1A

T
2A3A

T
4 · · ·AT

m−1AmA
T
1A2A

T
3A4 · · ·Am−1).

It follows by (2.5) that

‖A1 ◦ A2 ◦ · · · ◦ Am‖2m

≤ ρ
(
(AT

1A2A
T
3A4 · · ·Am−1A

T
mA1A

T
2A3A

T
4 · · ·AT

m−1Am)

◦ · · · ◦ (AT
2A3A

T
4 · · ·AT

m−1AmA
T
1A2A

T
3A4 · · ·Am−1A

T
mA1)

◦ · · · ◦ (AT
mA1A

T
2A3A

T
4 · · ·AT

m−1AmA
T
1A2A

T
3A4 · · ·Am−1)

)
(3.13)

≤ ρ
m+1

2 (AT
1A2A

T
3A4 · · ·Am−1A

T
mA1A

T
2A3A

T
4 · · ·AT

m−1Am)
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× ρ
m−1

2 (A1A
T
2A3A

T
4 · · ·AT

m−1AmA
T
1A2A

T
3A4 · · ·Am−1A

T
m)

= ρm(A1A
T
2A3A

T
4 · · ·AT

m−1AmA
T
1A2A

T
3A4 · · ·Am−1A

T
m),

which completes the proof. �

The following result follows from Theorem 3.9 and its proof. It generalizes and
refines [13, Corollary 6] and [4, Corollary 2.3].

Corollary 3.10. Let A, B, and C be nonnegative matrices that define operators
on l2(R). Then

‖A ◦B‖ ≤ ρ
1
2

(
(ATB) ◦ (BTA)

)
≤ ρ(ATB) (3.14)

and

‖A ◦B ◦ C‖
≤ ρ

1
6

(
(ATBCTABTC) ◦ (BTCATBCTA) ◦ (CTABTCATB)

)
(3.15)

≤ ρ
1
2 (ABTCATBCT ).

Proof. It follows by (3.12) that

‖A ◦B‖ ≤ ρ
1
2

(
(ATB) ◦ (BTA)

)
≤ ρ

1
2 (ATB)ρ

1
2 (BTA) = ρ(ATB),

which proves (3.14).
Similarly, (3.15) follows from (3.13). �

The inequalities (3.15) yield the following lower bounds for the operator norm
of the Jordan triple product ABA.

Corollary 3.11. Let A and B be nonnegative matrices that define operators on
l2(R). Then

‖A ◦BT ◦ A‖
≤ ρ

1
6

(
(ATBTATABA) ◦ (BAATBTATA) ◦ (ATABAATBT )

)
(3.16)

≤ ‖ABA‖.

Proof. It follows by (3.15) that

‖A ◦BT ◦ A‖
≤ ρ

1
6

(
(ATBTATABA) ◦ (BAATBTATA) ◦ (ATABAATBT )

)
(3.17)

≤ ρ
1
2 (ABAATBTAT ) = ‖ABA‖,

which completes the proof. �

In contrast to (3.16), the inequality ‖A ◦ B ◦ A‖ ≤ ‖ABA‖ is not valid in
general, as the following example from [13] shows.

Example 3.12. If A =
[
0 1
0 1

]
and B =

[
1 1
0 0

]
, then ‖A ◦B ◦A‖ = 1 > 0 = ‖ABA‖.
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Note that the inequalities (3.14) refine the well-known inequality ‖A ◦ B‖ ≤
‖A‖‖B‖ and that we have

ρ(A ◦B) ≤ ‖A ◦B‖ ≤ ρ
1
2

(
(ATB) ◦ (BTA)

)
≤ ρ(ATB) ≤ ‖ATB‖ ≤ ‖A‖‖B‖.

Note also that ‖A ◦ B‖ ≤ ρ(AB) is not valid in general, as the matrices from
Example 3.12 show (as has already been pointed out in [13]).

We conclude the article by combining the spectral mapping theorem for analytic
functions and the inequality (3.2). To this end, let A+ denote the collection of all
power series

f(z) =
∞∑
j=0

αjz
j

having nonnegative coefficients αj ≥ 0 (j = 0, 1, . . . ). Let Rf be the radius of
convergence of f ∈ A+; that is, we have

1

Rf

= lim sup
j→∞

α
1/j
j .

If A is an operator on a Banach space such that ρ(A) < Rf , then the operator
f(A) is defined by

f(A) =
∞∑
j=0

αjA
j.

Theorem 3.13. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define
operators on L. If f ∈ A+ and ρ(A1 · · ·Am) < Rf , then

ρ
(
f(A1 ◦ · · · ◦ Am)

)
≤ ρ

(
f(A1 · · ·Am)

)
.

Proof. If ρ(A1 · · ·Am) < Rf , then it follows from the spectral mapping theorem
and (3.2) that

ρ
(
f(A1 ◦ · · · ◦ Am)

)
= f

(
ρ(A1 ◦ · · · ◦ Am)

)
≤ f

(
ρ(A1 · · ·Am)

)
= ρ

(
f(A1 · · ·Am)

)
,

which completes the proof. �

Choosing the exponential series for f ∈ A+, we obtain the following corollary.

Corollary 3.14. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define
operators on L. Then

ρ
(
exp(A1 ◦ · · · ◦ Am)

)
≤ ρ

(
exp(A1 · · ·Am)

)
.

By applying the C. Neumann series for the resolvent

(λI − A)−1 =
∞∑
n=0

1

λn+1
An, |λ| > ρ(A),

we also obtain the following result.
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Corollary 3.15. Given L ∈ L, let A1, . . . , Am be nonnegative matrices that define
operators on L. If λ > ρ(A1 · · ·Am), then

ρ
(
(λI − A1 ◦ · · · ◦ Am)

−1
)
≤ ρ

(
(λI − A1 · · ·Am)

−1
)
.
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