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Abstract. In this article, we derive several multidimensional Hilbert-type
inequalities, including certain differential operators. Further, we determine the
conditions under which the constants appearing on the right-hand sides of the
established inequalities are the best possible. As an application, some particular
examples are also studied.

1. Introduction

The Hilbert inequality asserts that∫
R2
+

f(x)g(y)

x+ y
dx dy ≤ π

sin π
p

‖f‖p‖g‖q (1.1)

holds for nonnegative functions f ∈ Lp(R+), g ∈ Lq(R+). Here, and through-
out this paper, ‖ · ‖r stands for the usual norm in Lr(R+); that is, ‖f‖r =
(
∫
R+

|f(x)|r dx)1/r, r > 1. The parameters p and q appearing in (1.1) are mu-

tually conjugate; that is, 1
p
+ 1

q
= 1, where p > 1. In addition, the constant

π/sin π
p
is the best possible in the sense that it cannot be replaced with a smaller

constant, so that (1.1) still holds.
The Hilbert inequality is one of the most interesting inequalities in mathe-

matical analysis. Applications of this inequality in diverse fields of mathematics
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have certainly contributed to its importance. After its discovery at the begin-
ning of the twentieth century, the Hilbert inequality was studied by numerous
authors, who either re-proved it using various techniques, or improved and gen-
eralized it in many different directions. For a comprehensive inspection of the
initial development of the Hilbert inequality, the reader is referred to the classical
monograph [5].

Nowadays, more than a century after its discovery, this problem area is still
of interest to numerous authors. The most important recent results regarding
Hilbert-type inequalities are collected in the monograph [6].

In the last few years, considerable attention has been given to a class of
Hilbert-type inequalities in which the functions and sequences are replaced by
certain integral or discrete operators. As an example, the classical Hardy oper-
ator f 7→ 1

x

∫ x

0
f(t) dt represents the arithmetic mean in the integral case. Such

inequalities may easily be derived by virtue of general Hilbert-type inequalities
(see [6, Chapters 1, 2]) and several well-known classical inequalities, such as the
Hardy inequality (see [9]), the Knopp inequality, and so on. But the most inter-
esting fact in connection with this topic is that the constants appearing in these
inequalities remain the best possible (see, for example, [1] and references therein).

Recently, Adiyasuren et al. [2], derived several Hilbert-type inequalities involv-
ing some differential operators. Denote by Dn

+, n ≥ 0, a differential operator

defined by Dn
+f(x) = f (n)(x), where f (n) stands for the nth derivative of a func-

tion f : R+ → R. In addition, throughout this article, Λn
+ denotes the set of

nonnegative measurable functions f : R+ → R such that f (n) exists a.e. on R+,
f (n)(x) > 0, a.e. on R+, and f (k)(0) = 0, k = 0, 1, 2, . . . , n − 1. The authors
proved in [2] that if p, q > 1 are conjugate parameters, a1, a2 ∈ (n − 1, s − 1),
a1 + a2 = s − 2, where n is a fixed nonnegative integer, and K : R2

+ → R is a
nonnegative homogeneous function of degree −s, then the inequalities∫

R2
+

K(x, y)f(x)g(y) dx dy ≤ M‖xn−a1− 1
pDn

+f‖p‖y
n−a2− 1

qDn
+g‖q (1.2)

and [∫
R+

y(p−1)(1+qa2)
(∫

R+

K(x, y)f(x) dx
)p

dy
] 1

p ≤ m‖xn−a1− 1
pDn

+f‖p (1.3)

hold for all f, g ∈ Λn
+, such that xn−a1− 1

pDn
+f ∈ Lp(R+), y

n−a2− 1
qDn

+g ∈ Lq(R+).

In addition, the constants M = k(a2)
Γ(a1−n+1)Γ(a2−n+1)

Γ(a1+1)Γ(a2+1)
and m = k(a2)

Γ(a1−n+1)
Γ(a1+1)

,

where k(a) =
∫
R+

K(1, t)ta dt and Γ(a) =
∫∞
0

ta−1e−t dt, a > 0, is the usual

gamma function, are the best possible in the corresponding inequalities.
The main objective of this paper is to extend inequalities (1.2) and (1.3) to

a multidimensional case. The multidimensional extensions of (1.2) and (1.3) will
be given in the setting with nonconjugate parameters. Then, we determine the
conditions under which the constants appearing in the established inequalities
are the best possible. This leads us again to the case of conjugate parameters.
As an application, we consider some particular inequalities with the best possible
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constants. We first need to cite some auxiliary results needed for deriving our
results.

2. Preliminaries

The Hilbert-type inequalities can also be considered in the case of nonconjugate
parameters. Let pi be the real parameters satisfying

n∑
i=1

1

pi
> 1, pi > 1, (2.1)

and let p′i be their respective conjugates; that is,

1

pi
+

1

p′i
= 1, i = 1, 2, . . . , n. (2.2)

Since pi > 1, it follows that p′i > 1, i = 1, 2, . . . , n. In addition, we define

λn =
1

n− 1

n∑
i=1

1

p′i
. (2.3)

Clearly, relations (2.1) and (2.2) imply that 0 < λn < 1. Finally, let qi be defined
by

1

qi
= λn −

1

p′i
, i = 1, 2, . . . , n, (2.4)

provided that qi > 0, i = 1, 2, . . . , n. The above conditions (2.1)–(2.4) provide
the n-tuple of nonconjugate exponents and were given by Bonsall [3] more than
half a century ago. Note also that λn =

∑n
i=1 1/qi and 1/qi + 1 − λn = 1/pi,

i = 1, 2, . . . , n. Of course, if λn = 1, then
∑n

i=1 1/pi = 1, which represents the
setting with conjugate parameters.

In 2011, Perić and Vuković [8], provided a unified treatment of multidimensional
Hilbert-type inequalities with a homogeneous kernel in the case of nonconjugate
parameters. Before we state the corresponding result, we introduce some notation.

Recall that the function K : Rn
+ → R is said to be homogeneous of degree

−s, s > 0, if K(tx) = t−sK(x) for all t > 0 and x = (x1, x2, . . . , xn) ∈ Rn
+.

Furthermore, if a = (a1, a2, . . . , an) ∈ Rn, we define

ki(a) =

∫
Rn−1
+

K(ûi)
n∏

j=1,j 6=i

u
aj
j d̂iu, i = 1, 2, . . . , n, (2.5)

where ûi = (u1, . . . , ui−1, 1, ui+1, . . . , un) and d̂iu = du1 · · · dui−1 dui+1 · · · dun,
and provided that the above integral converges. Further, in the remainder of the
paper, du is an abbreviation for du1, du2, . . . , dun.

The following pair of multidimensional Hilbert-type inequalities, in a slightly
altered notation, can be found in [8, p. 38, (3.4), (3.5)].

Theorem 2.1. Let pi, p
′
i, qi, i = 1, 2, . . . , n, let λn be as in (2.1)–(2.4), and let

Aij, i, j = 1, 2, . . . , n, be real parameters such that
∑n

i=1Aij = 0. If K : Rn
+ → R

is a nonnegative measurable homogeneous function of degree −s, s > 0, and
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fi : R+ → R, i = 1, 2, . . . , n, are nonnegative measurable functions, then the
following two inequalities hold and are equivalent:∫

Rn
+

Kλn(x)
n∏

i=1

fi(xi) dx ≤
n∏

i=1

k
1/qi
i (qiAi)

n∏
i=1

‖x(n−1−s)/qi+αi

i fi‖pi (2.6)

and [∫
R+

xn
(1−λnp′n)(n−1−s)−p′nαn

(∫
Rn−1
+

Kλn(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤

n∏
i=1

k
1/qi
i (qiAi)

n−1∏
i=1

‖x(n−1−s)/qi+αi

i fi‖pi ,

(2.7)

where αi =
∑n

j=1Aij, Ai = (Ai1, Ai2, . . . , Ain), x
(n−1−s)/qi+αi

i fi ∈ Lpi(R+), and

ki(qiAi) < ∞, i = 1, 2, . . . , n.

Inequalities related to (2.6) are usually called Hilbert-type inequalities, while the
equivalent forms such as (2.7) are usually referred to as the Hardy–Hilbert-type
inequalities.

The previous theorem will be the crucial step in proving our results. In addition,
we need the well-known Hardy and dual Hardy inequalities.

In 1928, Hardy [4], proved an estimate for the integration operator (or the
Hardy operator) Hf(x) =

∫ x

0
f(t) dt, from which the first weighted modification

of the Hardy inequality followed, namely, the inequality

‖x− r
pHf‖p ≤

p

r − 1
‖x1− r

pf‖p, (2.8)

valid with p > 1, r > 1, and x1− r
pf ∈ Lp(R+), where the constant

p
r−1

is the best
possible (for more details, see [5, Theorem 330] and [7]).

The dual Hardy inequality, accompanied with the dual integration operator or
the dual Hardy operator H∗f(x) =

∫∞
x

f(t) dt, asserts that

‖x− r
pH∗f‖p ≤

p

1− r
‖x1− r

pf‖p (2.9)

holds for p > 1 and r < 1, provided that x1− r
pf ∈ Lp(R+).

3. Multidimensional inequalities with nonconjugate exponents

Now we give the multidimensional extension of inequalities (1.2) and (1.3) in
the case of nonconjugate parameters.

It should be noted here that the constants appearing in our extended inequal-
ities are also expressed in terms of the gamma function. Therefore, we first give
the definition of rising and falling factorial powers. The rising factorial power xn,
where n is a nonnegative integer, also known as a Pochhammer symbol, is defined
by xn = x(x+1)(x+2) · · · (x+n−1), while the falling factorial power xn is given
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by xn = x(x − 1)(x − 2) · · · (x − n + 1). The rising and falling factorial powers
may be expressed in terms of the usual gamma function; that is,

xn =
Γ(x+ n)

Γ(x)
and xn =

Γ(x+ 1)

Γ(x− n+ 1)
.

Our first result is a consequence of Theorem 2.1 and the weighted Hardy in-
equality (2.8).

Theorem 3.1. Suppose that pi, p
′
i, qi, i = 1, 2, . . . , n, and λn are as in (2.1)–(2.4),

and that Aij, i, j = 1, 2, . . . , n, are real parameters satisfying
∑n

i=1Aij = 0. Fur-
ther, let αi =

∑n
j=1Aij, and let s > 0 be a real parameter such that s−n

qi
+λn−αi >

mi, mi ∈ N ∪ {0}, i = 1, 2, . . . , n. If K : Rn
+ → R is a nonnegative measurable

homogeneous function of degree −s, and fi ∈ Λmi
+ , i = 1, 2, . . . , n, then∫

Rn
+

Kλn(x)
n∏

i=1

fi(xi) dx ≤ Cs
n(p,q,A)

n∏
i=1

‖x(n−1−s)/qi+αi+mi

i Dmi
+ fi‖pi (3.1)

and [∫
R+

xn
(1−λnp′n)(n−1−s)−p′nαn

(∫
Rn−1
+

Kλn(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ Cs

n−1(p,q,A)
n−1∏
i=1

‖x(n−1−s)/qi+αi+mi

i Dmi
+ fi‖pi ,

(3.2)

where

Cs
n(p,q,A) =

n∏
i=1

k
1/qi
i (qiAi)

n∏
i=1

Γ( s−n
qi

+ λn − αi −mi)

Γ( s−n
qi

+ λn − αi)
,

Cs
n−1(p,q,A) =

n∏
i=1

k
1/qi
i (qiAi)

n−1∏
i=1

Γ( s−n
qi

+ λn − αi −mi)

Γ( s−n
qi

+ λn − αi)
,

Ai = (Ai1, Ai2, . . . , Ain), x
(n−1−s)/qi+αi+mi

i Dmi
+ fi ∈ Lpi(R+), and ki(qiAi) < ∞,

i = 1, 2, . . . , n.

Proof. First suppose that mi ∈ N, i = 1, 2, . . . , n. In order to prove (3.1) we will
rewrite the right-hand side of inequality (2.6) in a form that is more suitable for
the application of the Hardy inequality. Namely, since

H(D+f)(x) =

∫ x

0

f ′(t) dt = f(x)− f(0) = f(x),

we have that
n∏

i=1

k
1/qi
i (qiAi)

n∏
i=1

‖x(n−1−s)/qi+αi

i fi‖pi

=
n∏

i=1

k
1/qi
i (qiAi)

n∏
i=1

∥∥x(n−1−s)/qi+αi

i H(D+fi)
∥∥
pi
.

(3.3)
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Now, due to the weighted Hardy inequality (2.8), it follows that

∥∥x(n−1−s)/qi+αi

i H(D+fi)
∥∥
pi
≤ 1

s−n
qi

+ λn − αi − 1
‖x(n−1−s)/qi+αi+1

i D+fi‖pi ,

i = 1, 2, . . . , n. Moreover, applying the Hardy inequality to the right-hand side of
the above inequality mi − 1 times, yields the relation

∥∥x(n−1−s)/qi+αi

i H(D+fi)
∥∥
pi

≤ 1

( s−n
qi

+ λn − αi − 1)mi
· ‖x(n−1−s)/qi+αi+mi

i Dmi
+ fi‖pi .

(3.4)

Finally, taking into account that ( s−n
qi

+ λn − αi)
mi =

Γ( s−n
qi

+λn−αi)

Γ( s−n
qi

+λn−αi−mi)
, the in-

equality (3.1) holds due to (2.6), (3.3), and (3.4). It remains to consider the case
when mi = 0 for some i ∈ {1, 2, . . . , n}. In that case, the relation (3.4) reduces
to a trivial equality, and so (3.1) holds.

In the same way, the inequality (3.2) holds by virtue of (2.7) and (3.4). The
proof is completed. �

The Theorem 3.1 is a multidimensional extension of the inequalities (1.2) and
(1.3), which will be discussed in the next section. Moreover, this result may be
regarded as an extension of Theorem 2.1. Namely, if mi = 0, i = 1, 2, . . . , n, then
Theorem 3.1 trivially reduces to Theorem 2.1.

The previous theorem holds when the corresponding parameters fulfill the set of
conditions s−n

qi
+λn−αi > mi, i = 1, 2, . . . , n. If s−n

qi
+λn−αi < 1, i = 1, 2, . . . , n,

we can also derive a pair of inequalities which are in some way dual to inequalities
(3.1) and (3.2). Namely, this result relies on the dual Hardy inequality (2.9).

In order to state the corresponding result, we define a differential operator
Dn

± by Dn
±f(x) = (−1)nf (n)(x), where n is a nonnegative integer. Moreover,

the following theorem holds for all nonnegative functions f : R+ → R such
that the nth derivative f (n) exists a.e. on R+, Dn

±f(x) > 0, a.e. on R+, and

limx→∞ f (k)(x) = 0 for k = 0, 1, 2, . . . , n− 1. This set of functions will be denoted
by Λn

±.

Theorem 3.2. Suppose that pi, p
′
i, qi, i = 1, 2, . . . , n, and λn are as in (2.1)–(2.4),

and let Aij, i, j = 1, 2, . . . , n, be real parameters satisfying
∑n

i=1Aij = 0. Further,
let αi =

∑n
j=1Aij, and let s > 0 be real parameter such that s−n

qi
+ λn − αi < 1,

i = 1, 2, . . . , n. If K : Rn
+ → R is a nonnegative measurable homogeneous function

of degree −s and fi ∈ Λmi
± , mi ∈ N ∪ {0}, i = 1, 2, . . . , n, then

∫
Rn
+

Kλn(x)
n∏

i=1

fi(xi) dx ≤ Es
n(p,q,A)

n∏
i=1

‖x(n−1−s)/qi+αi+mi

i Dmi
± fi‖pi (3.5)
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and [∫
R+

xn
(1−λnp′n)(n−1−s)−p′nαn

(∫
Rn−1
+

Kλn(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ Es

n−1(p,q,A)
n−1∏
i=1

‖x(n−1−s)/qi+αi+mi

i Dmi
± fi‖pi ,

(3.6)

where

Es
n(p,q,A) =

n∏
i=1

k
1/qi
i (qiAi)

n∏
i=1

Γ(n−s
qi

− λn + αi + 1)

Γ(n−s
qi

− λn + αi +mi + 1)
,

Es
n−1(p,q,A) =

n∏
i=1

k
1/qi
i (qiAi)

n−1∏
i=1

Γ(n−s
qi

− λn + αi + 1)

Γ(n−s
qi

− λn + αi +mi + 1)
,

Ai = (Ai1, Ai2, . . . , Ain), x
(n−1−s)/qi+αi+mi

i Dmi
+ fi ∈ Lpi(R+), and ki(qiAi) < ∞,

i = 1, 2, . . . , n.

Proof. The proof is similar to the proof of the previous theorem, except that we
use the dual Hardy inequality (2.9) this time. In this regard, the right-hand side
of (2.6) can be rewritten as

n∏
i=1

k
1/qi
i (qiAi)

n∏
i=1

‖x(n−1−s)/qi+αi

i fi‖pi

=
n∏

i=1

k
1/qi
i (qiAi)

n∏
i=1

∥∥x(n−1−s)/qi+αi

i H∗(D±fi)
∥∥
pi
,

(3.7)

since

H∗(D±f)(x) = −
∫ ∞

x

f ′(t) dt = f(x).

Now, by applying the dual Hardy inequality to the expressions on the right-hand
side of (3.7) mi times (when mi ∈ N), it follows that∥∥x(n−1−s)/qi+αi

i H∗(D±fi)
∥∥
pi

≤ 1

(n−s
qi

− λn + αi + 1)mi
· ‖x(n−1−s)/qi+αi+mi

i Dmi
± fi‖pi ,

(3.8)

i = 1, 2, . . . , n. Further, since (n−s
qi

− λn + αi + 1)mi =
Γ(n−s

qi
−λn+αi+mi+1)

Γ(n−s
qi

−λn+αi+1)
, the

inequality (3.5) holds due to (2.6), (3.7), and (3.8). In the same way, inequality
(3.6) holds by virtue of (2.7) and (3.8). The trivial case when mi = 0 for some
i ∈ {1, 2, . . . , n} is treated in the same way as in Theorem 3.1. �

It should be noted here that Theorem 3.2 may also be regarded as an extension
of Theorem 2.1 since in the case when mi = 0, i = 1, 2, . . . , n, it reduces trivially
to Theorem 2.1.

Our next step is to determine conditions under which the constants Cs
n(p,q,A),

Cs
n−1(p,q,A), Es

n(p,q,A), and Es
n−1(p,q,A) appearing in Theorems 3.1 and 3.2
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are the best possible. This happens in the case of conjugate parameters. Namely,
the problem of the best constants in Hilbert-type inequalities with nonconjugate
parameters seems to be a quite difficult issue and remains open.

4. Inequalities with conjugate parameters:
The best possible constants

In order to obtain the best possible constants in inequalities (3.1), (3.2), (3.5),
and (3.6), in this section we deal with their conjugate forms. Namely, if pi > 1,
i = 1, 2, . . . , n, is the set of conjugate parameters, then inequalities (3.1) and (3.2)
become, respectively,∫

Rn
+

K(x)
n∏

i=1

fi(xi) dx ≤ C
s

n(p,A)
n∏

i=1

‖x(n−1−s)/pi+αi+mi

i Dmi
+ fi‖pi (4.1)

and [∫
R+

xn
(1−p′n)(n−1−s)−p′nαn

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ C

s

n−1(p,A)
n−1∏
i=1

‖x(n−1−s)/pi+αi+mi

i Dmi
+ fi‖pi ,

(4.2)

where

C
s

n(p,A) =
n∏

i=1

k
1/pi
i (piAi)

n∏
i=1

Γ( s−n
pi

− αi −mi + 1)

Γ( s−n
pi

− αi + 1)
,

C
s

n−1(p,A) =
n∏

i=1

k
1/pi
i (piAi)

n−1∏
i=1

Γ( s−n
pi

− αi −mi + 1)

Γ( s−n
pi

− αi + 1)
.

In the same way, the conjugate forms of inequalities (3.5) and (3.6) read∫
Rn
+

K(x)
n∏

i=1

fi(xi) dx ≤ E
s

n(p,A)
n∏

i=1

‖x(n−1−s)/pi+αi+mi

i Dmi
± fi‖pi (4.3)

and [∫
R+

xn
(1−p′n)(n−1−s)−p′nαn

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ E

s

n−1(p,A)
n−1∏
i=1

‖x(n−1−s)/pi+αi+mi

i Dmi
± fi‖pi ,

(4.4)

with the constants

E
s

n(p,A) =
n∏

i=1

k
1/pi
i (piAi)

n∏
i=1

Γ(n−s
pi

+ αi)

Γ(n−s
pi

+ αi +mi)
,

E
s

n−1(p,A) =
n∏

i=1

k
1/pi
i (piAi)

n−1∏
i=1

Γ(n−s
pi

+ αi)

Γ(n−s
pi

+ αi +mi)
.
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Now, our goal is to determine the conditions under which the inequalities (4.1),
(4.2), (4.3), and (4.4) include the best possible constants on their right-hand sides.
To do this, we establish some more specific conditions about the convergence of
the integral k1(a), a = (a1, a2, . . . , an), defined by (2.5). More precisely, we assume
that

k1(a) < ∞ for a2, . . . , an > −1,
n∑

i=2

ai < s− n+ 1, n ∈ N, n ≥ 2. (4.5)

By reasoning similar to that in some recent papers (see [8], [10]), the best
possible constants can be obtained if their parts related to a homogeneous kernel
contain no exponents. In this regard, assume that

k1(p1A1) = k2(p2A2) = · · · = kn(pnAn). (4.6)

Our goal is to find suitable conditions under which (4.6) holds. To do this,
we first express k2(p2A2) in terms of k1(·), in accordance with definition (2.5).
Hence, passing to new variables t2, t3, . . . , tn, where u1 = 1/t2, u3 = t3/t2, u4 =
t4/t2, . . . , un = tn/t2, yields the Jacobian of the transformation∣∣∣∂(u1, u3, . . . , un)

∂(t2, t3, . . . , tn)

∣∣∣ = t−n
2 ,

and so we have

k2(p2A2) =

∫
Rn−1
+

K (̂t1)t
s−n−p2(α2−A22)
2

n∏
j=3

t
p2A2j

j d̂1t

= k1
(
p1A11, s− n− p2(α2 − A22), p2A23, . . . , p2A2n

)
.

According to (4.6), it follows that p1A12 = s − n − p2(α2 − A22), p1A13 =
p2A23, . . . , p1A1n = p2A2n. In the same way we can express ki(piAi), i = 3, . . . , n,
in terms of k1(·). Therefore the relation (4.6) is fulfilled if

pjAji = s− n− pi(αi − Aii), i, j = 1, 2, . . . , n, i 6= j. (4.7)

The above set of relations also implies that piAik = pjAjk, when k 6= i, j.

Therefore, we use the abbreviations Ã1 = pnAn1 and Ãi = p1A1i, i 6= 1. Since∑n
i=1Aij = 0, one easily obtains that pjAjj = Ãj(1− pj). In addition,

∑n
i=1 Ãi =

s− n (see also [10]).
Now, if the set of conditions (4.7) is fulfilled, then, with the above abbreviations,

inequalities (4.1) and (4.2) become, respectively,∫
Rn
+

K(x)
n∏

i=1

fi(xi) dx ≤ Ls
n(p,A)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi (4.8)
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and [∫
R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ Ls

n−1(p,A)
n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi ,

(4.9)

where

Ls
n(p, Ã) = k1(Ã)

n∏
i=1

Γ(Ãi −mi + 1)

Γ(Ãi + 1)
,

Ls
n−1(p, Ã) = k1(Ã)

n−1∏
i=1

Γ(Ãi −mi + 1)

Γ(Ãi + 1)
.

In the same regard, the inequalities (4.3) and (4.4) read, respectively,∫
Rn
+

K(x)
n∏

i=1

fi(xi) dx ≤ M s
n(p, Ã)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi (4.10)

and [∫
R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ M s

n−1(p, Ã)
n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi ,

(4.11)

with the corresponding constants

M s
n(p, Ã) = k1(Ã)

n∏
i=1

Γ(−Ãi)

Γ(−Ãi +mi)
,

M s
n−1(p, Ã) = k1(Ã)

n−1∏
i=1

Γ(−Ãi)

Γ(−Ãi +mi)
.

Remark 4.1. Note that inequalities (4.8) and (4.9) are multidimensional exten-
sions of inequalities (1.2) and (1.3) since for n = 2 and m1 = m2 = m they reduce
to (1.2) and (1.3), respectively. In that case, conditions (4.5) and (4.7) are equiv-

alent to Ã1, Ã2 ∈ (m− 1, s− 1), Ã1 + Ã2 = s− 2, as stated in the Introduction.
In the same setting the inequalities (4.10) and (4.11) become the corresponding
relations derived in [2].

Now, we are ready to state and prove our main results in this section. More pre-

cisely, we show that the constants Ls
n(p, Ã), Ls

n−1(p, Ã), M s
n(p, Ã), and M s

n−1(p,

Ã) appearing on the right-hand sides of the above inequalities are the best pos-
sible.
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Theorem 4.2. Let mi ∈ N∪{0}, Ãi > mi−1, i = 1, 2, . . . , n, and let the param-

eters Ãi, i = 2, . . . , n, fulfill conditions as in (4.5). Then, the constants Ls
n(p, Ã)

and Ls
n−1(p, Ã) are the best possible in inequalities (4.8) and (4.9) respectively.

Proof. Suppose that the constant Ls
n(p, Ã) is not the best possible in (4.8). Then,

there exists a positive constant Cn, smaller than Ls
n(p, Ã), such that inequality

(4.8) is still valid if we replace Ls
n(p, Ã) by Cn. Now, consider the functions

f̃i(xi) =

0, 0 < xi < 1,
Γ(1+Ãi− ε

pi
−mi)

Γ(1+Ãi− ε
pi

)
x
Ãi− ε

pi
i , xi ≥ 1,

i = 1, . . . , n,

where ε > 0 is a sufficiently small number. Since the mith derivative of the

function x
Ãi− ε

pi
i is equal to

Γ(1+Ãi− ε
pi

)

Γ(1+Ãi− ε
pi

−mi)
x
Ãi− ε

pi
−mi

i , it follows that

Dmi
+ f̃i(xi) =

{
0, 0 < xi < 1,

x
Ãi− ε

pi
−mi

i , xi > 1,
i = 1, . . . , n,

so in this setting the right-hand side of (4.8) reduces to

Cn

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ f̃i‖pi

= Cn

n∏
i=1

[∫
R+

x
pi(mi−Ãi)−1
i

(
Dmi

+ f̃i(xi)
)pi dxi

] 1
pi

=
Cn

ε
.

(4.12)

On the other hand, the left-hand side of (4.8) can be rewritten as

∫
Rn
+

K(x)
n∏

i=1

f̃i(xi) dx = I ·
n∏

i=1

Γ(1 + Ãi − ε
pi
−mi)

Γ(1 + Ãi − ε
pi
)

,

where I =
∫
[1,∞)n

K(x)
∏n

i=1 x
Ãi− ε

pi
i dx. Now, since

I =

∫ ∞

1

x−1−ε
1

[∫
[1/x1,∞)n−1

K(û1)
n∏

i=2

u
Ãi−ε/pi
i d̂1u

]
dx1,



HILBERT-TYPE INEQUALITIES INVOLVING SOME DIFFERENTIAL OPERATORS 331

we have the following estimate:

I ≥
∫ ∞

1

x−1−ε
1

[∫
Rn−1
+

K(û1)
n∏

i=2

u
Ãi−ε/pi
i d̂1u

]
dx1

−
∫ ∞

1

x−1−ε
1

[ n∑
i=2

∫
Di

K(û1)
n∏

j=2

u
Ãj−ε/pj
j d̂1u

]
dx1

≥ 1

ε

∫
Rn−1
+

K(û1)
n∏

i=2

u
Ãi−ε/pi
i d̂1u

−
∫ ∞

1

x−1
1

[ n∑
i=2

∫
Di

K(û1)
n∏

j=2

u
Ãj−ε/pj
j d̂1u

]
dx1,

(4.13)

where Di = {(u2, u3, . . . , un); 0 < ui ≤ 1/x1, uj > 0, j 6= i}.
Without loss of generality, it suffices to find the appropriate estimate for the

integral
∫
D2

K(û1)
∏n

j=2 u
Ãj−ε/pj
j d̂1u. In fact, setting α > 0 such that Ã2 + 1 >

ε/p2 + α, since −uα
2 log u2 → 0 (u2 → 0+), there exists M ≥ 0 such that

−uα
2 log u2 ≤ M (u2 ∈ (0, 1]). On the other hand, it follows easily that the pa-

rameters a2 = Ã2 − (ε/p2 + α) and ai = Ãi − ε/pi, i = 3, . . . , n satisfy conditions
(4.5). Then, by virtue of the Fubini theorem, we have

0 ≤
∫ ∞

1

x−1
1

∫
D2

K(û1)
n∏

j=2

u
Ãj−ε/pj
j d̂1u dx1

=

∫ ∞

1

x−1
1

[∫
Rn−2
+

∫ 1/x1

0

K(û1)
n∏

j=2

u
Ãj−ε/pj
j d̂1u

]
dx1

=

∫
Rn−2
+

∫ 1

0

K(û1)
n∏

j=2

u
Ãj−ε/pj
j

(∫ 1/u2

1

x−1
1 dx1

)
d̂1u

=

∫
Rn−2
+

∫ 1

0

K(û1)
n∏

j=2

u
Ãj−ε/pj
j (− log u2) d̂

1u

≤ M

∫
Rn−2
+

∫ 1

0

K(û1)u
Ã2−(ε/p2+α)
2

n∏
j=3

u
Ãj−ε/pj
j d̂1u

≤ M

∫
Rn−1
+

K(û1)u
Ã2−(ε/p2+α)
2

n∏
j=3

u
Ãj−ε/pj
j d̂1u

= M · k1
(
Ã2 − (ε/p2 + α), Ã3 − ε/p3, . . . , Ãn − ε/pn

)
< ∞.

Hence, taking into account (4.13), we obtain∫
Rn
+

K(x)
n∏

i=1

f̃i(xi) dx ≥
(1
ε
k1(Ã− ε1/p)−O(1)

) n∏
i=1

Γ(1 + Ãi − ε
pi
−mi)

Γ(1 + Ãi − ε
pi
)

,
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where 1/p = (1/p1, . . . , 1/pn). Moreover, the relation (4.12) implies that

Cn ≥
(
k1(Ã− ε1/p)− εO(1)

) n∏
i=1

Γ(1 + Ãi − ε
pi
− n)

Γ(1 + Ãi − ε
pi
)

.

Obviously, letting ε → 0+, it follows that Cn ≥ Ls
n(p, Ã), which contradicts our

assumption that 0 < Cn < Ls
n(p, Ã). Hence, Ls

n(p, Ã) is the best possible in (4.8).

It remains to show that Ls
n−1(p, Ã) is the best possible constant in (4.9). As-

sume that there exists a positive constant Cn−1, smaller than Ls
n−1(p, Ã), such

that inequality (4.9) holds when Ls
n−1(p, Ã) is replaced by Cn−1. Then, utilizing

the well-known Hölder inequality and inequality (3.4), we have∫
Rn
+

K(x)
n∏

i=1

fi(xi) dx

=

∫
R+

[
x

1+pnÃn
pn

n

∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

]
·
[
x
− 1+pnÃn

pn
n fn(xn)

]
dxn

≤
[∫

R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
×

[∫
R+

x−1−pnÃn
n fpn

n (xn) dxn

]1/pn
≤ Cn−1

Γ(Ãn −mn + 1)

Γ(Ãn + 1)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi .

(4.14)

Finally, taking into account our assumption 0 < Cn−1 < Ls
n−1(p, Ã), we have

0 < Cn−1
Γ(Ãn −mn + 1)

Γ(Ãn + 1)

< Ls
n−1(p, Ã)

Γ(Ãn −mn + 1)

Γ(Ãn + 1)
= Ls

n(p, Ã).

Therefore, relation (4.14) contradicts with the fact that Ls
n(p, Ã) is the best pos-

sible constant in inequality (4.8). Thus, the assumption that Ls
n−1(p, Ã) is not

the best possible is false. �

Theorem 4.3. Let mi ∈ N ∪ {0}, Ãi < 0, i = 1, 2, . . . , n, and let the parameters

Ãi, i = 2, . . . , n, fulfill conditions as in (4.5). Then, the constants M s
n(p, Ã) and

M s
n−1(p, Ã) are the best possible in (4.10) and (4.11), respectively.

Proof. We follow the same procedure as in the proof of Theorem 4.2; that is, we
suppose that the inequality∫

Rn
+

K(x)
n∏

i=1

fi(xi) dx ≤ C∗
n

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi (4.15)
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holds with a positive constant C∗
n, smaller than M s

n(p, Ã). Now, we consider this
inequality with the functions

f̃ ∗
i (xi) =

0, 0 < xi < 1,
Γ(−Ãi+

ε
pi

)

Γ(−Ãi+mi+
ε
pi

)
x
Ãi− ε

pi
i , xi ≥ 1,

i = 1, . . . , n,

where ε is a sufficiently small number. Then, similarly as in the proof of Theorem
4.2, we have the following lower bound for the left-hand side of (4.15):∫

Rn
+

K(x)
n∏

i=1

f̃ ∗
i (xi) dx

≥
(1
ε
k1(Ã− ε1/p)−O(1)

) n∏
i=1

Γ(−Ãi +
ε
pi
)

Γ(−Ãi +mi +
ε
pi
)
.

(4.16)

On the other hand, since the mith derivative of the function x
Ãi− ε

pi
i is equal to

(−1)mi
Γ(−Ãi+mi+

ε
pi

)

Γ(−Ãi+
ε
pi

)
x
Ãi− ε

pi
−mi

i , it follows that

Dmi
± f̃ ∗

i (xi) =

{
0, 0 < xi < 1,

x
Ãi− ε

pi
−mi

i , xi > 1,
i = 1, . . . , n,

so the right-hand side of (4.15) reduces to

C∗
n

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± f̃ ∗

i ‖pi =
C∗

n

ε
. (4.17)

Consequently, comparing (4.15), (4.16), and (4.17), it follows that

C∗
n ≥

(
k1(Ã− ε1/p)− εO(1)

) n∏
i=1

Γ(−Ãi +
ε
pi
)

Γ(−Ãi +mi +
ε
pi
)
.

Therefore, as ε → 0, it follows that M s
n(p, Ã) ≤ C∗

n, which contradicts with our

assumption. This means that the constant M s
n(p, Ã) is the best possible in (4.10).

To conclude the proof, we suppose that, contrary to our claim, there exists a

constant 0 < C∗
n−1 < M s

n−1(p, Ã) such that the inequality

[∫
R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ C∗

n−1

n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi
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holds. Then, utilizing the Hölder inequality and inequality (3.8), we have∫
Rn
+

K(x)
n∏

i=1

fi(xi) dx

=

∫
R+

[
x

1+pnÃn
pn

n

∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

]
·
[
x
− 1+pnÃn

pn
n fn(xn)

]
dxn

≤
[∫

R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

K(x)
n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
×

[∫
R+

x−1−pnÃn
n fpn

n (xn) dxn

]1/pn
≤ C∗

n−1

Γ(−Ãn)

Γ(−Ãn +mn)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi .

Now, according to our assumption, it follows that

0 < C∗
n−1

Γ(−Ãn)

Γ(−Ãn +mn)

< M s
n−1(p, Ã)

Γ(−Ãn)

Γ(−Ãn +mn)
= M s

n(p, Ã),

which means that M s
n(p, Ã) is not the best constant in (4.10). This is a clear

contradiction of our assumption, and the proof is completed. �

5. Applications and concluding remarks

In order to conclude the paper, we consider the inequalities (4.8), (4.9), (4.10),
and (4.11) in some particular settings. The resulting inequalities will include the
best possible constants on their right-hand sides.

The standard example of a homogeneous kernel with the negative degree of
homogeneity is the function K1 : Rn

+ → R, defined by K1(x) = (
∑n

i=1 xi)
−s,

s > 0. Clearly, K1 is a homogeneous function of degree −s, and the constant

k1(Ã), appearing in (4.8), (4.9), (4.10), and (4.11), can be expressed in terms of
the usual gamma function Γ. Namely, utilizing the formula∫

Rn−1
+

∏n−1
i=1 uai−1

i

(1 +
∑n−1

i=1 ui)
∑n

i=1 ai
d̂nu =

∏n
i=1 Γ(ai)

Γ(
∑n

i=1 ai)
,

which holds for ai > 0, i = 1, 2, . . . , n, it follows that

k1(Ã) =
1

Γ(s)

n∏
i=1

Γ(1 + Ãi), i = 1, 2, . . . , n,
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provided that Ãi > −1, i = 1, 2, . . . , n, and
∑n

i=1 Ãi = s − n. With this kernel,
inequalities (4.8), (4.9), (4.10), and (4.11) reduce, respectively, to∫

Rn
+

1

(
∑n

i=1 xi)s

n∏
i=1

fi(xi) dx

≤ 1

Γ(s)

n∏
i=1

Γ(Ãi −mi + 1)
n∏

i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi ,

[∫
R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

1

(
∑n

i=1 xi)s

n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ Γ(1 + Ãn)

Γ(s)

n−1∏
i=1

Γ(Ãi −mi + 1)
n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi ,∫

Rn
+

1

(
∑n

i=1 xi)s

n∏
i=1

fi(xi) dx

≤ 1

Γ(s)

n∏
i=1

B(1 + Ãi,−Ãi)

Γ(−Ãi +mi)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi ,

and [∫
R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

1

(
∑n

i=1 xi)s

n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ Γ(1 + Ãn)

Γ(s)

n−1∏
i=1

B(1 + Ãi,−Ãi)

Γ(−Ãi +mi)

n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi .

It should be noted here that the last two inequalities include the constants with

the usual beta function since B(x, y) = Γ(x)Γ(y)
Γ(x+y)

, x, y > 0.

Another interesting example of a homogeneous kernel with degree −s is the
function K2(x) = 1/max{xs

1, . . . , x
s
n}, s > 0. One can easily check the integral

formula ∫
Rn−1
+

∏n−1
i=1 xÃi

i

max{1, xs
1, . . . , x

s
n−1}

d̂nu =
s∏n

i=1(1 + Ãi)
,

provided that Ãi > −1 and
∑n

i=1 Ãi = s− n. Based on this formula, inequalities
(4.8), (4.9), (4.10), and (4.11) reduce to∫

Rn
+

1

max{xs
1, . . . , x

s
n}

n∏
i=1

fi(xi) dx

≤ s

n∏
i=1

Γ(Ãi −mi + 1)

Γ(Ãi + 2)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi ,
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R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

1

max{xs
1, . . . , x

s
n}

n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ s

(1 + Ãn)

n−1∏
i=1

Γ(Ãi −mi + 1)

Γ(Ãi + 2)

n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
+ fi‖pi ,∫

Rn
+

1

max{xs
1, . . . , x

s
n}

n∏
i=1

fi(xi) dx

≤ s

n∏
i=1

Γ(−Ãi)

(1 + Ãi)Γ(−Ãi +mi)

n∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi ,

and[∫
R+

xn
(p′n−1)(1+pnÃn)

(∫
Rn−1
+

1

max{xs
1, . . . , x

s
n}

n−1∏
i=1

fi(xi) d̂
nx

)p′n
dxn

]1/p′n
≤ s

(1 + Ãn)

n−1∏
i=1

Γ(−Ãi)

(1 + Ãi)Γ(−Ãi +mi)

n−1∏
i=1

‖x
mi− 1

pi
−Ãi

i Dmi
± fi‖pi ,

where the constants appearing on the right-hand sides are the best possible.
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