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ABSTRACT. We consider a sequence of composite bivariate Bernstein opera-
tors and the cubature formula associated with them. The upper bounds for
the remainder term of a cubature formula are described in terms of moduli of
continuity of order two. Also, we include some results showing how nonmulti-
plicative the integration functional is.

1. INTRODUCTION

We reconsider (composite) bivariate Bernstein approximation and the corre-
sponding cubature formulas. This is motivated by a recent series of articles by
Barbosu et al. (see [3], [4]). However, some of these papers contain rather mis-
leading statements and claims which can hardly be verified. The present article is
written with the intention to clean up some of the bugs, to optimize and generalize
certain estimates, and thus to further describe the situation at hand.

Our present contribution is a continuation of [9]. Historically, the origin of the
method discussed seems to be in the article [13] by D. D. Stancu and A. Ver-
nescu.

2. A GENERAL RESULT

We first introduce some notation that will be needed to formulate the general
result.
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236 A.-M. ACU and H. GONSKA

Definition 2.1. Let I and J be compact intervals of the real axis, and let L :
C(I)— C(I) and M : C(J) — C(J) be discretely defined operators; that is,

L(giz) = Y g(w)Ac(w), geC),xel,

ecE

where F is a finite index set, the z, € I are mutually distinct, and A, € C(I),
eec k.
Analogously,

M(hiy) = > hl(ys)Bsly), heC(J),yel
fer

If L is of the form above, then its parametric extension to C'(I x J) is given by
L(Fizy) = L(F;z) = Y Fy(x)Ac(z) = Y Flae,y)Ac().
ecll eclk

Here the F,, y € J, denote the partial functions of F' given by Fy(z) = F(z,y),
x el
Similarly,

yM(F;z,y) =Y F(a,y)Br(y).
feF
The tensor product of L and M (or M and L) is given by

(Lo yM)(Fiz,y) = Y Flae,ys) Ac(z) By (y).

eeE feF

The theorem below is given in terms of so-called partial moduli of smoothness
of order r, given for the compact intervals I,J C R, for F' € C(I x J), r € Ny,
and 6 € Ry by

w(F56,0) := sup{

i(—nw (Z)F(er Vh,y)‘ :

v=0
(.9), (& + rhyy) € T x J,|h] < 5}

and symmetrically by

i(—n” C) Flz,y+ yh)' :

v=0

wr(F50,0) = sup{

(z,y), (z,y +rh) € I x J,|h| < 5}.

The total modulus of smoothness of order r is defined by

S (- (Z) F(z + vhi,y + vhy)| :

v=0

wr(F7501,02) == SUP{

(2,9), (@ + rhy,y + rho) € T x J,|hu] < 61, [ha] < 52}.



COMPOSITE BERNSTEIN CUBATURE 237
We now formulate and prove a simplified form of [6, Theorem 37].

Theorem 2.1. Let L and M be discretely defined operators as given above such
that

(9= Lg)(x ZFpL )y (g: Ap(2), geC)zel
and
|(h — Mh)( ZFUM Yo (i Aoat(y)),  h € C(J),y € J.
o=0

Here w,, p = 0,...,r, denote the moduli of order p, and I' and A are bounded
functions; the notation is analogous for M. Then for (x,y) € I x J and F €
C(I x J) the following holds:

|[F = (:L o M)F]|(z,y)| < Z L)n(@)w,(F; A, r(z),0)

+ ||L|| Z FO'7M<y)wO' (F7 07 AJ,M(y))7
=0

where ||L|| denotes the operator norm of L, which is finite due to the form of L.
Proof. We have

I[F = (Lo, MF](,9)] = |[(7d = oL) + 2L o (Id = ,M)] (Fiz,y)
< |(Id = o L)(Fs2,y)| + [oL o (Id — M) (F;2,y)]
=: Ei(x,y) + Ex(x,y).

Now, for x € I,

Ei(a,y) = |(Id — L)(Fyio)| < 3T, 0(@) - wp(Fy Api(a))

<ZFPL prApL(> )

Furthermore, with G := (Id — ,M)F, we have
Ey(,y) = [oL(Gi2,y)| = [L(Gys2)| < [|L(G,)

Y ||oo,x€['

Here again, G, € C(I) for all y € J. By our assumption on L we have for any
g € C(I) that

ILglee < (142 Il ) - e
p=0

Hence ||L|| < oo.
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In the situation at hand we have

1Gylloo = || [(Td = ,M)F] ()], = [|(Td = ,M)F (-, )]

o0 oo

= ||(1d = M) Fe(y)]| ey < Hi Tor(y) o (B A (3) |

o0

zel

SZFU,M( - sup wy (F ZFJM - wo (F;0, Ag i (y))-

Hence

T

E(w.y) + Balw,y) < 3 Torlw) - wo(Fs Api (@), 0)

p=0

+|IL]| - ZFUM cwo (F50, Ay (1)

3. APPLICATION TO BIVARIATE BERNSTEIN OPERATORS

FEzample 3.1. If we take L = B,, and M = B,, with two classical Bernstein
operators mapping C[0, 1] into C[0, 1], then, for F' € C([0,1] x [0,1]) and (z,y) €
0,1] x [0, 1],

ny ng

(B 0B (Fi9) = 33 (25 2 Y ),

11=012=0
where p,,;(z) = (!)2'(1 —2)"~*, z € [0,1], and

HF — (@Bp, © anz)F] (m,y)|

w( \/T@O>+w2<FO 34(171—;"*’))}

< 3[ipeon S g roap L) e e oo (o, 1) x o,1),

Proof. We apply Theorem 2.1 with r = s = 2, I'yg, = I''p, = 0, 'y 5, = %,

and As p, (2) = 4/ Z(IT_Z), for n € {ny,ny}. The latter two choices are possible

due to a well-known result of Paltanea (see [11]) showing that, for the univariate
Bernstein operators, one has

N W

P ERVE ==Y .

Remark 3.1. From the last inequality we get

1) = Bl < 212D pecrp,
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This is worse than the known inequality

1) - Bu(i)] < 2171 D

\V)

Our inequality was obtained from the more general statement in terms of wy and
well-known properties of the modulus.

However, we can use instead [7 Theorem 1] (take p = q =2,p =¢ =0,
r=s=0,Tooz, (v)= 2 x(l 2) and Lo0,8.,(y) = % y

) o arrive at

HF — (2Bn, © an)F] (x>y)|

1a(1l— 1y(l— la(l—2)y(l —
<= ( )HF(QO H +_y( y>HF(O,2)HOO_|__ ( )y< y)HF(2,2)HOO
2 ny 2 N9 4 ning
1 1
< —||FEO|  + —||FOD||  + ———[|[F3? ..
< G PO+ g [FOD [

An estimate of this kind can be found in [4, Theorem 2.3].
Such three-term expressions typically appear if one writes (I denoting the iden-

tity)
I—AoB=I—-A+I—-B—(I—-A)o(I-B)=(I—-A)& (I - B);

that is, if one uses the fact that the remainder of the tensor product is the Boolean
sum of the errors of the parametric extension. The approach behind Theorem 2.1
above invokes the decomposition

I—AoB=I-A+Ao(l - B)

and therefore leads to the two-term bound.

4. THE BERNSTEIN-TYPE CUBATURE FORMULA REVISITED

In this section we give a new upper bound for the approximation error of the
cubature formula associated with the bivariate Bernstein operators. The bounds
are described in terms of moduli of continuity of order two. The consideration of
this cubature formula is motivated by Barbosu and Pop’s result in [5]. It is also
necessary to correct some of the incorrect statements made there, in particular
those with respect to Boolean sums.

Integrating the bivariate Bernstein polynomials for F' € C([0,1] x [0, 1]), one

arrives at the following cubature formula,

ni n2

// :vydxdy_(n1+ Te ZZ <21 Zz) Ry, [F], (4.1)

im0 1 T2
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where the remainder is bounded as follows:

1 1 1
Ry, o [F]] < — 2.0 _— 02 - -

F2,2
44n1n2 || HOO’

if e C*([0,1] x [0,1]).

This follows from the three-term upper bound of Remark 3.1. See [5], where
the same integration error bound can be found.

The two-term bound from Example 3.1 leads to the following.

Theorem 4.1. For the remainder term of the cubature formula (4.1), ny,ny € N
and F € C([0,1] x [0,1]), it holds that

| Ry o [F]| < g[/olwz(F; 5[5(171—:@0) dx+/01w2(F;0,1/y<1n—gy)) dy]

Moreover, if F € C*%([0,1] x [0,1]), then the above implies
1,1 1

(N FO) L + | FO2) oo)_

1 G+ 17O

Proof. All that needs to be observed is that a function of type [0,1/2] 5 z —

wa(F;2,0) (with F fixed and continuous) is continuous, and thus integrable. The
mixed moduli of smoothness of order (k,1), with k,l € Ny, given for §;, 5 > 0 by

| Ry ny [F] <

ii(_ww(i) <L>F($ + vy +peho)l

v=0 r=0

Wi (F501,02) = sup{

(z,9), (x + khy,y + lhy) € [0,1)%, || < 8,0 = 1,2},

is a positive, continuous, and nondecreasing function with respect to both vari-
ables (see [8], [14]). For continuous F' these moduli are continuous in §; and s
and satisfy

wi(F501,0) = wio(F;01,02) and wi(F50,09) = wor(F;01,02).
The latter is only relevant to us for k£ = 2. O

5. THE COMPOSITE BIVARIATE BERNSTEIN OPERATORS

In this section we construct the bivariate composite Bernstein operators, and
the order of convergence is considered involving the second modulus of continuity.
Also, some inequalities of Chebyshev—Griiss type will be proved. These results are
obtained using some general inequalities published in [1] and [12]. In order to give
the main results of this section, we recall the following facts:

1. For a,b € R, a < b, and f € RI*" the Bernstein polynomial of degree
n € N associated to f is given, for x € [a, b], by

Blat(f;z) = ﬁ Z (?) (. —a)'(b— x)"_if(a + L ; a).

=0
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2. For g € C?[a, b] one has

o)~ Be(g) = - T e g, e (o).

If we divide [0,1] into subintervals 2=, £] k = 1,...,m € N, then on [£1,
we consider

S

Bux(fiz) = By™ " (f;2)

Now we combine the B, to obtain the positive linear operator B, ,, : RO —
o, 1],

- E—1 k
Bom(fiz) = Bui(fiz), ifxe€ [— —} 1<k<m.
m ' m
From now on (subscripted) symbols n... will refer to a polynomial degree.

(Subscripted) numbers m ... will be related to grids. Each function B,,,,(f) is a
Schoenberg spline of degree n with respect to the knot sequence given as follows:

0= (n + 1)-fold
m
i n-fold
m
mel ol
m
1= (n + 1)-fold.
m

We renounce giving a precise numbering of the knots since this will not be needed
below. Thus B,, ,,, reproduces linear functions, interpolates at %, 0 <k <m,and
has operator norm || B,, || = 1.

For ny,ny, my;, my € N we now consider the parametric extension Bn1 m, and
yBry.m, and their product , B, m, © yBy.m,- For brevity the latter will be denoted
by B.

k=1 _k ! !
For (z,y) € [T, -] X [5 7s it follows that

sen-nt s EE ()5 G-

'<y—2;;> (o-0)" 1 )
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and

|f(z,y) = B(f;2,y)|

(z = NG — ) (y— %) —¥)

= T S T ey U T oy
+ 4n1n2 ||f ||00’

where f € C*2([0,1] x [0,1]).
Using Theorem 2.1 again we get the following.

Theorem 5.1. For f € C([0,1] x [0,1]), n1,n9,m1,ma € N, and (z,y) € [0, 1] X
0, 1], it holds that

|fz,y) — B(f;z,9)| < ;{w(f; \/(x = )y = m),O)

if (wy) € Ut s < [0y

Proof. For the univariate case we have

r— =Ly E
’E”hml(f;x) - f(.%’)’ < §w2<f; \/( mi >(m1 >>,

-2 n

1<k<m1,1<l<m2

mg]

for z € [m ,ml] 1 < k < my. Here wy is the second-order modulus over [0, 1].
An analogous inequality holds for B, m,-
The theorem mentioned implies, with » = s = 2, the inequality claimed. O

Remark 5.1. As mentioned earlier, for g € C?[a, b] one has

—a)(b—1) (b—a)?
B[a b] _ ’ 33 a)( " < Z
|g([E) 97 } m g (53:) >~ N ||9 ||[a,b],oo
For [a,b] = [2=1, £], the last expression equals £5-||¢” I Bl k) o
If feC*([0,1] x [0,1]) and (z,y) € [0,1] x [0,1], usmg [7, Theorem 1], this
leads to
|f(f€, )—_(f;:v )|
1
(2,0) (0,2) (2,2)
< G+ ol e+ 9,

For m; = my = 1 this is exactly the inequality in Remark 3.1.
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6. A CHEBYSHEV-GRUSS-TYPE INEQUALITY

In what follows we present an inequality for the bivariate composite Bernstein
operators, expressed in terms of the least concave majorant of a modulus of
continuity. Let C'(X) be the Banach lattice of real-valued continuous functions
defined on the compact metric space (X, d).

Definition 6.1. Let f € C(X). If, for t € [0, 00), the quantity
wa(fit) == sup{|f(x) — f(y)], d(z,y) <t}
is the usual modulus of continuity, then its least concave majorant is given by
{Sup0§z<t§y§d(X) (tﬁ)wd(f’y;fiyft)wd(f’x), 0<t<dX),
wa(f, d(X)), t>d(X),

and d(X) < oo is the diameter of the compact space X.

CZ)d(f? t) =

Denote

Lip, = {g € C(X) ( ohip, = sup D=9

< oo}, 0<r<l1.
d(z,y)>0 dr(x7 y)

Lip, is a dense subspace of C(X) equipped with the supremum norm || - ||, and
| |Lip, is & seminorm on Lip,..
The K-functional with respect to (Lip,, | - |vip,) is given by

K(t, f; C(X),Lip,) := inf {[|f = glloc +tlgluip, }, for f € C(X) and £ > 0.
g€Lip,
Lemma 6.1 (see [10]). Every continuous function f on X satisfies
t : 1.
K (5 £:C(X), Lipy ) = 5@a(f.), 0=t < d(X).

Let H : C(X?) — C(X?) be a positive linear operator reproducing a constant
function, and define

T(f,9:2,y) = H(fg;z,y) — H(f;2,y) - H(g;7,y).

In order to give an inequality of Chebyshev—Griiss type we recall a general result
given by M. Rusu in [12].
From now on we consider the Euclidean metric dy derived from d.

Theorem 6.1 ([12, Theorem 3.3.1)). If f,g € C(X?) and z,y € X are fized,
then the inequality

IT(f,g:2,y)| < iwdz (f;4\/H(d%(-, (z.9)):7,y))
a9 1 H (B (- (,9) i 2.0))

holds, where H(d3(-, (x,y));xz,y) is the second moment of the bivariate opera-
tor H.
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Proposition 6.1. For f,g € C(X?) and x,y € X fized, the following Griss-type

inequality holds:
|B(fg;x,y) — B(f;%,y) - Blg;z,y)|

< iwdz (f;4\/ \IJ(x’y)) ’ (Dd2 (ga4 \I/(l‘,y))

<1 <f2 L ) : ( 2 —— + 2 )
_w . — -w . —’
= 4R\l 2 ngm3 2\ 9 nim?  mem3

4 nimy

(=5 DG -5 G5 )
where V(z,y) = Tt T and (r,y) € [m_1’ .
7. A CUBATURE FORMULA BASED ON B
In this section some upper bounds of the error of the cubature formula asso-
ciated with the bivariate Bernstein operators are given. In [2], D. Barbosu and

D. Miclaus introduced the following cubature formula

//fxydxdy—ZZ/ - fxy)dxdy
=1 1=1 7 mp
Nif/ /ml_”)’f:cyda:dy
k=1 1=1

:/O/Og(f;x,y)dxdytzf(f)-

It follows that

Kk 1
/m /m2 B(f;x,y) dz dy

O n k—1\i/ k me
35 (M) () [ (e ()
=0 j=0 my
l
my [—1N7/ 1 nz—j -1 1 -1 '
ING )(——y) Wi (o )
lm;Q mo mo ma miny My NaTMo
e k-1 i 1—1 '
= An1 ng,mi m2f< + ) + J >7
o =0 my ming Mg MMy

_ 1
T mima(ni1+1)(ne+1) "

x [0,1]), it follows that

Where Anl ;12,101,102

Theorem 7.1. For f € C*2(|0,1]

‘//fxydwdy Z(f)
©.2) ! &2
2 00+

1
(2,0) 0,2
- 12n QHf oo + 12 an%”f I+ 144n1nom3m
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Proof. We have

\/1/1f(x7y)d:vdy—7(f)‘

—1zzﬁ ) dedy
k=1 =1
mi o mn2 ml m2 —
—ZZ/ / B(f;z,y)drdy
k=1 i=1
<zzﬁ . (o) ~B(fse.)| dsdy
k=1 I=1
MR ml 7:1 —.73)
30 / 176
k=1 I=1 m
(y — "—21)(,,%2 —y)
e ) oo
(=~ S )l 5D )
+ 1 1 1 2 2 ||f(2,2)||oo] dx dy
niny
N 1 (2,0) 1 (0,2)
;;[1% e LA SR e o el
1 (2,2)
i 144n1n m3m 3Hf 'l
1
(2,0) (0,2) (2,2)
T 12m m2”f 'l + 12n, mQHf I+ 144n1nym? mQHf = [

One further estimate is given in the following.

Theorem 7.2. For f € C*?([0,1] x [0, 1]), it follows that

[ [ s asas -2 < Hom o + e i0).)
0 0 T,Yy)ar ay =4 m%nl 0o m%nZ oo (-

Proof. Integrating the error given in Theorem 5.1 leads to
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And f € C*2([0,1] x [0,1]) leads to

n
3 mi1 m2
—522{%“ 17 E0o + G 1OV o
k=1 =1
1 (2,0) (0,2) }
= 7 e + e 102 g

8. NONMULTIPLICATIVITY OF THE CUBATURE FORMULA

In this Sectlon we will glve some results that suggest how nonmultiplicative the
functional Z(f fo fo ) dx dy is.

Let (X, d) be a compact metrlc space and let L : C(X) — R be a positive linear
functional reproducing constants. We consider the positive bilinear functional

D(f,9) == L(fg) — L(f)L(9).
Theorem 8.1. If f,g € C(X), (X,d) is a compact metric space, then the in-

equality
ID(, )] < 2l f; 20/ T2 (2 () a2/ 12 (2, )

Proof. Let f,g € Cla,b|, and let r, s € Lip,. Using the Cauchy—Schwarz inequality
for a positive linear functional gives

IL(H] < L) < VL(f2) - L) = VL(f2),

holds.

and so we have

D(f.f)=L(f*) = L(f)* > 0.

Therefore, D is a positive bilinear form on C(X). Using the Cauchy-Schwarz
inequality for D, it follows that

ID(f,9)| < V/D(f. /)D(g.9) < || fllscllgllsc-

Since L is a positive linear functional, we can write

- /X £(t) dpu(t)
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where 1 is a Borel probability measure on X; that is, fX du(t) = 1. For r € Lip,,
it follows that

D(rr) = 10%) = L = [ o aut) = ([ ) dutw)

= [ (vt~ [ rwdntw)”dute
- /X ( /X (r(t) — r(u)) du(u))Qdu(t)
< [ ([ (0 = rtw)* dutu) dutt

<Irlt, [ ([ @60 dutw)) dute)
= [rlLp, L' [L((t, )] = Irltp, L2 ().
For r, s € Lip;, we have
}D(r, s)‘ < +/D(r,r)D(s,s) < |r|Lip1|s|Lip1L2(d(-, ))

Moreover, for f € C'(X) and s € Lip,, we have the estimate

‘D<f78)‘ < \/D<f7 f)D(‘S?S) < ||f||OO|S|Lip1 LQ(d(7))

In a similar way, if r € Lip; and g € C(X), we have

|D(r, 9)| < +/D(r,r)D(g, g) < l|glloo|7lLip, \/ L(d(--))-
Let f,g € C(X) be fixed, and let r, s € Lip, be arbitrary; then

|D(f,g)| = ]D(f—r+r,g—s+s)}
< ’D(f—r,g—s)’ + |D(f—7“,s)| + }D(r,g—s)‘ + ’D(T,SM

<N =7lloe g = slloo + [1f = 7lloc - |slLip, 1/ L* (a2( )
+ g = slloo - [Pluip, \/ L2(d(,2)) + [[Lipy | |ip, L (d(, )

= {1 = 7lloe + Irluip, o/ L2 (d2(5 ) H{llg = sl + I5ILip, / L2 (d2(+, ) }-

Passing to the infimum over r and s, respectively, leads to

|D(f,g)|§K( Lz(d2("'))7f§C(X)>Lipl)'K< L2(d2('7'))79;C(X)>Lipl)

< (@6 o212 (@(.)). 0

Applying Theorem 8.1 for L(f) = Z(f) we obtain the following result.
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Corollary 8.1. If f,g € C([0,1] x [0,1]), then

|T(fg)_f(f)f(g)|SE(D@(f;Q\/%(l_f_ Lo, ))

nim?  mem3

)
-w - —_— .
2\9 4\ 3 nim? = ngm3

(8.1)

Proof. We have

_ mi M2 N1 N2 1
I(dQ(,)) = Z Z Z Z m%m%(nl + 1)2(n2 + 1)2

kk1=11,01=14,i1=0 j,j1=0

.[<k1—1+ 1 _k—l_ ) >2

mq ming my min
-1 j [—1 ] 2
n ( 1 I Ju ) ) }
mo name mo name

1 - (ki — ki — 2
1 Ly
m2(ny + 1)2 kz Z ( my ming

Jk1=11,11=0

1 O Y A A
MR e T
m3(ng + 1)2 1,112:1 j;() ma MmNy
1 (1 n 1 . 1 >
3 miny,  ming/

Therefore, using Theorem 8.1 it follows that

1 1 1

s (g, 2\/§<1 + nym3 * mm%))' O

Finally, we will give a Chebyshev-Griiss-type inequality that involves oscilla-

tions of functions. This result is obtained using a general inequality published

in [1]. Let Y be an arbitrary set, and let B(Y?) be the set of all real-valued,

bounded functions on Y?2. Take a,,b, € R, n > 0, such that > |a,| < oo,

Yoo otn = 1 and > 07 |ba| < o0, >.0° b, = 1. Furthermore, let z, € Y,

n > 0, and let y,, € Y, m > 0, be arbitrary mutually distinct points. For

f € B(Y?) set fom := f(Tn,ym). Now consider the functional L : B(Y?) — R,

Lf = o> @by fnm. The functional L is linear and reproduces constant
functions.

T0)~ 07T < Yo (52 1+ 5+ )

Theorem 8.2 (see [1]). The Chebyshev—Griiss-type inequality for the above linear
functional L is given by

o0

~oscr(f) - oser(g) - > |anbmaiby],

n,m,i,j=0,(n,m)#(i,)

| —

[L(fg) = L(f) - L(g)| <
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where f,g € B(Y?) and we define the oscillations to be
oscr,(f) = sup{| fam — fi;

Theorem 8.3 (see [1]). In particular, if a, > 0, b,, > 0, n,m >0, then L is a
positive linear functional and we have

tn,m, i, J 20}.

L(79) ~ LD - La)| < 5 - (1= a2 S0, ) -osen() - oser(o).

for f,g € B(Y?) and the oscillations given as above.

The following result gives us the nonmultiplicativity of the functional Z using
discrete oscillations. This result is better than (8.1) in the sense that the oscilla-
tions of functions are relative only to certain points, while in (8.1) the oscillations,
expressed in terms of @, are relative to the whole interval [0, 1].

Corollary 8.2. If f,g € B([0,1]?), then

Z(f9) = Z(f)Z(g)| < B (1 ~myma(ng + 1)(ng + 1)

) osc(f)osc(g).
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