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Abstract. Let L = −∆ + µ be the generalized Schrödinger operator on
Rn, n ≥ 3, where ∆ is the Laplacian and µ 6≡ 0 is a nonnegative Radon mea-
sure on Rn. In this article, we introduce two families of Carleson measures
{dνh,k} and {dνP,k} generated by the heat semigroup {e−tL} and the Poisson

semigroup {e−t
√
L}, respectively. By the regularities of semigroups, we estab-

lish the Carleson measure characterizations of BMO-type spaces BMOL(Rn)
associated with the generalized Schrödinger operators.

1. Introduction

Let L = −∆+µ be a generalized Schrödinger operator, where µ is a nonnegative
Radon measure on Rn, n ≥ 3. In this article, we will characterize the BMO-type
space associated with L via two families of Carleson measures generated by the

semigroups {e−tL} and {e−t
√
L}, respectively.

As in [13] and [20], throughout this article we assume that µ satisfies the
following conditions: there exist positive constants C0, C1, and δ such that, for
all x ∈ Rn and 0 < r < R,

µ
(
B(x, r)

)
≤ C0(r/R)

n−2+δµ
(
B(x,R)

)
(1.1)
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and

µ
(
B(x, 2r)

)
≤ C1

{
µ
(
B(x, r)

)
+ rn−2

}
, (1.2)

where B(x, r) denotes the open ball centered at x with radius r. Shen [13] pointed
out that (1.1) may be regarded as the scale-invariant Kato condition, and (1.2)
says that the measure µ is a doubling measure satisfying for any ball B(x, r) ≥
crn−2. Let (RH)q denote the set of all nonnegative locally Lq-functions on Rn

satisfying that there exists C > 0 such that the reverse Hölder inequality( 1

|B(x, r)|

∫
B(x,r)

V q(y) dy
)1/q

≤ C
( 1

|B(x, r)|

∫
B(x,r)

V (y) dy
)

holds for every ball B ∈ Rn. When dµ = V (x) dx and V ≥ 0 belongs to (RH)n/2,
then µ satisfies conditions (1.1) and (1.2) for some δ > 0.

The bounded mean oscillation space BMO(Rn) was first introduced by John
and Nirenberg in their study [8] of mappings from a bounded set Ω belonging to
Rn into Rn and the corresponding problems arising from elasticity theory, pre-
cisely from the concept of elastic strain. In 1972, Fefferman and Stein [6] showed
that BMO(Rn) is the dual of the Hardy space H1(Rn). As an adequate substitute
for the Lebesgue space L∞(Rn), the space BMO(Rn) is widely used in various
fields of analysis and partial differential equations. Since the 1960s, based on a
similar idea, various BMO-type spaces were introduced by many mathematicians
in different settings. (We refer the reader to [12], [17], [18], and [19] for further
information.)

Let L be a Schrödinger operator with nonnegative potential. In recent years, the
BMO-type space associated with L has become one of the hot issues in harmonic
analysis. As the dual of the Hardy space H1

L(Rn) (see [5]), Dziubański, Garrigós,
Mart́ınez, Torrea, and Zienkiewicz [4] introduced the BMO-type space BMOL(Rn)
related to L under the assumption that the potential V ∈ (RH)q, q > n/2.
Wu and Yan [20] studied the BMO-type spaces associated with the general-
ized Schrödinger operators, where the potential is a nonnegative Radon measure
on Rn. (For further information on BMO-type spaces associated with operators,
we refer the reader to [2], [3], [9], [21], [22] and the references therein.)

Our motivation is inspired by the following observation. A positive measure ν
on Rn+1

+ is called a Carleson measure if

‖ν‖C =: sup
x∈Rn,r>0

ν(B(x, r)× (0, r))

|B(x, r)|
<∞.

It is well known that Carleson measures and their generalizations are important
tools for the characterization of function spaces. Fefferman and Stein [6] estab-
lished the Carleson measure characterization of BMO(Rn). From then on, this
characterization was extended to other function spaces (see [1], [2], [4], [14] and
the references therein). Let ψ ∈ C∞

0 (Rn) satisfying
∫
ψ dx = 0. For such a func-

tion ψ, set ψt(x) = t−nψ(x/t). The following Carleson measure characterization
of BMO(Rn) is well known.
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Theorem 1.1 ([16, Sections 4.3, 4.4.3]).

(i) Suppose that f ∈ BMO(Rn), and let dν = |f ∗ ψt(x)| dx dt/t. Then dν is
a Carleson measure.

(ii) Conversely, suppose that ψ is a function mentioned above. If f ∈
L1(dx/(1 + |x|n+1)) and dν = |f ∗ ψt(x)| dx dt/t is a Carleson measure,
then f ∈ BMO(Rn).

In particular, in Theorem 1.1, if we take ψ(x) = ∂ht(x)
∂t

|t=1 and ψ(x) =
∂Pt(x)

∂t
|t=1,

where ht(·) and pt(·) are the heat kernel and the Poisson kernel, that is,{
ht(x) = (4πt)−n/2 exp(−|x|2/4t),
pt(x) =

cnt
(t2+|x|2)(n+1)/2 , cn = Γ(n+1

2
)/π(n+1)/2,

respectively, then we can obtain the Carleson measure characterizations of
BMO(Rn) associated with the semigroups {e−t(−∆)}t>0 and {e−t

√
−∆}t>0, respec-

tively. This observation prompted us to investigate analogous characterizations
of the BMO-type space BMOL(Rn) for the generalized Schrödinger operator L.
Denote by Z+ the set of all positive integers. For k ∈ Z+, we introduce two
families of operators: {

QL
t,k(f) =: t2k( dk

dsk
e−sL|s=t2)f,

DL
t,k(f) =: tk( dk

dtk
e−t

√
L)f.

(1.3)

Let f ∈ L1(dx/(1+ |x|n+1)). The Carleson measures with respect to QL
t,k and D

L
t,k

are defined as

dνh,k(x, t) =:
∣∣QL

t,k(f)(y)
∣∣2 dy dt/t ∀(x, t) ∈ Rn+1

+ (1.4)

and
dνP,k(x, t) =:

∣∣DL
t,k(f)(y)

∣∣2 dy dt/t ∀(x, t) ∈ Rn+1
+ . (1.5)

Our aim is to establish the Carleson measure characterizations of BMOL(Rn)
via {dνh,k} and {dνP,k}, respectively. For this purpose, we first introduce some

regularity estimates of {e−tL} and {e−t
√
L} (see Propositions 2.15, 2.18). Such

regularity estimates indicate that the kernels of QL
t,k and DL

t,k have good decay
properties. We can prove that if f ∈ BMOL(Rn), then dνh,k and dνP,k are Carleson
measures.

Conversely, let f ∈ L1(dx/(1 + |x|n+1)). Assume that dνh,k and dνP,k are
Carleson measures. For any H1

L-atom a, we get that SL
h,k(a) ∈ L1(Rn) and

SL
P,k(a) ∈ L1(Rn), uniformly (see Lemmas 3.2, 4.2). With the help of tent spaces,

the identities (3.5) and (4.3) enable us to deduce that f ∈ BMOL(Rn) (see The-
orems 3.3, 4.3).

Remark 1.2.

(i) Theorems 3.3 and 4.3 show that the Carleson measure characterizations

associated with {e−tL} and {e−t
√
L} are equivalent. In particular, let

L = −∆. Theorems 3.3 and 4.3 go back to Theorem 1.1 with ψ = ∂ht

∂t
|t=1

and ψ = ∂Pt

∂t
|t=1, respectively. Philosophically speaking, our results reveal

that for k ∈ Z+, the families of measures {dνh,k} and {dνP,k}, induced by
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{Qt,k}k∈Z+ and {Dt,k}k∈Z+ , play the same role in the characterization of
BMOL(Rn).

(ii) For the Schrödinger operator L = −∆ + µ, where dµ = V dx with
V ∈ (RH)q, the authors in [4] obtained a Carleson measure characteriza-
tion of BMOL(Rn). For the case of the generalized Schrödinger operator
L = −∆ + µ, letting µ = V ∈ (RH)q and k = 1, Theorem 3.3 coincides
with [4, Theorem 2]. Hence our result is a generalization of [4, Theorem 2].
Moreover, for the special case µ = V ∈ Bq, the Carleson measure charac-

terization related to {e−t
√
L} obtained in Theorem 4.3 partly generalizes

the result of [10, Theorem 1.5].

We give the following notation.

• U ≈ V represents that there is a constant c > 0 such that c−1V ≤ U ≤ cV,
whose right inequality is also written as U . V. Similarly, one writes
V & U for V ≥ cU.

• For convenience, the positive constants C may change from one line to
another and usually depend on the dimensions n, α, β and other fixed
parameters.

• Let B be a ball with radius r. In the rest of this article, we denote by B2r

the ball with the same center and radius 2r.

2. Preliminaries

2.1. Notation and function spaces associated with L. Let µ be a Radon
measure satisfying (1.1) and (1.2). The generalized Schrödinger operator L =
−∆+ µ is defined as follows (see [13]). Consider the quadratic form

q[φ, ψ] =

∫
Rn

〈∇φ,∇ψ〉 dx+
∫
Rn

〈φ, ψ〉 dµ

with domain W 1,2(Rn) ∩ L2(Rn, dµ). Shen [13] pointed out that q[·, ·] is a semi-
bound, symmetric closed form and that there exists a unique self-adjoint operator
designated −∆+ µ such that

q[φ, ψ] =
〈
(−∆+ µ)φ, ψ

〉
L2(Rn,dx)

for any φ ∈ Domain(−∆+µ) and ψ ∈ W 1,2(Rn)∩L2(Rn, dµ) (see [13, p. 528] for
the details; we also refer the reader to [11] for more information on Schrödinger
operators involving singular potentials and measure data).

The auxiliary function m(x, µ) is defined by

1

m(x, µ)
=: sup

{
r > 0 :

µ(B(x, r))

rn−2
≤ C1

}
.

We recall some basic properties of m(x, µ).

Lemma 2.1 ([13, Proposition 1.8, Remark 1.9]). Suppose that µ satisfies (1.1)
and (1.2). Then the following hold.

(i) We have that 0 < m(x, µ) <∞ for every x ∈ Rn.
(ii) If r = m(x, µ)−1, then rn−2 ≤ µ(B(x, r)) ≤ C1r

n−2.
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(iii) If |x− y| ≤ Cm(x, µ)−1, then m(x, µ) ≈ m(y, µ).
(iv) There exist constants c, C > 0 such that for x, y ∈ Rn,

cm(y, µ)

{1 + |x− y|m(y, µ)}k0/(1+k0)
≤ m(x, µ) ≤ Cm(y, µ)

{
1 + |x− y|m(y, µ)

}k0

with k0 = C2/δ > 0 and C2 = log2(C1 + 2n−2).

With the modified Agmon metric

ds2 = m(x, µ){dx21 + · · ·+ dx2n},
the distance function d(x, y, µ) is given by

d(x, y, µ) = inf
γ

∫ 1

0

m
(
γ(τ), µ

)∣∣γ′(τ)∣∣ dτ, (2.1)

where γ : [0, 1] → Rn is absolutely continuous and γ(0) = x, γ(1) = y.
A parabolic-type distance function associated to m(x, µ) is defined by

dµ(x, y, t) = inf
γ

∫ 1

0

m
(
γ̃(τ), µ

)
max

{∣∣(γ̃)′(τ)∣∣, ∣∣(γn+1)
′(τ)

∣∣} dτ, (2.2)

where γ(τ) = (γ1(τ), . . . , γn(τ)) = (γ̃(τ), γn+1(τ)) : [0, 1] → Rn×R+ is absolutely
continuous with γ(0) = (x, 0) and γ(1) = (y,

√
t).

Lemma 2.2. For the distance function d(x, y, µ) in (2.1), we have that

(i) for every x, y, z ∈ Rn,

d(x, y, µ) ≤ d(x, z, µ) + d(z, y, µ);

(ii) there are two positive constants c and C such that for any x, y ∈ Rn,

c
{[

1 + |x− y|m(x, µ)
]1/(k0+1) − 1

}
≤ d(x, y, µ) ≤ C

{
1 + |x− y|m(x, µ)

}k0+1
.

Lemma 2.3 ([20, Lemma 2.3]). For the distance function dµ(x, y, t) defined by
(2.2), there exist two positive constants c and C such that for any x, y ∈ Rn,
x 6= y, and t > 0,

dµ(x, y, y) ≥ c
{{

1 + max
{
|x− y|,

√
t
}
m(x, µ)

}1/(k0+1) − 1
}

and

dµ(x, y, t) ≤ C
{
1 + max

{
|x− y|,

√
t
}
m(x, µ)

}k0+1
.

It follows from (1.1), (1.2), and Lemma 2.1 that there exists a constant C > 0
such that for every x ∈ Rn (see [20, (2.1)]),

µ
(
B(x, r)

)
≤

{
C(rm(x, µ))δrn−2, r < m(x, µ)−1,

C(rm(x, µ))C2m(x, µ)2−n, r ≥ m(x, µ)−1.
(2.3)

Let L be a generalized Schrödinger operator. Denote by {TL
t }t>0 := {e−tL}t>0

the heat semigroup generated by −L. The kernel of {TL
t } is denoted by KL

t (·, ·);
that is,

TL
t f(x) =

∫
Rn

KL
t (x, y)f(y) dµ(y).
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Wu and Yan [20] introduced the following Hardy space associated with L.

Definition 2.4. Let L be the generalized Schrödinger operator. The Hardy space
associated with L, H1

L(Rn), is defined as the set of all functions f ∈ L1(Rn)
satisfying

ML(f)(x) =: sup
t>0

∣∣TL
t f(x)

∣∣ ∈ L1(Rn)

with the norm ‖f‖H1
L
=: ‖ML(f)‖L1 .

The H1
L-atoms were introduced by [20].

Definition 2.5. A function a : Rn → C is an H1
L-atom associated with a ball

B(x0, r) if the following properties hold:

(i) supp a ⊂ B(x0, r) with r < 4/m(x0, µ),
(ii) ‖a‖∞ ≤ |B(x0, r)|−1,
(iii) if r ≤ 1/m(x0, µ), then

∫
a(x) dx = 0.

Wu and Yan [20] obtained the following atomic decomposition for H1
L(Rn).

Theorem 2.6 ([20, Theorem 1.2]). Let µ be a nonnegative Radon measure in Rn,
n ≥ 3. Assume that µ satisfies (1.1) and (1.2) for some δ > 0. Then f ∈ H1

L(Rn)
if and only if f can be written as f =

∑
j λjaj, where aj are H1

L-atoms and∑
j |λj| <∞. Moreover, there exists a constant C > 0 such that

C−1‖f‖H1
L
≤ inf

{∑
j

|λj| : f =
∑
j

λjaj

}
≤ C‖f‖H1

L
,

where the infimum is taken over all atomic decompositions of f into H1
L-atoms.

As the dual of H1
L(Rn), the BMO-type space BMOL(Rn) was introduced by Wu

and Yan [20]. Let f be a locally integrable function on Rn, and let B = B(x, r)
be a ball. Denote by fB the mean of f on B; that is, fB =: |B|−1

∫
B
f(y) dy. Let

f(B, µ) =

{
fB, r < m(x, µ)−1,

0, r ≥ m(x, µ)−1.

Definition 2.7. Let f be a locally integrable function on Rn. We say that f ∈
BMOL(Rn) if

‖f‖BMOL =: sup
B

1

|B|

∫
B

∣∣f(y)− f(B, µ)
∣∣ dy <∞,

where the supremum is taken over all cubes with edges parallel to the axis.

Corollary 2.8. It is easy to see that L∞(Rn) ⊂ BMOL(Rn) ⊂ BMO(Rn) and
‖f‖BMO ≤ c‖f‖BMOL. A simple deduction gives

sup
B

( 1

|B|

∫
B

∣∣f(y)− f(B, µ)
∣∣p dy)1/p

≤ c‖f‖BMOL .

Given a ball B, denote by B∗ the ball with the same center and twice the
radius. We obtain the following covering lemma from [20, Lemmas 2.1, 2.7].
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Proposition 2.9. There exists a sequence of points {xk}∞k=1 in Rn such that the
family of critical balls B = {Bk}∞k=1 defined by Bk = {x : |x − xk| < 1/m(xk, µ)}
satisfy the following.

(i) We have
⋃

k Bk = Rn.
(ii) There exists N = N(ρ) such that card {j : B∗∗

j ∩ B∗∗
k 6= ∅} ≤ N for all

k ≥ 1. Moreover, we have∣∣B(x,R)
∣∣ ≤ ∑

Bk∩B(x,R)6=∅

|Bk| ≤ c
∣∣B(x,R)

∣∣,
where c = c(δ) and R > m(x, µ)−1.

The following lemma can be easily deduced from the proofs of [20, Theorem 1.2]
and [4, Theorem 4].

Lemma 2.10. The correspondence

BMOL 3 f → Φf ∈ (H1
L)

∗

is a linear isomorphism of Banach spaces.

Similar to [4], the following lemma is also valid for the case of the generalized
Schrödinger operator.

Lemma 2.11. There exists c > 0 such that, for all f ∈ BMOL and B = B(x, r)
with r < m(x, µ)−1, we have

|fB2r | ≤ c
(
1 + log

(
rm(x, µ)

)−1)‖f‖BMOL .

The following result is well known.

Lemma 2.12 ([16, p. 162]). Let F (·, ·) and G(·, ·) be two measurable functions
on Rn+1

+ satisfying

I(F )(x) =: sup
x∈B

( 1

|B|

∫ r(B)

0

∫
B

∣∣F (y, t)∣∣2dy dt
t

)1/2

∈ L∞(Rn)

and

G(G)(x) =:
(∫∫

Γ(x)

∣∣G(y, t)∣∣2dy dt
tn+1

)1/2

∈ L1(Rn),

where r(B) denotes the radius of B and Γ(x) = {(y, t) ∈ Rn+1
+ : |y− t| < t}. Then

there is a universal c > 0 so that∫
Rn+1
+

∣∣F (y, t)G(y, t)∣∣dy dt
t

.
∫
Rn

I(F )(x)G(G)(x) dx .
∥∥I(F )∥∥

L∞

∥∥G(G)∥∥
L1 .

Lastly, we give a technical lemma.

Lemma 2.13. Let S(·, ·) be a function satisfying for arbitrary N,N ′,∣∣S(x, y)∣∣ ≤ CN t
−n

(
1 + |x− y|/t

)−N ′(
1 + tm(x, µ) + tm(y, µ)

)−N
.

Then there is Cy0,r > 0 such that, for every H1
L-atom a supported on B(y0, r),

Msa(x) = sup
t>0

∣∣∣ ∫
Rn

S(x, y)a(y) dy
∣∣∣ . Cy0,r

(
1 + |x|

)−(n+1)
, x ∈ Rn.



8 Y. HAO, P. LI, and K. ZHAO

Proof. The case N = N ′ has been proved in [4, Lemma 7]. Without loss of
generality, we assume that r < 2m(y0, µ)

−1. We consider two cases.
Case 1: x ∈ B(y0, 2r). For this case, |x− y0| < 2r < 4m(y0, µ)

−1. We have∣∣∣ ∫
Rn

S(x, y)a(y) dy
∣∣∣ . ‖a‖∞

∫
B(y0,r)

1

tn
dy

(1 + |x− y|/t)M
. c‖a‖∞. (2.4)

Note that 1 + |x| ≤ 1 + |y0|+ 2r. We apply (2.4) to get

Msa(x) . c‖a‖∞
(
1 + |y0|+ 2r

)n+1(
1 + |x|

)−(n+1)
=: Cy0,r

(
1 + |x|

)−(n+1)
.

Case 2: x /∈ B(y0, 2r). Then for y ∈ B(y0, 2r), we have |x − y| ∼ |x − y0| and
m(y0, µ)

−1 ∼ m(y, µ)−1. We divide the proof into the following two situations.
For simplicity, let

A = t−n
(
1 + tm(y0, µ)

)−N(
1 + |x− y0|/t

)−N ′
.

Case I: t > |x− y0|. Let N ′ = N . Then

A . tn
(
1 + tm(y0, µ)

)−N(|x− y0|/t
)−N

. m(y0, µ)
−N |x− y0|−n−N .

Case II: t ≤ |x− y0|. Let N ′ = N + n. Then

A . t−n
(
1 + tm(y0, µ)

)−N(|x− y0|/t
)−N−n

. m(y0, µ)
−N |x− y0|−(n+N).

Thus, we obtain that, for arbitrary N ,∣∣∣ ∫
Rn

S(x, y)a(y) dy
∣∣∣ . ‖a‖1t−n

(
1 + |x− y0|/t

)n+N(
1 + tm(y0, µ)

)−N

. |x− y0|−n−Nm(y0, µ)
−N . (2.5)

It is easy to see that [(1 + |x|)/|x− y0|] ≤ (1/2r + |y0|/2r + 1). Taking N = 1 in
(2.5), we can get

Msa(x) .
(
1/2r + |y0|/2r + 1

)n+1 m(y0, µ)

(1 + |x|)(n+1)
=: Cy0,r

(
1 + |x|

)−(n+1)
. �

2.2. Regularity properties of semigroups. We begin with some basic prop-
erties of the kernels KL

t (·, ·). By the Feynman–Kac formula, it is well known that
the kernel KL

t (·, ·) satisfies the following estimates:

0 ≤ KL
t (x, y) ≤ ht(x− y) =: (4πt)−n/2e−|x−y|2/4t.

Denote by Γµ(·, ·) the fundamental solution of −∆+µ. Shen [13] showed that Γµ

satisfies the following optimal upper and lower bounds.

Proposition 2.14 ([13, Theorem 0.8]). Let µ be a nonnegative Radon measure
in Rn, n ≥ 3. Assume that µ satisfies the conditions (1.1) and (1.2) for some
δ > 0. Then

ce−ε2d(x,y,µ)

|x− y|n−2
≤ Γµ(x, y) ≤

Ce−ε1d(x,y,µ)

|x− y|n−2
,

where ε1, ε2, C, c are positive constants depending only on n and constants C0, C1, δ
in (1.1) and (1.2).
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From the symmetry of Γµ, we can see that the kernel KL
t (·, ·) is symmetric.

The following proposition can be deduced from (2.3), [4, Theorem 1.1], and the
symmetry of KL

t (·, ·). (We refer the reader to [20, (1.6)] and [20, Lemma 3.7] for
the details.)

Proposition 2.15.

(i) For every M , there is a constant CN such that

0 ≤ KL
t (x, y) ≤

CN

tn/2
e−c|x−y|2/t

[1 +
√
tm(x, µ) +

√
tm(y, µ)]M

.

(ii) For every 0 < δ′ < δ0 = min{α, δ, ν}, there exists a constant C such that
for every M > 0 there exists a constant C > 0 such that for |h| <

√
t we

have∣∣KL
t (x+ h, y)−KL

t (x, y)
∣∣ ≤ CM

( |h|√
t

)δ′ 1

tn/2
e−c|x−y|2/t

[1 +
√
tm(x, µ) +

√
tm(y, µ)]M

.

Let QL
t,k(·, ·) denote the integral kernel of QL

t,k defined in (1.3); that is,

QL
t,k(x, y) =: t2k

dkKL
s

dsk

∣∣∣
s=t2

(x, y).

Following the method of [20, Lemma 3.8], we can obtain the following results by
Proposition 2.15.

Proposition 2.16. The kernel QL
t,k(·, ·) satisfies the following estimates.

(i) For M > 0, there exists a constant CM > 0 such that∣∣QL
t,k(x, y)

∣∣ ≤ CM t
−ne−|x−y|2/2t2[1 + tm(x, µ) + tm(y, µ)

]−M
.

(ii) Let 0 < δ′ < min{1, δ}. For any M > 0, there exists a constant CM > 0
such that for all |h| <

√
t,∣∣QL

t,k(x+ h, y)−QL
t,k(x, y)

∣∣ ≤ CM t
−n

( |h|
t

)δ′ e−|x−y|2/t2

[1 + tm(x, µ) + tm(y, µ)]M
.

(iii) For any N > 0, there exists a constant CM > 0 such that∣∣∣ ∫
Rn

QL
t,k(x, y) dy

∣∣∣ ≤ (
tm(x, µ)

)δ CM

[1 + tm(x, µ)]M
.

Let {e−t
√
L}t>0 be the Poisson semigroup generated by −

√
L. Denote by PL

t (·, ·)
the integral kernel of e−t

√
L. Wu and Yan [20] proved that the kernel PL

t (·, ·)
satisfies the following estimate.

Proposition 2.17 ([20, Proposition 3.2]). Let {e−t
√
L}t>0 be the Poisson semi-

group generated by −
√
L. Let PL

t (x, y) be the integral kernel of e−t
√
L. We have∣∣PL

t (x, y)
∣∣ ≤ CM t

(t2 + 4|x− y|2)(n+1)/2

(
1 + tm(x, µ)

)−M(
1 + tm(y, µ)

)−M
.
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By functional calculus and Proposition 2.15(ii), we can prove a regularity esti-
mate of the kernel PL

t (·, ·). We omit the proof and refer the reader to [7, Propo-
sition 3.5].

Proposition 2.18. For every 0 < δ′ < δ0 = min{0, δ} there exists a constant C
such that for every N > 0 there exists a constant C > 0 such that for |h| < t we
have∣∣PL

t (x, y+h)−PL
t (x, y)

∣∣ ≤ CM t(|h|/t)δ
′

(t2 + |x− y|2)(n+1)/2

[
1+tm(x, µ)

]−N[
1+tm(y, µ)

]−N
.

For k ∈ Z+, let DL
t,k be the family of operators defined by (1.3). The kernels of

the family {DL
t,k}t>0 are defined as

DL
t,k(x, y) =: tk

∂k

∂tk
PL
t (x, y). (2.6)

With the help of Propositions 2.17 and 2.18, by imitating the procedure of [7,
Proposition 3.9], we can obtain the following proposition for the kernel DL

t,k(·, ·).

Proposition 2.19. For k ∈ Z+, the kernel DL
t,k(·, ·) defined as in (2.6) satisfies

the following estimates.

(i) For every M > 0 there exists a constant CM > 0 such that∣∣DL
t,k(x, y)

∣∣ ≤ CM t

(t2 + |x− y|2)(n+1)/2

1

[1 + tm(x, µ) + tm(y, µ)]M
.

(ii) For every 0 < δ′ < min{1, δ} and every M > 0 there exists a constant
CM > 0 such that for all |h| <

√
t,∣∣DL

t,k(x+ h, y)−DL
t,k(x, y)

∣∣ ≤ CM(|h|/t)δ′t
(t2 + |x− y|2)(n+1)/2

1

[1 + tm(x, µ) + tm(y, µ)]M
.

(iii) For every M > 0 and k even there exists a constant CM > 0 such that∣∣∣ ∫
Rn

DL
t,k(x, y) dy

∣∣∣ ≤ CM(tm(x, µ))δ

[1 + tm(y, µ)]M
.

3. Carleson measure characterization associated with
the heat semigroup

3.1. Reproducing formula generated by the heat kernel. Similar to [4],
in this section, we first give a reproducing formula associated with {Qt,k} in the
sense of L2. For µ = V ∈ Bq and k = 1, our result goes back to [4, Lemma 3].
For k ∈ Z+, define the Littlewood–Paley g-function associated with the heat
semigroup as

gLh,k(f)(x) =
(∫ ∞

0

∣∣QL
t,kf(x)

∣∣2dt
t

)1/2

.

Lemma 3.1. For all f ∈ L2(Rn), we have ‖gLh,k(f)‖2 = 1√
8
‖f‖2. Moreover,

f(x) = 8 lim
ε→0,N→∞

∫ N

ε

(QL
t,k)

2f(x)
dt

t
in L2(Rn). (3.1)
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Proof. The proof of this lemma is similar to that of [4, Lemma 3]. By the spectral
theorem, we can write the operator TL

t in the form

TL
t f = e−tLf =

∫ ∞

0

e−tλ dE(λ)f,

where {E(λ)} is a resolution of the identity (see [15, Section 3.3, p. 74]). Hence,

t
dTL

t

dt
f = −tLTL

t f = −
∫ ∞

0

tλe−tλ dE(λ)f.

Hence, for all f ∈ L2(Rn), the self-adjointness of Qt,k implies that

‖gLh,kf‖22 =
∫
Rn

∫ ∞

0

∣∣QL
t,kf(x)

∣∣2dt
t
dx

=

∫ ∞

0

〈
t4k

( dk

dsk
e−sL

∣∣∣
s=t2

)2

f, f
〉dt
t

=

∫ ∞

0

[∫ ∞

0

t4kλ2ke−2t2λdt

t

]
dEf,f (λ) =

1

8
‖f‖22.

For (3.1), we only need to prove that, for every pair of sequences ({nl}, {εl})
satisfying nl ↗ ∞ and εl ↘ 0,

lim
l→∞

∫ nl+m

nl

(QL
t,k)

2f
dt

t
= lim

l→∞

∫ εl

εl+m

(QL
t,k)

2f
dt

t
= 0 ∀m ≥ 1. (3.2)

If (3.2) holds, then we can find h ∈ L2(Rn) such that liml→∞
∫ nl

εl
(QL

t,k)
2f dt

t
= h.

Using a polarized version of the first part, we obtain that for g ∈ L2(Rn),

〈h, g〉 = lim
l→∞

∫ εl

εl+m

〈QL
t,kf,Q

L
t,kg〉

dt

t
=

∫ ∞

0

〈QL
t,kf,Q

L
t,kg〉

dt

t
=

1

8
〈f, g〉,

which implies that h = 1
8
f . To prove (3.2), we apply functional calculus to get∥∥∥∫ nl+m

nl

(QL
t,k)

2f
dt

t

∥∥∥2

≤
∫ ∞

0

∣∣∣ ∫ nl+m

nl

t4kλ2ke−2t2λdt

t

∣∣∣2 dEf,f (λ).

Computing the integral inside, one is led to the estimate∫ ∞

0

[2k−1∑
j=1

1

2j+1

(2k − 1)!

(2k − j)!
(n2

l λ)
2k−j +

(2k − 1)!

22k+1

]
e−2n2

l λ dEf,f (λ), as nl → ∞,

which by dominated convergence tends to zero. Because µ > 0 for almost every x,
〈Lf, f〉 ≥ 〈µf, f〉 > 0 (unless f ≡ 0). This means that zero is not an eigenvalue
of L. We can use a similar procedure to deal with the limit εl → 0. This completes
the proof of Lemma 3.1. �

Define the area function associated with the heat semigroup as

SL
h,k(f)(x) =:

(∫ ∞

0

∫
|x−y|<t

∣∣QL
t,kf(y)

∣∣2dy dt
tn+1

)1/2

, x ∈ Rn.
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Lemma 3.2. Let f be a finite linear combination of H1
L-atoms. There exists c > 0

such that ‖Sh(f)‖L1 ≤ c‖f‖H1
L
.

Proof. By Theorem 2.6, it is enough to consider sums of atoms associated to
balls B(x0, r) with r . m(x0, µ)

−1. Let a be an H1
L-atom with the support B =

B(x0, r). Then we can apply Lemma 3.1 to deduce that∥∥SL
h,k(a)

∥∥2

L2 .
∫
Rn

[∫
Rn+1
+

∣∣QL
t,ka(y)

∣∣2χΓ(x)(y, t)
dy dt

tn+1

]
dx

.
∫
Rn+1
+

∣∣QL
t,ka(y)

∣∣2dy dt
t

.
∥∥gLh,k(a)∥∥2

L2 .
1

8
‖a‖2L2 .

Thus, using Hölder’s inequality, we have∫
B8r

SL
h,ka(x) dx . |B8r|1/2

(∫
B8r

SL
h,ka(x)

2 dx
)1/2

. |B|1/2‖a‖L2 = |B|1/2
(∫

B(x0,r)

1

|B(x0, r)|2
dx

)1/2

. 1,

where in the last step we have used the fact that ‖a‖∞ ≤ |B(x0, r)|−1.
Next we prove that the integral

I =:

∫
|x−x0|>8r

SL
h,k(a)(x) dx

is bounded for all H1
L-atoms a uniformly. We divide the proof into two cases.

Case 1: r < m(x0, µ)
−1. By the cancelation condition of a, we have

SL
h,ka(x) . T1(x) + T2(x),

where

T1(x) =:
[∫ |x−x0|/2

0

∫
|x−y|<t

(∫
B

∣∣QL
t,k(y, x

′)−QL
t,k(y, x0)

∣∣dx′
|B|

)2dy dt

tn+1

]1/2
and

T2(x) =:
[∫ ∞

|x−x0|/2

∫
|x−y|<t

(∫
B

∣∣QL
t,k(y, x

′)−QL
t,k(y, x0)

∣∣dx′
|B|

)2dy dt

tn+1

]1/2
.

For T1, if x
′ ∈ B, then |y− x′| ∼ |y− x0| ∼ |x− x0| and |x′ − x0| < |y − x0|/4.

Applying Proposition 2.16(ii), we obtain the following estimate:

T1(x) .
{∫ |x−x0|/2

0

∫
|x−y|<t

[∫
B

( |x− x0|
t

)δ′ 1

tn
|B|−1dx′

(1 + |y − x0|/t)(n+1)

]2dy dt
tn+1

}1/2

.
[∫ |x−x0|/2

0

(r
t

)2δ′( t

|x− x0|

)2(n+1) dt

t2n+1

]1/2
.

rδ
′

|x− x0|n+δ′
.
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For T2, we can see that |x′ − x0| ≤ r < |x− x0|/2 ≤ t for x′ ∈ B. Similar to
the arguments of T1, we can utilize Proposition 2.16(ii) again to get

T2(x) .
[∫ ∞

|x−x0|/2

∫
|x−y|<t

(∫
B

|x′ − x0|δ
′

tn+δ′

dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ ∞

|x−x0|/2

(r
t

)2δ′

t−2ndt

t

]1/2
.

rδ
′

|x− x0|n+δ′
.

Then integrating SL
h,k(a) over (B8r)

c gives∫
|x−x0|>8r

SL
h,ka(x) dx .

∫
|x−x0|>8r

[
T1(x) + T2(x)

]
dx

.
∫
|x−x0|>8r

rδ
′

|x− x0|n+δ′
dx = 1.

Case 2: m(x0, µ)
−1 ≤ r < 4m(x0, µ)

−1. Similar to Case 1 above, we divide the
integral in t > 0 defining SL

h,ka into three parts: S
L
h,k(a)(x) . T ′

1(x)+T
′
2(x)+T

′
3(x),

where

T ′
1(x) =:

[∫ r/2

0

∫
|x−y|<t

(∫
Rn

QL
t,k(y, x

′)g(x′) dx′
)2dy dt

tn+1

]1/2
,

T ′
2(x) =:

[∫ |x−x0|/4

r/2

∫
|x−y|<t

(∫
Rn

QL
t,k(y, x

′)g(x′) dx′
)2dy dt

tn+1

]1/2
,

T ′
3(x) =:

[∫ ∞

|x−x0|/4

∫
|x−y|<t

(∫
Rn

QL
t,k(y, x

′)g(x′) dx′
)2dy dt

tn+1

]1/2
.

For T ′
1, it is easy to see that |x′ − y| v |x− x0|. Using Proposition 2.16(i), we get

T ′
1(x) .

[∫ r/2

0

∫
|x−y|<t

(∫
B

t−n
(
1 +

|y − x′|
t

)−(n+1) dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ r/2

0

∫
|x−y|<t

t−2n
(
1 +

|x− x0|
t

)−2(n+1)dy dt

tn+1

]1/2
.

[∫ r/2

0

t−2n
( t

|x− x0|

)2(n+1)dt

t

]1/2
.

r

|x− x0|n+1
.

For T ′
2, note that the fact |x′− y| v |x−x0| implies m(x′, µ)−1 v m(x0, µ)

−1 v r.
Applying Proposition 2.16(i), we obtain

T ′
2(x) .

[∫ |x−x0|/4

r/2

∫
|x−y|<t

(∫
|B|

t−n(1 + |x− x0|/t)−(n+M+1)

(1 + tm(x0, µ))M
dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ |x−x0|

r/2

t−2n
( t

|x− x0|

)2(n+M+1)( 1

tm(x0, µ)

)2M dt

t

]1/2
.

rM

|x− x0|n+M
.
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For T ′
3, a direct computation gives

T ′
3(x) .

[∫ ∞

|x−x0|/4

∫
|x−y|<t

(∫
|B|
t−n

(
1 + tm(x0, µ)

)−M dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ ∞

|x−x0|/4
t−2n

( 1

tm(x0, µ)

)2M dt

t

]1/2
.

rM

|x− x0|n+M
.

The estimates for T ′
i , i = 1, 2, 3, indicate that

I ≤
∫
|x−x0|>8r

[
T ′
1(x) + T ′

2(x) + T ′
3(x)

]
dx

.
∫
|x−x0|>8r

rM

|x− x0|n+M
dx . 1.

This completes the proof of Lemma 3.2. �

3.2. Characterization associated with e−tL. In this section, we establish the
Carleson measure characterization via the operator family {QL

t,k}. Precisely, we
have the following.

Theorem 3.3. Suppose that µ satisfies (1.1) and (1.2) for some δ > 0. Let dνh,k
be the measure defined by (1.4).

(1) If f ∈ BMOL(Rn), then dνh,k is a Carleson measure.
(2) Conversely, if f ∈ L1((1+ |x|)−(n+1) dx) and dνh,k is a Carleson measure,

then f ∈ BMOL(Rn).

Moreover, in either case there exists C > 0 such that

1

C
‖f‖2BMOL

≤ ‖dνh,k‖C ≤ C‖f‖2BMOL
.

Proof. Because of Proposition 2.16 and the integrability of (1+ |y|)−n−1|f(y)|, we
can get that

QL
t,kf(x) =

∫
Rn

QL
t,k(x, y)f(y) dy

is a well-defined absolutely convergent integral for all (x, t) ∈ Rn+1
+ . Fix a ball

B = B(x0, r). We wish to show that

1

|B|

∫ r

0

∫
B

∣∣QL
t,kf(x)

∣∣2dx dt
t

≤ c‖f‖2BMOL
. (3.3)

We split the function f into three parts:

f = (f − fB2r)χB2r + (f − fB2r)χ(B2r)c + fB2r = f1 + f2 + fB2r .

This notation corresponds, respectively, to the local, global, and constant parts.
For f1, using Lemma 3.1, we have

1

|B|

∫ r

0

∫
B

∣∣QL
t,kf1(x)

∣∣2dx dt
t

.
1

|B|

∫
B

∫ ∞

0

∣∣QL
t,k(f1)(x)

∣∣2 dx
.

1

|B|

∫
B

∣∣gLh,k(f1)(x)∣∣2 dx .
1

|B|
‖f1‖22 . ‖f‖2BMOL

,
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where we have used Corollary 2.8 in the last step. Next we estimate |QL
t,kf2(x)|.

Let x ∈ B = B(x0, r) and t < r. Then we have∣∣QL
t,kf2(x)

∣∣ . ∫
Rn

1

tn
e−|x−y|2/t2

(1 + tm(x, u) + tm(y, u))M
∣∣f2(y)∣∣ dy

.
∫
(B2r)c

∣∣f(y)− fB2r

∣∣ t

|x0 − y|n+1
dy (3.4)

.
∞∑
k=1

t

(2kr)n+1

∫
|y−x0|∼2kr

[∣∣f(y)− fB
2k+1r

∣∣+ |fB
2k+1r

− fB
2kr

|

+ · · ·+ |fB4r − fB2r |
]
dy

.
t

r

∞∑
k=1

2−k
[
‖f‖BMO + k‖f‖BMO

]
.
t

r
‖f‖BMO.

Thus, integrating over B × (0, r), we obtain that

1

|B|

∫ r

0

∣∣QL
t,k(fB2)(x)

∣∣2dx dt
t

. c‖f‖2BMOL

1

|B|
∑
r

|Qk| . ‖f‖2BMOL
.

It remains to estimate the constant term fB2r . At first, we assume that r <
m(x0, µ)

−1. For this case, it follows from [13, Proposition 1.8] that m(x, µ)−1 ∼
m(x0, µ)

−1 for x ∈ B. By Lemma 2.11 and Proposition 2.16(iii), we have

1

|B|

∫ r

0

∫
B

∣∣QL
t,k(fB2r)(x)

∣∣2dx dt
t

.
|fB2r |2

|B|

∫ r

0

∫
B

(
tm(x, µ)

)2δ dx dt
t

. |fB2r |2
(
rm(x0, µ)

)2δ
. ‖f‖BMOL

(
1 + log

(
rm(x0, µ)

)−1)2(
rm(x0, µ)

)2δ
. ‖f‖BMOL .

Then we deal with the case r ≥ m(x0, µ)
−1. By Proposition 2.9, we can choose

a finite family of critical balls {Bk} such that B ⊂ ∪Bk and
∑

|Bk| . |B|. By
Proposition 2.16(iii) and the fact that |fB2r | ≤ ‖f‖BMOL , we obtain

1

|B|

∫ r

0

∫
B

∣∣QL
t,k(fB2r)(x)

∣∣2dx dt
t

=
|fB2r |2

|B|

∫ r

0

∫
B

∣∣QL
t,k(x, y) dy

∣∣2dx dt
t

=
‖f‖BMOL

|B|
∑
k

(Ak +Bk),

where {
Ak =:

∫ 1/m(xk,µ)

0

∫
Bk
(tm(xk, µ))

2δ dx dt
t
,

Bk =:
∫∞
1/m(xk,µ)

∫
Bk

dx
[1+rm(xk,µ)]2M−2δ

dt
t
.

A direct computation gives

Ak . |Bk|
∫ 1/m(xk,µ)

0

t2δ−1

m(xk, µ)2δ
dx dt

t
. |Bk|
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and

Bk .
∫ ∞

1/m(xk,µ)

∫
Bk

dx

(tm(xk, µ)2M−2δ)

dt

t
= |Bk|

∫ ∞

1/m(xk,u)

m(xk, µ)
2δ−2M

t2M−2δ+1
dt . |Bk|.

The arguments above imply that (3.3) holds. Thus we have ‖νh,k‖C < ∞. This
establishes Theorem 3.3(i).

Now we prove (ii). Fix f ∈ L1((1 + |x|)−n−1 dx) such that

dνh,k(x, t) =:
∣∣QL

t,kf(x)
∣∣2dx dt

t
∀(x, t) ∈ Rn+1

+

is a Carleson measure. We want to prove that such an f belongs to BMOL(Rn).
By Lemma 2.10, it suffices to show that the linear functional

H1
L 3 a→ Φf (a) =:

∫
Rn

f(x)a(x) dx,

which is defined at least over finite linear combinations of H1
L-atoms, satisfies the

estimate ∣∣Φf (a)
∣∣ ≤ c‖νh,k‖1/2C ‖a‖H1

L
.

For this purpose, let {
F (x, t) =: QL

t,kf(x), (x, t) ∈ Rn+1
+ ,

G(x, t) =: QL
t,ka(x), (x, t) ∈ Rn+1

+ .

We only need to prove the following identity:

1

8

∫
Rn

f(x)a(x) dx =

∫
Rn+1
+

F (x, t)G(x, t)
dx dt

t
. (3.5)

Note that (3.5) is clearly valid when f, a ∈ L2(Rn). Hence we should justify the
convergence of the integrals in the case when f ∈ L1((1 + |x|)−(n+1) dx) and a is
an H1

L-atom.
If (3.5) holds, then, noting that ‖µh,k‖C = ‖I(F )‖2L∞ , we can deduce from

Lemma 2.12 that∣∣∣1
8

∫
Rn

f(x)a(x) dx
∣∣∣ ≤ ∥∥I(F )∥∥

L∞

∥∥G(G)∥∥
L1 ≤ ‖µh,k‖1/2C

∥∥G(G)∥∥
L1 .

On the other hand, it is easy to see that G(G) = SL
h,k(a). It follows from Lemma 3.2

that ‖G(G)‖L1 ≤ C‖a‖H1
L
and∣∣∣1

8

∫
Rn

f(x)a(x) dx
∣∣∣ ≤ C‖νh,k‖1/2C ‖a‖H1

L
,

which implies that f is a bounded linear functional on H1
L(Rn).

Now we begin to prove (3.5). By Lemmas 2.12 and 3.2 and the dominated
convergence theorem, we can deduce that the following integral is absolutely
convergent and satisfies

V =

∫
Rn+1
+

F (x, t)G(x, t)
dx dt

t
= lim

ε→0,N→∞

∫ N

ε

∫
Rn

QL
t,kf(x)Q

L
t,ka(x)

dx dt

t
.
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For each t > 0, using Fubini’s theorem, we obtain∫
Rn

QL
t,kf(x)Q

L
t,ka(x) dx =

∫
Rn

(∫
Rn

QL
t,k(x, y)f(y) dy

)
QL

t,ka(x) dx

=

∫
Rn

f(y)(QL
t,k)

2a(y) dy.

Then we get

V = lim
ε→0,N→∞

∫ N

ε

[∫
Rn

f(y)(QL
t,k)

2a(y) dy
]dt
t

= lim
ε→0,N→∞

∫
Rn

f(y)
[∫ N

ε

(QL
t,k)

2a(y)
dt

t

]
dy. (3.6)

By Lemma 2.13 and the kernel decay |QL
t,k(x, y)| . t−n(1 + |x− y|/t)−M , we can

apply the hypothesis f ∈ L1((1+ |x|)−(n+1) dx) to verify the absolute integrability
in these steps.

Finally, to complete the proof, we also need to prove the following estimate:

sup
ε,N>0

∣∣∣ ∫ N

ε

(QL
t,k)

2a(y)
dt

t

∣∣∣ ≤ Cy0,r

(
1 + |y|

)−(n+1)
, y ∈ Rn. (3.7)

Denote by Wε,k(·, ·) the integral kernel of the operator
∫∞
ε
(QL

t,k)
2 dt

t
. By a simple

yet somewhat complicated calculus, we have∫ ∞

ε

(QL
t,k)

2dt

t
=

1

4

(1
2

)2k−1
2k−1∑
j=1

(2k − 1)!

(2k − j)!
QL√

2ε,2k−j
+ (2k − 1)!TL√

2ε
,

which indicates that the kernel Wε,k(·, ·) satisfies the same properties as the ker-
nels TL

t,k(·, ·) and QL
t,k(·, ·). This means that Wε,k(·, ·) satisfies the assumption of

Lemma 2.13. Note that∣∣∣ ∫ ∞

ε

(QL
t,k)

2a(y)
dt

t

∣∣∣ = sup
ε>0

∣∣∣ ∫
Rn

Wε,k(x, y)a(y) dy
∣∣∣.

We have∣∣∣ ∫ N

ε

(QL
t,k)

2a(y)
dt

t

∣∣∣ = ∣∣∣ ∫ ∞

ε

(QL
t,k)

2a(y)
dt

t
−

∫ ∞

N

(QL
t,k)

2a(y)
dt

t

∣∣∣
=

∣∣∣ ∫
Rn

Wε,k(x, y)a(y) dy −
∫
Rn

WN,k(x, y)a(y)
dt

t

∣∣∣
≤ sup

ε>0

∣∣∣ ∫
Rn

Wε,k(x, y)a(y) dy
∣∣∣+ sup

N>0

∣∣∣ ∫
Rn

WN,k(x, y)a(y) dy
∣∣∣.

It follows from Lemma 2.13 that (3.7) holds. Indeed, (3.7) allows passing to the
limit inside the integral in (3.6). Combining Lemma 3.1, we have

V =
1

8

∫
Rn

f(y)a(y) dy.

This completes the proof of Theorem 3.3. �
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4. Carleson measure characterization associated with
the Poisson semigroup

4.1. Reproducing formula generated by the Poisson kernel. For k ∈ Z+,
define the Littlewood–Paley g-function associated with the Poisson semigroup as

gLP,k(f)(x) =
(∫ ∞

0

∣∣DL
t,kf(x)

∣∣2dt
t

)1/2

.

Lemma 4.1. For all f ∈ L2(Rn), we have ‖gLP,k(f)‖2 = 1√
8
‖f‖2. Moreover,

f(x) = 8 lim
ε→0,N→∞

∫ N

ε

(DL
t,k)

2f(x)
dt

t
in L2(Rn). (4.1)

Proof. Similar to Lemma 3.1, let {E(λ)} denote a resolution of the identity. By
the spectral theorem, we have

t
d

dt
e−t

√
Lf = −

∫ ∞

0

t
√
λe−t

√
λ dE(λ)f.

For all f ∈ L2(Rn), the self-adjointness of DL
t,k implies that∥∥gLP,k(f)∥∥2

2
=

∫ ∞

0

〈
t2k

(dke−t
√
L

dtk

)2

f, f
〉dt
t

=

∫ ∞

0

[∫ ∞

0

t2kλke−2t
√
λdt

t

]
dEf,f (λ) =

1

8
‖f‖22.

Now we prove (4.1). Let {(nl, εl)} be an arbitrary pair of sequences such that
nl ↗ ∞ and εl ↘ 0. Similar to Lemma 3.1, we only need to verify

lim
l→∞

∫ nl+m

nl

(DL
t,k)

2f
dt

t
= lim

l→∞

∫ εl

εl+m

(DL
t,k)

2f
dt

t
= 0 ∀m ≥ 1.

In fact, we use functional calculus again such that∥∥∥∫ nl+m

nl

(DL
t,k)

2f
dt

t

∥∥∥2

≤
∫ ∞

0

∣∣∣ ∫ nl+m

nl

t2kλke−2t
√
λdt

t

∣∣∣2 dEf,f (λ).

Computing the integral inside one is led to the estimate∫ ∞

0

[2k−1∑
j=1

1

2j
(2k − 1)!

(2k − j)!
(nl

√
L)2k−j +

(2k − 1)!

22k

]
e−2nl

√
L dEf,f (a), as nl → ∞,

which tends to zero by the dominated convergence theorem. The rest of the proof
is similar to that of Lemma 3.1. We omit the details. �

For k ∈ Z+, the area function associated with the Poisson semigroup is defined
as

SL
P,k(f)(x) =:

(∫ ∞

0

∫
|x−y|<t

∣∣DL
t,kf(y)

∣∣2dy dt
tn+1

)1/2

, x ∈ Rn.

Lemma 4.2. Let f be a finite linear combination of H1
L-atoms. There exists c > 0

such that ‖SL
P (f)‖L1 ≤ c‖f‖H1

L
.
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Proof. Fix an H1
L-atom a which is supported on B = B(x0, r). We have∥∥SL

P,k(a)
∥∥2

L2(Rn)
.

∫
Rn

[∫
Rn+1
+

∣∣DL
t,ka(y)

∣∣2χΓ(x)(y, t)
dy dt

tn+1

]
dx

.
∫
Rn+1
+

∣∣DL
t,ka(y)

∣∣2dy dt
t

'
∥∥gLP,k(a)∥∥2

L2 .
1

8
‖a‖2L2 ,

where in the last step we have used Lemma 4.1. Hölder’s inequality indicates that∫
|x−x0|≤8r

SL
P,k(a)(x) dx . |B8r|1/2

(∫
|x−x0|≤8r

SL
P (a)(x)

2 dx
)1/2

. |B|1/2‖a‖L2 . 1.

Similar to Lemma 3.2, we will prove that the integral

I =:

∫
|x−x0|>8r

SL
P,k(a)(x) dx

is bounded uniformly. For this purpose, we divide the proof into two cases.
Case I: r < m(x0, µ). By the cancelation property of a, we have

SL
P,k(a)(x) ≤ S1(x) + S2(x),

where

S1(x) =:
[∫ |x−x0|/2

0

∫
|x−y|<t

(∫
B

∣∣DL
t,k(y, x

′)−DL
t,k(y, x0)

∣∣dx′
|B|

)2dy dt

tn+1

]1/2
and

S2(x) =:
[∫ ∞

|x−x0|/2

∫
|x−y|<t

(∫
B

∣∣DL
t,k(y, x

′)−DL
t,k(y, x0)

∣∣dx′
|B|

)2dy dt

tn+1

]1/2
.

For S1, note that if x′ ∈ B, then |y − x′| ∼ |y − x0| ∼ |x − x0| and |x′ − x0| <
|y − x0|/4. Applying Proposition 2.19(ii), we have

S1(x) .
[∫ |x−x0|/2

0

∫
|x−y|<t

(∫
B

( |x′ − x0|
t

)δ′ t|B|−1 dx′

(t2 + |y − x0|2)(n+1)/2

)2dy dt

tn+1

]1/2
.

[∫ |x−x0|/2

0

(r
t

)2δ′

t−2n
( t

|x− x0|

)2(n+1)dt

t

]1/2
.

rδ
′

|x− x0|n+δ′
.

For S2, it is easy to see that |x′−x0| ≤ r < |x−x0|/2 ≤ t. Proposition 2.19 gives

S2(x) .
[∫ ∞

|x−x0|/2

∫
|x−y|<t

(∫
B

( |x′ − x0|
t

)δ′

t−n dx
′

|B|

)2dy dt

tn+1

]1/2
.

[∫ ∞

|x−x0|/2

(r
t

)2δ′

t−2ndt

t

]1/2
.

rδ
′

|x− x0|n+δ′
.

Finally, we obtain∫
|x−x0|>8r

SL
P (a)(x) dx .

∫
|x−x0|>8r

rδ
′

|x− x0|n+δ′
dx . 1.
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Case 2: m(x0, µ)
−1 < r < 4m(x0, µ)

−1. For this case, we divide the integral
defining SL

P,ka into three parts: SL
P,k(a)(x) . S ′

1(x) + S ′
2(x) + S ′

3(x), where

S ′
1(x) =:

[∫ r/2

0

∫
|x−y|<t

(∫
Rn

DL
t,k(y, x

′)g(x′) dx′
)2dy dt

tn+1

]1/2
,

S ′
2(x) =:

[∫ |x−x0|/4

r/2

∫
|x−y|<t

(∫
Rn

DL
t,k(y, x

′)g(x′) dx′
)2dy dt

tn+1

]1/2
,

and

S ′
3(x) =:

[∫ ∞

|x−x0|/4

∫
|x−y|<t

(∫
Rn

DL
t,k(y, x

′)g(x′) dx′
)2dy dt

tn+1

]1/2
.

For S ′
1, we have |x′ − y| v |x− x0|. Using Proposition 2.19(i), we get

S ′
1(x) .

[∫ r/2

0

∫
|x−y|<t

(∫
B

t

(t2 + |y − x′|2)(n+1)/2

dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ r/2

0

∫
|x−y|<t

t−2n
(
1 +

|x− x0|
t

)−2(n+1)dy dt

tn+1

]1/2
.

[∫ r/2

0

t−2n
( t

|x− x0|

)2(n+1)dt

t

]1/2
.

r

|x− x0|n+1
.

For S ′
2, because |x′ − y| v |x− x0|, it follows from Lemma 2.1 that m(x′, µ)−1 v

m(x0, µ)
−1 v r. Applying Proposition 2.19(i), we obtain

S ′
2(x) .

[∫ |x−x0|/4

r/2

∫
|x−y|<t

(∫
B

t(1 + tm(x0, µ))
−M

(t2 + |y − x′|2)(n+1)/2

dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ |x−x0|

r/2

t−2n
( t

|x− x0|

)2(n+M+1) 1

(tm(x0, µ))2M
dt

t

]1/2
.

rM

|x− x0|n+M
.

For S ′
3, similarly, we have

S ′
3(x) .

[∫ ∞

|x−x0|/4

∫
|x−y|<t

(∫
B

t[1 + tm(x0, µ)]
−M

(t2 + |y − x′|2)(n+1)/2

dx′

|B|

)2dy dt

tn+1

]1/2
.

[∫ ∞

|x−x0|/4

1

t2n(1 + |y − x′|/t)2(n+1)

1

(tm(x0, µ))2M
dt

t

]1/2
.

rM

|x− x0|n+M
.

Thus we integrate SL
P,k(a) over (B8r)

c to obtain

I .
∫
|x−x0|>8r

[
S ′
1(x) + S ′

2(x) + S ′
3(x)

]
dx .

∫
|x−x0|>8r

rM

|x− x0|n+M
dx . 1.

This completes the proof of Lemma 4.2. �
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4.2. Characterization associated with e−t
√
L.

Theorem 4.3. Let k ∈ Z+. Suppose that µ satisfies (1.1) and (1.2) for all x ∈ Rn,
0 < r < R, where B(x, r) denotes the (open) ball centered at x with radius r. For
some δ > 0, let dνP,k be the measure defined by (1.5).

(1) If f ∈ BMOL(Rn), then dνP,k is a Carleson measure.
(2) Conversely, if f ∈ L1((1+ |x|)−(n+1) dx) and dνP,k is a Carleson measure,

then f ∈ BMOL(Rn).

Moreover, in either case there exists C > 0 such that

1

C
‖f‖2BMOL

≤ ‖dνP,k‖C ≤ C‖f‖2BMOL
.

Proof. We first prove (i). From Proposition 2.9 and the integrability of
(1 + |y|)−n−1|f(y)|, we know that

DL
t,2kf(x) =

∫
Rn

DL
t,2k(x, y)f(y) dy

is a well-defined absolutely convergent integral for all (x, t) ∈ Rn+1
+ . Fix a ball

B = B(x0, r). We wish to show that

1

|B|

∫ r

0

∫
B

∣∣DL
t,2kf(x)

∣∣2dx dt
t

≤ c‖f‖2BMOL
. (4.2)

To do this, we split f into three parts:

f = (f − fB2r)χB2r + (f − fB2r)χ(B2r)c + fB∗ = f1 + f2 + fB2r .

For f1, using Lemma 4.1 and Corollary 2.8, we have

1

|B|

∫ r

0

∫
B

∣∣DL
t,2kf1(x)

∣∣2dx dt
t

.
1

|B|

∫
B

∫ ∞

0

∣∣DL
t,2kf1(x)

∣∣2dx dt
t

.
1

|B|

∫
B

∣∣gLP,kf1(x)∣∣2 dx .
1

|B|
‖f1‖22 . ‖f‖2BMOL

.

For f2, similar to (3.4), we can get∣∣DL
t,2k(f)2(x)

∣∣ . t

r

∞∑
k=1

k + 1

2k
‖f‖BMO .

t

r
‖f‖BMO,

which gives

1

|B|

∫ r

0

∫ B

0

∣∣DL
t,2k(f2)(x)

∣∣2dx dt
t

.
∫ r

0

( t
r
‖f‖BMO

)2dt

t
. ‖f‖2BMOL

.

Now we deal with the term fB2r . At first, we assume that r < m(x0, µ)
−1. It

follows from Proposition 2.1 that m(x, µ)−1 ∼ m(x0, µ)
−1 for x ∈ B. We can

make use of Lemma 2.11 and Proposition 2.19(iii) to get

1

|B|

∫ r

0

∫
B

∣∣DL
t,2k(fB2r)(x)

∣∣2dx dt
t

.
|fB2r |2

|B|

∫ r

0

∫
B

(
tm(x, µ)

)2δ dx dt
t

. |fB2r |2
(
rm(x0, µ)

)2δ
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. ‖f‖2BMOL

(
1 + log

(
rm(x0, µ)

)−1)2(
rm(x0, µ)

)2δ
. ‖f‖2BMOL

.

Finally, suppose that r ≥ m(x0, µ)
−1. We choose from Proposition 2.9 a finite

family of critical balls {Bk} such that B ⊂
⋃
Bk and

∑
|Bk| . |B|. By Proposi-

tion 2.19(iii) and the fact that |fB2r | ≤ ‖f‖BMOL , we know that

1

|B|

∫ r

0

∫
B

∣∣DL
t,2k(fB2r)(x)

∣∣2dx dt
t

=
|fB2r |2

|B|

∫ r

0

∫
B

∣∣DL
t,2k(x, y) dy

∣∣2dx dt
t

=
‖f‖2BMOL

|B|
∑
k

(Ck +Dk),

where

Ck =:

∫ 1/m(xk,u)

0

∫
Bk

(
tm(xk, µ)

)2δ dx dt
t

and

Dk =:

∫ ∞

1/m(xk,µ)

∫
Bk

dx

1 + rm(xk, µ)2M−2δ

dt

t
.

It is easy to get

Ck . |Bk|
∫ 1/m(xk,µ)

0

t2δ−1

m(xk, µ)2δ
dx dt

t
. |Bk|

and

Dk .
∫ ∞

1/m(xk,µ)

∫
Bk

1

(tm(xk, µ)2M−2δ)

dx dt

t
. |Bk|.

Thus we have

1

|B|

∫ r

0

∫
B

∣∣DL
t,2k(fB2r)(x)

∣∣2dx dt
t

. ‖f‖2BMOL

1

|B|
∑
k

|Bk| . ‖f‖2BMOL
.

According to the arguments above, (4.2) holds. Thus we have ‖νP,k‖C <∞. This
establishes Theorem 4.3(i).

Now we prove (ii). Let f ∈ L1((1 + |x|)−(n+1) dx) such that

dνP,k(x, t) =:
∣∣DL

t,2kf(x)
∣∣2dx dt

t

is a Carleson measure. We want to prove that f ∈ BMOL(Rn). By Lemma 2.10,
it suffices to show that the linear functional

H1
L 3 a→ Φf (a) =:

∫
Rn

f(x)a(x) dx,

which is defined at least over finite linear combinations of H1
L-atoms, satisfies the

estimate ∣∣Φf (a)
∣∣ ≤ c‖νP,k‖1/2C ‖a‖H1

L
.
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For this purpose, let {
F (x, t) =: DL

t,2kf(x), (x, t) ∈ Rn+1
+ ,

G(x, t) =: DL
t,2ka(x), (x, t) ∈ Rn+1

+ .

We only need to prove the following identity:

1

8

∫
Rn

f(x)a(x) dx =

∫
Rn+1
+

F (x, t)G(x, t)
dx dt

t
. (4.3)

Note that (4.3) is clearly valid when f, a ∈ L2(Rn). Hence we should justify the
convergence of the integrals in the case when f ∈ L1((1 + |x|)−(n+1) dx) and a is
an H1

L-atom.
If (4.3) holds, then, noting that ‖νP,k‖C = ‖I(F )‖2L∞ , we can deduce from

Lemma 2.12 that∣∣∣1
8

∫
Rn

f(x)a(x) dx
∣∣∣ ≤ ∥∥I(F )∥∥

L∞

∥∥G(G)∥∥
L1 ≤ ‖νP,k‖1/2C

∥∥G(G)∥∥
L1 .

On the other hand, it is easy to see that G(G)(x) = SL
P,2k(a)(x). It follows from

Lemma 4.2 that ‖G(G)‖L1 ≤ C‖a‖H1
L
and∣∣∣1

8

∫
Rn

f(x)a(x) dx
∣∣∣ ≤ C‖νP,k‖1/2C ‖a‖H1

L
,

which implies that f is a bounded linear functional on H1
L(Rn).

Now we begin to prove (4.3). By Lemmas 2.12, 3.2, and the dominated con-
vergence theorem, we obtain that the following integral is absolutely convergent
and satisfies

V =

∫
Rn+1
+

F (x, t)G(x, t)
dx dt

t
= lim

ε→0,N→∞

∫ N

ε

∫
Rn

DL
t,2kf(x)D

L
t,2ka(x)

dx dt

t
.

For each t > 0, using Fubini’s theorem, we obtain∫
Rn

DL
t,2kf(x)D

L
t,2ka(x) dx =

∫
Rn

f(y)(DL
t,2k)

2a(y) dy.

Then we get

V = lim
ε→0,N→∞

∫ N

ε

[∫
Rn

f(y)(DL
t,2k)

2a(y) dy
]dt
t

= lim
ε→0,N→∞

∫
Rn

f(y)
[∫ N

ε

(DL
t,2k)

2a(y)
dt

t

]
dy. (4.4)

Because f ∈ L1((1 + |x|)−(n+1) dx), it is easy to check the absolute integra-
bility in these steps by Lemma 2.13 and the fact that |(DL

t,2k)
2(x, y)| . t−n×

(1 + |x− y|/t)−n+1.
Finally, we also need to prove the following estimate:

sup
ε,N>0

∣∣∣∫ N

ε

(DL
t,2k)

2a(y)
dt

t

∣∣∣ ≤ Cy0,r

(
1 + |y|

)−(n+1)
, y ∈ Rn. (4.5)
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We denote by Hε,k(·, ·) the integral kernel of the operator
∫∞
ε
(DL

t,2k)
2 dt

t
. Similar

to Theorem 3.3(ii), we can use a direct calculus to get∣∣∣ ∫ ∞

ε

(DL
t,k)

2dt

t

∣∣∣ = 1

24k

[4k−1∑
j=1

(4k − 1)!

(4k − j)!
DL

2ε,4k−j + (4k − 1)!PL
2ε

]
,

which implies that Hε,k(·, ·) has the same properties for the kernels PL
t,k(·, ·) and

DL
t,k(·, ·); that is, Hε,k(·, ·) satisfies the assumption of Lemma 2.13. Note that∣∣∣ ∫ N

ε

(DL
t,2k)

2a(y)
dt

t

∣∣∣ = ∣∣∣∫ ∞

ε

(DL
t,2k)

2a(y)
dt

t
−

∫ ∞

N

(DL
t,2k)

2a(y)
dt

t

∣∣∣
≤ sup

ε>0

∣∣∣ ∫
Rn

Hε,k(x, y)a(y) dy
∣∣∣+ sup

N>0

∣∣∣ ∫
Rn

HN,k(x, y)a(y) dy
∣∣∣.

Thus (4.5) holds. Indeed, (4.5) allows passing to the limit inside the integral in

(4.4). Combining Lemma 4.1, we have V = 1
8

∫
Rn f(y)a(y) dy. This completes the

proof of Theorem 4.3. �
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