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ABSTRACT. Let L = —A + p be the generalized Schrodinger operator on
R™ n > 3, where A is the Laplacian and g # 0 is a nonnegative Radon mea-
sure on R™. In this article, we introduce two families of Carleson measures
{dvy 1} and {dvpy} generated by the heat semigroup {e~**} and the Poisson

semigroup {e‘t‘/z}, respectively. By the regularities of semigroups, we estab-
lish the Carleson measure characterizations of BMO-type spaces BMO,(R")
associated with the generalized Schrédinger operators.

1. Introduction

Let £ = —A+pu be a generalized Schrodinger operator, where p is a nonnegative
Radon measure on R"”,n > 3. In this article, we will characterize the BMO-type
space associated with £ via two families of Carleson measures generated by the
semigroups {e*¢} and {e~*VE}, respectively.

As in [13] and [20], throughout this article we assume that p satisfies the
following conditions: there exist positive constants Cy, C7, and ¢ such that, for
allz € R" and 0 < r < R,

u(B(z,r)) < Co(r/R)" > u(B(z, R)) (1.1)
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and
p(B(z,2r)) < Ci{p(Bz,r)) +r"?}, (1.2)

where B(z,r) denotes the open ball centered at « with radius . Shen [13] pointed
out that (1.1) may be regarded as the scale-invariant Kato condition, and (1.2)
says that the measure p is a doubling measure satisfying for any ball B(z,r) >
cr™ 2. Let (RH), denote the set of all nonnegative locally Li-functions on R"
satisfying that there exists C' > 0 such that the reverse Holder inequality

(—| B(;,r)| e V(y) dy) Y C(—| - (;7T)| /B » V(y) dy)

holds for every ball B € R". When dy = V(x) dz and V' > 0 belongs to (RH ), /2,
then p satisfies conditions (1.1) and (1.2) for some § > 0.

The bounded mean oscillation space BMO(R™) was first introduced by John
and Nirenberg in their study [8] of mappings from a bounded set 2 belonging to
R" into R™ and the corresponding problems arising from elasticity theory, pre-
cisely from the concept of elastic strain. In 1972, Fefferman and Stein [6] showed
that BMO(RR") is the dual of the Hardy space H*(R™). As an adequate substitute
for the Lebesgue space L>*(R"), the space BMO(R") is widely used in various
fields of analysis and partial differential equations. Since the 1960s, based on a
similar idea, various BMO-type spaces were introduced by many mathematicians
in different settings. (We refer the reader to [12], [17], [18], and [19] for further
information.)

Let £ be a Schrodinger operator with nonnegative potential. In recent years, the
BMO-type space associated with £ has become one of the hot issues in harmonic
analysis. As the dual of the Hardy space H}(R™) (see [5]), Dziubariski, Garrigés,
Martinez, Torrea, and Zienkiewicz [4] introduced the BMO-type space BMO,(R")
related to £ under the assumption that the potential V € (RH),,q > n/2.
Wu and Yan [20] studied the BMO-type spaces associated with the general-
ized Schrodinger operators, where the potential is a nonnegative Radon measure
on R". (For further information on BMO-type spaces associated with operators,
we refer the reader to [2], [3], [9], [21], [22] and the references therein.)

Our motivation is inspired by the following observation. A positive measure v
on Rt is called a Carleson measure if

V(Bla,r) x (0,r))
14 = Ssu < Q.
IWlle =2 sw == 50

It is well known that Carleson measures and their generalizations are important
tools for the characterization of function spaces. Fefferman and Stein [6] estab-
lished the Carleson measure characterization of BMO(R"™). From then on, this
characterization was extended to other function spaces (see [1], [2], [4], [14] and
the references therein). Let ¢ € C§°(R™) satisfying [ ¢ dx = 0. For such a func-
tion 9, set Yy (x) =t (z/t). The following Carleson measure characterization
of BMO(R") is well known.
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Theorem 1.1 ([16, Sections 4.3, 4.4.3]).
(i) Suppose that f € BMO(R"™), and let dv = |f x 1y(x)| dz dt/t. Then dv is
a Carleson measure.
(ii) Conversely, suppose that 1 is a function mentioned above. If f €
LY (dz/(1 + |z|™™) and dv = |f * ¢y(x)|dx dt/t is a Carleson measure,
then f € BMO(R™).

In particular, in Theorem 1.1, if we take ¢)(x) = 8}” “c) li=1 and ¢(x) = apt(x) li=1,
where hy(+) and p;(-) are the heat kernel and the P01sson kernel, that is,

{ht(x) = (4mt)~"/2 exp(—|z|?/4t),

Pi(@) = G, oo = () /r 0,

respectively, then we can obtain the Carleson measure characterizations of
BMO(R") associated with the semigroups {e (=)} ,. and {e‘tm}bo, respec-
tively. This observation prompted us to investigate analogous characterizations
of the BMO-type space BMO,(R™) for the generalized Schrédinger operator L.
Denote by Z* the set of all positive integers. For k € Z*, we introduce two
families of operators:

L 2k fsﬁ )
{Qt,k(f) = 1% (e ) f, (13)

DE(f) =t t* (e VE) f.

Let f € L'(dx/(14 |z[**")). The Carleson measures with respect to Qf, and Df;,
are defined as

dvi(,t) = [QE(N)(Y)| dydt/t ¥(w.t) € RY (14)

and
dvpp(z,t) = | DE(F) W) dydt/t Y(x,t) € R (1.5)

Our aim is to establish the Carleson measure characterizations of BMO,(R")
via {dvy,} and {dvpy}, respectively. For this purpose, we first introduce some
regularity estimates of {e £} and {e*VE} (see Propositions 2.15, 2.18). Such
regularity estimates indicate that the kernels of ka and ka have good decay
properties. We can prove that if f € BMO,(R"), then dvj, , and dvp, are Carleson
measures.

Conversely, let f € L'(dz/(1 + |z["™)). Assume that duvy) and dvpy are
Carleson measures. For any Hj}-atom a, we get that S,ﬁk(a) € LYR") and
Sfi(a) € L'(R™), uniformly (see Lemmas 3.2, 4.2). With the help of tent spaces,
the identities (3.5) and (4.3) enable us to deduce that f € BMO,(R") (see The-
orems 3.3, 4.3).

Remark 1.2.

(i) Theorems 3.3 and 4.3 show that the Carleson measure characterizations
associated with {e £} and {e *V£} are equivalent. In particular, let
L = —A. Theorems 3.3 and 4.3 go back to Theorem 1.1 with ¢) = aht i1
and ¢ = %h:l, respectively. Philosophically speaking, our results reveal
that for k € Z, the families of measures {dv}, ;} and {dvpy}, induced by
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{Qur}rez, and {Dyy}rez, , play the same role in the characterization of
BMO(R™).

(ii) For the Schrodinger operator £ = —A + p, where du = V dz with
V € (RH),, the authors in [4] obtained a Carleson measure characteriza-
tion of BMO,(R"™). For the case of the generalized Schrédinger operator
L=—A+pu, letting u =V € (RH), and k = 1, Theorem 3.3 coincides
with [4, Theorem 2]. Hence our result is a generalization of [4, Theorem 2].
Moreover, for the special case p =V € B, the Carleson measure charac-
terization related to {e*tﬁ} obtained in Theorem 4.3 partly generalizes
the result of [10, Theorem 1.5].

We give the following notation.

e U ~ V represents that there is a constant ¢ > 0 such that ¢!V < U < ¢V,
whose right inequality is also written as U < V. Similarly, one writes
V > U for V> cU.

e For convenience, the positive constants C' may change from one line to
another and usually depend on the dimensions n, a, $ and other fixed
parameters.

e Let B be a ball with radius r. In the rest of this article, we denote by B,
the ball with the same center and radius 2r.

2. Preliminaries

2.1. Notation and function spaces associated with L. Let p be a Radon
measure satisfying (1.1) and (1.2). The generalized Schrédinger operator £ =
—A + p is defined as follows (see [13]). Consider the quadratic form

dlov] = [ (Vo.vu)da [ (o0hdu

with domain WH?(R™) N L*(R™, dp). Shen [13] pointed out that ¢[-, -] is a semi-
bound, symmetric closed form and that there exists a unique self-adjoint operator
designated —A + p such that

Q[¢7 @D] = <(_A + M)gba 77Z)>L2(]R",dx)

for any ¢ € Domain(—A + p) and ¢ € WH2(R") N L?(R", du) (see [13, p. 528] for
the details; we also refer the reader to [11] for more information on Schrédinger
operators involving singular potentials and measure data).
The auxiliary function m(z, ) is defined by
1 B
—z:sup{7">0:M
m(z, 1)
We recall some basic properties of m(z, u).

Lemma 2.1 ([13, Proposition 1.8, Remark 1.9]). Suppose that p satisfies (1.1)
and (1.2). Then the following hold.

(i) We have that 0 < m(x, ) < oo for every x € R™.
(ii) If r = m(%u)*l, then r" 2 < w(B(x,r)) < Cyrn2,

Scl}-

rn—?



CARLESON MEASURES AND BMO-TYPE SPACES 5

(i) If |z — y| < Cm(x,pu)~t, then m(z, pn) =~ m(y, ).
(iv) There exist constants ¢,C > 0 such that for x,y € R",

cm(y, 1)
{14z —ylm(y, u
with ko = Cy/6 > 0 and Cy = log,(Cy + 2"72).
With the modified Agmon metric
ds* = m(x, p){da? + - +da?},
the distance function d(z,y, p) is given by

d(z,y, 1) = igf/o m(y(7), 1) |7 ()| dr, (2.1)

where v : [0,1] — R™ is absolutely continuous and v(0) = z, y(1) = v.
A parabolic-type distance function associated to m(z, u) is defined by

dy(z,y,1) Iinf/o m(3(7), p) max{[(3) (D], |(yur1)'(7) |} dr,  (2:2)

Y

ko
) Yo/ (ko) < m(x, 1) < Cm(y, w) {1+ |z — ylm(y, u) }

where y(7) = (M(7), ..., ¥(7)) = (F(7), Yny1 (7)) : [0, 1] = R™ xR, is absolutely
continuous with (0) = (x,0) and (1) = (y, V1).

Lemma 2.2. For the distance function d(z,y, p) in (2.1), we have that
(i) for every x,y,z € R",
d(z,y, p) < d(w,z,p0) + d(2, y, p);

(i) there are two positive constants ¢ and C such that for any x,y € R,

A [1+ o —ylm(z. ] " =1} < d(e,y. ) < Of1+ |2 = ylmla, )}

Lemma 2.3 ([20, Lemma 2.3]). For the distance function d,(x,y,t) defined by
(2.2), there exist two positive constants ¢ and C' such that for any x,y € R",
x#y, andt >0,

du(z,y,y) = c{{1+ max{|z — y|, \/E}m@,M)}l/(koH) ~1)
and
dﬂ(xa Y, t) S C{l + max{|x — y|’ \/E}m(,I, u)}k0+1‘

It follows from (1.1), (1.2), and Lemma 2.1 that there exists a constant C' > 0
such that for every € R" (see [20, (2.1)]),

1

. C(rm(x, p))’r"=2, r<m(x,p) ",
“m’”é{ammMNWMM%mrzmmm+ 22

Let £ be a generalized Schrodinger operator. Denote by {T}so = {7 }is0

the heat semigroup generated by —L. The kernel of {T*} is denoted by K£(-,-);
that is,

Tff(x) = | Kf(z,y)f(y)duly).

Rn
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Wu and Yan [20] introduced the following Hardy space associated with L.

Definition 2.4. Let L be the generalized Schrodinger operator. The Hardy space
associated with £, H}(R™), is defined as the set of all functions f € L'(R")
satisfying

M (f)(w) = sup |Tf f(x)] € L'(R")

t>0

with the norm || f|| g1 =: [[Mc(f)lr1-

The H}-atoms were introduced by [20].
Definition 2.5. A function a : R" — C is an H}-atom associated with a ball
B(xg,r) if the following properties hold:
(i) suppa C B(zg,r) with r < 4/m(z, p),
(ii) [lallc < [B(wo,7)|™",
(iil) if » < 1/m(zo, p), then [a(x)dz = 0.

Wu and Yan [20] obtained the following atomic decomposition for H}(R™).

Theorem 2.6 ([20, Theorem 1.2]). Let pu be a nonnegative Radon measure in R",
n > 3. Assume that pu satisfies (1.1) and (1.2) for some § > 0. Then f € H:(R")
if and only if f can be written as f = Zj A\ja;j, where a; are Hp-atoms and
> [Aj] < oo. Moreover, there exists a constant C' > 0 such that

O flly < mf{ D" Ml 5 £ =D N} < Cllflly,
J J

where the infimum is taken over all atomic decompositions of f into H}-atoms.

As the dual of H}(R™), the BMO-type space BMO,(R") was introduced by Wu
and Yan [20]. Let f be a locally integrable function on R, and let B = B(x,r)
be a ball. Denote by fp the mean of f on B; that is, fg =: |B|™" [, f(y) dy. Let

0, r>m(z,pu)t

Definition 2.7. Let f be a locally integrable function on R™. We say that f €
BMO,(R™) if

o =< sup oz | |7 = (8.1 dy < o

where the supremum is taken over all cubes with edges parallel to the axis.

Corollary 2.8. [t is easy to see that L=(R") C BMO,(R") ¢ BMO(R") and
| fllemo < ¢l fllBmo,- A simple deduction gives

1 1/
S%p(g/jglf(y)—f(ﬂu)!pd@ " < || fllsmo,-

Given a ball B, denote by B* the ball with the same center and twice the
radius. We obtain the following covering lemma from [20, Lemmas 2.1, 2.7].
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Proposition 2.9. There exists a sequence of points {xy}32, in R™ such that the
family of critical balls B = {By}2, defined by By = {z : |v — x| < 1/m(xk, p)}
satisfy the following.
(i) We have |J, Br, = R™.
(ii) There exists N = N(p) such that card {j : B;* N By* # @} < N for all
k > 1. Moreover, we have
|B(x,R)| < Y |Bl <c|B(z, R),
B;JTB(I,R)#@
where ¢ = ¢(6) and R > m(x, )~ .

The following lemma can be easily deduced from the proofs of [20, Theorem 1.2]
and [4, Theorem 4].

Lemma 2.10. The correspondence
BMO, > f — ®; € (H})*
1s a linear isomorphism of Banach spaces.

Similar to [4], the following lemma is also valid for the case of the generalized
Schrodinger operator.

Lemma 2.11. There exists ¢ > 0 such that, for all f € BMO, and B = B(x,r)
with r < m(z, pn)~', we have

—1
| far| < (1 +log(rm(z, 1) )| fllemo,-
The following result is well known.

Lemma 2.12 ([16, p. 162]). Let F(-,-) and G(-,-) be two measurable functions
on R satisfying

7(P)(a) = sup (7 [ w [ 1P ) e 1e@)

_ Gl PN & pre),
() t

where r(B) denotes the radius of B and I'(x) = {(y,t) € R : |y —t| < t}. Then
there is a universal ¢ > 0 so that

| P06/ %2 < [ @0 o < |EF) 106,

Lastly, we give a technical lemma.
Lemma 2.13. Let S(-,-) be a function satisfying for arbitrary N, N’,

and

n —N’ -N
S(,y)| < Ot (L4 |z —yl/t) (L +tm(x, p) +tm(y, i)
Then there is Cy, . > 0 such that, for every H}-atom a supported on B(yo,T),

_sup‘/ (z,y)a dy’ Cyor (14 |2]) D)y e R™

t>0
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Proof. The case N = N’ has been proved in [4, Lemma 7|. Without loss of
generality, we assume that r < 2m(yo, ) ~*. We consider two cases.

Case 1: x € B(yo,2r). For this case, |x — yo| < 2r < 4m(yo, ). We have

[ S| slel [ Gap o Sl @1

Note that 1+ |z| < 1+ |yo| + 2r. We apply (2.4) to get

Maa(z) S ellalloo (1 + gol + 2r)" T (1 + |2]) " = Oy (14 J2]) 7Y

Case 2: © ¢ B(yo,2r). Then for y € B(yo,2r), we have |z — y| ~ |z — y0] and
m(yo, )t ~ m(y, )"t We divide the proof into the following two situations.
For simplicity, let

n -N -N
A=t (1+tm(yo, ) (14 |& —yol/t)
Case I: t > |x — yo|. Let N' = N. Then

n -N N _ e
ASt(T+tm(yo, ) (Je—wol/t) " Smlyo, )V — ol ™.
Case II: t < |x — yo|. Let N' = N + n. Then

—n -N —N-n —_ (n
A (T4 tmyo, 1) (lz = wol /)" S mlyo, 1)V — ol O+,
Thus, we obtain that, for arbitrary IV,
—n n+N —-N
[ Stat)d| S lalst™ (1 ke = ol )" (1 4t )

= m(yo, ). (2.5)

It is easy to see that [(1 + |z|)/|x — yo|] < (1/27 + |yo|/2r + 1). Taking N =1 in
(2.5), we can get

§|$—yo

ntt m(yo, ) ~(n+1)
MSG/(ZC) 5 (1/27“"“3/0’/27“—1—1) W = Cyoﬂa(l‘i‘ |.flf’) . ]
2.2. Regularity properties of semigroups. We begin with some basic prop-
erties of the kernels K~ (-,-). By the Feynman-Kac formula, it is well known that
the kernel K£(-,-) satisfies the following estimates:

0< KEF(z,y) < hy(z —y) = (47Tt>fn/2efley\2/4t.

Denote by I',,(+, -) the fundamental solution of —A + . Shen [13] showed that T,
satisfies the following optimal upper and lower bounds.

Proposition 2.14 ([13, Theorem 0.8]). Let u be a nonnegative Radon measure
in R",n > 3. Assume that p satisfies the conditions (1.1) and (1.2) for some

0 > 0. Then
ce—e2d(z.y.n) Cle—c1d(@y,1)
—y <hulzy) € —=-,
|z —y[" |z —y|"

where £1, €5, C, ¢ are positive constants depending only onn and constants Cy, Cy, 6

in (1.1) and (1.2).
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From the symmetry of T',, we can see that the kernel Kf(-,-) is symmetric.
The following proposition can be deduced from (2.3), [4, Theorem 1.1], and the
symmetry of KF(-,-). (We refer the reader to [20, (1.6)] and [20, Lemma 3.7] for
the details.)

Proposition 2.15.

(i) For every M, there is a constant Cy such that

Cy e—clz—yl?/t
0< K- z,y) < .
) S G [+ Vim(z, pw) + Vim(y, p)M
(ii) For every 0 < ¢' < 09 = min{a, 9, v}, there exists a constant C' such that
for every M > 0 there exists a constant C > 0 such that for |h| < v/t we
have

|Kf(x+h,y) — Kf(z,y)| < C (|h|)6/ 1 e vl
AT T RARYNS T SR i) + v m(g, m]

Let fok(-, -) denote the integral kernel of Qf:k defined in (1.3); that is,

dkll

KS
Qry(z,y) = t%w (z,y).

Following the method of [20, Lemma 3.8], we can obtain the following results by
Proposition 2.15.

s=t2

Proposition 2.16. The kernel ka(-, -) satisfies the following estimates.
(i) For M > 0, there exists a constant Cpy > 0 such that

|Qtx(a,y)| < Cart e o W22 4ty ) + tm(y, )] M
(i) Let 0 < ¢ < min{1,0}. For any M > 0, there exists a constant Cpy > 0
such that for all |h] < V/t,

RN e le—ul?/2?
|Qtk(z + hyy) — Qi (a,y)| < Ot (%) 1+ tm(, p) + tm(y, )M

(iii) For any N > 0, there exists a constant Cpy > 0 such that

Cur
1+ tm(x, p)|M

‘ s Qrr(z,y) dy‘ < (tm(z, )’

Let {e_t\/z}t>0 be the Poisson semigroup generated by —v/L. Denote by P~(-, -)

the integral kernel of e~*VZ, Wu and Yan [20] proved that the kernel PE(-,)
satisfies the following estimate.

Proposition 2.17 ([20, Proposition 3.2]). Let {¢ "V£},5q be the Poisson semi-
group generated by —/L. Let PE(xz,y) be the integral kernel of e VL. We have

Cut
t2 + dlx —y[?

| PE(z,y)| < ( I (1+ tm(z, u))fM(l + tm(y, u))fM
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By functional calculus and Proposition 2.15(ii), we can prove a regularity esti-
mate of the kernel P (-,-). We omit the proof and refer the reader to [7, Propo-
sition 3.5].

Proposition 2.18. For every 0 < ¢’ < 6y = min{0,d} there ezists a constant C
such that for every N > 0 there ezists a constant C' > 0 such that for |h| <t we
have
Cut(|l/t)”
@+ e — gy
For k € Z*, let Df; be the family of operators defined by (1.3). The kernels of
the family {Df, };50 are defined as

|PE(,y+h)=Pf(z,y)| < [L+tm(e, )] [1+tm(y, )]

oF
DEy () =t PE(e, ). (26)

With the help of Propositions 2.17 and 2.18, by imitating the procedure of |7,
Proposition 3.9], we can obtain the following proposition for the kernel Dt{:k(-, ).
Proposition 2.19. For k € Z*, the kernel Df;(-,-) defined as in (2.6) satisfies
the following estimates.

(i) For every M > 0 there ezists a constant Cyy > 0 such that
Cut 1
1 Jo =y [+ i, ) + by, )]
(ii) For every 0 < ¢ < min{l,d} and every M > 0 there exists a constant
Car > 0 such that for all |h| < V1,
Cu([hl/t)"t 1
(2 + |z — y[P) D2 1+ tm(z, ) + tm(y, p)]M
(ili) For every M >0 and k even there exists a constant Cypy > 0 such that

Cu(tm(z, u))
[1+tm(y, p)M

3. Carleson measure characterization associated with
the heat semigroup

| Di(r )] < ¢

}Dt, (z +h,y) — Dtk(x Y) ’ <

‘ Dtﬁk(x Y dy‘
Rn

3.1. Reproducing formula generated by the heat kernel. Similar to [4],
in this section, we first give a reproducing formula associated with {Q;} in the
sense of L?. For u =V € B, and k = 1, our result goes back to [4, Lemma 3].
For k € 7Z,, define the Littlewood-Paley g-function associated with the heat

semigroup as
d
)@ = ([ tr@l )"

Lemma 3.1. For all f € L*(R"), we have ||gg .(f)|l2 = \/ig||f||2 Moreover,

f(x)=8 lim (ka)Qf(x)% in L*(R™). (3.1)

e—0,N—o0 e
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Proof. The proof of this lemma is similar to that of [4, Lemma 3]. By the spectral
theorem, we can write the operator T/ in the form

TC — —tL — > _t/\dEA ’
Lf—etey /Oe Nf

where {E(\)} is a resolution of the identity (see [15, Section 3.3, p. 74]). Hence,
dTF
t
dt
Hence, for all f € L*(R"), the self-adjointness of @y implies that

loE T2 = / / Q@)
=[] L) )Y

o o2y At 1
=[] e a0 = 12
0 0

For (3.1), we only need to prove that, for every pair of sequences ({n;},{e})
satisfying n; * oo and ¢ N\ 0,

—tLTFf = — / the M dE(N)f.
0

Ni+m €l

lim (Qf,ff% = lim (ka)Qf% =0 Vm>1 (3.2)

l—o00 —00
ny El4+m

If (3.2) holds, then we can find h € L*(R") such that lim; . [ (Q7)* fF
Using a polarized version of the first part, we obtain that for g € L2(R”)

(o) = im [ (QFL.QEDT = [ (QESQENT = 51100

0

which implies that h = % f. To prove (3.2), we apply functional calculus to get

tm dt (|2 oo [T o2y dt |2
H/ (ka)2f7H S/O ‘/ t4k>\2k6 2t )\7‘ dEﬁf()\).
ng n

Computing the integral inside, one is led to the estimate

2k—1

0 1 k=1 o o k=11 2,

/0 [2 2j+1(2k—j)!(nl/\) g } P dEg(N),  asm — oo,
]:

which by dominated convergence tends to zero. Because o > 0 for almost every z,
(Lf, f) > (uf, f) >0 (unless f = 0). This means that zero is not an eigenvalue
of £. We can use a similar procedure to deal with the limit &, — 0. This completes
the proof of Lemma 3.1. |

Define the area function associated with the heat semigroup as

s = ([ [ lerwl)" eew
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Lemma 3.2. Let f be a finite linear combination of H}-atoms. There exists ¢ > 0
such that ||Sy(f)llcr < cll f]lm2-

Proof. By Theorem 2.6, it is enough to consider sums of atoms associated to
balls B(zg,r) with r < m(xg, 1) . Let a be an Hj-atom with the support B =
B(xg,r). Then we can apply Lemma 3.1 to deduce that

dy dt
Istv@l s [ [] 106 e o057 do
=+

dy dt 1
S [ QAP 5 )} S glalie
R+

Thus, using Holder’s inequality, we have

1/2

S,ﬁka(x) dr < ’Bgr|1/2( Sf;ka(x)2 dx)
BST

1 1/2
5|B|1/2||a||L2:|BI1/2(/ TBap®) =t
(zo,r) 3

Bs

where in the last step we have used the fact that ||a||e < |B(zg, 7)™

Next we prove that the integral

I / S, (a)(x) dx
|lx—zo|>87 7

is bounded for all H}-atoms a uniformly. We divide the proof into two cases.
Case 1: 7 < m(xg, u)~'. By the cancelation condition of a, we have

Shra(z) S Ti(z) + Ty(x),

|JS :t0|/2 Qdydt 1/2
/ A yl<t / Qi #) = @il w0 ||B|) t"+1]
°° 2dy dt71/2
= Qfily.2) — Qfily. @ ) } .
[/lx—xovz /x—y|<t(/3| ol LR |IBI gt

For T}, if 2’ € B, then |y — /| ~ |y — xo| ~ |z — x| and |2" — zo| < |y — x| /4.
Applying Proposition 2.16(ii), we obtain the following estimate:

/lx xO/Q/ / !13 - xo’)‘;/ | B|™da’ ]2dydt}1/2
lz—y|<t tn (1 + ’y — ;L'Ol/t)(n—i-l) fn+1
t

where

and

|z—0]/2 2(n+1 1/2 &
<[/ O () e s e
~ 0 t |$—ZE0| $2n+1 ~ |l‘—$0|”+5
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For Ty, we can see that |2/ — xo| < r < |z —x0|/2 < t for 2’ € B. Similar to
the arguments of 7}, we can utilize Proposition 2.16(ii) again to get

/ / / |2’ — x0|% da’ )Qdydt}l/2
\x wol/2 Jz—yl<t B et B
2 d

25" 1/2 &
le—mo/2 \ T 4 |7 — @00

Then integrating Sf,(a) over (Bs,)° gives

kaax dr < Ty(x) + To(z)] d
A$0>8r ’ () / |: <)+ ()}

|e—xzo|>8r

7’6/
< / T =1
~Y 5/ .
|x—zo|>87 ‘LE’ - xo‘nJr

Case 2: m(zo, u)~1 < r < dm(zg, p) L. Similar to Case 1 above, we divide the
integral in ¢ > 0 defining Sy, a into three parts: Sf (a)(x) < T} (2)+T5(x)+T5(x),

where
- [r/2 2 dy dt11/2
nw=[[ [ ([ ettareea) ]
- lz—y|<t “JR™ ’ t
T’( ) /z ;col/4/ Q ( ) ( ’)d ,>2dydt}1/2
T)=: y, 2 )g(z') dx ,
? |z— y|<t R" bk trtl

: 2 dy dt71/2
nw = [ [ ([ et a) 2T
L (=0l /4 J Jo—y|<t JR7 3

For T7, it is easy to see that |z’ — y| «~ |x — z¢|. Using Proposition 2.16(i), we get

r [T ly — 2’|\ ~(n+1) da’ \ 2 dy dt71/2
T!(2) < / / (/ f"(1+ Y ) ) ]
' - |lz—y|<t t |B| gt
< / / t_2” |x - x[)]) 2(n+1) dy dt} 1/2
~ fe—yl<t t gt

< / t_2"< t )2(n+1 dt}l/2 < r ‘
~ Lo |z — o] t |z — x| tT

1

1

For T3, note that the fact |2’ —y| «~ |z — zo| implies m(2, )" «~ m(zg, ) =" 1.

Applying Proposition 2.16(i), we obtain

/'x m°|/4/ (/ (1 + |z — xo/t) M+ dx’)Qdy dt} 1/2
le—y|<t \J B (1 +tm(xo, )™ |B|/

- [/Im o] t_2”< t >2(n+M+1)< 1 >2Mﬂ}1/2 < rM ‘

~ r/2 |Z’ - .1'0‘ tm(.ﬁli‘g, M) 4 ~ ’Q? - xO’n+M
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For T3, a direct computation gives

_ _vdx'\2dy dt1/2
7" (1 + tm(zg, 1) —) ]
/|m xo/4/x yl<t /B| ( ) |BI/ it
1

2M 1/2 M
< [/ t’Q”( ) dt] / < r _
lx—zo|/4 tm(;U(), M) t |':C - 'TO‘”JF

The estimates for 17,7 = 1,2, 3, indicate that

I< /| @)+ B + B

TM
<[ sws
|x—x0|>8" |£L‘ - l‘0|

This completes the proof of Lemma 3.2. 0

3.2. Characterization associated with e**. In this section, we establish the
Carleson measure characterization via the operator family {ka} Precisely, we
have the following.

Theorem 3.3. Suppose that p satisfies (1.1) and (1.2) for some 6 > 0. Let dvy,
be the measure defined by (1.4).

(1) If f € BMO.(R™), then dvpy is a Carleson measure.
(2) Conversely, if f € L*((1+ |z|)~™*Y dx) and dvyy, is a Carleson measure,
then f € BMO,(R™).

Moreover, in either case there exists C' > 0 such that

1
Gl B0, < ldvalle < Cllfllsuo,

Proof. Because of Proposition 2.16 and the integrability of (1+ |y|)™" 7! f(y)], we
can get that

Qﬁkf(l") = Qtﬁ,k(% y)f(y)dy

R"
is a well-defined absolutely convergent integral for all (z,t) € R Fix a ball
B = B(xg, 7). We wish to show that

r odx d 9
51 | [1eGr@l S < el o, (33)

We split the function f into three parts:
f = (f - fB2'r)XBQ'r + (f - fB27‘)X(B27‘)C + fBQT = fl + f2 + fB2T'

This notation corresponds, respectively, to the local, global, and constant parts.
For f;, using Lemma 3.1, we have

|B|//|thf1 detdt |B|// |th fi)(z \dm

2
S r LB e A S 1o
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where we have used Corollary 2.8 in the last step. Next we estimate |Qf; f2(2)].
Let © € B = B(xg,7) and t < r. Then we have

. 1 e~ lz—yl?/t?
RERECUES /R P (o) + (g, a7 2@
t
5/ . |f(y) = [, Wdy (3.4)

2

2k+1, - fBri|
y—zo|~2Fr

<; ok n+1/| Hf y>_f32k+1r

+ o fBy, = [ ] dy

= t
S =D 27 [l fllemo + Kl fllsuo) S o
k=1

=S|~

Thus, integrating over B x (0,7), we obtain that
1 " zdx dt

It remains to estimate the constant term fp, . At ﬁrst, we assume that r <

m(xo,,u)_l For this case, it follows from [13, Proposition 1.8] that m(z,u)™" ~

m(a:o, ~!forz € B. By Lemma 2.11 and Proposition 2.16(iii), we have

Pt _ |fsal? // e dt

< o 2 (rmao, 1)
< 1 llswo (1 4 log (rm(zo, 1)) ) (rm(wo, 1) ™
S llemog -

Then we deal with the case r > m(xg, 1) ~'. By Proposition 2.9, we can choose
a finite family of critical balls {By} such that B C UBy and ) |Bx| < |B|. By
Proposition 2.16(iii) and the fact that |fz,,| < ||fllBmo,, We obtain

odx dt ‘fBgr‘Q// . Sdx dt
’B‘/ /‘th fBQ'r ‘ n - ’B‘ ; B‘Qt’k(x’y)dy} ;

| fllBMmO
=g et BY.
k

where

dz dt
By = fl/m(ﬂﬁk#) ka [+rm(zy,p)]2M=25 ¢ °

{Ak 1/m (wg,p) ka(tm( ”u))Q(Sdzdt’

A direct computation gives

1/m(zk,um) t2571 dx dt
asis) | 28 < g
0 m(mk, lj’) t
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)26—2M
BkN/ / |Bk|/ it < |Byl.
/m - u Bk tm Ik ,LL 2M 2(5 /m - u t?M 20+1

The arguments above imply that (3.3) holds. Thus we have ||vp,|lc < oco. This
establishes Theorem 3.3(i).
Now we prove (ii). Fix f € L'((1 + |z|)™ ! dz) such that

dvp(z,t) =: }kaf(x)Pdm dt

is a Carleson measure. We want to prove that such an f belongs to BMO,(R™).
By Lemma 2.10, it suffices to show that the linear functional

H.>a— ®s(a) = - f(x)a(x)dx

V(x,t) € RUH!

which is defined at least over finite linear combinations of H}-atoms, satisfies the
estimate

1/2
|2(@)] < ellvnlle*llall g
For this purpose, let

{F(x,t) — Q5 f(x), (z,t) € RT,
G(z,t) = fka( ), (z,t) e RT.

We only need to prove the following identity:

[ ea@ae= [ Penemo

3 (3.5)
Note that (3.5) is clearly valid when f,a € L*(R™). Hence we should justify the
convergence of the integrals in the case when f € L'((1 + |z])~("*V dx) and a is
an H }-atom.

If (3.5) holds, then, noting that ||unillc = || Z(F)||?«, we can deduce from
Lemma 2.12 that

)8/ f dx‘ < HI ||L°°Hg ||L1 < ||th|’1/2||g(G>HLl‘

On the other hand, it is easy to see that G(G) = Sg,(a). It follows from Lemma 3.2
that |G(G)[|lz < Clla|zy and

5 | S@a@)da| < Clunaldlaluy.
R
which implies that f is a bounded linear functional on H}:(R™).

Now we begin to prove (3.5). By Lemmas 2.12 and 3.2 and the dominated
convergence theorem, we can deduce that the following integral is absolutely
convergent and satisfies

N
V= FlanGm % = i QL f(:c)nga(x)dI di
Rn

R:i+1 t e=0,N—=oo [_
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For each t > 0, using Fubini’s theorem, we obtain

[ Qi@ o= [ ([ Qfite.)r) dy)Qala) da

o\ g
s F)(Qry)?aly) dy.
Then we get
N
— 1d
ve_tm [ [] fe@araw )T

dt} dy. (3.6)

N
_ L2
R I AR
By Lemma 2.13 and the kernel decay |Q7,(z,y)| <t (1 + |z —y[/t)™", we can
apply the hypothesis f € L*((1+|z|)~"+) dz) to verify the absolute integrability
in these steps.

Finally, to complete the proof, we also need to prove the following estimate:

sup
e,N>0

N
/ Q) aly )<Cyor(1+| IR )y e R (3.7)

Denote by W, (-, -) the integral kernel of the operator [*(Qf,)?%. By a simple
yet somewhat complicated calculus, we have

2k—1

o0 dt 1 /1\2-1= (2k —1)!
L£\2%Y E : L _
/5 @615 =3(3) 2 gk — )1 ek (2% =)

which indicates that the kernel W, x(-, -) satisfies the same properties as the ker-
nels T/, (+,-) and Qf,(-,-). This means that W_(-,-) satisfies the assumption of
Lemma 2.13. Note that

> dt
[ @aln) T | = su
€ e>0

Wek(:c y)a dy‘

We have
o dt
’/ th a(y ‘/ th ay __/ (Qtﬁ,k)Za(y)7
dt
‘ W (z,y)aly) dy — WNk(iU y)aly)— /
< sup / Ws,k(x,y)a(y)dy + sup Wi i(z,y)a dy’
£>0 n N>0 ! Jrn

It follows from Lemma 2.13 that (3.7) holds. Indeed, (3.7) allows passing to the
limit inside the integral in (3.6). Combining Lemma 3.1, we have

=5 | fwadsay

This completes the proof of Theorem 3.3. OJ
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4. Carleson measure characterization associated with
the Poisson semigroup

4.1. Reproducing formula generated by the Poisson kernel. For k € Z,,
define the Littlewood—Paley g-function associated with the Poisson semigroup as

N = ([ Igs@P) "

t
Lemma 4.1. For all f € L*(R"), we have ||g5(f)|l2 = \/ingHQ. Moreover,

f(z) =8 lim (ka)Qf(x)% in L*(R™). (4.1)

e—0,N—o0 e

Proof. Similar to Lemma 3.1, let {E(\)} denote a resolution of the identity. By
the spectral theorem, we have

d o
tae_tﬁ f=— / VeV AE() £,
0

For all f € L?(R"), the self-adjointness of ka implies that
dk —tVL

||g§,k(f)H§=/ooo<t2k( Ztk >2f’f>%

00 ) 1
=[] e a0 = 518
0 t ’ 8

0

Now we prove (4.1). Let {(n;, &)} be an arbitrary pair of sequences such that
n; /oo and g; \, 0. Similar to Lemma 3.1, we only need to verify
niym dt €t dt
lim (ka)Qf? = lim (ka)2f7 =0 Vm>1

=00 =0
ny El4+m

In fact, we use functional calculus again such that

Ni+m dt 112 o0 N+m dt 12
H / (D) f~ || < /0 ’ / t%/\kefztﬁﬂ dEg;(A).
ny ny
Computing the integral inside one is led to the estimate
Qk; 1
o (2k —1)! - (2k
/ Z 9 2]{7 _ j l\/Z)Qk_j + <QT)] _2nl\/>dEf f( ) as n; — oo,

which tends to zero by the dominated convergence theorem. The rest of the proof
is similar to that of Lemma 3.1. We omit the details. 0

For k € Z., the area function associated with the Poisson semigroup is defined

as
Qdydt n
SEL(f // IDE, Ith) . zeRrn
|le—y|<t

Lemma 4.2. Let f be a finite linear combination of H}-atoms. There exists ¢ > 0
such that |SE(f)]|cr < cll fllmz -
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Proof. Fix an H}-atom a which is supported on B = B(xg,r). We have

2 2 dy dt
Hsﬁ,k(a)Hm(Rn) S /Rn [/IRTI |Dt wa(y )| Xr(z)(y,t)tnT] dx
dy dt 1

S [ PP T = ol < gl

where in the last step we have used Lemma 4.1. Holder’s inequality indicates that

1/2
[ st@@drsiB ([ Sfa)e? i)
|x—x0|<8" |x—x0|<8r
S 1B a2 S 1.

Similar to Lemma 3.2, we will prove that the integral

I = / SE.(a)(x) dx
|x—xz0|>87 7

is bounded uniformly. For this purpose, we divide the proof into two cases.
Case I: v < m(xo, pv). By the cancelation property of a, we have

Spa(a)(z) < Si(x) + Sx(w),

|z—z0|/2 da'\2dy dt1/2
DE (y,2') — D (y, x ) }
[/0 /|z—y|<t </B } t7k( tk( 0)‘ |B|/ trtl

AL e
ya nyO .
le—aol/2 J |r—y|<t b Dik |B|/ tnt!

For S, note that if 2/ € B, then |y — 2| ~ |y — xo| ~ |x — x| and |z' — x| <
ly — xo|/4. Applying Proposition 2.19(ii), we have

/x :1:0|/2/ / |fL’ —$0|) t|B|*1d;p’ >2dydti|1/2
lz—y|<t t (12 + |y_x0‘2)(n+1)/2 pr

- [/x ol /2 <_> t_2”< t > (n+1) dt] 1/2 rd )
~ L1/ t |z — o t S |z — xo|nto

For Sy, it is easy to see that |2’ — xo| < r < |z —x¢|/2 < t. Proposition 2.19 gives

TN
|lz—z0|/2 J |z—y|<t t |B| $n+1
Qndt

26 o'
[/ <_> a
e—xol/2 N T
Finally, we obtain

6/
,
SE(a)(x) dr < / ——dr < 1.
/|r—a:0|>8r r |z—x0|>8r ’33 - xo’n+5

where

and

N

1/2 r
?] |£If —.To‘n+6/.
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Case 2: m(xo,pn)~! < r < 4dm(x, p)~!. For this case, we divide the integral

defining SF,a into three parts: S5, (a)(z) S Sj(x) + Sy(x) 4+ Sh(x), where

/2 2dy dt1/2
= [ [ (L pawanewra) G

|z—xo|/4 2dy dt11/2
c / n a0\ Y
/ /x_ym( . Dt,k(y,w)g(x)dx) th] :

o 2dy dtq1/2
= [ ([ v ar) S
|lx—x0|/4 J |z—y|<t “JR™ t
For S}, we have |2’ — y| «~ |z — x|. Using Proposition 2.19(i), we get
S(2) < / / / t dx’)Qdy dt] 1/2
l’ — —
1 o yl<t 2 + |y l|2)(n+1)/2 ’B| {n+l
< /r/2/ - 2n |x _ 1;0|> —2(n+1) dyy dlt] 1/2
ja—yl<t e

< / t_2n< t ) (n+1) dt:| 1/2 r ‘
~ U |z — o A |z — @o|"F!
1

For S, because |z' — y| «~ |z — x¢/, it follows from Lemma 2.1 that m(z', u)~"
m(xg, p)~! «~ r. Applying Proposition 2.19(i), we obtain

/z Iol/‘*/ / (1 + tm(zo, pn)) ™M dx’)2dydt]1/2
o~ y|<t 2+ [y — a/[?)mt 02 |B| ) gt
|z—ao] 2n+M+1 1/2 M
s{/ ) )
r/2 |z — o (tm(zo, p) )M ¢ @ — @[+

For S%, similarly, we have

/ / / 1+ tm(zo, u)] ™™ d:v’)Qdydt]l/Z
a—zol/a Jla—yi<e B (7 + [y — 2/ P) D2 [B]) gt

[/ 1 dt]1/2< rM
™ U jalga (1 + |y—$’\/t) (4D (tm(xo, p))?M ¢ ™ | — @[ M

and

Thus we integrate S5, (a) over (Bg,)° to obtain

TM

s s@rs@eselas [ —sars
|x—xzo|>8r |

T—x0|>87 |$ - xo‘n+M

This completes the proof of Lemma 4.2. O
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4.2. Characterization associated with e*VZ,

Theorem 4.3. Let k € Z. . Suppose that ju satisfies (1.1) and (1.2) for allz € R",
0 <r < R, where B(x,r) denotes the (open) ball centered at x with radius r. For
some 6 > 0, let dvpy, be the measure defined by (1.5).

(1) If f € BMO.(R™), then dvpy, is a Carleson measure.
(2) Conversely, if f € L*((1+ |z|)~"*V dx) and dvpy, is a Carleson measure,
then f € BMO,(R™).

Moreover, in either case there exists C > 0 such that

1
Gl Eno, < lldverlle < Clllzmo,

Proof. We first prove (i). From Proposition 2.9 and the integrability of
(1+ Jy)™" Y f(y)|, we know that

D£2k: (z) = Dnyk;(xv y)f(y)dy

R”

is a well-defined absolutely convergent integral for all (x,t) € R"}fl. Fix a ball
B = B(x, 7). We wish to show that

L[ odx dt
E/o /B ‘Dé%f(x)l n = CH]CH%MO[ (4.2)

To do this, we split f into three parts:
f = (f - fB2r)XB2'r + (f - fBzr-)X(B%)C + fB* = fl + f2 + fBzr-'

For fi, using Lemma 4.1 and Corollary 2.8, we have

2_da:dt 2dazdt
|B|/ /‘Dt%fl ; |B\// |Dt2k
S E/B 95 1) de < EHJ'HH% < I f 1o, -

For f,, similar to (3.4), we can get

t =k +1 t
|Dt 2k (x)’ N ;Z ok | fllBMo S ;HfHBMO»
k=1

which gives

odx dt "t dt
o [ [ 1@ < [ (i) S < 1o,

Now we deal with the term fp, . At first, we assume that r < m(zg, ). It
follows from Proposition 2.1 that m(z, )™ ~ m(zg,u)~* for x € B. We can
make use of Lemma 2.11 and Proposition 2.19(iii) to get

drdt _ |fp,,|? zgdxdt
. D£ 2 < 27
5 [ IPEatrn @ < et :

S | fba (rm(xo, )"
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< s, (1 + log (rm(zo, 1)) ™) (rm(o, 1))

< I fllEwo, -

Finally, suppose that r > m(xo, #)"'. We choose from Proposition 2.9 a finite
family of critical balls {By} such that B C |J By and ) |By| < |B|. By Proposi-
tion 2.19(ili) and the fact that |f5,.| < ||f||Bmo,, we know that

odx dt f 2T2 zdivdt
|B|/ /‘Dt2k fB2r ‘ 1 = | E” / / ’DtQk CL’ y dy’

f 2
- Mlhsee 57+ ),
k

L/m{@isu) dx dt
Cy 23/ / (tm@mﬂ))% /
0 By

_. /Oo / dx g
| Vm(we) /B, L+ rm (g, p)M-20

1/m(zg,pm) $20-1 dax dt
cesiBl [ 2 < B,
0 m(zg, p)? ¢

where

and

It is easy to get

and

= 1 de di
DS / / s S Bl
1/m(zp,p) J By (tm(xk‘a M) ) t

Thus we have

le‘dt
\Dt on(fB2,) (7)) S emos a7 Z 1Bi| < 1f o, -
|B| | B|

According to the arguments above, (4.2) holds. Thus we have ||vpy|¢c < co. This
establishes Theorem 4.3(i).
Now we prove (ii). Let f € L'((1 + |o|)~*Y dx) such that

odx dt

dvp(z,t) |Dt ok )‘

is a Carleson measure. We want to prove that f € BMO,(R"). By Lemma 2.10,
it suffices to show that the linear functional

H}>a— &f(a) = - f(z)a(z) dx

which is defined at least over finite linear combinations of H}-atoms, satisfies the
estimate

|4 (a)| < cllvpalle”llall .
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For this purpose, let

{F(m ) = DLy f(x), (x,1) € RTH,
G(z,t) = ngka(x) (z,t) € R

We only need to prove the following identity:

1

5 [ faje )d:c—/RTI Fla. )G ) =

(4.3)

Note that (4.3) is clearly valid when f,a € L?(R"). Hence we should justify the
convergence of the integrals in the case when f € L'((1 + |z])~("*V dx) and a is
an H }-atom.

If (4.3) holds, then, noting that ||vpillc = ||Z(F)||?~, we can deduce from
Lemma 2.12 that

L[ ] < [T, 16O, < el 219G,

On the other hand, it is easy to see that G(G)(z) = SEy(a)(x). It follows from
Lemma 4.2 that [|G(G)|rr < Clla||y: and

5 | f@a(e)da| < Cllvpnldllall
Rn
which implies that f is a bounded linear functional on H}(R").

Now we begin to prove (4.3). By Lemmas 2.12, 3.2, and the dominated con-
vergence theorem, we obtain that the following integral is absolutely convergent
and satisfies

————dx dt , N —————dx dt
V= /R L F@ )Gt ; _Hé}}vnm L Dfy, (x)Dt{:%a(g;)T.
+
For each t > 0, using Fubini’s theorem, we obtain
. DtLQk (x) t2ka( )dz = f( )(D t2k) a(y) dy.
Then we get
v—_im [ [[ ro®Erdm ]t
_64)0,1]1,\}1%00 e R t,2k Yy t
N
————dt
_ T L 2
_eaéljr\&oo R"f(y) [/E (Dia)?aly)— ]dy (4.4)

Because f € L'((1 + |z|)~"*V dx), it is easy to check the absolute integra-
bility in these steps by Lemma 2.13 and the fact that [(Dfy,)*(z,y)] < t7" X
(1+ |o —yl/t)™

Finally, we also need to prove the following estimate:

sup
e,N>0

N
(n+1 n
/(Df,%)?a )Y < Cn 0+ 1), yeR @)
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We denote by H.(-,-) the integral kernel of the operator [*(Df,;)? 4 Similar
to Theorem 3.3(ii), we can use a direct calculus to get

4k—1
> dt| 1 3 (4k —1)!
L2 — L —
‘/ (De3) ?‘ % [ P (@ — )1 Deans TR DIE 26]’

which implies that H (-, -) has the same properties for the kernels P5(-,) and
ka(-, -); that is, H. (-, ) satisfies the assumption of Lemma 2.13. Note that

[ @aran] -

<sup‘/ H.(z,y)a dy‘—l—sup

e>0 N>0

[ DEwra)§ - [ kT

Hy i (z,y)aly) dy|.

Rn"

Thus (4.5) holds. Indeed, (4.5) allows passing to the limit inside the integral in
(4.4). Combining Lemma 4.1, we have V = % Jgn f(y)a(y) dy. This completes the
proof of Theorem 4.3. O

Acknowledgments. Li’s work was partially supported by National Natural Sci-
ence Foundation of China (NSFC) grants 11871293 and 11571217, by Shandong
Natural Science Foundation of China grants ZR2017JL0O08 and ZR2016AMO5,
and by Shandong University of Science and Technology Projects grant J15LI15.
Zhao’s work was partially supported by NSFC grant 11471176.

References

1. G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Car-
leson measures and Q,(R™), J. Funct. Anal. 208 (2004), no. 2, 377-422. Zbl 1062.42011.
MR2035030. DOI 10.1016/S0022-1236(03)00181-2. 2

2. X. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat
kernel bounds, J. Amer. Math. Soc. 18 (2005), no. 4, 943-973. Zbl 1078.42013. MR2163867.
DOT 10.1090/50894-0347-05-00496-0. 2

3. X. Duong and L. Yan, New function spaces of BMO type, the John—Nirenberg inequality,
interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), no. 10, 1375-1420.
Zbl 1153.26305. MR2162784. DOI 10.1002/cpa.20080. 2

4. J. Dziubanski, G. Garrigés, T. Martinez, J. L. Torrea, and J. Zienkiewicz, BMO spaces
related to Schridinger operators with potentials satisfying a reverse Holder inequality,
Math. Z. 249 (2005), no. 2, 329-356. Zbl 1136.35018. MR2115447. DOI 10.1007/
$00209-004-0701-9. 2, 4, 7, 8, 9, 10, 11

5. J. Dziubanski and J. Zienkiewicz, Hardy space H' associated to Schrédinger operator with
potential satisfying reverse Holder inequality, Rev. Mat. Iberoam. 15 (1999), no. 2, 279-296.
Zbl 0959.47028. MR1715409. DOI 10.4171/RMI/257

6. C. Fefferman and E. M. Stein, HP spaces of several variables, Acta Math. 129 (1972),
no. 3—4, 137-193. Zbl 0257.46078. MR0447953. DOI 10.1007/BF02392215. 2

7. J. Huang, P. Li, and Y. Liu, Poisson semigroup, area function, and the characterization
of Hardy space associated to degenerate Schrodinger operators, Banach J. Math. Anal. 10
(2016), no. 4, 727-749. 7Zbl 1347.42037. MR3543909. DOI 10.1215/17358787-3649986. 10

8. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl.
Math. 14 (1961), 415-426. 7Zbl 0102.04302. MR0131498. DOI 10.1002/cpa.3160140317. 2


http://www.emis.de/cgi-bin/MATH-item?1062.42011
http://www.ams.org/mathscinet-getitem?mr=2035030
https://doi.org/10.1016/S0022-1236(03)00181-2
http://www.emis.de/cgi-bin/MATH-item?1078.42013
http://www.ams.org/mathscinet-getitem?mr=2163867
https://doi.org/10.1090/S0894-0347-05-00496-0
http://www.emis.de/cgi-bin/MATH-item?1153.26305
http://www.ams.org/mathscinet-getitem?mr=2162784
https://doi.org/10.1002/cpa.20080
http://www.emis.de/cgi-bin/MATH-item?1136.35018
http://www.ams.org/mathscinet-getitem?mr=2115447
https://doi.org/10.1007/s00209-004-0701-9
https://doi.org/10.1007/s00209-004-0701-9
http://www.emis.de/cgi-bin/MATH-item?0959.47028
http://www.ams.org/mathscinet-getitem?mr=1715409
https://doi.org/10.4171/RMI/257
http://www.emis.de/cgi-bin/MATH-item?0257.46078
http://www.ams.org/mathscinet-getitem?mr=0447953
https://doi.org/10.1007/BF02392215
http://www.emis.de/cgi-bin/MATH-item?1347.42037
http://www.ams.org/mathscinet-getitem?mr=3543909
https://doi.org/10.1215/17358787-3649986
http://www.emis.de/cgi-bin/MATH-item?0102.04302
http://www.ams.org/mathscinet-getitem?mr=0131498
https://doi.org/10.1002/cpa.3160140317

CARLESON MEASURES AND BMO-TYPE SPACES 25

9. C. Lin and H. Liu, BMO[(H") spaces and Carleson measures for Schrodinger operators,
Adv. Math. 228 (2011), no. 3, 1631-1688. Zbl 1235.22012. MR2824565. DOI 10.1016/
j-aim.2011.06.024. 2

10. T. Ma, P. R. Stinga, J. L. Torrea, and C. Zhang, Regularity properties of Schréidinger
operators, J. Math. Anal. Appl. 388 (2012), no. 2, 817-837. Zbl 1232.35039. MR2869790.
DOI 10.1016/.jmaa.2011.10.006. 4

11. A. C. Ponce and N. Wilmet, Schriodinger operators involving singular potentials and measure
data, J. Differential Equations 263 (2017), no. 6, 3581-3610. Zbl 1384.35018. MR3659372.
DOI 10.1016/j.jde.2017.04.039. 4

12. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975),
391-405. Zbl 0319.42006. MR0377518. DOI 10.2307/1997184. 2

13. Z. Shen, On fundamental solutions of generalized Schridinger operators, J. Funct. Anal.
167 (1999), no. 2, 521-564. 7Zbl 0936.35051. MR1716207. DOI 10.1006/jfan.1999.3455. 1,
2, 4,8, 15

14. W. S. Smith, BMO(p) and Carleson measures, Trans. Amer. Math. Soc. 287 (1985), no. 1,
107-126. Zbl 0577.46020. MR0766209. DOI 10.2307,/2000400. 2

15. E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood—Paley Theory, Ann. of
Math. Stud. 63, Princeton Univ. Press, Princeton, 1970. Zbl 0193.10502. MR0252961. 11

16. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, 1993. Zbl 0821.42001.
MR1232192. 3, 7

17. R. S. Strichartz, Traces of BMO-Sobolev spaces, Proc. Amer. Math. Soc. 83 (1981), no. 3,
509-513. Zbl 0474.46024. MR0627680. DOI 10.2307/2044107. 2

18. J.-O. Stromberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces,
Indiana Univ. Math. J. 28 (1979), no. 3, 511-544. 7Zbl 0429.46016. MR0529683. DOI
10.1512/iumj.1979.28.28037. 2

19. J.-O. Strémberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381,
Springer, Berlin, 1989. Zbl 0676.42021. MR1011673. DOI 10.1007/BFb0091154. 2

20. L. Wu and L. Yan, Heat kernels, upper bounds and Hardy spaces assoctated to the generalized
Schrédinger operators, J. Funct. Anal. 270 (2016), no. 10, 3709-3749. Zbl 1356.42016.
MR3478871. DOI 10.1016/j.jfa.2015.12.016. 1, 2, 5, 6, 7, 9

21. D. Yang, D. Yang, and Y. Zhou, Localized BMO and BLO spaces on RD-spaces and appli-
cations to Schrodinger operators, Commun. Pure Appl. Anal. 9 (2010), no. 3, 779-812.
Zbl 1188.42008. MR2600463. DOI 10.3934/cpaa.2010.9.779. 2

22. D. Yang, D. Yang, and Y. Zhou, Localized Morrey—Campanato spaces on metric measure
spaces and applications to Schriodinger operators, Nagoya Math. J. 198 (2010), 77-119.
Zbl 1214.46019. MR2666578. DOI 10.1215/00277630-2009-008. 2

SCHOOL OF MATHEMATICS AND STATISTICS, QINGDAO UNIVERSITY, QINGDAO, SHANDONG
266071, PEOPLE’S REPUBLIC OF CHINA.
E-mail address: 11939761870qq. com; pt1li@qdu.edu.cn; zhkzhc@aliyun. com


http://www.emis.de/cgi-bin/MATH-item?1235.22012
http://www.ams.org/mathscinet-getitem?mr=2824565
https://doi.org/10.1016/j.aim.2011.06.024
https://doi.org/10.1016/j.aim.2011.06.024
http://www.emis.de/cgi-bin/MATH-item?1232.35039
http://www.ams.org/mathscinet-getitem?mr=2869790
https://doi.org/10.1016/j.jmaa.2011.10.006
http://www.emis.de/cgi-bin/MATH-item?1384.35018
http://www.ams.org/mathscinet-getitem?mr=3659372
https://doi.org/10.1016/j.jde.2017.04.039
http://www.emis.de/cgi-bin/MATH-item?0319.42006
http://www.ams.org/mathscinet-getitem?mr=0377518
https://doi.org/10.2307/1997184
http://www.emis.de/cgi-bin/MATH-item?0936.35051
http://www.ams.org/mathscinet-getitem?mr=1716207
https://doi.org/10.1006/jfan.1999.3455
http://www.emis.de/cgi-bin/MATH-item?0577.46020
http://www.ams.org/mathscinet-getitem?mr=0766209
https://doi.org/10.2307/2000400
http://www.emis.de/cgi-bin/MATH-item?0193.10502
http://www.ams.org/mathscinet-getitem?mr=0252961
http://www.emis.de/cgi-bin/MATH-item?0821.42001
http://www.ams.org/mathscinet-getitem?mr=1232192
http://www.emis.de/cgi-bin/MATH-item?0474.46024
http://www.ams.org/mathscinet-getitem?mr=0627680
https://doi.org/10.2307/2044107
http://www.emis.de/cgi-bin/MATH-item?0429.46016
http://www.ams.org/mathscinet-getitem?mr=0529683
https://doi.org/10.1512/iumj.1979.28.28037
https://doi.org/10.1512/iumj.1979.28.28037
http://www.emis.de/cgi-bin/MATH-item?0676.42021
http://www.ams.org/mathscinet-getitem?mr=1011673
https://doi.org/10.1007/BFb0091154
http://www.emis.de/cgi-bin/MATH-item?1356.42016
http://www.ams.org/mathscinet-getitem?mr=3478871
https://doi.org/10.1016/j.jfa.2015.12.016
http://www.emis.de/cgi-bin/MATH-item?1188.42008
http://www.ams.org/mathscinet-getitem?mr=2600463
https://doi.org/10.3934/cpaa.2010.9.779
http://www.emis.de/cgi-bin/MATH-item?1214.46019
http://www.ams.org/mathscinet-getitem?mr=2666578
https://doi.org/10.1215/00277630-2009-008
mailto:1193976187@qq.com
mailto:ptli@qdu.edu.cn
mailto:zhkzhc@aliyun.com

	1 Introduction
	2 Preliminaries
	2.1 Notation and function spaces associated with L
	2.2 Regularity properties of semigroups

	3 Carleson measure characterization associated with the heat semigroup
	3.1 Reproducing formula generated by the heat kernel
	3.2 Characterization associated with e-tL

	4 Carleson measure characterization associated with the Poisson semigroup
	4.1 Reproducing formula generated by the Poisson kernel
	4.2 Characterization associated with e-tsqrt(L)

	Acknowledgments
	References
	Author's addresses

