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Let X be a complex Banach space and let B(X ) be the Banach algebra of
all bounded linear operators on X . For a nonempty set M C B(X), let Mz =
{Mz; M € M} denote the orbit of M at vector z € X , and let Mz be its closure.
The reflexive cover of M is set Ref(M) = {T € B(X ); Tz € Mz for every z €
X }. Hence, an operator T is in Ref(M) if and only if, for every x € X and
every € > 0, there exists an operator M, . € M such that |[(T' — M, .)z| < e.
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ABSTRACT. For a set M of operators on a complex Banach space X, the
reflexive cover of M is the set Ref(M) of all those operators T satisfying Tz €
Mz for every z € X . Set M is reflexive if Ref(M) = M. The notion is well
known, especially for Banach algebras or closed spaces of operators, because
it is related to the problem of invariant subspaces. We study reflexivity for
general sets of operators. We are interested in how the reflexive cover behaves
towards basic operations between sets of operators. It is easily seen that the
intersection of an arbitrary family of reflexive sets is reflexive, as well. However
this does not hold for unions, since the union of two reflexive sets of operators
is not necessarily a reflexive set. We give some sufficient conditions under which
the union of reflexive sets is reflexive. We explore how the reflexive cover of
the sum (resp., the product) of two sets is related to the reflexive covers of
summands (resp., factors). We also study the relation between reflexivity and
convexity, with special interest in the question: under which conditions is the
convex hull of a reflexive set reflexive?

1. Introduction
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The pure algebraic version of this concept is the algebraic reflexive cover of M,
the set which is given by Ref,(M) = {T € B(X ); Tz € Mz for every z € X }.
It is obvious that M C Ref,(M) C Ref(M) C B(X). In general, any inclusion
in the previous chain can be proper for a suitable set M; however, note that
Ref, (M) = Ref(M) whenever every orbit Mz (x € X)) is closed.

It is obvious that M; C Ref(M;) C Ref(My) if O # My C My C B(X).
Since, by the definition of the reflexive cover of a nonempty set M C B(X ), we
have Ref(M)z = Mz for every x € X | it follows that Ref(Ref(M)) = Ref(M).
The algebraic reflexive cover has similar properties.

A basic question about a nonempty set M C B(X ) is: how large is its reflex-
ive cover? If Ref(M) = M, then M is considered reflexive, and if Ref(M) =
B(X), then M is considered topologically transitive. Similarly, if Ref,(M) = M,
then M is considered algebraically reflexive, and it is considered transitive if
Ref,(M) = B(X). It is obvious that every reflexive set is algebraically reflexive
and that every transitive set is topologically transitive. Due to technical reasons,
we set Ref(()) = 0 (i.e., we consider the empty set to be reflexive).

The reflexivity of sets with some additional algebraic structure has been studied
by many authors. Sometimes other terminology is used instead of reflexivity. The
most extensive study has been devoted to algebras and linear spaces of operators
because in that case reflexivity is intimately related to the problem of invari-
ant subspaces (see [10, Section 9.2]). The theory had its beginnings in Sarason’s
article [11], where he proved that the weakly closed algebra of operators on a
complex Hilbert space—which is generated by a normal operator, or an analytic
Toeplitz operator, and the identity operator—is reflexive. Loginov and Shulman
[8] extended the notion of reflexivity to linear spaces of operators. Hadwin et
al. [0] studied reflexivity of O(S), the strongly closed semigroup generated by
a nonzero operator S on a complex Hilbert space. An operator is considered
orbit-reflexive if O(S) is reflexive (it has been proved in [6] that many operators
are orbit-reflexive). Grivaux and Roginskaya [5] and, independently, Miiller and
Vrsovsky [9] have shown that there exist operators on a Hilbert space which are
not orbit-reflexive.

The main goal of this paper is to study reflexivity of general sets of operators.
We are interested in the question of how reflexivity is related to some basic
operations between sets of operators. For instance, can the sum, the intersection,
or the union of reflexive sets be considered reflexive sets, as well? Our article is
organized as follows. In Section 2, we present a few examples of reflexive sets and
we prove basic results related to the reflexivity of sums and products of sets of
operators. Section 3 is devoted to the intersections and unions of sets of operators.
It is easily seen that the intersection of an arbitrary collection of reflexive sets is
reflexive, while on the other hand, the union of two reflexive sets is not reflexive in
general. We give some sufficient conditions under which the SOT-closure (strong
operator topology-closure) of the union of special collections of reflexive sets can
be reflexive, as well. Finally, in Section 4, we consider reflexivity of convex sets of
operators, showing that a convex set of operators is reflexive if its polar contains
enough rank 1 operators.
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At the end of this section we introduce our notation. For a complex Banach
space X , we denote by B(X ) the Banach algebra of all bounded operators on X .
The identity operator is denoted by I. The unit ball and the unit sphere of X
are denoted by Bx and Sx , respectively. The topological dual of X is X * and
the pairing between these spaces is given by (z,£) — (z,§), where z € X and
¢ € X *are arbitrary and (x, ) denotes number £(x). For an operator T' € B(X ),
the image is denoted by im(7") and the kernel by ker(T"). More generally, for a
nonempty set M C B(X ), we denote Im(M) = Vprerp im(M), where V means
the closed linear span of a set of vectors, and Ker(M) = (,,c. ker(M). For
e € X and £ € X *, we denote by e ® & the operator which is given by = — (z,{)e
(x € X);if e and £ are nonzero, then this is a bounded rank 1 operator. We denote
the set of all bounded rank 1 operators and operator 0 by J;(X ), and we denote
the linear space of all bounded finite rank operators by F(X ). For nonempty
sets M C B(X ) and A C C, let AM = {AM;\ € A, M € M}. Similarly, for
nonempty sets My, My C B(X ), we denote My My = {M;Ms; My € My, M, €
My} and My + My = {M; + My; My € My, My € My}. If one of the sets is a
singleton, then by the above notation we write that single element instead of the
singleton; for instance, AM = {A\M;\ € A}, M+ N ={M + N; M € M} and
so forth.

2. Examples and basic properties

We begin this section with some simple examples of reflexive sets. The first
example has been presented in [3]. For the sake of completeness, we include here
a simple proof which relies on the following known lemma (see [2]) that will be
used several times throughout this article.

Lemma 2.1. Let X be a complex vector space and let Yq,...,Y, C X be
linear subspaces. If X = Y{U---UY,, then X = Y for at least one index
ke{l,....,n}.

Proof. Towards a contradiction, assume that each Y; (1 < i < n) is a proper
subspace of X . Then for every i € {1,...,n} there exists a vector e; € X \'Y;.
Let (Aj)32; be a sequence of pairwise distinct complex numbers. For each j € N,
let z; = e1 + Ajea + -+ + /\?_16”. Because of X =Y;U---UY,, there exists
an index k such that Yj contains infinitely many vectors from this sequence.
Assume that ji, ..., j, are distinct indices such that x;,,...,z; € Y. Of course,
any linear combination of these vectors is in Yy, as well. For 1 <1 <n,let vy =1
if | = k and let 7, = 0 otherwise. The matrix of the linear system

Nz 4+ N2 =Y (m=0,...,n—1)

is a Vandermonde matrix with nonzero determinant. Hence, the system has a

unique solution (ayq, ..., a,) € C™. It follows that
n—1 n n n—1
€ = Z <Z Oét)\?:> Em+1 = Z at(Z )\?Zem—i-l) = 01Ty +o ATy, ,
m=0 t=1 t=1 m=0

which gives the contradiction e € Y. O
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Proposition 2.2. Every nonempty finite set M C B(X') is reflezive.

Proof. Note first that for a finite set M, every orbit Mx (z € X)) is closed. Hence
Ref(M) = Ref,(M). Suppose that M = {M,..., M,}, and let T" € Ref(M).
Then Tx € {Mx,..., Myx} for every € X . Since Tx = M;x if and only if
x € ker(T' — M;), we have X = ker(T'— M;)U---Uker(T — M,,). Now we apply
Lemma 2.1 to conclude that 7' = M, for some index k € {1,...,n}. O

For nonempty sets U,V C X, let Myy = {M € B(X);MU C V} If
U =V, then we will use the shorter notation My , and in the case when a set is
singleton we will write that vector instead of the set; for instance M, , denotes
the set of all operators M such that Mu = v. It is easily seen that My yv =
Nueu Upey Mup. Note that My v is a semigroup if V. C U . In particular,
every My is a semigroup containing the identity operator.

Proposition 2.3. Let U,V C X be nonempty sets. Then Ref(My v) € M, 7.
IfV s closed, then My v is reflexive.

Proof. Let T € Ref(My v ). For every u € U and ¢ > 0 there exists M, . €
My v such that | Tu — M, u|| < e. Since M, .u € V for all v and ¢, we have
Tu € V. We conclude that Ref(My v ) € M|, v ItV is closed, then the opposite
inclusion holds as well. O

Remark 2.4. Note that Mg,  is the semigroup of all contractions and that Mg,
is the semigroup of all isometries. Hence, by Proposition 2.3, these sets are reflex-
ive.

The following proposition is a simple generalization of a well-known fact that
every l-dimensional space of operators is reflexive.

Proposition 2.5. Let M € B(X) and let A C C be a nonempty set. Then
Ref(AM) = AM. In particular, if M # 0, then AM is a reflexive set if and only
if A is closed.

Proof. It M = 0, then there is nothing to prove. Assume therefore that M = 0.
Let T' € Ref(AM). Since M # 0 there exists € X such that Mx # 0. From
Tx € AMxz = AMzx it follows that there exists A\, € A such that Tz = \,Mz.
Let y € X be arbitrary. If Mx and My are linearly dependent and v € C is
such that My = yMz, then it follows from T(y — yz) € AM(y — vx) = {0}
that Ty = yTx = YA, Mx = A\, My. Suppose now that Mz and My are linearly
independent and let \,, \,1, € A be such that Ty = \,My and T(z + y) =
Aoty M (x+y). It follows from T(z+y) = Ay M (x+y) = Apry M+ Ayyy My and
T(x+y)=Tr+Ty = Mz + My that (Ayiy — \o) Mz + (Nyyy — Ay) My =0,

which gives A\, = A\;4, = A;. Hence we have T' = AM for some A € A. The
opposite inclusion is obvious. O

Proposition 2.5 does not hold if we replace a single operator M by two or more
operators. For instance, if My, M, are distinct operators, then C{M;, M} is the
union of 1-dimensional spaces CM; and CM, which is not necessarily reflexive,
as we see later in Example 3.2.
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There exist nonreflexive linear spaces of dimension 2 or more. For later use we
include an example which is based on the well-known fact that the reflexive cover
of M ={[%"];a,8 € C} is Ref(M) = {[35};05,5,7 € C}. In the example we

will need the following lemma.

Lemma 2.6. Let M C B(X ) be a nonempty set. If T € Ref(M), then im(T') C
Im(M) and Ker(M) C  ker(T). Hence, Im(Ref(M)) = Im(M) and
Ker(Ref(M)) = Ker(M).

We omit a simple proof of the lemma.

Ezxample 2.7. Assume that dim(X ) > 2. Let €1, e5 € Sx be linearly independent,
and let &,& € X * be such that (e;, &) = d;; for 1 < j,k < 2 (the Kronecker’s
delta). Let A C C be a closed set such that 0 € A. We claim that the reflexive
cover of M = {a(e; ® & + e ® &) + fe; ® &;a € A, 5 € C}is Ref(M) =
{ae; ® & + fer ® & + vex ® &y a,v € A, B € C}. If A = {0}, then our claim
follows, by Proposition 2.5. Assume therefore that {0} C A. Since A is a closed set,
every orbit Maz = A((x,&1)er + (x,&)ea) + C(x, &)ey is a closed subset of X .
Hence Ref(M) = Ref,(M). Tt is clear that Im(M) = V{ey, e}, Ker(M) =
ker(&;) Nker(&) and X = Im(M) & Ker(M). It follows, by Lemma 2.6, that
every operator 7' € Ref(M) is a linear combination of rank 1 operators e; @ &
(1 <j,k<2). Let T =161 ® & + Ti2e1 @ & + Torea @ &1 + Taoey ® &, where
7ix € C. Since Te; € Mey, there exists M, = e, (€1 ® & +e3 @ &) + P61 @ &
such that T'e; = 1y1e1 + To1e9 is equal to M., e; = ag, €. It follows that 77 € A
and 19, = 0. Similarly, it follows from Tey € Mey that 79 € A. Hence, every
operator in Ref(M) is of the form as claimed above. On the other hand, let 7" =
1161 ® & + Tioe1 ® &9 + Toses ® & with 111, 700 € A, 75 € C. Since every x € X
can be written as © = (x, & )e; + (x, &) es + xg, where o € Ker(M), we can show
that Tx € Mz. Indeed, if (z,&) =0, let M, = 1y1(e; ® & +es ® &) € M, and if
(,&) # 0, let My =To(e1 @ &1 + €2 @ &) + (111 — Tm)éig + Ti2)er ®@ & € M.
It is easily seen that Tx = M,x. This proves our claim. Hence, set M is not
reflexive. If A = C, then M is a nonreflexive 2-dimensional linear space. This
example also shows that the linear span of a reflexive set of operators is not
necessarily reflexive: if M, M, € B(X ') span a nonreflexive 2-dimensional space,
then {Mj, My} is a reflexive set, by Proposition 2.2, but its linear span is not
reflexive.

We have already mentioned some basic properties of the reflexive cover. Now
we list a few more. We omit the proof of the following proposition since it relies

on a simple fact that Ref(M)x = Mz for every x € X . We use the following

notation: the closure of a set M C B(X ) in (SOT) is denoted by M

Proposition 2.8. Let M C B(X) be a nonempty set. Then

(i) Ref(M) is SOT-closed, which means that M Ref(M) and
——SOT

Ref(M) = Ref(M™);
(i) of M is a bounded set, then Ref(M) is bounded, as well, and
supprep [[M || = suppeperim 17
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In general, Ref(M) is not closed in the weak operator topology (WOT). For
instance, let S be the unilateral shift on ¢%; that is, let S(xg, 21, 70,...) =
(0,29, x1,...). Let M = {S™n > 0}. It is well known and easy to see that 0
is in the WOT-closure of M, and hence it is in the WOT-closure of Ref(M). On
the other hand, since S™ is an isometry for every n > 0 and the set of all isome-
tries is reflexive (see Remark 2.4), each operator T' € Ref(M) is an isometry,
which means that 0 ¢ Ref(M).

Proposition 2.9. Let My, My, M C B(X) be nonempty sets. Then the follow-

ing hold.
SOT

(i) If My + My C M, then Ref(M;) + Ref(M3)  C Ref(M).
(ii) If MyMs C M, then Ref(My) Ref(My) " C Ref(M).

Proof. (i) Assume that 7} € Ref(M;) and that Ty € Ref(My). Let x € X and
e > 0 be arbitrary. Then there exist M; € M; and My € M, such that ||Tix —
Myz|| < 5 and ||Tox — Maz|| < 5. It follows that [|(T1 + T3)z — (M + My)z|| < e.
Hence Ref(M;) + Ref(Ms) C Ref(M). Since, by Proposition 2.8(i), reflexive
cover is SOT-closed, the assertion follows.

(ii) Let My € My and T, € Ref(My) be arbitrary. For z € X and € > 0, there
exists My € My such that ||Thx — Mox|| < e. It follows that || M Tox — My Maz|| <
| Mi||e. Since x and e are arbitrary we conclude that M;T, € Ref(M;Ms) C
Ref(M). Now, let Ty € Ref(M;) and T € Ref(M,) be arbitrary. Again, for
every x € X and every € > 0, there exists M; € M such that ||T}(Tez) —
M,(Trz)|] < e. Since M;T, € Ref(M) we may conclude that T'\7T, €
Ref(Ref(M)) = Ref(M). O

Corollary 2.10. If M C B(X) is a semigroup (resp., a linear space, or an
algebra), then Ref(M) is a semigroup (resp., a linear space, or an algebra).

Proposition 2.11. If M C B(X) is a nonempty set such that dim(V.M) < oo,
then dim(V Ref(M)) < oo.

Proof. Observe first that M C VM implies that Ref(M) C Ref(V.M) and conse-
quently that V Ref(M) C Ref(VM) since Ref(V M) is SOT-closed linear space.
Denote § = VM and assume that it is a finite-dimensional space. Then each
orbit Sz (x € X)) is a finite-dimensional linear subspace of X which means
that it is closed. It follows that Ref(S) = Ref.(S). By [7, Corollary 2.9], we con-
clude that Ref,(S) is finite-dimensional, which gives, by the inclusion above, that
dim(V Ref(M)) < oc. O

In general the sum of two reflexive sets is not reflexive. Again a 2-dimensional
nonreflexive space can serve as an example: it is the sum of any two distinct
1-dimensional subspaces, which are reflexive, by Proposition 2.5.

Proposition 2.12. Let M C B(X) be a nonempty set and let N € B(X ). Then
Ref(M + N) = Ref(M) + N; in particular, M is reflexive if and only if M + N
18 reflexive.

Proof. For each x € X | one has (M+N)x = Mz+ Nz, which gives (M + N)x =
Maz+Nz. Let T € Ref(M). Then (T+N)x = Te+Nz € Mx+Nz = (M + N)x
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for every « € X . Hence '+ N € Ref(M + N). On the other hand, assume that
T € Ref(M + N). Then Tx € (M + N)x = Mz + Nz for every x € X . Hence
(T — N)x € Mz for every x € X . This proves that T — N € Ref(M) and
therefore that T' € Ref(M) 4+ N. O

Next proposition, which can be seen as an extension of Proposition 2.5, shows
that many subsets of a reflexive 2-dimensional linear subspace S C B(X ) are
reflexive.

Proposition 2.13. Let S C B(X) be a reflexive 2-dimensional linear subspace.
For arbitrary My, My € S and nonempty closed sets Ay, Ay C C, the set M =
AN My + Ay My is reflexive.

Proof. If My, M, are linearly dependent, say My = uM; (u € C), then M =
(A1 + pAo) M is reflexive, by Proposition 2.5. Assume therefore that M, M,
are linearly independent. Let 7" € Ref(M). Since M C S and § is reflexive, we
have T' = oy My + ap M, for some oy, 0 € C. We have to show that o; € A,
(7 = 1,2). If there exists € X such that Mz, Mz are linearly independent,
then it follows from Tx € Max that oy Mix + asMsx = M Mix + Ao Moz, for
some A\ € Ay and Ay € Ay, which gives o; = A\; € A; (j = 1,2). Suppose now
that Myz, Msyx are linearly dependent for every = € X . By [4, Theorem 2.3],
there exist a nonzero e € X and linearly independent &,& € X * such that
Mi=e®& and My = e ® &. Hence T = e @ (a1&; + a&s). Let 11,19 € X be
such that (z;,§;) = d;; (1 <14,5 < 2). Since Tx; € Muz;, for j = 1,2, there exist
Aij € Ay (1 <, <2)such that Tz; = (A; My + Aoy M)z (j = 1,2) which gives
a1 = A1 € Ay and oy = \yy € Ay. Hence T' € M. O

In the proof of Proposition 2.13 we used Theorem 2.3 from [4] which gives the
complete description of a pair of locally linearly dependent operators. A similar
characterization for a triple of locally linearly dependent operators is given by [4,
Theorem 2.4]. As mentioned on page 1258 of [4], the problem of finding a similar
characterization for a collection of n > 4 locally linearly dependent operators
seems to become extremely difficult. Because of this it seems that a result similar
to Proposition 2.13, but for S of dimension n > 4, would be hard to prove.

Proposition 2.14. Let A € B(X) be left invertible with a left inverse Al €
B(X), and let B € B(X') be right invertible with a right inverse B" € B(X ). If
N is a nonempty subset of B(X ), then Ref(N') = A'Ref(AN B)B". In particular,
if AN B is reflexive, then N is reflezive.

Proof. Since M = AN'B and N' = AAIMB", we have ARef(N)B C Ref(M) and
A'Ref(M)B" C Ref(N), by Proposition 2.9 (note that singletons are reflexive
sets, by Proposition 2.2). It follows that

Ref(N) = A'(ARef(N)B)B" C A'Ref(M)B" C Ref(N)

which gives Ref(N) = A' Ref(M)B". If M is reflexive, then Ref(N) = AIMB" =
N that is, NV is reflexive. u
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Corollary 2.15. Let M C B(X ) be a nonempty set and let A, B € B(X) be
invertible. Then Ref(AMB) = ARef(M)B. In particular, M is reflexive if and
only if AMB is reflezive.

For a nonempty set M C B(X), let Sgr;(M) ={A4 € B(X ); AM C M} and
Sgr, (M) = {B € B(X ); MB C M}. It is easily seen that Sgr,(M) and Sgr, (M)
are semigroups containing 7. By Corollary 2.10, Ref(Sgr,(M)) and Ref(Sgr, (M))
are semigroups as well. If I € M, then Sgr;(M) C M and Sgr, (M) C M. On
the other hand, M C Sgr,(M) if and only if M is a semigroup if and only if
M C Sgr,(M). Hence, if M is a semigroup containing I, then Sgr;(M) =M =
Sgr,(M). However, in general, these semigroups are not necessarily related with
M through inclusions.

Proposition 2.16. Let M C B(X) be a nonempty set.
(i) If M is reflexive, then semigroups Sgr,(M) and Sgr,(M) are reflexive as
well.
(ii) Operator A € B(X) is in Sgr;(Ref(M)) if and only if AMxz C Mz for
every x € X . Similarly, B € Sgr,(Ref(M)) if and only if MBx C Mx
for every x € X..

Proof. (i) Tt follows from the definition of Sgr,(M) that Sgr,(M)M C M,. By
Proposition 2.9, we have Ref(Sgr;(M)) Ref(M) C Ref(M). Hence, if M is reflex-
ive, then Ref(Sgr;(M))M C M which gives, by the definition of Sgr,(M), that
Ref(Sgr,(M)) C Sgr;(M). This proves the reflexivity of Sgr;(M). The reflexivity
of Sgr, (M) is proved similarly.

(ii) If A € Sgr;(Ref(M)), then ARef(M)z C Ref(M)x for every x € X.
By the continuity of A, ARef(M)x C Ref(M)x, and therefore AMx C Mux as
Ref(M)z = Muz for every x. To prove the opposite implication, assume that
AMax C Mz for every x € X . Let T' € Ref(M) be arbitrary. For every x € X
and € > 0 there exists M, . € M such that |Tx — M, x| < . By assumption,
AM, .x € Mz, which means that there exists N,. € M such that [|[AM, o —
N, x| < e. It follows that ||[ATz — N, x| < (]]A]| + 1)e. Hence AT € Ref(M).
The second part of (ii) is proved similarly. O

Ezxample 2.17. Let M € B(X ) and A C C be a nonempty closed set. Let M =
AM. We claim that

Sgr;(M) = {A € B(X); x4 € A: AyA C A and im(M) C ker(Aal — A)}
and
Sgr, (M) = {B € B(X );3\g € A : A\gA C A and im(Agl — B) C ker(M)}.

If M =0or A={0}, then M = {0}, which gives Sgr,(M) = Sgr,(M) = B(X).
Assume therefore that M # 0 and that A contains a nonzero number. Since, for
a nonzero number A € A, we have M = ($A)(AM), we may assume without loss
of generality that 1 € A, which implies that M € M.

We will check only the first equality. If A € Sgr;(M), then AM € M and there-
fore there exists Ay € A such that (AyI — A)M = 0, which means that im(M) C
ker(AI — A). For arbitrary A\ € A, we have A(AM) € M (i.e., \AaAAM € M). Since
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M # 0, we conclude that AyA € A. On the other hand, if im(M) C ker(Asl — A)
for Ay € A satisfying AaA C A, then (Aal — A)(AM )z = 0 for every x € X, and
therefore A(AM) = AaAM € Sgr;(M).

Note that Sgr,(M) and Sgr, (M) are reflexive sets since M is reflexive, by
Proposition 2.5. We mention the following special case. Let Y be a comple-
mented closed subspace of X , with complement Z , and let A C C be a multi-
plicative semigroup containing 1. Then sets {A € B(X ); 3 4 € A such that Y C
ker(AuI—A)} and {B € B(X );3A\p € A such that im(Agl/—B) C Z } are reflex-
ive. Indeed, since Y is complemented there exists an idempotent P € B(X ) such
that im(P) =Y and ker(P) = Z. We take M = AP and therefore the above
sets are precisely Sgr;(M) (resp., Sgr,(M)).

3. Reflexivity of intersections and unions

In this section, we are concerned with the question: are the intersection and
the SOT-closure of the union of reflexive sets reflexive?

Proposition 3.1. Let {M;;i € T} be an arbitrary family of nonempty subsets of
B(X'). Then

— 80T
Ref((\M:) C(Ref(M)  and  Ref((JM;) 2 [ JRef(My) .
i€l i€l i€l i€l
(i) If every M; (i € 1) is reflewive, then the intersection (\,o; M; is reflexive.
(ii) If User /\/liSOT is reflexive, then | J;o /\/liDOT = U, Ref(M;)”

Proof. Since ),y Mi € M; we have Ref((,.; M;) C Ref(M;) for every j € L.
Hence Ref((,.; Mi) C [,e; Ref(M;). To prove (i), assume that every M; (i € I)

is reflexive. Then (7),.; M; € Ref((),c; Mi) € ;e Ref(M;) = ;o M.
We have J,.; M; 2 M; and therefore Ref({J,.; M;) 2 Ref(M;), for every

j € L. It follows that Ref(J,.;; Mi) 2 Uier Ref(Mi)UOT, by Proposition 2.8(i).
Suppose that J, ./\/ll-SOT is reflexive. Then, by Proposition 2.8(i),

——SOT —SsOT ——SO0T

UM =ref(JMi) 2JRetm) - 2UMm . (3)

i€l 1€l i€l i€l

O

Although the intersection of an arbitrary family of reflexive sets is reflexive,
the next example shows that the union of two reflexive sets is not necessarily
reflexive.

Ezxample 3.2. Let e1,es € Sx be linearly independent vectors, and let &;,& €
Sx « be such that (e;, &) = 0, (1 < j, k <2). Let M = {ue; ® &;p € C} and,
for a number «, let A = ae; ® &. Set M is a 1-dimensional linear space, and
hence it is reflexive and SOT-closed. Singleton {A} is reflexive and SOT-closed,
as well. We claim that Ref(M U {A}) = M U (M + A). It is obvious that M C
Ref(MU{A}). Let us show that every T' = M + A, where M € M, is in Ref(MU
{A}). We have T' = e; ® (u&1 + az) for some p € C. Let o € X be an arbitrary
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vector. We distinguish two cases. If (x,&;) = 0, then it follows that Tz = Ax.

On the other hand, if (x,&) # 0, then let M, = (u + agifi;)el ®& e M. It is
not hard to check that Tz = M,z. This proves that Tz € (M U {A})x for every
x € X . Hence T' € Ref(M U {A}).

Now we prove the inclusion Ref(M U {A}) € M U (M + A). It holds, by
Proposition 2.5, if « = 0 (i.e., A = 0). Suppose therefore that o # 0. Note that for
every T' € Ref(MU{A}), we have Ker(MU{A}) C ker(T) and im(7") C Im(MU
{A}). From the definition of M and A it follows that Im(M U {A}) = Ce,. Hence,
either 7' = 0 or T is rank 1 operator with image Ce;. In any case, T' = e; ® (
for some ¢ € X *. If we write ( = (e1, ()&1 + (€2, ()& + p, where p € X * is such
that (e;,p) =0 (j = 1,2), then it is not hard to check that p = 0, which means
that T =e; ® ((e1, ()& + (e2,()&). If (e2,() =0, then T' = (e1,()e; ® & € M.
Assume therefore that (es, () # 0. Since Mey = 0 for every M € M and Aey =
aer, we have (M U {A})es = {0, ey }. It follows from Tes = (eq,()e; € {0, ey}
and (ez, () # 0 that T' = (e1,()e; ® & + ae; ® & € M+ A.

Let M be as before and let N' = Ce; ® &. Itis clear that M, N are 1-dimensional
linear spaces, which implies that they are reflexive. For every a € C, it follows
from M U {ae; @ & € M UN that Ref(M U {ae; ® &}) C Ref(M UN).
We already know that Ref(M U {ae; ® &}) = MU (M + ae; ® &). Hence,
M+N = UpecMU M+ aey @ &)) € Ref(M UN). On the other hand,
if T € Ref(M U N), then it follows from im(7T) C Im(M UN) = Ce; and
ker(&;)Nker (&) = Ker(MUN) C ker(T) that T € M+N. Hence, Ref(MUN) =
M+N.

Inclusion Ref(M UN) D M + N in the last equality of Example 3.2 follows
from the following more general result.

Proposition 3.3. Let My,.... M, C B(X) (n > 2) be linear spaces. If, for

every x € X , there exists an index j, € {1,...,n} such that |J;_, M;x C M, x,
SOT

then My +---+ M, CRef(MyU---UM,,).

Proof. Let T'= M,y +- - -+ M, where M; € M; (1 <j <n). Forevery x € X, we
have T'x = Myx +-- -+ Myx € Myz +---+ M,x. Since Mz are linear sets and
Ui, Mixz € M, z, we have Myz+- - -+ M,z C (MU---UM,,)x. It follows that
T € Ref(M;U---UM,,), and consequently M;+---+ M, C Ref(M;U---UM,,).
Now we apply Proposition 2.8(i). O

Recall that operators My, ..., M, € B(X ) are locally linearly dependent if, for
every x € X, vectors Mz, ..., M,z are linearly dependent.

Corollary 3.4. Let My, My € B(X') be arbitrary operators and let M; = CM,;
(j =1,2). If My, My are locally linearly dependent, then My + Ms C Ref(M; U
My). On the other hand, if My, My are not locally linearly dependent, then T €
M + My is in Ref(My U My) if and only if T € My U Ms.

Proof. It My, My are locally linearly dependent, then, for every x € X | either
Mz C Msx or Myjz O Mszx. It follows, by Proposition 3.3, that M; + My C
Ref(M; U My). Assume now that M;, M, are not locally linearly dependent.
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Then there exists x € X such that Mjyx, Msx are linearly independent vectors.
T = a1 My + asMy € My + My is in Ref(M; U Ms), then it follows from
Tex € (MyUMo)z = Mz U Moz that Tx € Mz for an index j € {1,2}.
Hence there is A € C such that a1 Mz + aeMox = AM;x. Since Mz, Msx are
linearly independent, it follows that o; = A if i = j and «; = 0 if i # j; that is,
T € My UMs,. O

In the rest of this section we are interested in conditions which imply reflexivity
of the SOT-closure of the union of reflexive sets. For some families of reflexive sets
it is not hard to show that (the SOT-closure of ) the union is reflexive. For instance,
let u e X and let V C X be a nonempty closed set. Then, by Proposition 2.3,
Upev Muw = Myy is reflexive.

Proposition 3.5. Let U,V C X be nonempty sets, V closed. The set M =
Upeu Muy is reflezive if and only if U = Aug for some ug € X and () # A € C.
If M is not reflexive, then it is transitive.

Proof. Assume that U = Awg, where ug € X and ) # A C C. If U = {0}, then
M = Moy, which is reflexive. Let U # {0}. We may suppose that U = Auy,
where up # 0 and 1 € A. Let T € Ref(M) be arbitrary. For every € > 0, there
exists M. € M such that || Tug— M. ug|| < . It follows that ||T'(Aug) — M (Aug)|| <
|Ale for every A € A. Fix A and let ¢ — 0. Since M_.(Aug) € V and V is closed,
we have T'(Aug) € V. Hence T' € M.

Assume now that U is not of the form Awuyg, for some ug € X and that ) # A C
C. Then there exist linearly independent vectors uy,us € U . Let vy,v9 € V be
arbitrary and let &;,& € X * be such that (u;, &) = dj; (1 < j,k < 2). We claim
that, for every T € B(X ), one has Tz € (M, », U Muy,,)z (xz € X). Indeed,
if z € X 1is such that (z,&) = 0, then let M, = T + (v; — Tuy) ® & . Since
M,uy = vy, we see that M, € M,, ,,. We also have M,z = T'z. Now let z € X

be such that (z,&) # 0. For M, = T+ {25(Tuy — v9) ® & + (v — Tuz) © &,
we have M,us = vy, which means that M, € M,,,, and that M,z = Tz. This
proves that M, ,, UM, ,, is transitive. Since M, ,, UM, ,, € M, we conclude

that M is transitive, as well. O

Corollary 3.4 shows that local linear dependence can be an obstacle for reflex-
ivity of the union of reflexive sets. In the following theorem, we avoid this by a
condition on the images of the involved sets of operators.

Theorem 3.6. Let n > 2 and let M; C B(X) (1 < j <n) be such that 0 € M,
for every j and Im(M;) NIm(My) = {0} if j # k. Then Ref(M;U---UM,,) =
Ref(M1) U --- U Ref(M,,); in particular, if every M; (1 < j < n) is reflexive,
then the union My U ---U M, is reflezive.

Proof. 1t is obvious that Ref(M;) U --- U Ref(M,,) C Ref(M; U --- U M,,).
Assume that T € Ref(M; U --- U M,). For every z € X, we have Tx €
(MiU---UM,)z C Mz U---UM,z. Hence, if we define Y, ={reX;Tzx e
Mz} (1 <j <n), then X =Y,U---UY,. We claim that each Y is a linear sub-
space of X . Indeed, let z1, 25 € Y, and a1, ay € C be arbitrary. Since 0 € M, we
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have aqxy + aoxe € Y; if T(a21 + aows) = 0. Suppose that T'(a 21 + asxs) # 0.
We have T(a1x1 + o) = aqTxy + aeTxe € ay Mz + aoMjze C Im(M;)
and T'(a1x1 + asxs) € My(axy + aga) U -+ U M, (o + agzs). Because of
Im(M;) N Im(My) = {0} when j # k, we may conclude that T'(aqz; + asxs) €
M (121 + agxs); that is, oy +aszs € Y. Now it follows from X = Y U---UY,,
that X =Y, for at least one index j, by Lemma 2.1. Hence, T' € Ref(M;). O

Corollary 3.7. Let M be a set of operators which contains operator 0, let A be a
nonzero operator such that Im(M) Nim(A) = {0}, and let A C C be a nonempty
closed set. Then Ref(M U AA) = Ref(M) UAA.

Proof. Denote Ag = A U {0}. Since 0 € M, we have M U AA = M U AjA.
Hence, by Theorem 3.6 and Proposition 2.5, Ref(M U AA) = Ref(M) U AgA =
Ref(M) UAA. O

In Corollary 3.7, we can replace set AA by any reflexive set N' C B(X ) such
that Im(M) N Im(N) = {0} and N U {0} is reflexive. In the following example
we describe a family of reflexive sets M C B(X ) such that M U {0} is reflexive,
as well.

Ezample 3.8. Let A,B € B(X ) be linearly independent, A injective, and let
M = CA + B. By Propositions 2.5 and 2.12, M is reflexive. It is obvious that
0 ¢ M. Denote by K the closed linear span of all kernels ker(aA + B) (« € C).

Claim: If K is a proper subspace of X , then M U {0} is reflexive.

To prove the claim, assume that 7' € Ref(M U{0}) and T # 0. Since ker(T") #
X we have that Wy = X \ (K Uker(7")) is an open dense subset of X . For x €
Wr, we have Tz # 0 and therefore it follows from Tz € (M U {0})x = MxU{0}
that there exists A\, € C such that Tz = (\;A + B)z. Let x € Wy and o # 0
be arbitrary. Then ax € Wr and therefore T'(ax) = (Ao A+ B)(ax), which gives
Tz = (AazA + B)z. Since Az # 0, we conclude that A\,, = A\,. Assume now
that z,y € Wy are linearly independent. By injectivity of A, vectors Az and Ay
are linearly independent, too. It is obvious that there exists number w # 0 such
that * + wy € Wy. It follows from Tz = (\,A+ B)z, Ty = (\,A + B)y, and
T(z 4+ wy) = (AptwyA + B)(z +wy) that Ayiwy — Ae) AT + w(Aggwy — Ay) Ay =0
which gives A\, = A;1wy = Ay. We have seen that there exists A € C such that
Tx = (A + B)x for every x € Wr. Now let z € K U ker(7). Since Wr is
dense in X there exists a sequence (x,,)5; € K Uker(T") which converges to .
It follows from [Tz — (A + B)z|| < ||T(z — z,)|| + [|[(M + B)(z, — x)|| that
Tx = (A + B)z. We conclude that "= AA + B. Thus, M U {0} is reflexive.

For the next two results we need the following lemma.

Lemma 3.9. Let S,T € B(X ). Assume that x1,...,x, € X (n > 2) are such
that Sxy,...,Sx, are linearly independent. Let A C C be a nonempty set, and
let Q={weC;aN, € A :T(x; +wrg+ -+ w1 x,) = A\, S(x) +wrg + -+ +
W' tw,)}. If the cardinality of Q is at least n + 1, then there exists X € A such
that T(zy + wxg + -+ +w"'x,) = AS(21 + wre + -+ +w" la,) for all w € Q.
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Proof. Assume that wg,ws, . ..,w, are distinct numbers in 2. By the assumption,

wa_lT:pk =\ wa_lek for some A\, € A(j =0,1,...,n). (3.2)

k=1 k=1
Denote
1wy - wi! 1w - Wt
1wy -+ wit 1wy -+ wit
Vo = and Vi= .
1w, -+ wit 1w, - wit

Let Dy = diag[\g, Ag, ..., \,] and Dy = diag[\i, Ag, ..., \,] be diagonal matrices.
Note that the Vandermonde matrices V and V; are invertible since wg, w1, ..., wy
are distinct numbers. For an n x n matrix A and an operator B € B(X ), we
have linear operator A ® B on C" ® X which is given by

(AR B)(11 ® 21+ -+ v, @ z) = Avy ® Bz + -+ - + Av, ® Bz,

where vy,...,v, € C" and 2zy,...,2z, € X are arbitrary. Let eq,...,e, be the
standard basis of C". Using (3.2) we can write

Viol(e1r®@Tar+ - +e, @Tx,) = (D;V, @ 1I)(e1 ® Sz + -+ + €, ® Sxp),
for ¢ = 0,1, which gives
(Vo 'DoVo = Vi 'Di Vi) @ I)(eq @ Saq + -+ - + €, ® Sx,,) = 0,
that is,
(Vo 'DoVo — Vi ' DiVi)ey ® Sy + -+ -+ + (Vg ' DoVo — Vi ' D1Vi)e, ® Sz, = 0.
Since Sy, ..., Sz, are linearly independent, we have
(Vo 'DoVo — Vi 'DiVi)ep =0 forallk=1,... n.

Hence V5 'DoVy — Vi 'D1Vi = 0 (i.e., Dy and D; are similar). It follows that
these diagonal matrices have the same eigenvalues. We conclude that A\; = g
and therefore that all \,’s are equal. O
Theorem 3.10. Let M;,..., M, € B(X) (n > 2) be such that im(M;) N
im(My) = {0} if j # k. Let A; C C (j = 1,...,n) be nonempty closed sets.
Then M = A My U ---UA, M, is a reflexive set of operators.

Proof. Let T' € Ref(M). Since, for every € X, the orbit Mz is a closed subset
of X, we have

Tx € N\MyzU--- UMM,z (zeX). (3.3)

Assume that 7= 0. If 0 € A; for some j € {1,...,n}, then T =0=0-M; € M.
Suppose that 0 ¢ A; for every j € {1,...,n}. Then (3.3) gives 0 € A; Mz U
- UA,M,x for every x € X, and we conclude that for each z € X there is
J» € {1,...,n} such that M; = = 0. Hence ker(M;) U --- U ker(M,) = X . By
Lemma 2.1, there exists k € {1,...,n} such that ker(M;) = X (i.e., M} = 0).
We conclude that T'= 0 = M, € M.
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Assume now that 7" # 0, which means that im(7") # {0}. It follows from (3.3)
that im(7") Cim(M;) U ---Uim(M,). Let Y; =im(7T) Nim(M;) for j =1,...,n.
Each Y, is a closed subspace of im(T'). It is clear that im(7") =Y, U---UY,, and
that Y; NY, = {0} if j # k. Again we use Lemma 2.1 to conclude that there
exists k € {1,...,n} such that im(7") = Y; C im(M}), which also gives Y; = {0}
if j # k.

First we consider the case dim(im(7")) = 1 (i.e., T is a rank 1 operator). Let
e € X be such that Te # 0 and let £ € X * be such that (e,£) = 1. Then
T =Te ® &. Since Te # 0, there exists a nonzero A\, € Ay such that Te = A\, Mye;
note that Mye is also nonzero. An arbitrary vector x € X can be written as
x = ae+y where o € C and y € ker(T)(= ker(£)). Assume that o # 0. Then
Tx = oTe # 0, which means that there exists a nonzero A\, € A, such that
Tx = A\gMpx. This and Te = A\.Me together give My = oz’\ﬁ/\;z’\sze, which
implies that Mz = a;\—;Mke = %T@. Since x is an arbitrary vector, we conclude
that My is a rank 1 operator whose image is spanned by Te. Let 0 £ n € X*
be such that M, = Te ® n. If £ and n were linearly independent, then there
would exist f € X such that (f,£) # 0 and (f,n) = 0. It would then follow that
Tf=(f§&Te # 0 and therefore T'f = Ay M, f for some Ay € A;. However, this
is impossible since Myf = 0. We conclude that £ and 7 are linearly dependent.
Let u € C be such that £ = un. It follows from Te = A Me that u = A\, € Ay.
Hence T € A, M,,.

Now we consider the case dim(im(7")) > 2. Let e1,e5 € X be such that Te;
and T'es are linearly independent. Then there exist nonzero \;, Ay € A, such that
Tey = M Miey and Tey = Ao Myes. It follows that Mye; and Mygey are linearly
independent, as well. Since T'e; and T'es are linearly independent, T'(e; +weg) # 0
for every w € C, which means that there exists A, € Ay such that T'(e; + weg) =
Ao My (e1 + weg). By Lemma 3.9, there exists A € Ay such that A\, = X for every
w € C. In particular, A = Ay = Xy # 0. Let y € ker(T') be arbitrary. Then
e; and ey + y are such that Te; and T'(ey + y) are linearly independent. As
before, we see that there exists u € Ay such that T'(e; + w(es +y)) = uMy(er +
w(ez + y)) for any w € C. Since we already have Te; = AMyey, it follows that
p=AIw=1inT(e +wles +y) = AM(e; + w(ez + y)), then we get
0 = Ty = AMyy. Hence ker(T') C ker(My). Note that the opposite inclusion
holds as well because T'x # 0, for a vector x € X, implies that Te = \, Mz
for some A\, € Aj. Thus, ker(7') = ker(My). Now let x € X be arbitrary. If
it is a linear combination of Te; and Tey (say, Tx = ayTe; + asTes), then
T(x — ane; — azes) = 0 and therefore My(x — anes — ages) = 0. It follows that
Tx = Aoy Myey+ Aag Myes+ MMy (x — ape; —ages) = AMyz. In the case when Tey,
Tey and T are linearly independent, vectors Mye,, Myes and Myx are linearly
independent as well. Since T'(e; + wes + w?zx) # 0 for every w € C, we thus have
T(e; + wey + w?x) = A\yMyi(ey + wey + w?x) for some A, € A. By Lemma 3.9,
there exists u € Ay such that T'(e; + wes + w?x) = pMy(e; + wes + w?x) for
any w € C. Using Te; = AMye;, we conclude that y = A\. We have shown that
Tx = MMz for any x € X . Hence T' € Ap M. O
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If n = 2, then Theorem 3.10 is a particular case of Corollary 3.7. However, for
n > 3, the assertion of Theorem 3.10 cannot be deduced from Theorem 3.6. In
the next theorem we replace conditions on images by injectivity of the involved
operators to prove the reflexivity of the union.

Theorem 3.11. Let My, ..., M, € B(X) (n > 2) be linearly independent injec-
tive operators, and let Ay,..., N, € C be nonempty closed sets. Then M =
MM U---UAN, M, is a reflexive set.

Proof. Note first that, for every x € X, the orbit Mx is closed, and it is the
union of closed sets A;M;xz (1 < j < n). Hence, if T' € Ref(M), then for every
x € X there exists an index j, such that Tx € A; M, x. If there exists an
index j € {1,...,n} such that Tx € AjM;z for every x € X, then T € A;M;,
by Proposition 2.5. Towards a contradiction, assume that this is not the case.
Suppose that there exist indices ji,...,75m € {1,...,n} (2 < m < n) such that
Tex € AjMjxU---UA; M; x for every x € X, and suppose that for every j;
there exists a vector e;, € X such that Te;, € A;,Mj,e;, and Te;, ¢ Aj M;e;, if
1 # 1. Without loss of generality, we may assume that j; = i.

It is obvious that eq,..., e, are nonzero vectors. Let d be the dimension of
Viei,...,en}. Without loss of generality, we may assume that this linear space is
spanned by ey, ..., eq. For every index j € {1,...,n} the vectors Mjey, ..., M;eq
are linearly independent because M, is an injective operator. If d = 1, then
e; = qgeq for every 2 < i < m, where o; € C. This would give a contradiction
Te; € A{Mye;. Hence 2 < d < m.

For every w € C, let z, = e; +wey + - - - +w¥ ey and let Q ={weCTz, €
AjM;z,} for 1 < j < m. It is clear that Q; U---U€Q,, = C. Hence, there exists an
index k € {1,...,m} such that € is an infinite set. By Lemma 3.9, there exists
A € Ay such that Tz, = AMx,, for every w € Q. Let wy,...,wy be distinct
nonzero numbers from (2. It follows from

Te, +w;Tey+ -+ wzd’lTed
= \Me; +  w;Mies + - - + )\wf’leed (1<i<d)

that T'e; = AMye; for every i € {1,...,d}. Since d > 2, there exists [ € {1,...,d}
such that [ # k, and we have a contradiction T'e; € Ay Mye;. O

We close this section with an example in which we apply Theorems 3.10
and 3.11.

Example 3.12. Let A be a complex Banach algebra. For a € A, let L, : A — A
be the left multiplication by a on A; that is, L, is a bounded linear operator on
A given by L,z = ax (x € A). It is clear that the closure of the image of L, is
Ra = aA, the closed right ideal in A generated by a. Operator L, is injective if
and only if a is not a left zero-divisor (i.e., ax # 0 for every 0 # = € A).

Assume that a4, ...,a, € Ais an n-tuple of elements such that either every a;
(1 <£j < n)isnot a left zero-divisor or Ro, "Ry, = {0} if i # j. If T' € B(A)
is such that for every x € A there exist A\, € C and an index j, satisfying
Tz = Aga;,x, then, by Theorems 3.10 and 3.11, there exist A € C and an index
J such that T'= AL,;.
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4. Reflexivity of convex sets

In this section we study reflexivity of convex sets of operators. For a nonempty
set M C B(X ), we denote by conv(M) its convex hull.

Proposition 4.1. Let M C B(X) be nonempty. Then conv(Ref(M)) C
Ref(conv(M)). If M is convex, then Ref(M) is conver.

Proof. We prove the second part of the proposition first. Assume that M is
convex. Then Mz is convex for every x € X . Let Ty, Ty € Ref(M) be arbitrary
and let ¢t € [0,1]. Then (tTy + (1 — )Ty)x = t(Tiz) + (1 — t)(Tha) € Mu,
which means that t7} + (1 — ¢)T, € Ref(M). Now let M be arbitrary. Since
M C conv(M), we have Ref(M) C Ref(conv(M)). By the first part of the proof,
Ref(conv(M)) is convex and therefore conv(Ref(M)) C Ref(conv(M)). O

The next corollary gives a necessary condition for the convex hull of M to be
reflexive.

Corollary 4.2. Let M C B(X) be a nonempty set. If conv(M) is reflexive, then
conv(Ref(M)) = conv(M).

Proof. Since conv(M) is reflexive we have conv(Ref(M)) C conv(M), by Propo-
sition 4.1. On the other hand, the inclusion M C Ref(M) implies conv(M) C
conv(Ref(M)). O

It follows from Corollary 4.2 that conv(M) is not reflexive if Ref(M) ¢
conv(M). The next example shows that condition Ref(M) C conv(M) is not
sufficient for reflexivity of conv(M) even if M is a reflexive set.

Ezample 4.3. Let S C B(X ) be a nonreflexive 2-dimensional linear space spanned
by injective operators M; and M. For instance, space & in Example 2.7 has this
property if dim(X ) = 2. By Theorem 3.11, M = {AMy; A € C}U{uMs; u € C}is
a reflexive set. On the other hand, its convex hull is conv(M) = S, a nonreflexive
set.

Let @ be a bounded linear functional on B(X ). Then P(T) = (®(T) + ®(T)),
where T' € B(X) is arbitrary, defines a bounded R-linear functional, and one has
O(T) = P(T) —iP(iT) for every T' € B(X ). Hence, P is the real part of ®, and
Q(T) = —P(T) (T € B(X)) is the imaginary part of ®. On the other hand,
if P is a bounded R-linear functional on B(X ), then the above equality defines
a bounded (C-)linear functional. Every bounded finite-rank operator F' = e¢; ®
&1+ +ep ®E& on X defines by

(I)F(T) e <T€1,fl> + -+ <Tek7£k> (T S B(X )) (41)

a bounded linear functional on B(X). Its real part is Pp(7T) = Re(®r (7)) (T €
B(X)).

For a nonempty closed set G C C and & € B(X)*, let Mqs(G) = {M €
B(X);®(M) € G}.

Proposition 4.4. Let e € X and & € X* be nonzero and let G C C be a
nonempty closed set. Then Mg, (G) is a reflezive set. In particular, ker(Pege)
and ker(P.g¢) are reflexive.
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Proof. Let T' € Ref(Ms,,,(G)). For every € > 0, there exists M, € Mg, (G)
such that || Te — M.e|]| < €. Hence |®ege(T) — Pege(M.)| = |(Te — M.e,§)| <
|Te — M.el|||£]] < €ll€]|. Since Pege(M:) € G and G is closed, we conclude that
®ewe(T) € G that is, T € Mg, (G). For the last part, observe that ker(®.g¢) =
Mea, . ({0}) and that ker(P.ge) = Mg, (iR). O

Recall that a closed subspace of B(X ) has (complex) codimension 1 if and
only if it is the kernel of a functional in B(X )*. Similarly, a closed subspace of
B(X') has real codimension 1 if and only if it is the kernel of the real part of a
functional in B(X )*.

Proposition 4.5. Let M C B(X) be a closed subspace of complex codimension
1 and let & € B(X)*. Then M is reflexive if and only if there exist 0 # e € X
and 0 # £ € X * such that M = ker(®ege). If O is not of the form ®ege for some
rank 1 operator e ® &, then ker(®) is topologically transitive.

Proof. Let ® € B(X )* be such that M = ker(®). If & = ®.g¢ for some nonzero
e € X and £ € X *, then M is reflexive, by Proposition 4.4. To prove the opposite
implication, assume that M is reflexive. For every x € X , the orbit Mz is a
closed subspace of X . If for every = # 0 the orbit Mz were equal to X , then
we would have Tz € Mux for every T € B(X ) and every z € X and therefore
M would not be reflexive but topologically transitive. Hence, there exists 0 #
e € X such that Me # X . It follows that there exists 0 # ¢ € X * such that
Me C ker(¢). This gives that ®.g¢ is nonzero and ®.qe(M) = (Me, &) = 0 for
every M € M, that is, M C ker(®.g¢). Since M is of complex codimension 1
the last inclusion has to be an equality.

If & is not of the form ®.g¢ for some rank 1 operator e ® &, then ker(®) is
not reflexive, by the first part of this proposition. Hence, Ref(ker(®)) is a closed
subspace of B(X ) which contains ker(®) as a proper subspace. This is possible
only if Ref(ker(®)) = B(X). O

Corollary 4.6. Let M C B(X ) be a closed real subspace of (real) codimension 1.
Then M is reflexive if and only if there exist 0 # e € X and 0 # £ € X * such
that M = ker(P.ge). If P is not of the form P.ge for some rank 1 operator e @ &,
then ker(P) is topologically transitive.

Proof. Let M = ker(P), where P is a bounded R-linear functional on B(X).
Let Q be defined by Q(T') = —P(iT) (T' € B(X)) and let & = P 4 Q. Hence,
Q is R-linear functional and ® € B(X )*. If P = P.g¢, then M is reflexive, by
Proposition 4.4. Assume now that M = ker(P) is reflexive. Since T' € ker(P) if
and only if iT" € ker(Q), it is not hard to see that ker(Q) is reflexive as well. It
follows that ker(®) = ker(P)Nker(Q) is reflexive. Hence, by Proposition 4.5, there
exist 0 # e € X and 0 # § € X * such that ® = ®.g¢ and therefore P = P g¢.
If P is not of the form P.g¢, then @ is not of the form ®.g¢, which means that
ker(®) is topologically transitive. Since ker(®) C ker(P), we conclude that ker(P)
is topologically transitive, as well. 0

Let P # 0 be a bounded R-linear functional on B(X ), and let ¢ € R. We
designate Hp(c) = {T € B(X );P(T) > ¢} a closed half-space of B(X ). Since
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P # 0, there exists Fp € B(X ) such that P(Ep) = 1. It is easily seen that
Hp(c) = Hp(0) + cEp.

Corollary 4.7. Let P # 0 be a bounded R-linear functional on B(X) and let
c € R. Half-space Hp(c) is reflexive if and only if P = P.ge for some 0 # e € X,
0 # & € X*. If it is not reflexive, then it is topologically transitive.

Proof. We may assume that ¢ = 0. Let & € B(X )* be such that P is its real
part. Then Hp(0) = Mg (CL), where C; = {2z € C;Re(z) > 0}. If P = Pge,
for some 0 # e € X, 0 # & € X*, then & = &5, and, by Proposition 4.4,
Mo (C.) is reflexive. On the other hand, if P is not of the form P.g, then ker(P)
is topologically transitive, by Corollary 4.6. Since ker(P) C Hp(0), we conclude
that Hp(0) is topologically transitive also. O

Recall that every closed convex set is the intersection of a family of closed half
spaces.

Corollary 4.8. If M C B(X) is a closed convezr set such that there exist an
inder set T and e; € X, § € X*, ¢; € R (i €1) such that M = (\;; Hp, .. (i),
then M is reflexive.
Proof. By Corollary 4.7, every half space Hp, . (¢;) (1 € I) is reflexive. Hence,
by Proposition 3.1(i), M is reflexive. O
It is well known that (B(X ), F(X)) is a dual pair in the sense of [I, Defi-
nition 5.90] if the pairing is given by (7, F) — Pg(T), where T" € B(X ) and
F € F(X) are arbitrary. Recall that F' € F(X ) defines &p € B(X)* (see

(4.1)) and that Pp is the real part of ®z. The one-sided polar of a nonempty set
M CB(X) is

M ={F e F(X);Pp(T) < 1forall T € M}.
Similarly, the one-sided polar of a nonempty set A" C F(X ) is defined by
N ={T € B(X );Pp(T) < 1forall FeN}.
Denote Gy = {z € C;Re(z) < 1}. It is obvious that,
N° = (] Ma,(G).
FeN

Hence, if N' C Fi(X), then, by Propositions 4.4 and 3.1(i), N° is a reflexive
subset of B(X ).

Theorem 4.9. If M C B(X) is a convex set such that 0 € M, then
Ref(M) = (M° N Fi(X))".

Proof. Since M° N F1(X) € M°, we have that M C M C (M° N F(X))°.
As we mentioned before this theorem, (M° N F; (X ))° is reflexive and therefore
Ref(M) C (M° N Fi(X))°. To prove the opposite inclusion, assume that S €
B(X ) is not in Ref(M). Then there exist e € X and ¢ > 0 such that ||Se—Me|| >
¢ for every M € M. It follows that Se ¢ Me. Note that Se # 0 since 0 € Me.
By [1, Corollary 5.80], there exists a bounded R-functional p on X and a € R
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such that p(z) < a for every x € Me and p(Se) > a. Without loss of generality,
we may assume that a = 1. Let £ € X * be given by (z,&) = p(x) —ip(ix). Then
Pege(T) = Re((Te,§)) = p(Te) for every T' € B(X ). Hence P ge(M) < 1 for
every M € M, which means that e ® £ € M° N F(X ). On the other hand,
Pege(S) > 1 and therefore S ¢ (M° N Fi(X))°. O

We omit a simple proof of the following corollary.

Corollary 4.10. A nonempty convex set M C B(X) is reflexive if and only if
M—M=(M—-M)°NF(X))°, for some (and therefore for every) M € M.

Corollary 4.11. Let M C B(X) be such that 0 € conv(M). Then conv(M) is
reflexive if and only if

conv(M) = (M° N F (X))

Proof. Since M C conv(M), we have M° D conv(M)°. On the other hand, if
F € M° then Pgr(ty My + -+ + t;,My) < 1 for arbitrary M, ..., My € M and
t1,...,tx €[0,1] such that ¢; +---4+t, = 1. Hence F € conv(M)°, and therefore
M° = conv(M)°. Tt follows, by Theorem 4.9, that Ref(conv(M)) = (M° N
F1(X))°. If conv(M) is reflexive, then the last equality implies that conv(M) =
(M° N F(X))°. On the other hand, if conv(M) = (M° N F;(X ))° holds, then
conv(M) is reflexive because the polar of every subset of F1(X ) is reflexive. [

By Proposition 2.2, every finite set of operators is reflexive. We already know
that the linear span of a reflexive set of operators is not necessarily reflexive. What
about the convex hull of a finite set of operators? The answer to this question is
trivial in the case of a single operator. For two operators My, My € B(X ), we have
conv({ My, Ma}) = {tMy + (1 — t) Myt € [0,1]} = [0, 1](M; — Ms) + M. Hence,
by Propositions 2.5 and 2.12(i), conv({M;, Ms}) is reflexive. Note that when we
consider reflexivity of the convex hull of operators My, My, ..., M, € B(X ), we
may assume, by Proposition 2.12(i), that My = 0. Let S, = {(s1,...,5,) €
R™0 < 81,...,84,81 + -+ + 8, < 1}. Then conv({0, My,..., M,}) = {s;M; +
st 5y My (S1,.- 04 8n) € S}

Recall that operators My,..., M, € B(X) are locally linearly independent
(LLI) if for every nonzero vector x € X vectors Mz, ..., Myx are linearly inde-
pendent. For the last result in this paper, we need a slightly stronger assumption
on the involved operators. We say that M, ..., M, are 2-locally linearly indepen-
dent over R (briefly, R-2-LLI) if, for every pair of vectors x1, x5 € X which are
linearly independent over R, the set of 2n vectors M;z; (1 <i<n,1 <j <2)are
linearly independent over R. It is obvious that for every nonzero x € X vectors
Mz, ..., M,x are linearly independent over R if My, ..., M, are R-2-LLI.

Theorem 4.12. If My, ..., M, € B(X) are R-2-LLI, then
M = conv({O, M, ..., Mn}) = {slMl + 8y My (s1,. .., 8,) € Sn}
1s a reflexive set.

Proof. Note first that, for every z € X, the orbit Mz is a closed subset of
X because it is the convex hull of finite set {0, Mjx,..., M,x}. Assume that
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T € Ref(M). Then Tz € Mz for every x € X, which means that there exists
s(x) = (s1(x),...,sn(x)) € S, such that Tx = sy(z)Myx + - - - + sp(x) M,z. We
claim that s(x) is uniquely determined by z if x # 0. Indeed, assume that z # 0
and that there are s(x), s'(z) € S, such that Tx = sy(z)Myx + -+ + s,(x) Mpx
and Tx = s (z)Myx + - - - + s, (x) M,z. It follows that

(s1(z) = si(@)) Myz + -+ + (sn(x) — s, (x)) Mz = 0.

Since My, ..., M, are R-2-LLI and therefore R-1-LLI, we have s;(z) = s/(x) for
j=1,...,n. Thus, s: z — s(x) is given a well-defined mapping from X \ {0}
to S,,.

If x € X \ {0} and A € C\ {0}, then it follows from Tz = sy (z)Myx + - - - +
Sp(x)Mpz that T'(Ax) = s1(x) My(Ax)+- - -+ 5, (2) M, (Az). On the other hand, we
have T'(Az) = s1(Ax) My (Ax)+- - -+ 5, (Ax) M, (Az), as well. Hence, s;(Az) = s;(z)
forj=1,...,n.

Let x,y € X be linearly independent. Then

n n

T(x+y) =Y sjx+y)Mz+y) = sijlz+y)Ma+ Y si(z+y) My

j=1 j=1 j=1

and

n

Tax+y) =T+ Ty = Z sj(x)M;x + Z s;(y)M;y,
j=1

j=1
which gives

n

> (s5(x) = sj(@ +y) Mz + > (s5(y) — s5(x +y)) My = 0.

j=1 j=1

It follows, because of R-2-LLI, that s;(z +y) = s;(z) = s;(y) for j = 1,...,n.
We have shown that s : X \ {0} — S, is a constant mapping; that is, there
exists s = (s1,...,8,) € Sy, such that Te = s;Myx + --- + s, M,x for every
x € X \ {0}. Since the last equality holds trivially for = 0, we conclude that
T=sM +---+s,M, € M. O
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