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Abstract. In this article, we investigate disjointness-preserving orthogonally
additive operators in the setting of vector lattices. First, we present a for-
mula for the band projection onto the band generated by a single positive,
disjointness-preserving, order-bounded, orthogonally additive operator. Then
we prove a Radon–Nikodým theorem for a positive, disjointness-preserving,
order-bounded, orthogonally additive operator defined on a vector lattice E,
taking values in a Dedekind-complete vector lattice F . We conclude by obtain-
ing an analytical representation for a nonlinear lattice homomorphism between
order ideals of spaces of measurable almost everywhere finite functions.

1. Introduction and preliminaries

Linear disjointness-preserving operators were introduced in some form during
the early part of the twentieth century. However, one of the first systematic studies
of disjointness-preserving operators dates back to a seminal note by Abramovich,
Veksler, and Koldunov [2] published at the end of the 1970s. From that moment
until now, interest in disjointness-preserving operators has remained at a rather
high level (see the list of references [6], [8], [11], [16], [18], [21], [22], [30]).

Orthogonally additive and in general nonlinear operators in the setting of vector
lattices were considered in the latter part of the twentieth century by Mazón
and Segura de León [24]. Today, the theory of orthogonally additive operators
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in ordered spaces is an object of intensive study (see [9], [10], [12], [13], [15],
[25], [27]). Orthogonally additive disjointness-preserving operators between vector
lattices were introduced and studied in [1] and [29].

Our aim here is to continue this line of investigation. The main objects are
abstract Urysohn operators, an important subclass of orthogonally additive oper-
ators. In the first part of the article, we obtain a formula for the band projection
onto the band generated by a single positive, disjointness-preserving abstract
Urysohn operator. In the second part, we prove a Radon–Nikodým theorem for
positive, disjointness-preserving abstract Urysohn operators. Finally, in the last
part, we obtain an analytical representation of Urysohn lattice homomorphisms
between order ideals of spaces of measurable functions. We assume that the reader
is familiar with the theory of vector lattices. (For standard information on Banach
and vector lattices, we refer to [4].) All vector lattices below are assumed to be
Archimedean.

Let E be a vector lattice. A net (xα)α∈Λ in E order converges to an element

x ∈ E (notation xα
o−→ x) if there exists a net (eα)α∈Λ in E+ such that eα ↓ 0

and |xα − x| ≤ eα for all α ∈ Λ satisfying α ≥ α0 for some α0 ∈ Λ. Two elements
x, y of a vector lattice E are said to be disjoint (we use the notation x ⊥ y) if
|x| ∧ |y| = 0. The sum x+ y of two disjoint elements x and y is denoted by xt y.
The equality x =

⊔n
i=1 xi means that x =

∑n
i=1 xi and xi ⊥ xj for all i 6= j. An

element y of E is said to be a fragment (in another terminology, a component) of
an element x ∈ E if y ⊥ (x− y). The notation y v x means that y is a fragment
of x. The set of all fragments of an element x ∈ E is denoted by Fx. A net (xα)
in a vector lattice E laterally converges to x ∈ E if xα v xβ v x for all indices

α < β and xα
o−→ x. In this case, we write xα

lat−→ x. For positive elements xα, x

the condition xα
lat−→ x means that xα v x and xα ↑ x.

A linear operator π : E → E is said to be an order projection if

(1) π ◦ π = π;
(2) 0 ≤ π ≤ I, where I is the identity operator on E.

The Boolean algebra of all order projections on a vector lattice E is denoted
by B(E). The order projection onto the band generated by a subset D of E is
denoted by [D]. The characteristic function of a set D is denoted by 1D.

Definition 1.1. Let E be a vector lattice, and let F be a real linear space. An
operator T : E → F is said to be orthogonally additive if T (x+ y) = Tx+Ty for
all x, y ∈ E with x ⊥ y.

It is clear from the definition that T (0) = 0. The set of all orthogonally additive
operators is a real vector space with respect to the natural linear operations.

Definition 1.2. Let E and F be vector lattices. An orthogonally additive operator
T : E → F is said to be

• positive if Tx ≥ 0 for all x ∈ E;
• order-bounded if T maps order-bounded sets in E to order-bounded sets
in F .
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An orthogonally additive, order-bounded operator T : E → F is said to be an
abstract Urysohn operator.

The importance of this class of operators is determined by applications to the
theory of nonlinear integral equations. The classical integral abstract Urysohn
operator is presented in the following example.

Example 1.3. Let (A,Σ, µ) and (B,Ξ, ν) be σ-finite complete measure spaces,
and let (A×B, µ× ν) denote the completion of their product measure space. Let
K : A×B × R → R be a function satisfying the following conditions:1

(C0) K(s, t, 0) = 0 for (µ× ν)-almost all (s, t) ∈ A×B;
(C1) K(·, ·, r) is (µ× ν)-measurable for all r ∈ R;
(C2) K(s, t, ·) is continuous on R for (µ× ν)-almost all (s, t) ∈ A×B.

Given f ∈ L0(B,Ξ, ν), the function |K(s, ·, f(·))| is ν-measurable for µ-almost
all s ∈ A, and hf (s) :=

∫
B
|K(s, t, f(t))| dν(t) is a well-defined and µ-measurable

function. Since the function hf can be infinite on a set of positive measure, we
define

DomB(K) :=
{
f ∈ L0(ν) : hf ∈ L0(µ)

}
.

Then we define an operator T : DomB(K) → L0(µ) by setting

(Tf)(s) :=

∫
B

K
(
s, t, f(t)

)
dν(t) µ-a.e. (?)

Let E and F be order ideals in L0(ν) and L0(µ), respectively, and let K be a
function satisfying (C0)–(C2). Then (?) defines an orthogonally additive integral
operator from E to F if E ⊆ DomB(K) and T (E) ⊆ F .

The set of all abstract Urysohn operators from E to F is denoted by U(E,F ).
There is a natural partial order on U(E,F ), namely, S ≤ T , whenever (T −S) ≥
0. Then U(E,F ) becomes an ordered vector space. If the vector lattice F is
Dedekind-complete, then U(E,F ) is a Dedekind-complete vector lattice.

Theorem 1.4 ([24, Theorem 3.2]). Let E and F be vector lattices, and let F be
Dedekind-complete. Then U(E,F ) is a Dedekind-complete vector lattice. More-
over, for each S, T ∈ U(E,F ) and x ∈ E the following conditions hold:

(1) (T ∨ S)(x) = sup{T (y) + S(z) : x = y t z};
(2) (T ∧ S)(x) = inf{T (y) + S(z) : x = y t z};
(3) (T )+(x) = sup{Ty : y v x};
(4) (T )−(x) = − inf{Ty : y v x};
(5) |T |(x) = sup{Ty − Tz : x = y t z}.

2. The projection of U(E,F ) onto the band generated by a single
disjointness-preserving operator

Order projection is an important tool for investigating operators in vector
lattices (see, e.g., [3], [19]). In this section, we associate with an operator T ∈
U(E,F ) a band in the space U(E,F ), which is called the shadow of an operator

1(C1) and (C2) are called the Carathéodory conditions.
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T , and we calculate the order projection onto this band. We apply this result
for the calculation of the order projection onto the band generated by a single
positive, disjointness-preserving, abstract Urysohn operator.

Definition 2.1. Let E,F be vector lattices. An abstract Urysohn operator T :
E → F is considered disjointness-preserving if Tx⊥ Ty for all disjoint x, y ∈ E.

The following is a classical example of an orthogonally additive disjointness-
preserving operator.

Example 2.2. Let (Ω,Σ, µ) be a σ-finite and complete measure space. Let E be a
vector sublattice of the space L0(µ) of all µ-measurable and µ-almost everywhere
finite functions on A, where µ-almost everywhere equal functions are identified.
Consider a function N : A× R → R satisfying

(1) N(t, 0) = 0 for µ-almost all t ∈ A;
(2) N(·, f(·)) is µ-measurable for every f ∈ E.

Then an operator T : E → L0(µ) defined by (Tx)(t) := N(t, x(t)) is the projec-
tion commuting. Indeed, if an operator σ : L0(µ) → L0(µ) is an order projec-
tion, then there is a µ-measurable subset V ⊂ A such that σf = f1V for every
f ∈ L0(µ). Now we may write

(Tσf)(t) = T (f1V )(t) = N
(
t, f(t)1V (t)

)
= N

(
t, f(t)

)
1V (t) = (Tf)(t)1V (t) = (σTf)(t).

Recall that for a measurable function ψ ∈ L0(µ), we denote by supp(ψ) the
measurable set {t ∈ Ω : f(t) 6= 0}. Take any two disjoint elements f, g ∈ E,
and assume that V := supp(f) and H := supp(g). Clearly, V and H are disjoint
µ-measurable sets. Then we have

T (f + g) = T
(
(f + g)(1V + 1H)

)
= N

(
t, (f + g)(t)

)
(1V + 1H)(t)

= N
(
t, (f + g)(t)

)
1V (t) +N

(
t, (f + g)(t)

)
1H(t)

= N
(
t, f(t)

)
+N

(
t, g(t)

)
= Tf + Tg;

(Tf)(t) = T (f1V )(t) = N
(
t, f(t)1V (t)

)
= N

(
t, f(t)

)
1V (t);

(Tg)(t) = T (g1H)(t) = N
(
t, g(t)1H(t)

)
= N

(
t, g(t)

)
1H(t)

⇒ Tf ⊥ Tg.

Thus T is a disjointness-preserving, orthogonally additive operator.

These operators are known in the literature as nonlinear superposition operators
or Nemytskii operators (see [5]).

Definition 2.3. Let E be a vector lattice. The subset D of E is said to be a lateral
ideal if the following conditions hold:

(1) if x ∈ D, then y ∈ D for every y ∈ Fx;
(2) if x, y ∈ D, x⊥ y, then x+ y ∈ D.
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A subset D of the vector lattice E is said to be laterally closed in E if for every

laterally convergence net (xα)α∈Λ ⊂ D such that xα
lat−→ x, we have x ∈ D.

A lateral ideal D is said to be a lateral band in E if it is laterally closed in E.

Example 2.4. Let E be a vector lattice. Then every order ideal in E is a lateral
ideal.

Example 2.5. Let E,F be vector lattices, and let T ∈ U+(E,F ). Then NT :=
{e ∈ E : T (e) = 0} is a lateral ideal.

Example 2.6 ([7, Lemma 3.5]). Let E be a vector lattice, and let x ∈ E. Then Fx

is a lateral ideal.

Example 2.7. Let E be a vector lattice. Then every band D in E is a lateral band.

Example 2.8. Let E be a vector lattice, and let x ∈ E. Then the set Fx is a lateral
band.

The set of all lateral bands of a vector lattice E is denoted by Lb(E).

Lemma 2.9 ([26, Propositions 3.8, 3.9]). Let E be a vector lattice. Then the
binary relation v is a partial order on E, and x v y if and only if x+ v y+ and
x− v y− for any x, y ∈ E.

Lemma 2.10 ([26, Propositions 3.10, 3.11]). Let E be a Dedekind-complete vector
lattice, let y ∈ E, and let D be a lateral band in E. Then the set Fy with the partial
order u v w is a Dedekind-complete Boolean algebra, and the set D(y) := Fy ∩D
contains a maximal element with respect to the partial order v.

We denote by yD the maximal element of the set D(y) in the Boolean algebra
Fy.

Lemma 2.11. Let E be a vector lattice, and let x, y, z ∈ E and z v x t y. Then
there exist elements z1, z2 ∈ E such that

(i) z = z1 t z2;
(ii) z1 v x; z2 v y.

Proof. By Lemma 2.9, we have

z+ v (x+ y)+ = x+ + y+;

z− v (x+ y)− = x− + y−.

Now, by the Riesz decomposition property (see [4, Theorem 1.13]) there exist

z+i , z
−
i ∈ E+; i ∈ {1, 2}

such that

z+1 v x+; z−1 v x−;

z+2 v y+; z−2 v y−;

z+ = z+1 t z+2 ; z− = z−1 t z−2 .
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Set z1 = z+1 − z−1 ; z2 = z+2 − z−2 . It is clear that z = z1 t z2. Hence
z1 = z+1 − z−1 v x,

z2 = z+2 − z−2 v y,

and the proof is finished. �

There is the following natural projection of a Dedekind-complete vector lattice
onto a lateral band having nice properties.

Lemma 2.12. Let D be a lateral band of a Dedekind complete vector lattice E.
Then the map pD : E → E defined by setting, for every x ∈ E,

pDx = xD (2.1)

is:

(1) a projection of E onto D such that pDx v x for all x ∈ E;
(2) a disjointness-preserving operator;
(3) an orthogonally additive operator.

Proof.

(1) The fact that pD is a projection of E ontoD is proved in ([14, Theorem 3]),
and the property pD(x) v x for all x ∈ E is obvious.

(2) The properties are proved in [14, Theorem 3].
(3) Fix any x, y ∈ E with x ⊥ y and z ∈ Fx+y ∩ D. Then by Lemma 2.11,

there exists a pair of elements z1, z2 ∈ E such that z1 ∈ Fx∩D, z ∈ Fy∩D,
and z = z1 t z2. Thus

z = z1 + z2 v pDx+ pDy,

and passing to the supremum with respect to the partial order v over
all z ∈ Fx+y ∩ D in the left-hand side of the above formula, we obtain
pD(x + y) v pDx + pDy. On the other hand, for every z1 ∈ Fx ∩ D and
z2 ∈ Fy ∩D, the sum z1 + z2 belongs to Fx+y ∩D and therefore

z1 + z2 = z v pD(x+ y).

Passing to the supremum with respect to the partial order v in the left-
hand side of the above formula, first over all z1 ∈ Fx ∩D and then over
all z2 ∈ Fy ∩D, we obtain pDx + pDy v pD(x + y). Finally, we have the
equality

pDx+ pDy = pD(x+ y)

and the proof is finished. �

Remark 2.13. If in Lemma 2.12 D is a band, then pD is a band projection onto
the band D.

Definition 2.14. Lateral bands D1 and D2 are said to be disjoint if D1∩D2 = {0}.
Let E be a vector lattice, and let D1, . . . , Dn ∈ Lb(E). The set {

⊔n
i=1 xi : xi ∈

Di; 1 ≤ i ≤ n} is said to be a disjoint sum of D1, . . . , Dn and is denoted by⊔n
i=1Di. If n = 2, we use the notation D1 tD2. We denote by D0(E) (or D0 for

short) the set of all finite disjoint sums (Di) of mutually disjoint lateral bands in
E such that E =

⊔n
i=1Di, n ∈ N.
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Example 2.15. Let E be a vector lattice with the projection property, and let D
be a subset of E. Then {D}⊥⊥ and {D}⊥ are disjoint bands and consequently
disjoint lateral bands, and there is the decomposition

E = {D}⊥⊥ ⊕ {D}⊥.

The next lemma provides another example of the decomposition of a vector
lattice E into the disjoint sum of lateral bands.

Lemma 2.16. Let E be a Dedekind-complete vector lattice, and let D be a lateral
band of E. Put

D⊥ =
{
y ∈ E : Fy ∩ Fx = {0}, x ∈ D

}
.

Then D and D⊥ are disjoint lateral bands, and there is the decomposition

E = D ⊕D⊥.

Proof. First, we show that D⊥ is a lateral band. We only need to check that the
sum of two disjoint elements ofD⊥ belongs to D⊥. Take a pair of disjoint elements
u, v ∈ D⊥, and let z v u + v. Assume that there exists x ∈ D with a nonzero
fragment w of z such that w ∈ Fx ∩ Fz. Then w v u + v, and by Lemma 2.11
there exist elements w1, w2 such that w1 v u, w2 v v, and w = w1 t w2. Either
w1 or w2 is a nonzero element. Assume that it is w1. Then w1 ∈ Fx ∩Fu, and we
have a contradiction. It is clear that lateral band D⊥ is disjoint to D. Take an
arbitrary element y ∈ E. Since the vector lattice E is Dedekind-complete, then
by Lemma 2.10 there exist yD and yD

⊥
and there is the decomposition of the

element y into the sum of two disjoint fragments y = yD + yD
⊥
. �

Remark 2.17. If in Lemma 2.16 a lateral band D coincides with Fx for some
x ∈ E, then there is the decomposition of the vector lattice E into the disjoint
sum of nonlinear sets Fx and F⊥

x .

Now we need some auxiliary lemmas.

Lemma 2.18. Let E be a vector lattice. Then the set D0(E) is directed by an
inclusion.

Proof. Let (Di), (D
′
j) ∈ D0(E), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Then (Di ∩D′

j) ∈
D0. Indeed, Di ∩ D′

j is a lateral band for every pair (i, j), i ∈ {1, . . . , n}, j ∈
{1, . . . ,m}. Lateral bands Di∩D′

j and Dl∩D′
s are disjoint for different pairs (i, j)

and (l, s). Let us show that E =
⊔

i,j Di∩D′
j. Fix an arbitrary element x ∈ E. By

the definition of (Di), there exist xi ∈ Di, i ∈ {1, . . . , n} such that x =
⊔n

i=1 xi
and xi =

⊔m
j=1 y

j
i for some yji ∈ D′

j, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. It is clear that
yji ∈ Di ∩ D′

j for every (i, j), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Consequently, any
x ∈ E has a representation x =

⊔m,n
j,i=1 y

j
i , and therefore (Di ∩D′

j) ∈ D0. �

Lemma 2.19. Let E,F be Dedekind-complete vector lattices, and let D1, D2 ⊂ E
be disjoint lateral bands. Then TpD1 ⊥ TpD2 for any T ∈ U+(E,F ).
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Proof. Take an element x ∈ E. Then by Lemma 2.10, there exists xD1 ∈ Fx∩D1.
Put x′ = x−xD1 . It is clear that Fx′∩D1 = {0}, FxD1∩D2 = {0}, and x = xD1tx′.
Now we may write

(TpD1 ∧ TpD2)x = inf{TpD1y + TpD2z : x = y t z}
≤ TpD1x

′ + TpD2x
D1 = 0. �

Lemma 2.20. Let E be a vector lattice, and let x ∈ E+ and x1, x2 ∈ Fx. Then
x1 ∧ x2 ∈ Fxi

, i ∈ {1, 2}.

Proof. First, we prove that x1 ∧ x2 ∈ Fx1 :

|x1 − x1 ∧ x2| ∧ |x1 ∧ x2| =
∣∣(x− x1) ∨ (x− x2)

∣∣ ∧ |x1 ∧ x2|
≤

(
|x− x1| ∨ |x− x2|

)
∧
(
|x1| ∧ |x2|

)
= |x− x1| ∧

(
|x1| ∧ |x2|

)
∨ |x− x2| ∧

(
|x1| ∧ |x2|

)
≤

(
|x− x1| ∧ |x1|

)
∨
(
|x− x2| ∧ |x2|

)
= 0.

The same arguments show that x1 ∧ x2 ∈ Fx2 . �

Lemma 2.21. Let E,F be Dedekind-complete vector lattices, and let D1, D2 ⊂ E
be disjoint lateral bands. Then D1 t D2 is also a lateral band and pD1tD2 =
pD1 + ρD2.

Proof. First, we check condition (1) from Definition 2.3. Let z v x1 t x2, where
xi ∈ Di, i ∈ {1, 2}. Then by Lemma 2.11, there exist z1, z2 such that z1 v x1,
z2 v x2, and z = z1 t z2. Hence zi ∈ Di, i ∈ {1, 2} and z ∈ D1 tD2. Let us prove
condition (2) from Definition 2.3. Take elements x, y ∈ D1tD2, x⊥y. Then there
exist z1, h1 ∈ D1 and z2, h2 ∈ D2, so that x = z1 t z2, y = h1 t h2. So we may
write

x+ y = z1 + z2 + h1 + h2 = w1 t w2 ∈ D1 tD2,

where wi = zi t hi, i ∈ {1, 2}, and w1 ⊥ w2. Clearly, the set D1 tD2 is laterally
closed. Now we show that pD1tD2 = pD1 +ρD2 . Denote the set D1tD2 by H, and
fix x ∈ E. Then for every y v x, y ∈ H, we have y = y1 t y2, yi ∈ Di, i ∈ {1, 2},
and the following relations

y = y1 + y2 v pD1x+ pD2x,

pHx v pD1x+ pD2x

hold for every x ∈ E. Observe that if u, v ∈ Fx, v ∈ D1, v ∈ D2, then u ⊥ v.
Indeed, assume that |u| ∧ |v| > 0. Then we may write

0 < |v| ∧ |v| = (u+ + u−) ∧ (v+ + v−)

≤ u+ ∧ v+ + u+ ∧ v− + u− ∧ v+ + u− ∧ v−.
Then by Lemmas 2.9 and 2.20, we deduce that there exists a nonzero fragment
h ∈ Fu ∩ Fv and therefore that h ∈ D1 ∩D2, which is a contradiction. Hence, if
x ∈ E, u, v ∈ Fx, u ∈ D1, v ∈ D2, then u⊥ v and

u+ v v pHx.
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Passing to the supremum with respect to the partial order v over all u ∈ Fx∩D1

and over all v ∈ Fx ∩ D2 in the left-hand side of the above formula, we obtain
pD1x+ pD2x v pHx. Thus pD1x+ pD2x = pHx, and the proof is finished. �

Now we are ready to introduce the main technical tool of this section.

Definition 2.22. Let E,F be Dedekind-complete vector lattices. The shadow of
an abstract Urysohn operator S ∈ U(E,F ) is defined to be the set

Sh(S) =
{
T ∈ U(E,F ) :

[
TpD(E)

]
≤

[
SpD(E)

]
;D ∈ Lb(E)

}
.

The next lemma is important for further consideration.

Lemma 2.23. Let E,F be Dedekind-complete vector lattices. Then for any oper-
ator S ∈ U(E,F ), the following assertions hold:

(a) Sh(S) is a band in U(E,F );
(b) Sh(S) = Sh(|S|) ⊃ {S}⊥⊥;
(c) the band projection T S of an operator T ∈ U(E,F ) to Sh(S) is calculated

by the rule

T S = inf
{∑

i

[
SpDi

(E)
]
TpDi

(E) : (Di) ∈ D0

}
. (2.2)

Moreover, the set of fragments in (2.2) is downward directed.

Proof. First, we prove assertion (a). If Gi ⊂ G, i ∈ {1, 2}, are bands in a vector
lattice F , then we have that (G1 ∪ G2)

⊥⊥ ⊂ G and therefore that Sh(S) is a
vector subspace of U(E,F ). If T ∈ Sh(S) and D is a lateral band in E, then by
Theorem 1.4 T+pDx = sup{Ty : y v xD} for every x ∈ E. Hence[

T+pD(E)
]
= sup

{
[Ty] : y v xD, x ∈ E

}
≤

[
πDS(E)

]
.

Thus Sh(S) is a vector sublattice. It is clear that Sh(S) is also an order ideal in
U(E,F ). Now, if 0 ≤ Tα ↑ T and Tα ∈ Sh(S), then [TpDx] = sup[TαpDx] ≤
[SpD(E)]. We now prove assertion (b). It is clear that Sh(T ) ⊂ Sh(S) for
every operator T ∈ Sh(S). The inclusions S+, S− ∈ Sh(S) ∩ Sh(|S|) imply
that Sh(S) = Sh(|S|). If 0 ≤ T ∈ {S}⊥⊥ = {|S|}⊥⊥, then T = supn n|S| ∧ T .
Thus, we obtain

[TpDx] = sup
n

[(
n|S| ∧ T

)
pDx

]
≤ sup

n

[(
n|S|

)
pDx

]
=

[
|S|pD(E)

]
for all elements x ∈ E. Consequently, T ∈ Sh(|S|). Finally, we prove the last
assertion (c). Let

hS(T ) = inf
{∑

i

[
SpDi

(E)
]
TpDi

: (Di) ∈ D0

}
.

We must check the following relations for any T ∈ U+(E,F ):

(1) 0 ≤ hS(T ) ≤ T ;
(2) hS(hS(T )) = hS(T );



DISJOINTNESS-PRESERVING ORTHOGONALLY ADDITIVE OPERATORS 739

(3) hS(T ) = T ⇔ T ∈ Sh(S);
(4) hS is a linear operator.

By Lemma 2.21, for every (Di) ∈ D0 we have p⊔ Di
= I, where I is an identity

operator. Therefore we have the operator 0 ≤ hS(T ) ≤ T and formula (1) is
proved. Moreover, by Lemma 2.19 the operator

∑
i[SpDi

(E)]TpDi
is a fragment

of T for every (Di) ∈ D0. Observe that by Lemma 2.18, the finer the partition
(Di) is, the smaller this fragment becomes. Hence, hS(T ) is the (o)-limit of the
decreasing net of fragments T(Di). The formula (3) is a consequence of the following
chain of equivalent assertions:

hS(T ) = T ⇔ ∀(Di) ∈ D0

∑
i

[
SpDi

(E)
]
TpDi

= T

=
∑
i

TpDi
⇔ ∀D ∈ Lb(E)

[
SpD(E)

]
TpD = TpD

⇔ ∀D ∈ Lb(E)
[
TpD(E)

]
≤

[
SpD(E)

]
.

If T1, T2 ≥ 0, then for any (Di), (Dk) ∈ D0 we have∑
i

[
SpDi

(E)
]
T1pDi

+
∑
j

[
SpDj

(E)
]
T2pDj

≥
∑
k

[
SpDk

(E)
]
(T1 + T2)pDk

=
∑
k

[
SpDk

(E)
]
T1pDk

+
∑
k

[
SpDk

(E)
]
T2pDk

,

where (Dk) ∈ D0 is finer than (Di) and (Dj). Taking the infimum, we obtain

hS(T1) + hS(T2) = hS(T1 + T2).

It remains to verify the equality (2). Suppose that W = hS(T ), with T ∈
U+(E,F ). For any D ∈ Lb(E), we have

WpD = inf
{∑

i

[
SpDi

(E)
]
TpDi

pD : (Di) ∈ D0

}
= inf

{∑
i

[
SpD′

i
(E)

]
TpD′

i
pD :

⊔
(D′

i) = D
}
.

Thus, [WpD(E)] ≤ [SpD(E)] for every D ∈ Lb(E). By the equivalence (3) estab-
lished above, we obtain W = hS(W ). �

Let E be a vector lattice with a principal projection property, and let F be
a Dedekind-complete vector lattice. Then the infimum in Theorem 1.4 can be
calculated by the formula

(T ∧ S)x := inf
{
Tσx+ Sσ⊥x : σ ∈ B(E)

}
.

Observe that every Dedekind-complete vector lattice E has a principal projection
property. Now, we are ready to present the main result of this section.
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Theorem 2.24. Let E,F be Dedekind-complete vector lattices. Then the equality
Sh(S) = {S}⊥⊥ holds for any disjointness-preserving operator S ∈ U+(E,F ). In
particular, the following band projection formula is valid for every T ∈ U+(E,F ):

[S]T = inf
{∑

i

[
SpDi

(E)
]
TpDi

: (Di) ∈ D0

}
. (2.3)

Proof. Let D be a band in the vector lattice E. We remark that TpD = TσD,
where σD is an order projection onto the band D. Note that the equality
[SσD(E)]T = TσD is valid for every operator T ∈ Sh(S) and every band D ⊂ E.
Indeed, since S is a disjointness-preserving operator, the order projections [Sσ(E)]
and [Sσ⊥(E)] are disjoint. Taking into account that[

Sσ(E)
]
Sσ⊥(E) = 0;

[
Sσ⊥(E)

]
Sσ(E) =

[
Sσ(E)

]⊥
Sσ(E) = 0;[

Tσ(E)
]
≤

[
Sσ(E)

]
;

[
Tσ⊥(E)

]
≤

[
Sσ⊥(E)

]
,

we have[
Sσ(E)

]
Tx =

[
Sσ(E)

]
T (σx+ σ⊥x) =

[
Sσ(E)

]
Tσx+

[
Sσ(E)

]
Tσ⊥x

=
[
Sσ(E)

]
Tσx =

([
Sσ(E)

]
+
[
Sσ(E)

]⊥)
Tσx = Tσx

for every x ∈ E. Now, take a positive operator T ∈ Sh(S) such that T ∧ S = 0.
Assume that there exists e ∈ E such that Te > 0. Let D = Fe. We remark that
[SpD(E)] = [Se] and [TpD(E)] = [Te]. By our assumption, [TpD(E)] ≤ [SpD(E)].
Hence Se > 0 and Se ∧ Te > 0. Observe that for a vector lattice F with the
projection property, the following inequality holds:

u ∧ v ≤ %u+ %⊥v;

u, v ∈ F+; % ∈ B(F ).

Indeed,

(u ∧ v) = (%+ %⊥)(u ∧ v)
= %(u ∧ v) + %⊥(u ∧ v) ≤ %u+ %⊥v.

Now, for any σ ∈ B(E), we may write

Te ∧ Se ≤ Tσe+ Sσ⊥e =
[
Sσ(E)

]
Te+

[
Sσ⊥(E)

]
Se;

Te ∧ Se ≤ inf
σ∈P(E)

{Tσe+ Sσ⊥e} = (T ∧ S)e = 0.

Hence for all elements e ∈ E, we have Te = 0. Thus the inclusion T ∈ {S}⊥⊥ is
proved. The equality 2.3 is the consequence of Lemma 2.23. �

Note that for linear regular operators, a similar theorem was proved by
Kolesnikov in [20, p. 515].
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3. The Radon–Nikodým-type theorem for a positive
disjointness-preserving operator

The Radon–Nikodým theorem is a well-known classical result of functional
analysis. The aim of this section is to prove the Radon–Nikodým-type theorem
for a positive, disjointness-preserving abstract Urysohn operator.

First we show (as in the linear case) that the module and the positive and nega-
tive parts of a disjointness-preserving abstract Urysohn operator can be evaluated
pointwise.

Lemma 3.1. Let E and F be vector lattices with F Dedekind-complete, and let
T ∈ U(E,F ) be a disjointness-preserving operator. Then for every x ∈ E, the
following conditions hold:

(1) |T |x = |Tx|;
(2) T+x = (Tx)+;
(3) T−x = (Tx)−;
(4) T+x ∧ T−x = 0.

Proof. First we prove the equality |T |x = |Tx|, x ∈ E. By Theorem 1.4, we have
that

|T |x = sup{Ty − Tz : x = y t z} ≥ Tx ∨ (−Tx) = |Tx|.
We need to prove the reverse inequality. Take y, z ∈ E such that x = y t z. Then
Ty ⊥ Tz and we may write

Ty − Tz ≤ |Ty − Tz| = |Ty + Tz| =
∣∣T (y + z)

∣∣ = |Tx|.

Passing to the supremum on the left-hand side of the above inequality over all
fragments y, z of x such that x = y t z, we deduce that |T |x ≤ |Tx|. Hence we
prove that |T |x = |Tx| for any x ∈ E. Since

T+ =
1

2

(
|T |+ T

)
; T− =

1

2

(
|T | − T

)
,

we have

T+x =
1

2

(
|T |+ T

)
x =

1

2

(
|T |x+ Tx

)
=

1

2

(
|Tx|+ Tx

)
= (Tx)+;

T−x =
1

2

(
|T | − T

)
x =

1

2

(
|T |x− Tx

)
=

1

2

(
|Tx| − Tx

)
(Tx)+ = (Tx)−.

Finally,

T+x ∧ T−x = (Tx)+ ∧ (Tx)− = 0

and the proof is finished. �

Now we need some auxiliary lemmas.

Lemma 3.2. Let E,F be vector lattices with F Dedekind-complete, let T ∈
U+(E,F ) be a disjointness-preserving operator, and let S ∈ U+(E,F ) and Sx ∈
{Tx}⊥⊥ for all x ∈ E. Then S ∈ {T}⊥⊥.
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Proof. Since 0 ≤ S ∈ {T}⊥⊥, we have that S ∧ nT ↑ S. Thus (S ∧ nT )x ↑ Sx for
every x ∈ E. Then

0 ≤ (S ∧ nT )x ≤ nTx⇒ (S ∧ nT )x ∈ {Tx}⊥⊥

and we deduce that Sx ∈ {Tx}⊥⊥. �

Lemma 3.3. Let E,F be vector lattices with F Dedekind-complete, and let S, T ∈
U+(E,F ) be disjointness-preserving operators. Then T + S is a disjointness-
preserving operator if and only if Sx ⊥ Ty for every pair of disjoint elements
x, y ∈ E.

Proof. Take a pair of disjoint elements x, y ∈ E, and assume that T + S is a
disjointness-preserving operator. Then we may write

0 ≤ |Sx| ∧ |Ty| = Sx ∧ Ty ≤ (S + T )x ∧ (S + T )y = 0.

Hence Sx ⊥ Ty. On the other hand,

Sx ∧ Sy = Tx ∧ Ty = Sx ∧ Ty = Sy ∧ Tx = 0.

Thus

0 ≤ (S + T )x ∧ (S + T )y

≤ (Sx ∧ Sy) ∧ (Tx ∧ Ty) ∧ (Sx ∧ Ty) ∧ (Sy ∧ Tx) = 0. �

Lemma 3.4. Let E,F be vector lattices with F Dedekind-complete, let T ∈
U+(E,F ) be a disjointness-preserving operator, and let S ∈ U+(E,F ) satisfy
Sx ∈ {Tx}⊥⊥ for all x ∈ E. Then S is a disjointness-preserving operator.

Proof. If x, y ∈ E, x ⊥ y, then we have

0 ≤ (Sx ∧ nTx) ∧ (Sy ∧mTy) ≤ (n+m)(Tx ∧ Ty) = 0.

Thus

0 ≤ (Sx ∧ nTx) ∧ (Sy ∧mTy) = 0

for any n,m ∈ N. Since Sx ∈ {Tx}⊥⊥ and Sy ∈ {Ty}⊥⊥, we have that Sx∧nTx ↑
Sx, Sy ∧mTy ↑ Sy, and therefore that Sx ∧ Sy = 0. �

Remark 3.5. Observe by Lemma 3.2 that if 0 ≤ S ∈ {T}⊥⊥, then S is a
disjointness-preserving operator.

Lemma 3.6. Let E,F be vector lattices with F Dedekind-complete, let T ∈
U+(E,F ) be a disjointness-preserving operator, and let 0 ≤ S1, S2 ∈ {T}⊥⊥.
Then

(S1 ∧ S2)x = S1x ∧ S2x.

Proof. Let S ′
1 = S1 − S1 ∧ S2 and S ′

2 = S2 − S1 ∧ S2. Put S
′ = S ′

1 − S ′
2. Since

S ′
1, S

′
2 ∈ {T}⊥⊥, then |S ′| ∈ {T}⊥⊥ and therefore |S ′| is a disjointness-preserving

operator. From S ′
1 ∧ S ′

2 = 0, we deduce that (S ′)+ = S ′
1 and (S ′)− = S ′

2. By
Lemma 3.1, we get S ′

1x ∧ S ′
2x = 0 for every x ∈ E. Now we may write(

S1x− (S1 ∧ S2)x
)
∧
(
S2x− (S1 ∧ S2)x

)
= 0,
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and we deduce that

(S1 ∧ S2)x = S1x ∧ S2x

for all x ∈ E. �

Lemma 3.7. Let E,F be vector lattices with F Dedekind-complete, let S1, S2 ∈
U+(E,F ), and let S1+S2 be a disjointness-preserving operator. Then the following
statements are equivalent:

(1) S1 ∧ S2 = 0;
(2) S1x ∧ S2x = 0 for all x ∈ E.

Proof. (2) ⇒ (1): Take an arbitrary element x ∈ E. By Theorem 1.4,

(S1 ∧ S2)x = inf{S1y + S2z : x = y t z} ≤ S1x ∧ S2x = 0

and the implication is proved. (1) ⇒ (2): Applying Lemma 3.7 to T = S1 + S2,
we have

S1x ∧ S2x = (S1 ∧ S2)x = 0

and the proof if finished. �

The following theorem is the main result of this section.

Theorem 3.8. Let E,F be vector lattices with F Dedekind-complete, let T ∈
U+(E,F ) be a disjointness-preserving operator, and let S ∈ U+(E,F ). Then the
following statements are equivalent:

(1) S ∈ {T}⊥⊥;
(2) Sx ∈ {Tx}⊥⊥ for all x ∈ E.

Proof. The implication (1) ⇒ (2) is proved in Lemma 3.2. Now we prove the
implication (2) ⇒ (1). By Lemma 3.3, S is a disjointness-preserving operator. We
claim that Sx ⊥ Ty for any disjoint elements x, y ∈ E. Actually, Tx ∧ Ty, and
hence {Tx}⊥⊥ ∩ {Ty}⊥⊥ = {0}. Consequently, Sx ∈ {Tx}⊥⊥ and Ty ∈ {Ty}⊥⊥.
Now, by Lemma 3.3 we have that S + T is a disjointness-preserving operator.
Taking into account the decomposition

U(E,F ) = {T}⊥⊥ ⊕ {T}⊥,

we have that there is the representation S = S1 + S2, where 0 ≤ S1 ∈ {T}⊥⊥

and 0 ≤ S2 ∈ {T}⊥. Since 0 ≤ S2 + T ≤ S + T , we get that S2 + T is a
disjointness-preserving operator. By Lemma 3.3, we have that S2x ∈ {Tx}⊥.
On the other hand, from 0 ≤ S2x ≤ Sx and Sx ∈ {Tx}⊥⊥ for all x ∈ E, we
deduce that S2x = 0 for all elements x ∈ E and therefore that S2 = 0. Thus
S = S1 ∈ {T}⊥⊥ and the proof is completed. �

We remark that the Radon–Nikodým-type theorem for linear lattice homomor-
phisms and linear operators having the Maharam property was proved in [23] (see
also [17]).
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4. Urysohn lattice homomorphisms in order ideals of spaces of
measurable functions

In this section, we investigate Urysohn lattice homomorphisms on order ideals
of spaces of all measurable functions, and we obtain the analytical representation
for this class of operators.

Definition 4.1. Let E be a vector lattice, and let X be a vector space. An orthog-
onally additive map T : E → X is said to be even if T (x) = T (−x) for any x ∈ E.
If E,F are vector lattices, then the set of all even abstract Urysohn operators
from E to F is denoted by U ev(E,F ).

If E,F are vector lattices with F Dedekind-complete, then the space U ev(E,F )
is a Dedekind-complete sublattice of U(E,F ) (see [28, Lemma 3.2]).

Now we are ready to give the following definition.

Definition 4.2. Let E and F be vector lattices. The operator T ∈ U ev
+ (E,F ) is

called a Urysohn lattice homomorphism if the following conditions hold:

(1) T (x ∨ y) = Tx ∨ Ty for every x, y ∈ E+;
(2) T (x ∧ y) = Tx ∧ Ty for every x, y ∈ E+.

It is clear that a Urysohn lattice homomorphism is an increasing operator on
E+.

Example 4.3. If E = F = R, then the set of all Urysohn lattice homomorphisms
on R coincides with the set of all even, nondecreasing on R+ functions f : R → R+

such that f(0) = 0 and f([a, b]) is a bounded set for every a, b ∈ R.

Now we need some auxiliary lemmas.

Lemma 4.4 ([1, Lemma 2.1]). Let E,F be vector lattices, and let T ∈ U ev
+ (E,F ).

Then the following statements are equivalent:

(1) T (x ∨ y) = Tx ∨ Ty for every x, y ∈ E+;
(2) T (x ∧ y) = Tx ∧ Ty for every x, y ∈ E+;
(3) T is a Urysohn lattice homomorphism from E to F .

Lemma 4.5. Let E,F be vector lattices, and let T ∈ U ev
+ (E,F ). Then the fol-

lowing statements are equivalent:

(1) T ∈ U ev
+ (E,F ) is a disjointness-preserving and an increasing operator on

E+;
(2) T is a Urysohn lattice homomorphism from E to F .

Proof. The implication (2) ⇒ (1) is obvious. Let us prove (1) ⇒ (2). By
Lemma 4.4, it is enough to prove that T (x∧y) = Tx∧Ty for all x, y ∈ E+. Iden-
tify E with a vector sublattice of the Dedekind-complete vector lattice C∞(Q) of
all extended real-valued continuous functions on some extremally disconnected
compact space Q. Put A = {t ∈ Q : x(t) ≤ y(t)} and B = {t ∈ Q : y(t) < x(t)}.
Observe that A and B are clopen, disjoint subsets of Q. Then

x ∧ y = x1A + y1B; x ∨ y = x1B + y1A;

x = x1A + x1B; y = y1A + y1B.
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Now we have

T (x ∧ y) = T (x1A + y1B) = Tx1A + Ty1B.

On the other hand, taking into account that x1B ⊥ y1A, x1A ⊥ y1B, we may
write

Tx ∧ Ty = T (x1A + x1B) ∧ T (y1A + y1B)

= (Tx1A + Tx1B) ∧ (Ty1A + Ty1B)

≤ Tx1A ∧ Ty1A + Tx1A ∧ Ty1B
+ Tx1B ∧ Ty1A + Tx1B ∧ Ty1B

= Tx1A + Ty1B.

Thus T (x ∧ y) ≥ Tx ∧ Ty and the equality T (x ∧ y) = Tx ∧ Ty is proved. �

The following lemma provides a typical example of a Urysohn lattice homo-
morphism on the space of all measurable functions.

Lemma 4.6. Let (A,Σ, µ) be σ-finite complete measure spaces, let L0(A,Σ, µ) (or
L0(µ) for brevity) be a vector space of all measurable µ-almost everywhere finite
real-valued functions on A, and let N : A× R → R+ be a function satisfying the
following conditions:

(C0) N(t, 0) = 0 for µ-almost all t ∈ A;
(C1) N(·, r) is µ-measurable for all r ∈ R;
(C2) N(t, ·) is continuous on R for µ-almost all t ∈ A;
(C3) N(·, r) = N(·,−r) for µ-almost all t ∈ A and every r ∈ R;
(C4) N(·, x) < N(·, r) for µ-almost all t ∈ A and every x, r ∈ R+, x < r.

Then the operator T defined by

(Tf)(t) = N
(
t, f(t)

)
; f ∈ L0(µ)

is a Urysohn lattice homomorphism from L0(µ) to L0(µ).

Proof. Recall that a function N : A×R → R is considered a Carathéodory func-
tion if it satisfies conditions (C1)–(C2). It is well known that for every
Carathéodory function N and every f ∈ L0(µ), the function N(·, f(·)) also
belongs to L0(µ) (see, e.g., [5, Chapter 1.4]). Thus the operator T : L0(µ) → L0(µ)
is well defined. In Example 2.2 it was proved that T is an orthogonally additive
operator on L0(µ). It is clear that T is a positive abstract Urysohn operator.
Let us show that T (f) = T (−f) for every f ∈ L0(µ). Put Dr := {t ∈ A :
N(t, r) 6= N(t,−r)}, where r ∈ Q, and let D =

⋃
r∈QDr. By the condition (C3)

we have µ(Dr) = 0 and therefore µ(D) = 0. Take x ∈ R, and let t /∈ D. Then
there exists a sequence (rn) ⊂ Q with x = limn→∞ rn (−x = limn→∞(−rn))
and by the condition (C2), we deduce that N(t, x) = N(t,−x). Hence for all
t /∈ D, we have N(t, f(t)) = N(t,−f(t)), f ∈ L0(µ). Thus T ∈ U ev

+ (L0(µ)). Take
f, g ∈ L0(µ) with f ⊥ g. It means that µ{t ∈ A : t ∈ supp(f)∩ supp(g)} = 0. Let
D1 := supp(f) and D2 := supp(g). Now we may write

(Tf)(t) = N
(
t, f(t)

)
= N

(
t, f(t)1D1

)
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= N
(
t, f(t)

)
1D1(t) = (Tf)(t)1D1(t);

(Tg)(t) = (Tg)(t)1D2(t).

Hence T is a disjointness-preserving operator. Let us show that T is an increasing
operator on L0(µ)+. Set Q2

+ = {(p, q) : p, q ∈ Q+, p < q}. With every (p, q) ∈ Q2
+

we associate a measurable set Gp,q = {t ∈ A : N(t, p) > N(t, q)}. It is clear that
µ(Gp,q) = 0. Put G =

⋃
(p,q)∈Q2

+
Gp,q. Then µ(G) = 0 and taking into account the

condition (C2), we have that N(t, x) ≤ N(t, y) for every t /∈ G and x, y ∈ R+,
x ≤ y. Take f, g ∈ L0(µ)+ with f ≤ g, and let H = {t ∈ A : f(t) > g(t)}. Clearly,
µ(H) = 0. Thus N(t, f(t)) ≤ N(t, g(t)) for all t /∈ H ∪ G and the assertion is
proved. Then by Lemma 4.5, T is a Urysohn lattice homomorphism and the proof
is finished. �

A map N : A × R → R+ is said to be an H-function if it satisfies conditions
(C0)–(C4) of Lemma 4.6. We need some information about Boolean homomor-
phisms.

Definition 4.7. Let A,B be Boolean algebras. A map ϕ : A → B is said to be a
Boolean homomorphism if the following conditions hold:

(1) ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) for all x, y ∈ A;
(2) ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) for all x, y ∈ A;
(3) ϕ(0A) = 0B and ϕ(1A) = 1B.

If, moreover, ϕ(
∨∞

i=1 xi) =
∨∞

i=1 ϕ(xi) for every countable family (xi) of mutu-
ally disjoint elements of A, then ϕ is called a σ-Boolean homomorphism, or
σ-homomorphism for short.

Let (A,Σ, µ) and (B,Ξ, ν) be σ-finite and complete measure spaces. Let ϕ :
Σ → Ξ be a σ-homomorphism of Boolean algebras Σ and Ξ. With ϕ : Σ → Ξ is
associated a linear operator Sϕ : L0(µ) → L0(ν). Indeed, take a Σ-simple function
f =

∑n
i=1 ri1Ai

≥ 0, where Ai, i ∈ {1, . . . , n} are mutually disjoint µ-measurable
subsets of A. Let

Sϕ(f) :=
n∑

i=1

ri1ϕ(Ai).

Since ϕ is a σ-homomorphism, the function Sϕ(f) is well defined and ν-measurable.
For every µ-measurable function f ≥ 0 there exists a nondecreasing sequence (fn)
of simple functions such that f = supn fn. Thus we put

Sϕ(f) = sup
n

Sϕ(fn).

Taking into account that ϕ is a σ-homomorphism, we deduce that Sϕ(f) is a well
defined ν-measurable function. Finally, we put

Sϕ(f) = Sϕ(f+)− Sϕ(f−)

for every µ-measurable function f . It is clear that Sϕ is a linear, order-continuous
operator from L0(µ) to L0(ν).
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Definition 4.8. Let E and F be order ideals in vector lattices L0(A,Σ, µ) and
L0(B,Ξ, ν), respectively, and let ϕ : Σ → Ξ be a σ-homomorphism of Boolean
algebras Σ and Ξ. We say that H-function N : B × R → R+ is a (ϕ,E, F )-type
if N(s,Sϕ(f)(s)) ∈ F for every f ∈ E.

Definition 4.9. An orthogonally additive operator T from vector lattice E to
vector lattice F is called laterally full if for every x ∈ E, z v Tx there exists
y v x such that Ty = z.

Definition 4.10. An operator T ∈ U ev
+ (E,F ) is said to be strictly positive if the

relation Tx = 0 implies that x = 0 for every x ∈ E+.

The next theorem is the main result of this section.

Theorem 4.11. Let (A,Σ, µ) and (B,Ξ, ν) be finite measure spaces, let E, F be
order ideals in L0(µ) and L0(ν), respectively, and let T ∈ U ev

+ (E,F ). Then the
following statements are equivalent.

(1) T is a strictly positive, laterally full, order-continuous Urysohn lattice
homomorphism.

(2) There exist an H-function of (ϕ,E, F )-type N : B × R → R+ and a sur-
jective σ-homomorphism ϕ from the Boolean algebra Σ onto the Boolean
algebra Ξ0 = {A∩suppN : A ∈ Ξ} such that for every f ∈ E the following
equality holds:

(Tf)(s) = N
(
s,Sϕ(f)(s)

)
. (4.1)

Proof. (1) ⇒ (2). First we prove that suppT (x1V ) = suppT (y1V ) for any mea-
surable subset V of A and any x, y ∈ R+. The sum V ∪ H of two measurable
disjoint sets is denoted by V t H. Assume that for some x < y the measur-
able set suppT (x1V ) is a proper subset of suppT (y1V ). Then there exists a
decomposition suppT (y1V ) = suppT (x1V ) t G, where suppT (x1V ) and G are
disjoint ν-measurable sets. Since the operator T is laterally full, there exists a
µ-measurable subset H of V such that µ(H) > 0, T (y1H) = T (y1V )1D, and
T (y1V \H) = T (y1V )1supp T (x1V ). Taking into account that the operator T is strictly
positive, we deduce that T (x1H) > 0. Elements x1H and y1V \H are disjoint, but
supp(Tx1H) ⊂ supp(Tx1H), which is a contradiction; consequently, measurable
sets suppT (x1V ) and suppT (y1V ) are coincident. Put G = suppT (1A). We show
that there is a surjective σ-homomorphism ϕ : Σ → Ξ0, where Ξ0 = {H ∩ G :
H ∈ Ξ}. Indeed, for every V ∈ Σ a map ϕ : Σ → Ξ0 is defined by

ϕ(V ) = suppT (1V ), V ∈ Σ.

It is clear that ϕ maps µ-null subsets of A to ν-null subsets of B and ϕ(A) = G.
For any µ-measurable subset V of A, we have

ϕ(A) = ϕ
(
(A\V ) t V

)
) = suppT (1(A\V )tV )

= suppT (1A\V ) t suppT (1V ) = ϕ(A\V ) t ϕ(V )

⇒ ϕ(A\V ) = ϕ(A)\ϕ(V ).
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Take two disjoint µ-measurable sets V1 and V2. Then

ϕ(V1 t V2) = suppT (1V1tV2) = suppT (1V1 + 1V2).

Taking into account that T is a disjointness-preserving operator, we get that
measurable sets suppT (1V1) and suppT (1V2) are disjoint and suppT (1V1 +1V2) =
suppT (1V1) t suppT (1V2). Hence

ϕ(V1 ∨ V2) = ϕ(V1 t V2) = ϕ(V1) t ϕ(V2) = ϕ(V1) ∨ ϕ(V2),

and consequently ϕ is a Boolean homomorphism. Since the operator T is laterally
full, then ϕ is a surjective homomorphism. Additionally, taking into account that
the operator T is order-continuous, we deduce that ϕ is a σ-homomorphism. Now,
put

N(s, x) = T (x1A)(s), x ∈ R.

It is clear that N(·, 0) = 0 for ν-almost all s ∈ B and that the function N(·, x) is
ν-measurable for all x ∈ R. Moreover, since the operator T is a Urysohn lattice
homomorphism, we obtain that N satisfies conditions (C0)–(C4) of Lemma 4.6.
Hence N is a H-function.

Now, take a Σ-simple function f =
∑n

i=1 xi1Ai
, where the Ai’s are mutually

disjoint µ-measurable subsets of A and xi ∈ R, 1 ≤ i ≤ n. Then

T (f) = T
( n∑

i=1

xi1Ai

)
=

n∑
i=1

T (xi1Ai
)

=
n∑

i=1

N(s, xi)1ϕ(1Ai
) =

n∑
i=1

N(s, xi1ϕ(1Ai
))

= N
(
s,

n∑
i=1

xi1ϕ(1Ai
)

)
= N

(
s, Sϕ

( n∑
i=1

xi1Ai

))
.

Assume that f is an arbitrary element of E. There there exists a sequence of
Σ-simple functions (fn) which order-converges to f . Thus

Tf = lim
n→∞

T (fn) = lim
n→∞

N(s, Sϕ(fn) = N
(
s, Sϕ(f)

)
.

Clearly, N is an H-function of (ϕ,E, F )-type and we get an analytical represen-
tation for the Urysohn lattice homomorphism T .

(2) ⇒ (1) It is not difficult to check that the operator T defined by formula
(4.1) is a strictly positive, order-continuous Urysohn lattice homomorphism. Let
us prove that T is a laterally full operator. Indeed, take an element f ∈ E, and
assume that g is a fragment of Tf . Then there exists a measurable setD ∈ Ξ0 such
that g = (Tf)1D. On the other hand, since ϕ is a surjective σ-homomorphism,
there exists a measurable set H ∈ Σ such that D = ϕ(H). Then we may write

(Tf)1D(s) = N
(
s,Sϕ(f)(s)

)
1D(s) = N

(
s,Sϕ(f)1D(s)

)
= N

(
s,Sϕ(f)1ϕ(H)(s)

)
= N

(
s,Sϕ(f1H)(s)

)
= (Tf1H)(s).

Hence T is a laterally full operator. �
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