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Abstract. We derive sharp weighted norm estimates for positive kernel oper-
ators on spaces of homogeneous type. Similar problems are studied for one-sided
fractional integrals. Bounds of weighted norms are of mixed type. The prob-
lems are studied using the two-weight theory of positive kernel operators. As
special cases, we derive sharp weighted estimates in terms of Muckenhoupt
characteristics.

1. Introduction

The focus of this article is on mixed-type weighted bounds for fractional inte-
grals on spaces of homogeneous type (SHT). Our main results are obtained by
means of the two-weight theory of integral operators with positive kernels. We
investigate a similar problem for one-sided fractional integrals. In the latter case,
sharp bounds involve one-sided A∞ characteristics of weights. LetX and Y be two
Banach spaces. Given a bounded operator T : X → Y , we denote the operator
norm by ‖T‖X→Y which is defined in the standard way, that is, sup‖f‖X≤1 ‖Tf‖Y .
IfX = Y , then we use the symbol ‖T‖X . A nonnegative locally integrable function
w defined on Rn is said to satisfy Ap(Rn) condition (w ∈ Ap(Rn)) for 1 < p <∞
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if

‖w‖Ap(Rn) := sup
Q

( 1

|Q|

∫
Q

w(x) dx
)( 1

|Q|

∫
Q

w(x)1−p′ dx
)p−1

<∞,

where p′ = p
p−1

, and the supremum is taken over all cubes Q in Rn with sides

parallel to the coordinate axes. We call ‖w‖Ap(Rn) the Ap characteristic of w.
In 1972, Muckenhoupt [21] showed that if w ∈ Ap(Rn), where 1 < p <∞, then

the Hardy–Littlewood maximal operator

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

∣∣f(y)∣∣ dy
is bounded in Lp

w(Rn). Buckley [2] investigated the sharp Ap bound for the oper-
ator M and established the inequality

‖M‖Lp
w(Rn) ≤ C‖w‖

1
p−1

Ap(Rn), 1 < p <∞. (1.1)

Moreover, he showed that the exponent 1
p−1

is best possible in the sense that we

cannot replace ‖w‖
1

p−1

Ap
by ψ(‖w‖Ap) for any positive nondecreasing function ψ

growing slower than x
1

p−1 . From here it follows that for any λ > 0,

sup
w∈Ap

‖M‖Lp
w
→ Lp

w

‖w‖
1

p−1
−λ

Ap

= ∞.

In 1974, Muckenhoupt and Wheeden [22] found a necessary and sufficient condi-
tion for the one-weight inequality; namely, they proved that the Riesz potential
Iα defined by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy,

or the fractional maximal operator defined by

Mαf(x) = sup
x∈Q

1

|Q|1−α
n

∫
Q

∣∣f(y)∣∣ dy,
is bounded from Lp

wp(Rn) to Lq
wq(Rn), where 1 < p <∞, 0 < α < n/p, q = np

n−αp
if

and only if w satisfies the so-called Ap,q(Rn) condition (see the definition below).
Moreover, from their result it follows that there is a positive constant c depending
only on p and α such that

‖Kα‖Lp
wp→Lq

wq
≤ c‖w‖βAp,q

, (1.2)

for some positive exponent β, where Kα is either Iα or Mα, and ‖w‖Ap,q is the
Ap,q characteristic of w. In [15], Lacey, Moen, Pérez, and Torres proved that the
best possible value of β in (1.2) is (1 − α/n)p′/q (resp., (1 − α/n)max{1, p′/q})
for Mα (resp., for Iα).

A two-weight characterization for fractional integrals was given by Sawyer [23],
[24] under conditions involving the operator itself. The study of the same problem
for Riesz potentials in terms of capacities is due to Maz’ya [20]. Kokilashvili and
Krbec [13, Theorem 6.2.4] gave two-weight criteria for the Riesz potential Iα
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under more transparent conditions. Using that result, Wheeden [29] characterized
the two-weight norm inequality for the fractional maximal operator Mα. Similar
problems for integral operators with positive kernels on SHT were studied in
[25] and [7] under different types of conditions (see also [27], [26], [11] for the
Sawyer-type result on SHT without any additional geometric conditions on SHT).

Cruz-Uribe and Moen [3] obtained the following results for the Riesz potentials
and fractional maximal operators defined on Rn.

Theorem 1.1 ([3, Theorems 2.1, 2.3]). Given 0 < α < n and 1 < p ≤ q < ∞,
suppose that [v, u] ∈ Aα

p,q(Rn) and u1−p′ ∈ A∞(Rn). Then

‖Mα‖Lp
u→Lq

v
≤ c[v, u]Aα

p,q(Rn)Aexp
∞ (u1−p′ )1/q (1.3)

and

‖Mα‖Lp
u→Lq

v
≤ c[v, u]Ap,q(Rn)‖u1−p′‖1/q

AM
∞(Rn)

, (1.4)

where

[v, u]Aα
p,q(Rn)Aexp

∞ (u) := sup
Q
Aα

p,q(v, u,Q)A
exp
∞ (u,Q),

[v, u]Aα
p,q(Rn) := sup

Q
Aα

p,q(v, u,Q)

:= sup
Q

|Q|
α
n
+ 1

q
− 1

p

( 1

|Q|

∫
Q

v
)1/q( 1

|Q|

∫
Q

u1−p′
)1/p′

,

‖ω‖AM
∞(Rn) := sup

Q
AM

∞(ω,Q) := sup
Q

1

ω(Q)

∫
Q

M(ωχQ)(x) dx,

‖ω‖Aexp
∞ (Rn) := sup

Q
Aexp

∞ (ω,Q)

:= sup
Q

( 1

|Q|

∫
Q

ω(x) dx
)
exp

(
− 1

|Q|

∫
Q

logω(x) dx
)
,

where the supremum is taken over all cubes Q in Rn with sides parallel to the
coordinate axes.

Theorem 1.2. Given 0 < α < n and 1 < p < q < ∞, suppose that [v, u] ∈ Aα
p,q

and u1−p′ , v ∈ A∞. Then

‖Iα‖Lp
u→Lq

v
≤ c[v, u]Aα

p,q(Rn)Aexp
∞ (u1−p′ )1/q + [v, u]Aα

q′,p′ (R
n)Aexp

∞ (v)1/p
′ (1.5)

and

‖Iα‖Lp
u→Lq

v
≤ c[v, u1−p′ ]Ap,q(Rn)

(
‖v‖1/p

′

AM
∞(Rn)

+ ‖u1−p′‖1/q
AM

∞(Rn)

)
, (1.6)

where the characteristics Aα
p,qA

exp
∞ and AM

∞ are defined in the preceding theorem.

These results, in particular, imply the Buckley-type theorems for fractional
integrals established in [15]. Regarding the sharp one-weighted estimate for the
fractional integral operator

Tαf(x) :=

∫
X

f(y)

µ(B(x, d(x, y)))1−α
dµ(y), 0 < α < 1, (1.7)

defined on an SHT, we have the following theorem due to Kairema [12].
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Theorem 1.3 ([12, Proposition 5.5, Theorem 7.1]). Suppose that (X, d, µ) is an
SHT. Let 0 < α < 1, and let 1 < p < 1/α. We set 1/p−1/q = α. Let w ∈ Ap,q(X).
Then

(a)

‖Tα‖Lp
wp (X)→Lq,∞

wq (X) ≤ c‖w‖1−α
Ap,q(X);

(b)

‖Tα‖Lp
wp (X)→Lq

wq (X) ≤ c‖w‖
(1−α) max{1, p

′
q
}

Ap,q(X) .

Furthermore, these estimates are sharp in the sense that 1 − α and (1 − α) ×
max{1, p′

q
} are best possible in (a) and (b), respectively.

In this theorem, ‖w‖Ap,q(X) is the Ap,q characteristic of the weight w defined on
X (see the definition below).

Mixed (Ap−A∞)-type estimates for Calderón–Zygmund operators were estab-
lished by Lerner and Moen in [16]. Recently, Hytönen, Pérez, and Rela [10] derived
mixed (Ap − A∞)-type estimates for the Hardy–Littlewood maximal operator

Mµf(x) := sup
x∈B

1

µ(B)

∫
B

∣∣f(t)∣∣ dµ(t)
defined on an SHT. In particular, they showed that

‖Mµ‖Lp
w(X) ≤ C‖w‖Ap(X)‖w1−p′‖AM

∞(X), 1 < p <∞, (1.8)

holds, where ‖ω‖AM
∞(X) is one of the A∞ characteristics of a weight ω (see the

definition below).
The article is organized as follows. In Section 2, we give definitions of the space

of homogeneous type and some characteristics of weights. We also discuss well-
known two-weight criteria for positive kernel operators. Section 3 is devoted to the
mixed-type weighted sharp bounds for kernel operators and fractional integrals
defined on spaces of homogeneous type. In Section 4, we derive weighted sharp
bounds for one-sided fractional integrals involving one-sided A∞ characteristics
of weights.

By the symbol A ≈ B, we mean that there are positive constants c1 and c2
(depending on appropriate parameters) such that c1A ≤ B ≤ c2A; A� B means
that there is a positive constant c such that A ≤ cB. For a weight function ρ,
ρ(E) :=

∫
E
ρ(x) dx; constants (often different constants) will be denoted by c

or C. We denote N0 := a1(1 + 2a0), where a0 and a1 are constants from the
definition of a quasimetric (see the definition below in Preliminaries).

2. Preliminaries

Let (X, d, µ) be a quasimetric measure space. A quasimetric d is a function
d : X ×X → [0,∞) which satisfies the following conditions:

(a) d(x, y) = 0 for all x ∈ X;
(b) d(x, y) > 0 for all x 6= y, x, y ∈ X;
(c) there is a constant a0 > 0 such that d(x, y) < a0d(y, x) for all x, y ∈ X;
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(d) there is a constant a1 > 0 such that d(x, y) < a1(d(x, z) + d(z, y)) for all
x, y, z ∈ X.

Let dX = diam(X) = sup{d(x, y) : x, y ∈ X}. Let B(x, r) = {y ∈ X : d(x, y) <
r} be the ball with center x and radius r. The dilation of a ball B(x, λr) with λ > 0
will be denoted by λB. Throughout this article, we will assume that µ{x} = 0
for all x ∈ X. A measure µ is said to satisfy the doubling condition (µ ∈ DC(X))
if there is a constant Dµ > 0 such that

µB(x, 2r) ≤ DµµB(x, r)

for every x ∈ X and every 0 < r <∞.

Definition 2.1. A space of homogeneous type (SHT) is the triple (X, d, µ), where
X is a set, d is a quasimetric on X, and µ is a doubling measure.

Throughout this article, we will assume that B(x, r2)\B(x, r1) 6= φ for any
x ∈ X and for all r1, r2 with 0 < r1 < r2 < dX .

Definition 2.2. A measure µ satisfies the reverse doubling condition (µ ∈ RD(X))
if there exist constants θ > 1 and η > 1 such that

µ
(
B(x, θr)

)
≥ ηµ

(
B(x, r)

)
for any x ∈ X and for all r > 0.

Remark 2.3. It is known that if µ ∈ DC(X), then µ ∈ RD(X) (see, e.g., [28,
p. 11, Lemma 20]).

Let ω be a weight on X; that is, it is µ almost everywhere positive and locally
integrable on X. We denote by Lp

ω(X), 1 < p < ∞, the set of all measurable
functions f : X → R for which the norm

‖f‖Lp
ω(X) =

(∫
X

∣∣f(x)∣∣pω(x) dµ(x)) 1
p

is finite. Suppose that Lp,∞
w (X) is the weighted weak Lebesgue space with respect

to the quasinorm

‖f‖Lp,∞
w (X) = sup

λ>0
λ
[
w
({
x ∈ X :

∣∣f(x)∣∣ > λ
})]1/p

,

where w(E) :=
∫
E
w dµ for all E measurable subsets of X.

Now we give the definitions of Ap and Ap,q classes of weights defined on an
SHT.

Definition 2.4. Let 1 < p <∞. We say that w ∈ Ap(X) if

‖w‖Ap(X) := sup
B
Ap(w,B) = sup

B

( 1

µ(B)

∫
B

w dµ
)( 1

µ(B)

∫
B

w1−p′ dµ
)p−1

<∞.

Definition 2.5. Let 1 < p, q <∞. We say that w ∈ Ap,q(X) if

‖w‖Ap,q(X) := sup
B
Ap,q(w,B) = sup

B

( 1

µ(B)

∫
B

wq dµ
)( 1

µ(B)

∫
B

w−p′ dµ
)q/p′

<∞.
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By definition, the class of weights A∞(X) is defined as A∞(X) =
⋃

p≥1Ap(X).

For an A∞(X) weight, it is defined as the following characteristic due to [8].

Definition 2.6. For a weight w ∈ A∞(X), we define

‖w‖Aexp
∞ (X) := sup

B
Aexp

∞ (w,B)

= sup
B

( 1

µ(B)

∫
B

w dµ
)
exp

( 1

µ(B)

∫
B

logw−1 dµ
)
<∞.

Another type of A∞ characteristic in terms of the maximal function was origi-
nally introduced by Fujii [6] and later investigated by Wilson [30]:

‖w‖AM
∞(X) := sup

B
AM

∞(w,B) = sup
B

( 1

w(B)

∫
B

Mµ(wχB)(x) dµ
)
<∞.

Furthermore, it is also known that if X = Rn, then ‖w‖AM
∞(X) � ‖w‖Aexp

∞ (X) (see,
e.g., [10]).

For 0 < α < 1, the fractional maximal operator is defined as

Mµ
αf(x) := sup

x∈B

1

µ(B)1−α

∫
B

∣∣f(t)∣∣ dµ(t).
The two-weight characterization forMµ

α was proved in [29, Theorem 1] for Euclidean
spaces and in [7, p. 158] for an SHT.

Theorem 2.7. Let 1 < p < q <∞, and let 0 < α < 1. Suppose that v and w are
weights on X. Then

‖Mµ
αf‖Lq

v(X) ≤ c‖f‖Lp
u(X) (2.1)

if and only if

AGK(v, u, α, p, q) := sup
x∈X,r>0

(
u1−p′

(
B(x, 2N0r)

))1/p′
×

(∫
X\B(x,r)

µ
(
B
(
x, d(x, y)

))(α−1)q
v(y) dµ(y)

)1/q

<∞. (2.2)

Moreover,

‖Mµ
α‖Lp

u→Lq
v
≈ AGK(v, u, α, p, q)

with constants depending only on p, q, and α.

Now we define a class of kernels on X2 (see [25], [7, Chapter 3]).

Definition 2.8. We say that a positive measurable kernel k : X2 → R belongs to
V (k ∈ V ) if there exists c > 0 such that

k(x, y) ≤ ck(x′, y)

for all x, y and for x′ in X such that d(x, x′) ≤ 2N0d(x, y).
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Consider the positive kernel operator defined on X

Kf(x) =

∫
X

k(x, y)f(y) dµ(y), x ∈ X.

Let

K∗f(x) =

∫
X

k∗(x, y)f(y) dµ(y), x ∈ X,

where k∗(x, y) = k(y, x).
The following two-weight characterization for the positive kernel operator on

an SHT was given in Chapter 3 of [7].

Theorem 2.9. Let 1 < p < q < ∞, and let both k, k∗ ∈ V . Then there exists
c > 0 such that

‖Kf‖Lq
v(X) ≤ c‖f‖Lp

u(X) (2.3)

holds if and only if

(i)

B(v, u, k, p, q) := sup
x∈X,r>0

(
v
(
B(x, 2N0r)

))1/q(∫
X\B(x,r)

kp
′
(x, y)u1−p′(y) dµ(y)

)1/p′

< ∞; (2.4)

(ii)

D(v, u, k, p, q) := sup
x∈X,r>0

(
u1−p′

(
B(x, 2N0r)

))1/p′(∫
X\B(x,r)

kq(y, x)v(y) dµ(y)
)1/q

< ∞,

where N0 is the constant depending only on quasimetric constants a0
and a1. Moreover,

‖K‖Lp
u(X)→Lq

v(X) ≈ B(v, u, k, p, q) +D(v, u, k, p, q). (2.5)

The following two-weight characterization for the positive kernel operator on
an SHT was also given in Chapter 3 of [7].

Theorem 2.10. Let 1 < p < q <∞, and let k ∈ V . Then there exists c > 0 such
that

‖Kf‖Lq,∞
v (X) ≤ c‖f‖Lp

u(X) (2.6)

holds if and only if (2.4) holds. Moreover,

‖K‖Lp
u(X)→Lq,∞

v (X) ≈ B(v, u, k, p, q). (2.7)

The next remark follows from Theorems 2.9 and 2.10.

Remark 2.11. Let the conditions of Theorem 2.9 be satisfied. Then

‖K‖Lp
u(X)→Lq

v(X) ≈ ‖K‖Lp
u(X)→Lq,∞

v (X) + ‖K∗‖
Lq′

v1−q′ (X)→Lp′,∞
u1−p′ (X)

.
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Let k be a positive kernel. Then by the symbols φ(B) and φ∗(B), we denote
(see [25], [7, Chapter 3])

φ(B) := sup
{
k(x, y) : x, y ∈ B, d(x, y) ≥ cr(B)

}
,

φ∗(B) := sup
{
k∗(x, y) : x, y ∈ B, d(x, y) ≥ cr(B)

}
,

respectively, where r(B) is the radius of the ball B, and c is a sufficiently small
positive constant depending on a1.

Let us denote

[v, u]Aφ
p,q(X) := sup

B
Aφ

p,q(v, u, B)

= sup
B
φ(B)

(∫
B

v(x) dµ(x)
)1/q(∫

B

u1−p′(x) dµ(x)
)1/p′

.

It is easy to see that [v, u]Aφ
p,q(X) = [u1−p′ , v1−q′ ]Aφ

q′,p′ (X). Furthermore, if φ(B) =

µ(B)α−1, then we denote

[v, u]Aφ
p,q(X) = [v, u]Aα

p,q(X).

3. Integral operators on an SHT

Initially we prove some lemmas similar to those in [15] (see also [14]).

Lemma 3.1. Let 1 < r < ∞. Suppose that ω ∈ Ar(X). Let θ and η be as in
Definition 2.2. Then for any balls B ⊂ X, the estimate

ω(B)

ω(θB)
≤ 1− cη,r‖w‖−1

Ar(X) (3.1)

holds for a constant cη,r depending only on η and r.

Proof. Let E ⊂ θB. We show that( µ(E)

µ(θB)

)r(
Ar(ω, θB)

)−1 ≤ ω(E)

ω(θB)
(3.2)

holds. Indeed, denoting σ = ω1−r′ and using Hölder’s inequality, we see that

µ(E)

µ(θB)
=

∫
E
ωω−1 dµ

µ(θB)

≤
[ ω(E)
µ(θB)

]1/r[ σ(E)
µ(θB)

]1/r′
≤

[ ω(E)
ω(θB)

]1/r[ω(θB)

µ(θB)

]1/r[σ(θB)

µ(θB)

]1/r′
≤

[ ω(E)
ω(θB)

]1/r(
Ar(ω, θB)

)1/r
≤

[ ω(E)
ω(θB)

]1/r
‖w‖1/rAr(X).
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Since µ satisfies the doubling condition, then by Remark 2.3 we have µ(B) ≤
1
η
µ(θB). Taking E = θB − B in (3.2), we get the required result with cη,r =

(1− 1/η)r. �

Lemma 3.2. Let 1 < p ≤ q < ∞, and let s > 1. Furthermore, let v ∈ As(X)
and k ∈ V . Then the following estimate

B(v, u, k, p, q) � [v, u]Aφ
p,q(X)‖v‖

1/p′

As(X)

holds.

Proof. Let s > 0, and let θ be the same as in Definition 2.2. By Lemma 3.1 we
have(

v
(
B(x,N0r)

))1/q(∫
X\B(x,r)

kp
′
(x, y)u1−p′(y) dµ(y)

)1/p′

= c
(
v
(
B(x,N0r)

))1/q( ∞∑
k=0

∫
B(x,θkN0r)\B(x,θk−1N0r)

kp
′
(x, y)u1−p′(y) dµ(y)

)1/p′

= c
[ ∞∑
k=0

( v(B(x,N0r))

v(B(x, θkN0r)

)p′/q

φ
(
B(x, θkN0r)

)p′(∫
B(x,θkN0r)

v dµ
)p′/q

×
(∫

B(x,θkN0r)

u1−p′ dµ
)]1/p′

≤ c[v, u]Aφ
p,q(X)

[ ∞∑
k=0

(
1− c‖v‖−1

As(X)

)p′k/q]1/p′
≤ c[v, u]Aφ

p,q(X)‖v‖
1/p′

As(X).

Therefore, we have

1

1− (1− λ−1)p′/q
= O(λ), λ→ ∞. �

Theorem 3.3. Let r, s > 1. Let p, q, k, k∗ be as in Theorem 2.9. Furthermore,
suppose that v ∈ Ar(X) and u1−p′ ∈ As(X). Then there exists c > 0 depending
only on r, s, µ, and quasimetric d such that the inequalities

‖K‖Lp
u(X)→Lq,∞

v (X) ≤ c[v, u]Aφ
p,q
‖v‖1/p

′

Ar(X), (3.3)

‖K‖Lp
u(X)→Lq

v(X) ≤ c
(
[v, u]Aφ

p,q
‖v‖1/p

′

Ar(X) + [v, u]
Aφ∗

p,q
‖u1−p′‖1/qAs(X)

)
(3.4)

hold.

Proof. By Theorem 2.10, we have that

‖Kf‖Lp
u(X)→Lq,∞

v (X) � B(v, u, k, p, q).

Now using Lemma 3.2, we find that estimate (3.3) holds. Estimate (2.5), Remark
2.11, Lemma 3.2, and the relation [v, u]

Aφ∗
p,q(X)

= [u1−p′ , v1−q′ ]
Aφ∗

q′,p′ (X)
imply (3.4).

�
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From the two-weight estimate in Theorem 3.3, we can derive the sharp weighted
bounds for the potential operator Tα (see (1.7) for the definition).

Corollary 3.4. Let r, s > 1. Let 0 < α < 1 and 1 < p < q < ∞. Suppose that
[v, u] ∈ Aα

p,q(X). Further suppose that v ∈ Ar(X) and u1−p′ ∈ As(X). Then

(a)

‖Tα‖Lp
u(X)→Lq,∞

v (X) � [v, u]Aα
p,q(X)‖v‖1/p

′

Ar(X);

(b)

‖Tα‖Lp
u(X)→Lq

v(X) � [v, u]Aα
p,q(X)

(
‖v‖1/p

′

Ar(X) + ‖u1−p′‖1/qAs(X)

)
.

Proof. First, note that for k(x, y) = µ(B(x, d(x, y)))α−1, the doubling and reverse
doubling conditions imply that φ(B) ≈ µ(B)α−1 and k∗(x, y) ≈ k(y, x) for x, y ∈
X. Then by taking these estimates into account and using Theorem 3.3, we have
the required inequalities. �

Corollary 3.5. Let r, s > 1. Let 0 < α < 1 and 1 < p < q < ∞. Suppose that
w ∈ Ap,q(X). Further suppose that wq ∈ Ar(X) and w−p′ ∈ As(X). Then

(a)

‖Tα‖Lp
wp (X)→Lq,∞

wq (X) ≤ c‖w‖1/qAp,q(X)‖w
q‖1/p

′

Ar(X);

(b)

‖Tα‖Lp
wp (X)→Lq

wq (X) ≤ c‖w‖1/qAp,q(X)

(
‖wq‖1/p

′

Ar(X) + ‖w−p′‖1/qAs(X)

)
.

Proof. Taking v = wq and u = wp, and taking into account that [wq, wp]Aα
p,q(X) =

‖w‖1/qAp,q(X) in Theorem 3.3, we have the required estimate. �

Observe that by taking r = 1 + q
p′

and s = 1 + p′

q
in Corollary 3.5, we have

the sharp estimate given in Theorem 1.3. In this case, ‖wq‖Ar(X) = ‖w‖Ap,q(X),

‖w−p′‖As(X) = ‖w‖p
′/q

Ap,q(X).

Now we investigate sharp bounds for the fractional maximal operatorMµ
α using

the two-weight theory. First, observe now that

AGK(v, u, α, p, q) = D(v, u, k, p, q),

where k(x, y) = (µB(x, d(x, y)))α−1.

Theorem 3.6. Let s > 1. Let 0 < α < 1 and 1 < p < q < ∞. Suppose that
[v, u] ∈ Aα

p,q(X). Further suppose that u1−p′ ∈ As(X). Then

‖Mµ
α‖Lp

u(X)→Lq
v(X) � [v, u]Aα

p,q(X)‖u1−p′‖1/qAs(X).

Proof. By Corollary 3.4 and simple observations, we have that

‖Mµ
α‖Lp

u(X)→Lq
v(X) � [u1−p′ , v1−q′ ]Aα

q′,p′ (X)‖u1−p′‖1/qAs(X)

� [v, w]Aα
p,q(X)‖u1−p′‖1/qAs(X). �
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Corollary 3.7. Let s > 1. Let 0 < α < 1 and 1 < p < q < ∞. Suppose that
[v, u] ∈ Aα

p,q(X). Further suppose that u1−p′ ∈ As(X). Then

‖Mµ
α‖Lp

u(X)→Lq
v(X) � [v, u]Aα

p,q(X)‖u1−p′‖1/qAs(X).

Corollary 3.8. Let s > 1. Let 0 < α < 1 and 1 < p < q < ∞. Suppose that
w ∈ Ap,q(X). Further suppose that w−p′ ∈ As(X). Then

‖Mµ
α‖Lp

wp (X)→Lq
wq (X) � ‖w‖1/qAp,q(X)‖w

−p′‖1/qAs(X).

Finally, we have the following.

Theorem 3.9. Let 0 < α < 1, and let 1 < p < 1
α
. Suppose that w ∈ Ap,q(X).

We set q = p
1−αp

. Then the following estimate holds:

‖Mµ
α‖Lp

wp (X)→Lq
wq (X) � ‖w‖(1−α)p′/q

Ap,q(X) .

Moreover, the exponent (1− α)p′/q is sharp.

Proof. Taking s = 1 + p′/q in Corollary 3.8 and observing that ‖w−p′‖As(X) =

‖w‖p
′/q

Ap,q(X), we have the desired result.

The sharpness follows from Theorem 1.3(a) and the observation

‖Mµ
α‖Lp

wp (X)→Lq
wq (X) ≈ ‖Tα‖Lq′

w−q′ (X)→Lp′

w−p′ (X)
. �

4. One-sided fractional integrals

Despite the fact that the two-weight problem for one-sided fractional integrals
has been studied under different types of conditions (see [18], [17], Section 2.2 in
[5]), it is nonetheless useful to have the sharp estimates for these operator norms
under the so-called Muckenhoupt characteristics. This section can be considered
as a continuation of the investigation carried out in [14], where we established
the sharp weighted estimates for one-sided operators in terms of the so-called
one-sided Muckenhoupt and Muckenhoupt–Wheeden-type characteristics.

Let 0 < α < 1, and let

Wαf(x) =

∫ ∞

x

f(t)

(t− x)1−α
dt, Rαf(x) =

∫ x

−∞

f(t)

(x− t)1−α
dt, x ∈ R,

be one-sided fractional integrals. The corresponding one-sided fractional maximal
operators are given by

M+
α f(x) = sup

h>0

1

h1−α

∫ x+h

x

∣∣f(t)∣∣ dt,
M−

α f(x) = sup
h>0

1

h1−α

∫ h

x−h

∣∣f(t)∣∣ dt, x ∈ R.

If α = 0, then the M±
α are one-sided Hardy–Littlewood maximal operators.

Sometimes we will use the notation w(I) for a weight w and an interval I ⊂ R.
For the following definition, we refer to [1] and [14].
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Definition 4.1. Let 1 < p, q < ∞. We say that a weight function w defined on R
satisfies the A+

p,q(R) condition (w ∈ A+
p,q(R)) if

‖w‖A+
p,q(R) := sup

x∈R
h>0

(1
h

∫ x

x−h

wq(t) dt
)(1

h

∫ x+h

x

w−p′(t) dt
)q/p′

<∞,

and we say that a weight function w satisfies the A−
p,q(R) condition (w ∈ A−

p,q(R))
if

‖w‖A−
p,q(R) := sup

x∈R
h>0

(1
h

∫ x+h

x

wq(t) dt
)(1

h

∫ x

x−h

w−p′(t) dt
)q/p′

<∞.

We are also interested in the so-called two-weighted A±
p,q,α characteristics of

Muckenhoupt type (cf. [3]).

Definition 4.2. Let 1 < p, q < ∞. We say that a weight pair (v, w) defined on R
satisfies the A+

p,q,α condition (w ∈ A+
p,q,α) if

A+
p,q,α(v, u) := sup

x∈R
h>0

hα+1/q−1/p
(1
h

∫ x

x−h

v(t) dt
)1/q(1

h

∫ x+h

x

u1−p′(t) dt
)1/p′

<∞,

and we say that a weight function w satisfies the A−
p,q,α condition (w ∈ A−

p,q,α) if

A−
p,q,α(v, u) := sup

x∈R
h>0

hα+1/q−1/p
(1
h

∫ x+h

x

v(t) dt
)1/q(1

h

∫ x

x−h

u1−p′(t) dt
)1/p′

<∞.

If 0 < α < 1/p, q = p
1−αp

, v = wq, and u = wp, then the A±
p,q,α coincide with A±

p,q

characteristics. In our recent work [14], we proved the sharp weighted bounds
for these operators in terms of A±

p,q characteristics; in particular, we proved the
following Buckley-type statements.

Theorem 4.3. Suppose that 0 < α < 1, 1 < p < 1/α and that q is such that
1/p− 1/q − α = 0. Then

(i) there exists a positive constant c depending only on p and α such that

‖M+
α ‖Lp

wp→Lq
wq

≤ c‖w‖
p′
q
(1−α)

A+
p,q(R)

, (4.1)

and moreover, the exponent p′

q
(1− α) is best possible;

(ii) there exists a positive constant c depending only on p and α such that

‖M−
α ‖Lp

wp→Lq
wq

≤ c‖w‖
p′
q
(1−α)

A−
p,q(R)

, (4.2)

and moreover, the exponent p′

q
(1− α) is best possible.

Theorem 4.4. Let 1 < p < 1
α
, where 0 < α < 1. We set q = p

1−αp
. Then

(a)

‖Rα‖Lp
wp→Lq,∞

wq
≤ c‖w‖1−α

A−
p,q(R)

, (4.3)

where the positive constant c depends only on p and α, and



SHARP WEIGHTED BOUNDS FOR FRACTIONAL INTEGRALS 685

(b)

‖Wα‖Lp
wp→Lq,∞

wq
≤ c‖w‖1−α

A+
p,q(R)

, (4.4)

where the positive constant c depends only on p and α.

Theorem 4.5. Let 0 < α < 1, 1 < p < 1/α, and let q satisfy q = p
1−αp

. Then

(a) there is a positive constant c depending only on p and α such that

‖Rα‖Lp
wp→Lq

wq
≤ c‖w‖(1−α) max{1,p′/q}

A−
p,q(R)

, (4.5)

and moreover, this estimate is sharp;
(b) there is a positive constant c depending only on p and α such that

‖Wα‖Lp
wp→Lq

wq
≤ c‖w‖(1−α) max{1,p′/q}

A+
p,q(R)

, (4.6)

and moreover, this estimate is sharp.

The proofs of these statements were based on the two-weight theory for one-
sided fractional integrals, and in particular, on the two-weight criteria of
Gabidzashvili–Kokilashvili type (see [5], [14]; see also Section 2.2 of [4]). We give
these criteria below.

Theorem 4.6. Let 1 < p < q <∞, and let 0 < α < 1. Suppose that v and w are
weight functions on R. Then Wα is bounded from Lp

w(R) to Lq,∞
v (R) if and only

if

[v, w]+Glo(p, q) := sup
a∈R
h>0

(∫ a+h

a−h

v(t) dt
)1/q

×
(∫ ∞

a+h

(t− a)(α−1)p′w1−p′(t) dt
)1/p′

<∞.

Moreover, ‖Wα‖Lp
w→Lq,∞

v
≈ [v, w]+Glo(p, q).

Theorem 4.7. Let 1 < p < q <∞, and let 0 < α < 1. Suppose that v and w are
weight functions on R. Then Rα is bounded from Lp

w(R) to Lq,∞
v (R) if and only

if

[v, w]−Glo(p, q) := sup
a∈R
h>0

(∫ a+h

a−h

v(t) dt
)1/q

×
(∫ a−h

−∞
(a− t)(α−1)p′w1−p′(t) dt

)1/p′

<∞.

Moreover, ‖Rα‖Lp
w→Lq,∞

v
≈ [v, w]−Glo(p, q).

The strong-type results read as follows.

Theorem 4.8. Let 1 < p < q <∞, and let 0 < α < 1. Suppose that v and w are
weight functions on R. Then Wα is bounded from Lp

w(R) to Lq
v(R) if and only if

(i) [v, w]+Glo(p, q) <∞;
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(ii)

A+
GK(v, w, p, q) := sup

a∈R
h>0

(∫ a+h

a−h

w1−p′(t) dt
)1/p′

×
(∫ a−h

−∞

v(y)

(a− y)(1−α)q
dy

)1/q

<∞. (4.7)

Moreover, ‖Wα‖Lp
w→Lq

v
≈ [v, w]+Glo(p, q) + A+

GK(v, w, p, q).

Theorem 4.9. Let 1 < p < q <∞, and let 0 < α < 1. Suppose that v and w are
weight functions on R. Then Rα is bounded from Lp

w(R) to Lq
v(R) if and only if

(i) [v, w]−Glo(p, q) <∞;
(ii)

A−
GK(v, w, p, q) := sup

a∈R
h>0

(∫ a+h

a−h

w1−p′(t) dt
)1/p′

×
(∫ ∞

a+h

v(y)

(y − a)(1−α)q
dy

)1/q

<∞. (4.8)

Moreover, ‖Rα‖Lp
w→Lq

v
≈ [v, w]−Glo(p, q) + A−

GK(v, w, p, q).

Theorem 4.10. Suppose that 1 < p < q <∞ and that 0 < α < 1. Then we have
the following.

(i) M+
α is bounded from Lp

w(R) to Lq
v(R) if and only if (4.7) holds.

Moreover, ‖M+
α ‖Lp

w→Lq
v
≈ A+

GK(v, w, p, q).

(ii) M−
α is bounded from Lp

w(R) to Lq
v(R) if and only if (4.8) holds.

Moreover, ‖M−
α ‖Lp

w→Lq
v
≈ A−

GK(v, w, p, q).

Let us recall the A±
p characteristics for a locally integrable weight ω:

‖ω‖A+
p (R) := sup

x∈R
h>0

A+
p (ω, x, h)

:= sup
x∈R
h>0

(1
h

∫ x

x−h

ω(t) dt
)(1

h

∫ x+h

x

ω1−p′(t) dt
)p−1

, (4.9)

‖ω‖A−
p (R) := sup

x∈R
h>0

A−
p (ω, x, h)

:= sup
x∈R
h>0

(1
h

∫ x+h

x

ω(t) dt
)(1

h

∫ x

x−h

ω1−p′(t) dt
)p−1

. (4.10)

It is clear that for fixed x ∈ R and h > 0,

lim
p→∞

A+
p (ω, x, h) =

(1
h

∫ x

x−h

ω(t) dt
)
exp

(1
h

∫ x+h

x

log
1

w(t)
dt
)
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and

lim
p→∞

A−
p (ω, x, h) =

(1
h

∫ x+h

x

ω(t) dt
)
exp

(1
h

∫ x

x−h

log
1

w(t)
dt
)
.

Therefore, a question naturally arises regarding estimates of the one-sided oper-
ator norm by the mixed-type (A±

p,q,α, A
±
∞,exp) characteristics (see [9], [3]), where

A±
∞,exp is a one-sided Hruščev-type characteristic defined as follows:

‖σ‖A+
∞,exp

:= sup
a∈R,r>0

A+
∞,exp(σ, a, r)

= sup
a,r

(1
r

∫ a

a−r

σ(t) dt
)
exp

(1
r

∫ a+r

a

log
1

σ(t)
dt
)
;

‖σ‖A−
∞,exp

:= sup
a∈R,r>0

A−
∞,exp(σ, a, r)

= sup
a,r

(1
r

∫ a+r

a

σ(t) dt
)
exp

(1
r

∫ a

a−r

log
1

σ(t)
dt
)
.

We say that w ∈ A±
∞ if w ∈ A±

r , for some r. (For the definition and properties of
one-sided A∞ weights, we refer to [19].) By Jensen’s inequality, we have

‖w‖A±
∞,exp

≤ ‖w‖A±
r
, r > 1. (4.11)

The main statements of this section read as follows.

Theorem 4.11. Suppose that 0 < α < 1, and let 1 < p < q < ∞. Then the
following statements hold.

(i) If u1−p′ ∈ A−
∞, then

‖M+
α ‖Lp

u→Lq
v
≤ cp,q,αA

+
p,q,α(v, u)‖u1−p′‖1/q

A−
∞,exp

. (4.12)

(ii) If u1−p′ ∈ A+
∞, then

‖M−
α ‖Lp

u→Lq
v
≤ cp,q,αA

−
p,q,α(v, u)‖u1−p′‖1/q

A+
∞,exp

. (4.13)

Theorem 4.12. Let 0 < α < 1, and let 1 < p < q <∞.

(a) If v ∈ A−
∞, then

‖Rα‖Lp
u→Lq,∞

v
≤ cA−

p,q,α(v, u)‖v‖
1/p′

A−
∞,exp

, (4.14)

where the positive constant c depends only on p, q, and α.
(b) If v ∈ A+

∞, then

‖Wα‖Lp
u→Lq,∞

v
≤ cA+

p,q,α(v, u)‖v‖
1/p′

A+
∞,exp

, (4.15)

where the positive constant c depends only on p, q, and α.

Theorem 4.13. Let 0 < α < 1, and let 1 < p < q <∞. Then

(a) if v ∈ A−
∞ and u1−p′ ∈ A+

∞, then there is a positive constant c depending
only on p, q, and α such that

‖Rα‖Lp
u→Lq

v
≤ cA−

p,q,α(v, u)
(
‖v‖1/p

′

A−
∞,exp

+ ‖u1−p′‖1/q
A+

∞,exp

)
; (4.16)
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(b) if v ∈ A+
∞ and u1−p′ ∈ A−

∞, then there is a positive constant c depending
only on p, q, and α such that

‖Wα‖Lp
u→Lq

v
≤ cA+

p,q,α(v, u)
(
‖v‖1/p

′

A+
∞,exp

+ ‖u1−p′‖1/q
A−

∞,exp

)
. (4.17)

To show that these statements are true, we need to prove some lemmas.

Lemma 4.14. Let ω be a locally integrable function.

(i) If ω ∈ A−
∞, then for every a ∈ R, h > 0, and r > 1,

ω
(
(a, a+ h)

)
≤ A−

r (ω, a, h)ω
(
(a− h, a)

)
.

Hence,

ω
(
(a, a+ h)

)
≤ A−

∞,exp(ω, a, h)ω
(
(a− h, a)

)
.

(ii) Let ω ∈ A+
∞. Then for every a ∈ R, h > 0, and r > 1,

ω
(
(a− h, a)

)
≤ A+

r (ω, a, h)ω
(
(a, a+ h)

)
.

Hence,

ω
(
(a− h, a)

)
≤ A+

∞,exp(ω, a, h)ω
(
(a, a+ h)

)
.

Proof. (i) Let ω ∈ A−
∞, and let r > 1. Following the proof of Lemma 3.8 of [14],

we see that for r > 0,

ω
(
(a, a+ h)

)
≤

(∫ a+h

a

ω(x) dx
)
h−r

(∫ a

a−h

ω(x) dx
)(∫ a

a−h

ω1−r′(x) dx
)r−1

≤ h−1
(∫ a+h

a

ω(x) dx
)(∫ a

a−h

ω(x) dx
)(1

h

∫ a

a−h

ω1−r′(x) dx
)r−1

≤ A−
r (ω, x, h)ω

(
(a− h, a)

)
.

Passing now to the limit when r → ∞, we have the desired result. The remaining
part of the lemma is proved analogously. �

This lemma immediately implies (see also the proof of Lemma 3.9 in [14]) the
next statement.

Lemma 4.15. Let ω ∈ A−
∞. Then for all a ∈ R, h > 0, and r > 1, we have that

ω((a− h, a))

ω((a− 2h, a))
≤ A−

r (ω, a− h, h)

A−
r (ω, a− h, h) + 1

.

Consequently,

ω((a− h, a))

ω((a− 2h, a))
≤

A−
∞,exp(ω, a− h, h)

A−
∞,exp(ω, a− h, h) + 1

.

Furthermore, let ω ∈ A+
∞. Then for all a ∈ R, h > 0, and r > 1, we have

ω((a, a+ h))

ω((a, a+ 2h))
≤ A+

r (ω, a+ h, h)

A+
r (ω, a+ h, h) + 1

.
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Consequently,

ω((a, a+ h))

ω((a, a+ 2h))
≤

A+
∞,exp(ω, a+ h, h)

A+
∞,exp(ω, a+ h, h) + 1

.

We also need the following lemma.

Lemma 4.16. Let 0 < α < 1, and let 1 < p <∞. Then

[v, u]−Glo(p, q) � A−
p,q,α(v, u)‖v‖

1/p′

A−
∞,exp

; (4.18)

[v, u]+Glo(p, q) � A+
p,q,α(v, u)‖v‖

1/p′

A+
∞,exp

. (4.19)

Proof. Let us show (4.18). The proof for (4.19) is similar. Denote σ = u1−p′ .
Following the proof of Lemma 3.10 of [14] and taking Lemma 4.15 into account,
we have, for a ∈ R and h > 0,

(v
(
(a− 2h, a)

)1/q(∫ a−2h

−∞
(a− x− h)(α−1)p′σ(x) dx

)1/p′

≤ c
(
v
(
(a− 2h, a)

)1/q( ∞∑
j=1

(2jh)(α−1)p′σ(a− 2j+1h, a− 2jh)
))1/p′

= c[
∞∑
j=1

(2jh)(α−1)p′
(
v
(
(a− 2h, a)

)p′/q(
σ(a− 2j+1h, a− 2jh)

))1/p′
= c

[ ∞∑
j=1

( v((a− 2h, ))

v((a− 2jh, a))

)p′/q( 1

2jh

∫ a

a−2jh

v(x) dx
)p′/q

×
( 1

2jh

∫ a−2jh

a−2j+1h

σ(x) dx
)]1/p′

≤ cA−
p,q,α(v, u)

( ∞∑
j=1

( v((a− 2h, a))

v((a− 2jh, a))

)p′/q)1/p′

≤ cA−
p,q,α(v, u)

( ∞∑
j=0

( ‖v‖A−
∞,exp

1 + ‖v‖A−
∞,exp

)p′j/q)1/p′

= cA−
p,q,α(v, u)

( 1

1− (
‖v‖

A−
∞,exp

1+‖v‖
A−
∞,exp

)p′/q

)1/p′

= cAp,q,α(v, u)‖v‖1/p
′

A−
∞,exp

.

�

Now, using this lemma, the proofs of Theorems 4.11–4.13 follow easily. For
example, the proof of Theorem 4.11(i) can be derived from Lemma 4.16 and
Theorem 4.10 by observing that

A+
GK(v, u, p, q) = [u1−p′ , v1−q′ ]−Glo(q

′, p′) ≤ cA−
q′,p′,α(u

1−p′ , v1−q′)‖u1−p′‖1/q
A−

∞,exp

= cA+
p,q,α(v, u)‖u1−p′‖1/q

A−
∞,exp

.
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Similarly, we conclude that Theorem 4.13(a) is a consequence of Lemma 4.16
and Theorem 4.9. Taking 0 < α < 1/p and q = p

1−αp
, v = wq and u = wp,

Theorems 4.11–4.13 yield the following corollaries.

Corollary 4.17. Suppose that 1 < p <∞, 0 < α < 1/p, and q = p
1−αp

. Then the

following statements hold.

(i) There is a positive constant c depending only on p and α such that

‖M+
α ‖Lp

u→Lq
v
≤ c‖w‖1/q

A+
p,q
‖w−p′‖1/q

A−
∞,exp

. (4.20)

(ii) There is a positive constant c depending only on p and α such that

‖M−
α ‖Lp

u→Lq
v
≤ c‖w‖1/q

A−
p,q
‖w−p′‖1/q

A+
∞,exp

. (4.21)

Corollary 4.18. Let 1 < p <∞ and 0 < α < 1/p. We set q = p
1−αp

. Then

(a)

‖Rα‖Lp
u→Lq,∞

v
≤ c‖w‖1/q

A−
p,q
‖wq‖1/p

′

A−
∞,exp

, (4.22)

where the positive constant c depends only on p and α;
(b) if v ∈ A+

∞, then

‖Wα‖Lp
u→Lq,∞

v
≤ c‖w‖1/q

A+
p,q
‖wq‖1/p

′

A+
∞,exp

, (4.23)

where the positive constant c depends only on p and α.

Corollary 4.19. Let 1 < p <∞ and 0 < α < 1/p. We set q = p
1−αp

. Then

(a) there is a positive constant c depending only on p and α such that

‖Rα‖Lp
u→Lq

v
≤ c‖w‖1/q

A−
p,q

(
‖wq‖1/p

′

A−
∞,exp

+ ‖w−p′‖1/q
A+

∞,exp

)
; (4.24)

(b) if v ∈ A+
∞ and u1−p′ ∈ A−

∞, then there is a positive constant c depending
only on p and α such that

‖Wα‖Lp
u→Lq

v
≤ c‖w‖1/q

A+
p,q

(
‖wq‖1/p

′

A+
∞,exp

+ ‖w−p′‖1/q
A−

∞,exp

)
. (4.25)

Remark 4.20. One-weighted sharp estimates (see Theorems 4.3–4.5) now follow
from Corollaries 4.17–4.19. For example, Theorem 4.5(a) can be derived from
Corollary 4.19(a). Indeed, by Jensen’s inequality we have that ‖v‖−A∞,exp

≤ ‖v‖−As

for any s > 1, and ‖u1−p′‖+A∞,exp
≤ ‖u1−p′‖+Ar

for any r > 1. Taking s = 1 + q/p′

and r = 1 + p′/q, we have that

‖Rα‖Lp
wp→Lq

wq
≤ c‖w‖1/q

A−
p,q

(
‖wq‖1/p

′

A−
s

+ ‖wp(1−p′)‖
p′

q2

A+
r

)
= c‖w‖1/qAp,q

(
‖w‖1/p

′

A−
p,q

+ ‖w‖p
′/q2

A−
p,q

)
= c‖w‖(1−α) max{1,p′/q}.
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