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Abstract. In this paper, we investigate the g-frame and Bessel g-sequence
related to a linear bounded operator K in Hilbert space, which we call a K-g-
frame and a K-dual Bessel g-sequence, respectively. Since the frame operator
for a K-g-frame may not be invertible, there is no classical canonical dual
for a K-g-frame. So we characterize the concept of a canonical K-dual Bessel
g-sequence of a K-g-frame that generalizes the classical dual of a g-frame.
Moreover, we use a family of linear operators to characterize atomic systems.
We also consider the construction of new atomic systems from given ones and
bounded operators.

1. Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [6] in the
context of nonharmonic Fourier series. In contrast to orthonormal bases, frames
form redundant systems, thereby allowing nonunique but stable decompositions
and expansions. Due to this property, frames have been widely applied in numer-
ous applications, such as filter bank theory [11], sampling theory [10], signal and
image processing [8], coding and communication [12], [13], and compressed sens-
ing [2], [16]. For more details about the theory and applications of frames, we
refer the reader to [3].
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Let H be a separable Hilbert space over the complex field. A sequence {fi}i∈I
in H is a frame if there exist constants 0 < A ≤ B < ∞ such that

A‖f‖2 ≤
∑
i∈I

∣∣〈f, fi〉∣∣2 ≤ B‖f‖2, ∀f ∈ H.

The constants A and B are called frame bounds. Frames can be viewed as redun-
dant bases that are generalizations of orthonormal bases. In coding theory, a signal
vector f is encoded as {〈f, fi〉}i∈I against a sequence {fi}i∈I ; then {〈f, fi〉}i∈I is
sent to a receiver for decoding to reconstruct the signal f . If {fi}i∈I is a frame
for H, then the last decoding process requires the canonical dual frame to do the
job. However, in real-world applications, {fi}i∈I may not be a frame or a base for
H because of limited computation power and the fact that applications require
real-time information without any delays. Then there is no classical canonical
dual for {fi}i∈I .

In this case, Găvruţa [7] introduced a generalization of frames with a linear
bounded operator K, called K-frames, when working in atomic systems for oper-
ators. K-frames are more general than frames in the sense that the lower frame
bound condition holds only for the elements in the range of K and in the sense
that they allow the reconstruction of the elements from the range of K in a stable
way. Since K-frames are more general than frames, many properties for K-frames
may not hold. As such, the frame operator of K-frames is not invertible and the
synthesis operator for a K-frame is not surjective (see [7], [9], [15], [19]).

In [1], Asgari and Rahimi introduced g-frames for operators, which allow one to
reconstruct elements from the range of bounded linear operators. These g-frames
for K are what we call K-g-frames. Since there are few results on the K-dual
Bessel g-sequences of K-g-frames, and since the frame operator for a K-g-frame
may not be invertible, there is no classical canonical dual for a K-g-frame. Thus
it is natural to extend the dual for g-frames to the case of K-g-frames and exam-
ine its properties. So we characterize the K-dual and canonical K-dual Bessel
g-sequence of a given K-g-frame in this paper.

Christensen and Heil in [4] gave the concept of atomic decompositions in
Banach spaces. Găvruţa in [7] gave both the definition of an atomic system for a
bounded linear operator and a characterization of atomic systems by K-frames.
We also give a characterization of atomic systems by a sequence of bounded opera-
tors in this paper. We consider the construction of new atomic systems from given
ones and bounded operators.

Throughout the present paper, H and K are two Hilbert spaces and {Hi}i∈I
is a sequence of closed subspaces of K, where I is a subset of Z and L(H,Hi)
is the collection of all bounded linear operators from H into Hi. For T ∈ L(H),
we denote by R(T ) and N (T ) the range and kernel of T , respectively. And we
denote by IH the identity operator on H. Now we recall some definitions and
results.

Definition 1.1 (see [17]). We call a sequence {Λi}i∈I a generalized frame, or simply
a g-frame, for H with respect to {Hi}i∈I if there are two positive constants A and
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B such that

A‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B‖f‖2, ∀f ∈ H.

We call A and B the lower and upper frame bounds, respectively.

If we only have the upper bound, then we call {Λi}i∈I a Bessel g-sequence. Now
define (∑

i∈I

⊕Hi

)
`2
:=

{
{fi}i∈I

∣∣∣ fi ∈ Hi,
∥∥{fi}i∈I∥∥2

2
=

∑
i∈I

‖fi‖2 < ∞
}

with pointwise operators and inner product as〈
{fi}i∈I , {gi}i∈I

〉
=

∑
i∈I

〈fi, gi〉.

Lemma 1.2 (see [14]). Let {Λi}i∈I be a Bessel g-sequence for H with bound B.
Then for each sequence {fi}i∈I ∈ (

∑
i∈I ⊕Hi)`2, the series

∑
i∈I Λ

∗
i (fi) converges

unconditionally.

In [17], Sun showed that every g-frame can be considered as a frame. More pre-
cisely, let {Λi}i∈I be a g-frame for H and let {ei,j}j∈Ji be an orthonormal basis
for Hi. Then there exists a frame {ui,j}i∈I,j∈Ji of H such that

ui,j = Λ∗
i ei,j (1.1)

and

Λif =
∑
j∈Ji

〈f, ui,j〉ei,j, ∀f ∈ H

and

Λ∗
i g =

∑
j∈Ji

〈g, ei,j〉ui,j, ∀g ∈ Hi.

We call {ui,j}i∈I,j∈Ji the frame induced by {Λi}i∈I with respect to {ei,j}i∈I,j∈Ji .
The next lemma is a characterization of g-frame by a frame.

Lemma 1.3 (see [17]). Let {Λi}i∈I be a family of linear operators, and let ui,j be
defined as in (1.1). Then {Λi}i∈I is a g-frame for H if and only if {ui,j}i∈I,j∈Ji is
a frame for H.

Definition 1.4. Let K ∈ L(H). We call a sequence {Λi}i∈I a K-g-frame for
H with respect to {Hi}i∈I if there are two positive constants A and B such
that

A‖K∗f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B‖f‖2, ∀f ∈ H.

We call A and B the lower and upper frame bounds, respectively.

We call {Λi}i∈I a tight K-g-frame if A‖K∗f‖2 =
∑

i∈I ‖Λif‖2, and we call
it a Parseval K-g-frame if ‖K∗f‖2 =

∑
i∈I ‖Λif‖2. If we have only the second

inequality, then we call it a K-Bessel g-sequence. In [1], the K-g-frame operator
SΛ is defined as

SΛf = TΛT
∗
Λf =

∑
i∈I

Λ∗
iΛif, ∀f ∈ H,
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which is a bounded, self-adjoint, and positive operator, where TΛ is the synthesis
operator of {Λi}i∈I and T ∗

Λ is the analysis operator of {Λi}i∈I .
The following result characterizes a K-g-frame in terms of a range inclusion

property.

Lemma 1.5 (see [1]). Let H be a separable Hilbert space, K ∈ L(H). Then
a g-sequence {Λi}i∈I is a K-g-frame for H if and only if {Λi}i∈I is a Bessel
g-sequence for H and the range of synthesis operators R(TΛ) ⊃ R(K).

The next result tells us that for any K-g-frame there always exists a Bessel
g-sequence for H such that they give a decomposition formula for any element in
the range of K.

Lemma 1.6 (see [1]). Let H be a separable Hilbert space, and let K ∈ L(H). Let
{Λi}i∈I be a family of linear operators. The following statements are equivalent:

(1) {Λi}i∈I is a K-g-frame for H with respect to {Hi}i∈I .
(2) {Λi}i∈I is a Bessel g-sequence for H and there exists a Bessel g-sequence

{Γi}i∈I for H respect to {Hi}i∈I such that

Kf =
∑
i∈I

Λ∗
iΓif, ∀f ∈ H.

The following lemmas are key tools for the proofs of our main results.

Lemma 1.7 (see [5]). Let U, V ∈ L(H). The following statements are equivalent:

(1) R(U) ⊂ R(V ).
(2) UU∗ ≤ λV V ∗ for some λ ≥ 0.
(3) There exists Q ∈ L(H) such that U = V Q.

Moreover, if (i), (ii), and (iii) are valid, then there exists a unique operator Q
such that

(1) ‖Q‖2 = inf{µ : UU∗ ≤ µV V ∗},
(2) N (U) = N (C), and

(3) R(C) ⊂ R(V ∗).

Lemma 1.8 (see [3]). Let H be a Hilbert space, and suppose that T ∈ L(H) has
a closed range. Then there exists an operator T † ∈ L(H) for which

N (T †) = R(T )⊥, R(T †) = N (T )⊥, TT †f = f, f ∈ R(T ).

We call the operator T † the pseudo-inverse of T . If T is invertible, then we have
T−1 = T †.

2. K-dual Bessel g-sequences for given K-g-frames

In this section, we mainly investigate the dual of a g-frame and a Bessel g-
sequence related to a linear bounded operator K in Hilbert space.

Definition 2.1. Suppose that K ∈ L(H) and that {Λi}i∈I is a K-frame for H.
A Bessel g-sequence {Γi}i∈I for H is called a K-dual Bessel g-sequence of {Λi}i∈I
if

Kf =
∑
i∈I

Λ∗
iΓif, ∀f ∈ H.
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The following theorem characterizes a K-g-frame by operator decompositions
and also gives a sufficient condition for a g-sequence to be a K-dual Bessel g-
sequence of a K-g-frame. Note that {δi}i∈I denotes the canonical basis of `2(I).

Theorem 2.2. Suppose that K ∈ L(H) and that {Λi}i∈I is a Bessel g-sequence
for H with the synthesis operator TΛ. Then {Λi}i∈I is a K-g-frame if and only
if there exists a bounded operator Φ : (

∑
i∈I ⊕Hi) −→ H such that K∗ = ΦT ∗

Λ.
Moreover, if Γ∗ei,j = Φ(eijδi), j ∈ Ji, i ∈ I, then {Γi}i∈I is a K-dual Bessel
g-sequence of {Λi}i∈I .

Proof. =⇒: Suppose that {Λi}i∈I is a K-g-frame for H. By Lemma 1.5, we have
R(K) ⊂ R(TΛ). Since TΛ : (

∑
i∈I ⊕Hi)`2 −→ H and K : H −→ H, by Lemma 1.7

there exists a bounded operator Φ : (
∑

i∈I ⊕Hi)`2 −→ H such that K = TΛΦ
∗.

This implies that K∗ = ΦT ∗
Λ.

⇐=: Suppose that there exists a bounded operator Φ : (
∑

i∈I ⊕Hi)`2 −→ H
such that K∗ = ΦT ∗

Λ. Let K = TΛΦ
∗. Then R(K) ⊂ R(TΛ) by Lemma 1.7, and

so {Λi}i∈I is a K-g-frame by Lemma 1.5.
Moreover, note that if {fi}i∈I ∈ (

∑
i∈I ⊕Hi)`2 , then we have

{fi}i∈I =
∑
i∈I

fiδi =
∑
i∈I

∑
j∈Ji

〈fi, eij〉eijδi.

Roughly speaking, {ei,jδi}i∈I,j∈Ji is an orthonormal basis of (
∑

i∈I ⊕Hi)`2 . In
terms of the above proof, we know that {Λi}i∈I is a K-g-frame. Let ui,j be defined
as in (1.1). If K∗ = ΦT ∗

Λ and Γ∗ei,j = Φ(eijδi), j ∈ Ji, i ∈ I, then for all f ∈ H
we have

K∗f = ΦT ∗
Λf = Φ

(∑
i,j

〈Λif, eij〉eijδ
)

=
∑
i∈I

∑
j∈J

〈f,Λ∗
i eij〉Φ(eijδ)

=
∑
i∈I

∑
j∈J

〈f, uij〉Γ∗
i eij

=
∑
i∈I

Γ∗
i

(∑
j∈Ji

〈f, uij〉eij
)
=

∑
i∈I

Γ∗
iΛif.

Consequently, Kf =
∑

i∈I Λ
∗
iΓif , meaning that {Γi}i∈I is a K-dual Bessel g-

sequence of {Λi}i∈I . �

In Theorem 2.2, the sufficient condition for a K-dual Bessel g-sequence for a
K-g-frame is also necessary.

Theorem 2.3. Suppose that K ∈ L(H) and that {Λi}i∈I is a K-g-frame for H
with the synthesis operator TΛ. Then {Γi}i∈I is a K-dual Bessel g-sequence of
{Λi}i∈I if and only if there exists a bounded operator Φ : (

∑
i∈I ⊕Hi) −→ H such

that K∗ = ΦT ∗
Λ and Γ∗ei,j = Φ(eijδi), j ∈ Ji, i ∈ I.

Proof. The sufficient condition has been proved in Theorem 2.2. Now we show that
the necessary condition holds. Suppose that {Γi}i∈I is a K-dual Bessel g-sequence
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of {Λi}i∈I . Then the synthesis operator for {Γi}i∈I satisfies the conditions. In fact,
{Γi}i∈I is a Bessel g-sequence, and for all f ∈ H we have

K∗f =
∑
i∈I

Γ∗
iΛif.

Let Φ be the synthesis operator of {Γi}i∈I . Then

Φ(eijδi) =
∑
i∈I

Γ∗
i eijδi =

∑
i∈I

uijδi =
∑
j∈Ji

uij =
∑
i∈Ji

〈eij, eij〉uij = Γ∗
i eij.

So a calculation as above shows that

K∗f =
∑
i∈I

Γ∗
iΛif =

∑
i∈I

Γ∗
i

(∑
j∈Ji

〈f, uij〉eij
)

= Φ
(∑

i,j

〈Λif, eij〉eijδ
)

= ΦT ∗
Λf.

So K∗ = ΦT ∗
Λ. �

In frame theory, we know that the synthesis operator of a canonical dual frame
obtains the minimal norm of the set of the norms of synthesis operators of all
dual frames. Now, we prove this result for a K-g-frame.

Theorem 2.4. Suppose that K ∈ L(H) and that {Λi}i∈I is a K-g-frame for H
with optimal lower frame bound A. If Γ = {Γi}i∈I is a K-dual Bessel g-sequence of
{Λi}i∈I , then ‖TΓ‖2 ≥ A, where TΓ denotes the synthesis operator of Γ. Moreover,
there exists a unique K-dual Bessel g-sequence Θ = {Θi}i∈I of {Λi}i∈I such that
‖TΘ‖2 = A, where TΘ denotes the synthesis operator of Θ.

Proof. Suppose that C > 0 is a lower K-g-frame bound of {Λi}i∈I . Then for any
f ∈ H we have ∑

i∈I

‖Λif‖2 ≥ C‖K∗f‖2, ∀f ∈ H.

So C‖K∗f‖2 ≤ ‖TΛf‖2 for all f ∈ H. This implies that ‖K∗f‖2 ≤ 1
C
‖TΛf‖2 for

all f ∈ H. So

A = max
{
λ > 0 : λ‖K∗f‖2 ≤ ‖TΛf‖2,∀f ∈ H

}
= inf

{
µ : ‖K∗f‖2 ≤ µ‖TΛf‖2,∀f ∈ H

}
.

Since {Γi}i∈I is a K-dual Bessel g-sequence of {Λi}i∈I , for any f ∈ H we have

Kf =
∑
i∈I

Λ∗
iΓif = TΛT

∗
Γf.

So K = TΛT
∗
Γ . Thus KK∗ = TΛT

∗
ΓTΓT

∗
Λ ≤ ‖TΓ‖2TΛT

∗
Λ. So for any f ∈ H, we have

‖K∗f‖2 = 〈K∗f,K∗f〉 = 〈KK∗f, f〉 ≤ ‖TΓ‖2〈TΛT
∗
Λf, f〉 = ‖TΓ‖2‖TΛf‖2.
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So ‖TΓ‖2 ≥ A. Since {Λi}i∈I is a K-g-frame, we have that R(K) ⊂ R(TΛ). By
Lemma 1.7, there exists a unique bounded operator Φ : (

∑
i∈I ⊕Hi) −→ H such

that K∗ = ΦT ∗
Λ and

‖Φ‖2 = inf
{
µ : ‖K∗f‖2 ≤ µ‖TΛf‖2,∀f ∈ H

}
= A.

Let Θ∗
i eij = Φ(eijδi). Then it is easy to check that Θ = {Θi}i∈I is a Bessel

g-sequence, since for any f ∈ H we have

K∗f = ΦT ∗
Λf =

∑
i∈I

Γ∗
iΛif.

So Kf =
∑

i∈I Λ
∗
iΓif and Θ is a K-dual Bessel g-sequence of {Λi}i∈I , since for

all f ∈ H,

T ∗
Θf =

∑
i∈I

∑
j∈Ji

〈Θif, eij〉eijδi =
∑
i∈I

∑
j∈Ji

〈f,Θ∗
i eij〉eijδi

=
∑
i∈I

∑
j∈Ji

〈f,Φeijδi〉eijδi =
∑
i∈I

∑
j∈Ji

〈Φ∗f, eijδi〉eijδi = Φ∗f.

So TΘ = Φ, and hence ‖TΘ‖2 = ‖Φ‖2 = A. �

Remark 2.5. Let K ∈ L(H), and let {Λi}i∈I be a K-g-frame with an optimal
lower K-g-frame bound A.

(1) Let {Γi}i∈I be the K-dual Bessel g-sequence of {Λi}i∈I satisfying ‖TΓ‖2 =
A; we call {Γi}i∈I the canonical K-dual Bessel g-sequence of {Λi}i∈I .

(2) When K = IH, the K-g-frame is exactly a g-frame; in this case, the
canonical I-dual Bessel g-sequence is exactly the canonical dual g-frame.

In [19], Xiao et al. show that a K-frame for H has a dual frame on the closed
subspace R(K), which is derived from a dual frame. Our next result is a general-
ization of [18, Theorem 8], which provides a characterization of a K-g-frame by
a dual g-frame on R(K).

Theorem 2.6. Let {Λi}i∈I be a Bessel g-sequence for H with a frame operator
SΛ. If {Λi}i∈I has a dual g-frame on R(K) and SΛ(R(K)) ⊂ R(K), then it is a
K-g-frame for H.

Proof. Assume that {Γ}i∈I is a dual g-frame of {Λi}i∈I on R(K). Then each
f ∈ H can be expressed as f = f1 + f2, where f1 ∈ R(K) and f2 ∈ (R(K))⊥.
Then ∑

i∈I

‖Λif‖2 =
∑
i∈I

∥∥Λ(f1 + f2)
∥∥2

=
∑
i∈I

‖Λif1‖2 +
∑
i∈I

‖Λif2‖2 + 2Re
∑
i∈I

〈Λ∗
iΛif1, f2〉.

Note that
∑

i∈I〈Λ∗
iΛif1, f1〉 = SΛf1 ∈ SΛ(R(K)) ⊂ R(K), and so we have∑

i∈I

〈Λ∗
iΛif1, f2〉 = 0.
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Hence ∑
i∈I

‖Λif‖2 =
∑
i∈I

‖Λif1‖2 +
∑
i∈I

‖Λif2‖2.

By Lemma 1.2,
∑

i∈I Γ
∗
iΛif1 converges and so does

∑
i∈I πR(K)Γ

∗
iΛif1, where

πR(K) is an orthogonal projection of H onto R(K). Then for each g ∈ R(K)
we have

〈g, f1〉 =
〈∑

i∈I

Λ∗Γig, f1

〉
=

∑
i∈I

〈g,Γ∗
iΛif1〉 =

〈
g,
∑
i∈I

πR(K)Γ
∗
iΛif1

〉
.

It follows that

f1 =
∑
i∈I

πR(K)Γ
∗
iΛif1.

Thus

‖K∗f‖4 =
∥∥K∗(f1 + f2)

∥∥4
= ‖K∗f1‖4 =

∥∥〈K∗f1, K
∗f1〉

∥∥2
=

∥∥〈f1, KK∗f1〉
∥∥2

=
∥∥∥〈∑

i∈I

πR(K)Γ
∗
iΛif1, KK∗f1

〉∥∥∥2

=
∥∥∥∑

i∈I

〈Λif1,ΓiπR(K)KK∗f1〉
∥∥∥2

≤
∑
i∈I

‖Λif1‖2
∑
i∈I

‖ΓiπR(K)KK∗f1‖2

≤ D‖K‖2‖K∗f‖2
∑
i∈I

‖Λif1‖2,

where D is the Bessel bound of {Γi}i∈I . Then we have∑
i∈I

‖Λif1‖2 ≥ D−1‖K‖−1‖K∗f‖2.

Hence∑
i∈I

‖Λif‖2 =
∑
i∈I

‖Λif1‖2 +
∑
i∈I

‖Λif2‖2 ≥
∑
i∈I

‖Λif1‖2 ≥ D−1‖K‖−1‖K∗f‖2.
�

3. Atomic systems

In this section, we study atomic systems for K by a sequence of bounded
operators. In order to understand the main results in this section, let us introduce
some basic knowledge on atomic systems, as follows.

Definition 3.1 (see [7]). Let K ∈ L(H). A sequence {fi}i∈I in H is called an
atomic system for K, if the following conditions are satisfied:

(1) {fi}i∈I is a Bessel sequence;
(2) there exists c > 0 such that for every f ∈ H there exists a = {ai}i∈I ∈

`2(I) such that ‖a‖`2 ≤ c‖f‖ and Kf =
∑

i∈I aifi.

The following lemma characterizes an atomic system in terms of a K-frame.

Lemma 3.2 (see [7]). Let {fi}i∈I be a sequence in H, and let K ∈ L(H). Then
{fi}i∈I is an atomic system for K if and only if {fi}i∈I is a K-frame for H.
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We now give a characterization of an atomic system with a sequence of linear
operators.

Theorem 3.3. Let {Λi}i∈I be a family of linear operators. Then the following
statements are equivalent:

(1) {Λi}i∈I is an atomic system for K;
(2) {Λi}i∈I is a K-g-frame for H;
(3) there exists a g-Bessel sequence {Γi}i∈I such that Kf =

∑
i∈I Λ

∗
iΓif .

Proof. The proof can be easily obtained by Lemmas 1.3, 1.6, and 3.2. �

We can find that each atomic system is associated with a bounded operator
K on H. We study a class of operators in L(H) associated with given atomic
systems.

Theorem 3.4. Let K1, K2 ∈ L(H). If {Λi}i∈I is an atomic system for K1 and
K2, and α, β are scalars, then {Λi}i∈I is an atomic system for αK1 + βK2 and
K1K2.

Proof. Since {Λi}i∈I is an atomic system for K1 and K2, there are positive con-
stants An, Bn > 0 (n = 1, 2) such that

An‖K∗
nf‖2 ≤

∑
i∈I

‖Λif‖2 ≤ Bn‖f‖2, ∀f ∈ H. (3.1)

Since

‖K∗
1f‖2 =

1

|α|2
‖αK∗

1f‖2 =
1

|α|2
∥∥(αK∗

1 + βK∗
2)f − βK∗

2f
∥∥2

≥ 1

|α|2
∥∥(αK∗

1 + βK∗
2)f

∥∥2 − 1

|α|2
‖βK∗

2f‖2,

we have ∥∥(αK∗
1 + βK∗

2)f
∥∥2 ≤ |α|2‖K∗

1f‖2 + |β|2‖K∗
2f‖2

≤ 1

2

(
|α|2‖K∗

1f‖2 + |β|2‖K∗
2f‖2

+
A1

A2

|β|2‖K∗
1f‖2 +

A2

A1

|α|2‖K∗
2f‖2

)
=

A2|α|2 + A1|β|2

2A1A2

(
A1‖K∗

1f‖2 + A2‖K∗
2f‖2

)
.

Hence∑
i∈I

‖Λif‖2 ≥
1

2

(
A1‖K∗

1f‖2 + A2‖K∗
2f‖2

)
≥ A1A2

A2|α|2 + A1|β|2
∥∥(αK∗

1 + βK∗
2)f

∥∥2
,

and from inequalities (3.1), we get∑
i∈I

‖Λif‖2 ≤
B1 +B2

2
‖f‖2, ∀f ∈ H.
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Therefore, {Λi}i∈I is an (αK1 + βK2)-g-frame. By Theorem 3.3, {Λi}i∈I is an
atomic system for αK1 + βK2.

Now for each f ∈ H, we have∥∥(K1K2)
∗f
∥∥2

= ‖K∗
2K

∗
1f‖2 ≤ ‖K∗

2‖2‖K∗
1f‖2.

Since {Λi}i∈I is an atomic system for K1, we have

A1

‖K∗
2‖2

∥∥(K1K2)
∗f
∥∥2 ≤ A1‖K∗

1f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B1‖f‖2, ∀f ∈ H.

By Theorem 3.3, {Λi}i∈I is an atomic system for K1K2. �

The following results provide the construction of a new atomic system from
given ones.

Theorem 3.5. Let {Λi}i∈I and {Γi}i∈I be two atomic systems for K, and let the
corresponding synthesis operators be TΛ and TΓ, respectively. If TΛT

∗
Γ = 0 and U

or V is surjective satisfying UK∗ = K∗U or V K∗ = K∗V , then {ΛiU + ΓiV }i∈I
is an atomic system for K.

Proof. Since {Λi}i∈I and {Γi}i∈I are two atomic systems for K, by Theorem 3.3,
{Λi}i∈I and {Γi}i∈I are two K-g-frames for H, and so there exist B1 ≥ A1 > 0
and B2 ≥ A2 > 0 such that

A1‖K∗f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B1‖f‖2, A2‖K∗f‖2 ≤
∑
i∈I

‖Γif‖2 ≤ B2‖f‖2.

Since TΛT
∗
Γ = 0, for any f ∈ H, we have∑

i∈I

Λ∗
iΓif =

∑
i∈I

Γ∗
iΛif = 0.

Therefore, for any f ∈ H, we have∑
i∈I

∥∥(ΛiU + ΓiV )f
∥∥2

=
∑
i∈I

〈ΛiU + ΓiV f,ΛiU + ΓiV f〉

=
∑
i∈I

‖ΛiUf‖2 +
∑
i∈I

‖ΓiV f‖2 + 2Re
∑
i∈I

〈Λ∗
iΓiV f, Uf〉

=
∑
i∈I

‖ΛiUf‖2 +
∑
i∈I

‖ΓiV f‖2

≤ B1‖Uf‖2 +B2‖V f‖2 ≤
(
B1‖U‖2 +B2‖V ‖2

)
‖f‖2.

Without loss of generality, assume that U is surjective; then there exists C > 0
such that ‖Uf‖2 ≥ C‖f‖2 for any f ∈ H. Since UK∗ = K∗U , we have∑

i∈I

∥∥(ΛiU + ΓiV )f
∥∥2

=
∑
i∈I

‖ΛiUf‖2 +
∑
i∈I

‖ΓiV f‖2

≥
∑
i∈I

‖ΛiUf‖2 ≥ A1‖K∗Uf‖2

= A1‖UK∗f‖2 ≥ A1C‖K∗f‖2.
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So {ΛiU + ΓiV }i∈I is a K-g-frame and thus an atomic system for K by Theo-
rem 3.3. �

Let B = 0, and we get the following corollary.

Corollary 3.6. Suppose that K ∈ L(H) and that {Λi}i∈I is an atomic system
for K. If U is surjective and UK∗ = K∗U , then {ΛiU}i∈I is an atomic system
for K.

Let U = V = IH; then we obtain the following corollary for a K-g-frame.

Corollary 3.7. Let {Λi}i∈I and {Γi}i∈I be two Parseval K-g-frames for H, with
synthesis operators TΛ and TΓ, respectively. If TΛT

∗
Γ = 0, then {Λi + Γ}i∈I is a

2-tight K-g-frame for H.

Theorem 3.8. Let {Λi}i∈I and {Γi}i∈I be two atomic systems for K, and let
the corresponding synthesis operators be T1 and T2, respectively. If TΛT

∗
Γ = 0 and

Ui ∈ L(H) satisfies R(Ti) ⊂ R(U∗
i Ti), for i = 1, 2, then {ΛiU1 + ΓiU2}i∈I is an

atomic system for K.

Proof. Since T1T
∗
2 = 0, we have∑

i∈I

∥∥(ΛiU1 + ΓiU2)f
∥∥2

=
∑
i∈I

‖ΛiU1f‖2 +
∑
i∈I

‖ΓiU2f‖2

= ‖T ∗
1U1f‖2 + ‖T ∗

2U2f‖2

=
∥∥(U∗

1T1)
∗f
∥∥2

+
∥∥(U∗

2T2)
∗f
∥∥2
. (3.2)

Since {Λi}i∈I and {Γi}i∈I are atomic systems, they are K-g-frames by Theo-
rem 3.3. Thus from Lemma 1.5, we have that R(K) ⊂ R(Ti) ⊂ R(U∗

i Ti). So by
Lemma 1.7, for each i = 1, 2, there exists λi > 0 such that

KK∗ ≤ λi(U
∗
i Ti)(U

∗
i Ti)

∗.

By (3.2), for each f ∈ H, we have∑
i∈I

∥∥(ΛiU1 + ΓiU2)f
∥∥2

=
∥∥(U∗

1T1)
∗f
∥∥2

+
∥∥(U∗

2T2)
∗f
∥∥2 ≥

( 1

λ1

+
1

λ2

)
‖K∗f‖2.

Hence {ΛiU + ΓiV }i∈I is a K-g-frame and thus an atomic system for K by
Theorem 3.3. �

Before the following result, we need a simple lemma, which is a generalization
of [19, Theorem 3.5].

Lemma 3.9. Let {Λi}i∈I be a Bessel g-sequence for H with a frame operator
SΛ. Then {Λi}i∈I is a K-g-frame if and only if there exists λ > 0 such that
SΛ ≥ λKK∗.

Proof. {Λi}i∈I is K-g-frame with frame bounds A, B and a frame operator SΛ if
and only if

A‖K∗f‖2 ≤
∑
i∈I

‖Λif‖2 = 〈SΛf, f〉 ≤ B‖f‖2, ∀f ∈ H;
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that is,

〈AKK∗f, f〉 ≤ 〈SΛf, f〉 ≤ 〈Bf, f〉, ∀f ∈ H.

So the conclusion holds. �

Theorem 3.10. Let {Λi}i∈I be an atomic system for K, and let SΛ be the frame
operator of {Λi}i∈I . Let U be a positive operator; then {Λi+ΛiU}i∈I is an atomic
system for K. Moreover, for any natural number n, {Λi +ΛiU

n}i∈I is an atomic
system for K.

Proof. Since {Λi}i∈I is an atomic system for K, by Lemma 1.6, {Λi}i∈I is a
K-g-frame for H. Then by Lemma 3.9 there exists λ > 0 such that SΛ ≥ λKK∗.
The frame operator for {Λi + ΛiU}i∈I is (IH + U)∗SΛ(IH + U). In fact, for each
f ∈ H, we have∑

i∈I

(Λi + ΛiU)∗(Λi + ΛiU)f = (IH + U)∗
∑
i∈I

Λ∗
iΛi(IH + U)f

= (IH + U)∗SΛ(IH + U)f.

Since U, S > 0, (IH+U)∗SΛ(IH+U) ≥ SΛ ≥ λKK∗, and again by Lemma 3.9, we
can conclude that {Λi + ΛiU}i∈I is a K-g-frame and an atomic system for K by
Theorem 3.3. For any natural number n, the frame operator for {Λi+ΛiU

n}i∈I is
(IH+Un)∗SΛ(IH+Un). Similarly, {Λi+ΛiU

n}i∈I is an atomic system for K. �

Corollary 3.11. Let {Λi}i∈I be an atomic system for K, and let SΛ be the frame
operator of {Λi}i∈I . Let {I1, I2} be a partition of I, and let Sj be the frame operator
for the Bessel g-sequence {Λi}i∈Ij , j = 1, 2. Then {Λi+ΛiS

a
1}i∈I1∪{Λi+ΛiS

b
2}i∈I2

is an atomic system for K and for any natural numbers a and b.

Proof. For any natural number a, we can define Sa by

Saf =
∑
I∈I

(ΛiS
a−1
2 )∗ΛiS

a−1
2 f.

Note that (Sa)∗ = Sa. For each f ∈ H, we have∑
i∈I1

(Λi + ΛiS
a
1 )

∗(Λi + ΛiS
a
1 )f = (IH + Sa

1 )
∗
∑
i∈I

Λ∗
iΛi(IH + Sa

1 )f

= (IH + Sa
1 )

∗S1(IH + Sa
1 )f

= (S1 + 2S1+a
1 + S1+2a

1 )f.

Thus the frame operators for {Λi+ΛiS
a
1}i∈I1 and {Λi+ΛiS

b
2}i∈I2 are S1+2S1+a

1 +
S1+2a
1 and S1 + 2S1+b

2 + S1+2b
2 , respectively. Let S0 be the frame operator for

{Λi +ΛiS
a
1}i∈I1 ∪ {Λi +ΛiS

a
2}i∈I2 . Since {Λi}i∈I is an atomic system for K, from

Theorem 3.3 we know that {Λi}i∈I is a K-g-frame for H. Then there exists λ > 0
such that S ≥ λKK∗ and S0 ≥ S1 + S2 = S ≥ λKK∗. Hence {Λi + ΛiS

a
1}i∈I1 ∪

{Λi + ΛiS
a
2}i∈I2 is a K-g-frame for H by Lemma 3.9. Again by Theorem 3.3,

{Λi + ΛiS
a
1}i∈I1 ∪ {Λi + ΛiS

a
2}i∈I2 is an atomic system for K. �
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Corollary 3.12. Let {Λi}i∈I be an atomic system for K. Let {Ij}j∈J be a par-
tition of I, and let Sj be the frame operator for the Bessel g-sequence {Λi}i∈Ij ,
j ∈ J ⊂ Z. Then ⋃

i∈Ij
j∈J

{Λi + ΛiS
(j−1)
j }i∈Ij

is an atomic system for K.

Atomic decomposition has potential applications in encoding and decoding
problems. The following result characterizes the atomic decomposition and recon-
struction by a family of bounded operators.

Theorem 3.13. Let {Λi}i∈I be an atomic system for K which has closed range.
Then there is a g-frame Θ = {Θi = ΓiK

†|R(K)}i∈I such that

f =
∑
i∈I

Λ∗
iΘif =

∑
i∈I

Θ∗
iΛif, ∀f ∈ R(K),

where {Γi}i∈I is defined in (iii) of Theorem 3.3.

Proof. Since {Λi}i∈I is an atomic system for K, by (iii) of Theorem 3.3, there
exists a Bessel g-sequence {Γi}i∈I such that

Kf =
∑
i∈I

Λ∗
iΓif.

Since {Γi}i∈I is Bessel g-sequence, there exists B > 0 such that∑
i∈I

‖Γif‖2 ≤ B‖f‖2, ∀f ∈ H.

Hence ∑
i∈I

‖ΓiK
†f‖2 ≤ B‖K†f‖2 ≤ B‖K†‖2‖f‖2.

Since R(K) is closed, by Lemma 1.8 there exists K† of K such that f = KK†f ,
∀f ∈ R(K). And then

f = KK†f =
∑
i∈I

Λ∗
iΓiK

†f =
∑
i∈I

Λ∗
iΓiK

†|R(K)f.

Also,

‖f‖4 =
∣∣〈f, f〉∣∣2 = ∣∣∣〈f,∑

i∈I

Λ∗
iΓiK

†|R(K)f
〉∣∣∣2 = ∣∣∣∑

i∈I

〈f,Λ∗
iΓiK

†|R(K)f〉
∣∣∣2

=
∣∣∣∑
i∈I

〈Λif,ΓiK
†|R(K)f〉

∣∣∣2 ≤ ∑
i∈I

‖Λif‖2
∑
i∈I

‖ΓiK
†|R(K)f‖2

≤
∑
i∈I

‖ΓiK
†|R(K)f‖2C‖f‖2,
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where C is a g-Bessel bound of {Λi}i∈I . Therefore,
1

C
≤

∑
i∈I

‖ΓiK
†|R(K)f‖2, ∀f ∈ R(K).

Thus {ΓiK
†|R(K)}i∈I is a g-frame for R(K). Next we prove that {Λi}i∈I and

{Θi}i∈I are interchangeable on R(K). In fact, for any f, g ∈ R(K) ⊂ H,

〈f, g〉 =
〈∑

i∈I

Λ∗
iΘif, g

〉
=

∑
i∈I

〈Λ∗
iΘif, g〉 =

∑
i∈I

〈f,Θ∗
iΛig〉 =

〈
f,
∑
i∈I

Θ∗
iΛig

〉
.
�

Example 3.14. Let H = C3, and let {e1, e2, e3} be an orthonormal basis for H.
Let Hi = span{ei}, and let Γi = e∗i for i = 1, 2, 3. Obviously, {Γi}3i=1 is a Parseval
g-frame for H. Now define K ∈ L(H) as follows:

K : H −→ H, Ke1 = e1, Ke2 = e2, Ke3 = e1.

For any f ∈ H, we have f =
∑3

i=1 Γ
∗
iΓif , and it follows that

Kf =
3∑

i=1

KΓ∗
iΓif =

3∑
i=1

(ΓiK
∗)∗Γif =

3∑
i=1

Λ∗Γif,

where Λi = ΓiK
∗ for i = 1, 2, 3. By (iii) of Theorem 3.3, we know that {Λi}3i=1 is

an atomic system for K. In other words, for any f ∈ H, we can reconstruct f by
an atomic system {Λi}3i=1, although span{Λ∗

i (Hi)}3i=1 = span{e1, e2} ⊂ H.
On the other hand, for all f ∈ H, we may not get Kf =

∑
i∈I Γ

∗
iΛif . If we

take f = e3, then we have

Ke3 = e1 6=
3∑

i=1

Γ∗
iΛif = 〈e3, e1〉e1 + 〈e3, e2〉e2 + 〈e3, e1〉e3 = 0.

Since R(K) = span{e1, e2} is closed, by Lemma 1.8 there exists K† of K such
that KK†f = f for all f ∈ R(K). Hence we have KK†e1 = e1, KK†e2 = e2.
Now we can take K† as follows:

K†e1 =
e1 + e3

2
, K†e2 = e2, K†e3 = 0.

For any f ∈ H, there exist ci, for i = 1, 2, 3 such that f = c1e1+c2e2+c3e3. Then
we have 〈

(K†|R(K))
∗e1, f

〉
=

〈
e1, (K

†|R(K))f
〉
= 〈e1, c1K†e1 + c2K

†e2〉

=
〈
e1, c1

e1 + e3
2

+ c2e2

〉
=

〈
e1, c1

e1 + e3
2

〉
=

〈e1
2
, c1e1

〉
=

c2
2

=
〈e1
2
, c1e1 + c2e2 + c3e3

〉
=

〈e1
2
, f

〉
.

Similarly, we have〈
(K†|R(K))

∗e2, f
〉
= c2 = 〈e2, f〉,

〈
(K†|R(K))

∗e3, f
〉
=

c1
2

=
〈e1
2
, f

〉
.
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It follows that

Θ∗
1 = (Γ1K

†|R(K))
∗ = (K†|R(K))

∗Γ∗
i = (K†|R(K))

∗e1 =
e1
2
,

Θ∗
2 = (Γ2K

†|R(K))
∗ = (K†|R(K))

∗Γ∗
2 = (K†|R(K))

∗e2 = e2,

Θ∗
3 = (Γ3K

†|R(K))
∗ = (K†|R(K))

∗Γ∗
3 = (K†|R(K))

∗e3 =
e1
2
.

Let g ∈ H and g = c1e1 + c2e2. Then∑
i∈I

Λ∗
iΘig = 〈e1/2, g〉e1 + 〈e2, g〉e2 + 〈e1/2, g〉e1

= 〈e1/2, c1e1 + c2e2〉+ 〈e2, c1e1 + c2e2〉e2 + 〈e1/2, c1e1 + c2e2〉e1

=
1

2
c1e1 + c2e2 +

1

2
c1e1 = c1e1 + c2e2 = g

and∑
i∈I

Θ∗
iΛig = 〈e1, g〉e1/2 + 〈e2, g〉e2 + 〈e1, g〉e1/2

= 〈e1, c1e1 + c2e2〉e1/2 + 〈e2, c1e1 + c2e2〉e2 + 〈e1, c1e1 + c2e2〉e1/2

=
1

2
c1e1 + c2e2 +

1

2
c1e1 = c1e1 + c2e2 = g.
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