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Controlling Effective Packing Dimension of �0
2

Degrees

Jonathan Stephenson

Abstract This paper presents a refinement of a result by Conidis, who proved
that there is a real X of effective packing dimension 0 < ˛ < 1 which cannot
compute any real of effective packing dimension 1. The original construction
was carried out below ;00, and this paper’s result is an improvement in the effec-
tiveness of the argument, constructing such an X by a limit-computable approx-
imation to get X �T ;0.

1 Introduction

Effective packing dimension is one of several common ways to study the way in
which information is encoded in a real number. It assigns to each X 2 2! a real
number dimP .X/ 2 Œ0; 1�. The concept has been considered in a wider context in a
number of other publications (see, e.g., Downey and Hirschfeldt’s book [5], Downey
and Greenberg [4], and Downey and Ng [6]). An effective packing dimension equal
to 1 corresponds to the notion that infinitely many of the initial segments of the real
are unable to be significantly compressed by any algorithmic process, whereas an
effective packing dimension of zero indicates that initial segments of the real num-
ber are easily deduced from a relatively small amount of information. Martin-Löf
random reals have effective packing dimension 1, and in fact are characterized as
the class of reals for which all initial segments are largely incompressible; they are
a well-studied class of reals, and have several other natural characterizations. At
the other end of the spectrum of effective packing dimension are reals with effective
packing dimension 0. Included in this class are both computable reals and noncom-
putable K-trivial reals which encode information, but in a very sparse manner.

The strong links between algorithmic randomness, information content, and effec-
tive packing dimension lead to reals whose effective packing dimensions lie strictly
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between 0 and 1 being often regarded as being “partially random.” This notion of
partial randomness does not respect the Turing degree structure particularly well,
because one can easily exhibit reals in every Turing degree with effective packing
dimension 0. Indeed, given a real Z of effective packing dimension ˛ > 0 and
some rational number q with 0 � q < ˛, it is easy to produce a real in the same
Turing degree as Z with effective packing dimension less than q, by “thinning” the
information coded by Z in a computable way.

The goal of this paper is to improve on a result of Conidis [3], who constructed
a real X which has intrinsically intermediate effective packing dimension in the fol-
lowing sense.

Theorem 1.1 (Conidis [3, Theorem 6.1]) There is a real X �T ;00 with nonzero
effective packing dimension such that X cannot compute any reals of effective pack-
ing dimension 1.

The main theorem of this paper increases the effectiveness of this result by con-
structing a real with the same property, but which is below ;0 in the Turing degree
structure.

Theorem 1.2 There is a real X �T ;0 with nonzero effective packing dimension
such that X cannot compute any reals of effective packing dimension 1.

The reals constructed by this theorem and that of Conidis are not able to be obtained
by applying the “thinning” process described above to a real with effective packing
dimension 1 and which is in the same Turing degree.

We will obtain a corollary by applying one of the theorems of Bienvenu, Doty,
and Stephan [2, Theorem 2.5], who repackage a result of Fortnow, Hitchcock, Pavan,
Vinodchandran, and Wang [7, Theorem 5.2], stating that any Turing degree which
contains a real of nonzero effective packing dimension contains reals of effective
packing dimension arbitrarily close to 1. Recall that the effective packing dimension
of a set of reals is equal to the supremum of the effective packing dimensions of its
members, and consider the Turing degree of the real X of the previous theorem, to
deduce the following.

Corollary 1.3 There is a �0
2 Turing degree with effective packing dimension 1

which contains no real of effective packing dimension 1.

It is worth noting that effective packing dimension is only one of the ways to measure
the complexity of a real number. A better-known measure is the effective Hausdorff
dimension, introduced by Lutz [10], and which has been well studied; in particular,
some questions analogous to those studied here are considered in papers by Green-
berg and Miller [8], and Miller [11], and (once again) a good overview of the area is
given by Downey and Hirschfeldt [5].

Both the means of construction and the improvements in effectiveness seen in
this paper and that of Conidis [3] correspond very closely to that which occurred
in the development of minimal Turing degrees in classical computability theory. In
that case the original construction of a minimal degree was carried out by Spector
in 1956 (see [15]), with the construction occurring below ;00. In 1961, Sacks [12]
noted that the construction could also be carried out below ;0. In effect, each of the
;00-oracle questions was replaced by sequences of ;0-computable questions.



Controlling Effective Packing Dimension of �0
2 Degrees 75

This bound was later improved by Yates [16] in a 1970 paper which showed that a
minimal degree could be found below any c.e. degree. In this case the method used
was a limit computable (full approximation) construction.

In each case the construction is given by finding a sequence of computable trees
Ti with the property that for each i , TiC1 � Ti , and so that for each Ti and each path
X through Ti such that ˆX

i is a total reduction, either ˆX
i is computable, or it is a

real which computes X . Thus the unique real X which is a path through each of the
Ti is in a degree which is minimal with respect to Turing reductions.

The construction given for reals with nonzero effective packing dimension and
which cannot compute any reals of effective packing dimension 1 in Conidis [3]
and that presented here follow a similar developmental history. As in the case of
the minimal degree arguments, the constructions are carried out by building a nested
sequence of trees, chosen so that the unique path which lies in all of the trees satisfies
the requirements of the problem.

The original proof by Conidis, which constructed a degree below ;00, is herein re-
placed by an approximation by ;0-computable procedures, yielding a �0

2 real with the
desired properties. It should be noted that the further improvement given by Yates in
the case of minimal degrees which allowed that construction to be carried out below
any c.e. degree will not have an analogy in our case, since there are noncomputable
degrees which cannot compute any real with nonzero effective packing dimension
(e.g., the K-trivial degrees). The question of exactly which Turing degrees can com-
pute a real of nonzero effective packing dimension that cannot in turn compute a real
of effective packing dimension 1 remains an interesting and relevant one, for which
some thoughts and a conjectured partial solution are given in Section 7.

Some of the technical machinery and lemmas used by Conidis [3] will be useful
here. The notation of that paper is followed wherever it is reasonable to do so. For
�; � 2 2<! write �� to indicate the string formed by concatenating � and � . Let
A; B � 2<! . Write AB to mean ¹�� W � 2 A; � 2 Bº, and similarly A� and �A for
A¹�º and ¹�ºA, respectively. I denote by 2�n the set of strings in 2<! of length at
most n, and by 2Dn those of length exactly equal to n. Write j� j for the length of a
string � 2 2<! .

By � � � I mean that � is an initial segment of � , and by � � � that � � � and
� ¤ � .

I will use K to denote prefix-free Kolmogorov complexity of strings. This will be
the only notion of complexity considered throughout the paper; for brevity I simply
refer to K as Kolmogorov complexity. It should be noted that the usage of prefix-free
complexity here is not important to the construction: plain Kolmogorov complexity
could be used instead, yielding the same results.

As pointed out by Conidis [3], the following definition of effective packing di-
mension is not the standard one, but the proof that they are equivalent is indicated by
Athreya, Hitchcock, Lutz, and Mayordomo [1], noting that it follows from a similar
result by Lutz [10].

Definition 1.4 Let X 2 2! . The effective packing dimension of X is

dimP .X/ D lim sup
n!1

K.X � n/

n
:
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If d � 2! is a Turing degree, then the effective packing dimension of d is

dimP .d/ D sup
X2d

lim sup
n!1

K.X � n/

n
:

Definition 1.5 Let ¹ˆi ºi2! be a computable listing of all oracle Turing machines.
By an oracle Turing machine ˆe we will mean one which outputs 0 or 1 as a result
of any halting computation.

Notation shall otherwise be as in Soare [14] and [13]. In particular, by
ˆ

�
e;s.x/ D y I mean that the oracle computation ˆ

�
e.x/ halts with output y within s

steps of computation, and with use no greater than j�j. I assume that computations
of this kind either halt at some stage s < j�j, or not at all, and that they may halt only
if x < j�j, so that finite oracle strings only compute finitely many outputs.

Adopting the conventions used by Conidis, assume that the oracle computations
are monotonic in their use, in the sense that if ˆ

�
e;s.x/ # and y < x, then ˆ

�
e;s.y/ #

too. This convention will ensure that if � 2 2<! , then there is a string � 2 2<!

with ˆ�.x/ # precisely when x < j� j and that ˆ
�
i .x/ D �.x/ in this situation.

We will denote this by ˆ
�
i D � (notice that � is the longest string computed by

� in this way). We will also assume a second monotonicity condition that if � is
obtained from a string � by extending it by a single 0 or 1, then there is at most one
x such that ˆ

�
i .x/ # but ˆ�

i .x/ ". This will ensure that if T is a tree, then defining
ˆT

i D ¹� 2 2<! W .9� 2 T /ˆ
�
i D �º, ˆT

i will also be a tree; it is worth noting that
given a c.e. tree T and an enumeration for T , we can effectively enumerate ˆT

i .

Definition 1.6 A clump is a subset of 2<! of form �2�j� j, where � 2 2<! . We
refer to � as the root of the clump.

Definition 1.7 A pruned clump is a subset of 2<! which is a downward closed
subset of a clump �2�j� j, and which contains at least two of the leaves of �2�j� j.
Once again, refer to � as the root of the pruned clump.

Pruned clumps will be the main tool used to make sure that the real we will con-
struct has nonzero packing dimension, and will consequently play a major role in the
construction which forms Section 4 of this paper.

Definition 1.8 An extendible string on a tree T is an element � 2 T with the
property that there is a path through T which has � as an initial segment.

Definition 1.9 A pruned clumpy tree is a tree T � 2<! such that whenever � 2 T

is an extendible string on T , there is a string � 2 T such that � � � and a pruned
clump with root � is on T .

2 Strategy

The construction which is laid out in this paper will build a sequence of c.e. pruned
clumpy trees T0 � T1 � T2 � � � , choosing a string �i 2 Ti for each i . We will
construct the �i so that for each i; j either �i � �j , or vice versa. Therefore the �i

will specify a unique path X which lies in the intersection of the Ti . The �i will also
be chosen so that for each i , �i has some initial segment � of length at least i , and
which has high Kolmogorov complexity, which will ensure that the path X will have
nonzero effective packing dimension (indeed the dimension will be at least 1

4
). The

trees Ti are chosen to have enough leaves on each clump that such strings � exist,
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but the leaves which are added to the clumps are chosen carefully, so that X does not
compute any real of effective packing dimension 1. We will see that this is done by
either forcing that ˆY

i is nontotal for each path Y through Ti , or that there is some
˛ < 1 which is an upper bound on the effective packing dimension of the real ˆX

i .
This latter case is achieved by a process of majority vote: by pruning Ti carefully,
we can ensure that a large number of the reals computed with paths through Ti as
oracles agree on long initial segments, and thus guarantee that ˆX

i is a path through
a c.e. tree which branches sufficiently slowly that the initial segments of ˆX

i must
have quite low Kolmogorov complexity—we will see that identifying such an initial
segment may be achieved by giving its length, together with information about its
position in the lexicographical ordering of strings of that length on ˆ

Ti

i , which will
require a number of bits proportional to the length of the segment, with a constant of
proportionality less than 1.

The construction will proceed by constructing for each i a sequence T 0
i ; T 1

i ;

T 2
i ; : : : of finite trees, with the property that for each i and any k < k0, we have

T k
i � T k0

i . We will ensure that

Ti D

[
k

T k
i

is a computably enumerable pruned clumpy tree. In addition, we will ;0-computably
construct sequences �k

i of strings which will converge to limits �i . The string �i will
act as a root to the tree Ti in the sense that all extendible strings on Ti will either
extend �i or be initial segments of it. To ensure that there is a real X 2 2! which has
each �i as an initial segment, we will only ever let �k

i be an extension of �k�1
i , and

ensure that every other �k
j we construct is �-comparable with �k

i . Thus the �i will
be the limits of uniformly ;0-limit-computable sequences. These strings will define
a real X which is ;0-computable.

In the construction given by Conidis [3, Section 5], the ;00-oracle was able to
identify whether a given tree Ti�1 contained a string � with the property that for
some x 2 ! and every extension � 2 Ti�1 of � , one had ˆ

�
i .x/ ". This allowed

detection of strings forcing each oracle computation ˆY
i with � as an initial segment

of a path Y in Ti�1 to be nontotal. This will not be possible to achieve using only a
;0-oracle.

At each stage k of the construction carried out in this paper we will construct
a finite tree T k

i for each i � k. We will also build a string �k with the property
that �k.i/ tells us whether we currently believe that a string � fulfilling a similar
role to that in Conidis’s construction exists on T k

i�1. We will be hampered by two
factors in this matter. First, we do not know what the final tree Ti�1 will be while
we are building Ti . For this reason we will work with the assumption that it will not
contain such a string � , until we are able to identify one. Thus we will build treesbT k;s

i for each k � s, which will correspond to our current guess at T s
i under this

assumption. When k is large enough, we will have bT k;s
i D T s

i for all s. Second, we
will not be able to consult ;00 to ask whether any string on Ti�1 forces divergence of
an oracle computation. Identifying such a string will be achieved by approximating
this question: we will ask only if a specific string forces divergence on some specific
computation.
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At each stage k of the construction, we will follow one of two strategies: either
construct extensions which output halting computations under the i th oracle ma-
chine, or identify a string on our tree whose extensions all diverge under this oracle
computation.

Remark 2.1 Let T be a computable tree, let � 2 T , and consider the statement
.9x < n/.8� 2 T /.8s 2 !/

�
� � � ! ˆ�

i;s.x/ "
�
;

which asserts that � forces divergence of the oracle machine ˆi on all of its exten-
sions on some (bounded) input x. This statement is uniformly computable in ;0 given
T; �; n.

The portion of the strategy which seeks to force our real X to have nonzero effective
packing dimension will make heavy use of the following lemma; it is put to the same
use by Conidis [3].

Lemma 2.2 (Conidis [3, Lemma 3.2]) Let q 2 Q, 0 � q � 1, and � 2 2<! , and
let q� be the least natural number that is greater than or equal to qj� j. Then, for any
given pruned clump of the form A � �2�j� j such that A contains at least 2q� many
leaves of �2�j� j, there is a leaf � 2 �2�j� j in A such that

K.�/ >
q

2
j� j � 1:

If X is the real we construct, and we consider some i such that ˆX
i gives a total

reduction, then the proof that dimP .ˆX
i / < 1 will rely on estimates on the initial

segment prefix-free complexity of the real ˆX
i obtained by considering a pair of

prefix-free machines.

Definition 2.3 For the purposes of computing Kolmogorov complexity, a prefix-
free machine M is a partial computable map from 2<! to 2<! with the property that
if � � � , then M.�/ # implies M.�/ ".

We will use the fact that if M is a prefix-free machine, then there is some constant
C (depending on M ) such that for each pair � , � of binary strings with M.�/ D � ,
we have K.�/ < j� j C C .

The idea will be to construct two machines M1 and M2 which, between them,
exhibit short descriptions of the initial segments of ˆX

i . They will do so by making
efficient use of the structure we build into the trees we construct to extract information
about strings computed from those trees.

The remainder of the paper is organized as follows. In Section 3 we will see two
procedures which will be used to carry out the construction of the trees Ti which
we seek. This construction is laid out in detail in Section 4. In Section 5 we will
check that the construction yields c.e. trees and will see that there is a single path X

common to all of the trees, with effective packing dimension at least 1
4
. This will

be the path we seek. In Section 6 we will verify that the construction carried out
will guarantee that any real computed by X must have effective packing dimension
strictly less than 1, by giving an explicit bound via a combinatorial estimate.

3 Approximations

This section outlines the algorithms which will be used to compute finite approxima-
tions T k

i to a tree Ti based on the trees T k
j for j < i at some stage k � i .
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Suppose that we have a computable map from ! onto the set of all finite trees,
that is, an indexing of those trees.

Now define two computable maps T W 2<! � !2 ! ! and S W !4 ! !, where we
think of each map as outputting a finite tree. The maps T and S each provide a means
to guess at what some of the trees Ti we are building in the overall construction are.

The algorithm S The algorithm S will be used at stages of the construction at which
we are searching for strings to add to the finite approximations to our trees Ti in
order to obtain longer halting computations. The computations which we seek will
be required to come in families which all agree on some initial segments of fixed
length; this will help satisfy the requirement that dimP .ˆX

i / < 1, where X is the
real which we are constructing.

Let S W !4�2<! ! ! be the following algorithm. Let S.m; n; e; t; �/ D p, where
p is an index for the finite tree R constructed as follows. Search for the leaves of the
tree T with index m and which are extensions of �; note that this search terminates,
since T is finite. Then for each leaf �0 � � of T , suppose that �0 is of length l .
Attempt (by searching within the tree S with index n) to extend �0 to a string �

which is the root of a pruned clump on the tree S , of length 4N > 4l � 22eC4 for
some N � e C 2. For each �0, choose N to be the minimal possible, choosing
the lex-least � if a tiebreaker is needed. For each string � obtained in this way, let
L� be the leaves of the pruned clump on S with root �. Now for each � and each
� 2 L�, we search for a stringb� � � on S such that for each x < 2�2e�4j�j, we have
ˆ

O�
e.x/ #. Accept only strings b� for which jb�j < t and ˆ

O�
e;t .x/ # for each relevant x.

Call such extensions suitable with bound t .
If there is no � for which we find suitable extensions b� for each � 2 L�, let

R D T ; we are not making any changes to the input tree. In this case, say that S

fails; otherwise it succeeds.
If S succeeds, then for each � such that we found suitable extensions for every

� 2 L�, find the least i � t such that each � 2 L� admits a suitable extension
with bound i , and for each such � let b� be the least suitable extension with bound
i , when strings are ordered by length, and strings of the same length are ordered
lexicographically. Let the set of all such b� � � obtained in this way be D�. Now
choose the string �� of length x for which we have®b� 2 D�W .8y < x/

�
��.y/ D ˆ O�

e.y/
�¯

of maximal size, choosing the lex-least such �� in the case of a tie. Then add to R

the downward closure of the nodes b� 2 D� for which we have ��.y/ D ˆ
O�
e.y/ for

each y < x.

The algorithm T The algorithm T will be used at stages of the construction of Ti at
which we have already found a string which we believe is not an initial segment of
any path Y through Ti�1 for which ˆY

i is a total map. In this case, we are simply
keeping all extensions of that string.

Let T .�; m; n/ D p, where m, n are indices for trees T , S , respectively; let p

be an index for the computable tree R given by letting R consist of precisely those
strings � such that either � 2 T , or � 2 S and � extends both � and some leaf of T .
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4 Construction

In this section I construct a nested sequence ¹Ti ºi2! of computable trees and strings
�i 2 Ti which define a path X 2 2! . This path will be computable in ;0 and will not
compute any reals of packing dimension 1, but will have nonzero packing dimension.
The entire construction will be carried out below ;0.

We will assume a default strategy for each i that in building the tree Ti , we will
always find halting computations when we want them; we will move to our secondary
strategy of forcing divergence if this ceases to be a viable strategy.

At stage k of the construction, we will choose a string �k 2 ¹�1; 0; 1º<! of length
k C1. For each 0 � i � k C1, we will build a tree T k

i D T k which will be our finite
approximation to Ti , and a string �k

i which will be our approximation to �i . The
string �k will tell us what strategies we are following at stage k of the construction
the construction. If �k.i/ D �1, we have not yet met the requirement that �k

i has an
initial segment of length at least i , and which is of high complexity. If �k.i/ D 0,
then we currently do not believe that we will be able to choose �i in a way that the
paths Y on Ti which pass through �i all have ˆY

i nontotal. Otherwise �k.i/ D 1, in
which case we believe we have selected �k

i to force nontotality of such computations.
We will ensure that �k

i only changes at finitely many stages k, and therefore that it
comes to a limit �i . We will see that the �i are all distinct strings which form a total
order under inclusion as initial segments, and therefore that they define a unique
X 2 2! , which is the unique path through the Ti .

For each i , we will define
Ti D

[
k

T k
i :

The resulting tree will be c.e. and have the property that for every k, each leaf of T k
i

extends some leaf of T k�1
i .

For the base case, begin by setting T 0
�1 D ¹;; 0º, that is, a tree with a single leaf

of length 1, and recursively letting T k
�1 be the downward closure of[

�2T k�1
�1

� a leaf

�2Dj�j02j�j

so that each T k
�1 has leaves of length 4k ; this tree establishes the clumpy structure

which underlies all of the Ti which we will construct. The specific choice of the root
lengths for the pruned clumps here will ensure that some later computations will give
integer bounds in cases where it is convenient that this should be so.

Now for the construction proper. At stage k � 0, for each i < k we are given
finite trees T k�1

i and strings �k�1
i 2 2<! as well as a string �k�1 of length k. The

trees given satisfy T k�1
i�1 � T k�1

i and �k�1
i�1 � �k�1

i or �k�1
i�1 � �k�1

i for 0 � i < k.
Proceed by a series of substages, one for each 0 � i � k. At substage i we are

given T k
j , �k

j , and �k.j / for each j < i . We will build auxiliary computable treesbT k;s
i for each i < k � 1 as uniformly computable sets of strings. These trees will

tell us which strings we currently believe are to be added to Ti at some stage. We
will see that for each i and for large enough k, we have T s

i D bT k;s
i for each s � k,

so that bT k;s
i is best thought of as a prediction of what T s

i will be, according to the
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information which is available at stage k. That the T s
i are eventually equal to thebT k;s

i will guarantee that the tree Ti which is constructed will be a c.e. set of strings.

Constructing T k
�1

This step in the computation serves to initialize the construction
for stage k.

At each stage k, let T k
�1 be as described above, and let �k

�1 be the empty string.
Define �k.�1/ D 1, for convenience.

In addition, for each s � k, let bT k;s
�1 D T s

�1.

Constructing T k
i

for 0 � i < k In this section, suppose that we have built T k
j and

defined �k
j and �k.j / for each j < i , as well as having defined T k�1

j , �k�1
j , and

�k�1.j / for each j < k. We also assume that for j < i � 1, we have built bT k;s
j for

each s � k.
Before building T k

i , we will construct trees bT k;s
i�1 which give a uniformly c.e.

guess at Ti�1. In the case that i D 0, we have already built the bT k;s
i�1, and can omit

this step.
So suppose that i > 0, and that we are given bT k;s

i�2 for each s. DefinebT k;k
i�1 D T k

i�1. Given T
k;s�1
i�1 , let bT k;s�1

i�1 have index m, and let bT k;s
i�2 have in-

dex n, and set bT k;s
i�1 to be the tree given by S.m; n; i; s; �k

i / if �k.i � 1/ D 0, and setbT k;s
i�1 to be the tree given by T .m; n; �k

i / if �k.i � 1/ D 1.
First check whether any j < i has �k.j / D 1 but �k�1.j / D 0, or any such

j has �k.j / D �1. In this case our strategy for Ti has been interrupted, or is not
yet active. So we must start over; to do so, set �k

i D �k�1
i , let T k

i D T k�1
i , and set

�k.i/ D �1. Then proceed to the construction of T k
iC1.

Otherwise, if �k�1.i/ D 1, then we know that �k�1
i forces divergence as an oracle

for the machine ˆi on a tree bT k�1
i�1 whose construction was given earlier. In this case,

let �k
i D �k�1

i , let �k.i/ D 1, and let T k
i be the tree given by T .m; n; �k

i /, where
m and n are indices for the trees T k�1

i and T k
i�1, respectively. Then proceed to the

construction of T k
iC1.

If we have �k�1.i/ D �1, we have not confirmed that K.�/ > 1
4
j�j � 1 for some

� � �k
i with j�j � i .

If i is the least number with �k.i/ D �1, use ;0 to check whether there is a string
� on T k

i�1 which is comparable to each �k
j for each j such that j < i and to �k�1

j for
each j such that i < j < k, and for which we have K.�/ > 1

4
j�j � 1 and j�j � i .

If such a string � exists, set �k
i to be a leaf on T k

i�1 which extends � and set T k
i to

be equal to T k
i�1, and set �k.i/ D 0. If no such string exists, set T k

i D T k�1
i and

�k
i D �k�1

i , and �k.i/ D �1. Then move to the construction of T k
iC1.

Otherwise �k.i/ D 0, and we have met the complexity condition for index i ,
and will use the approximation bT k;s

i�1 to Tj for each j < i to check whether we can
force divergence by moving to a new string �k

i . Take m to be an index for T k�1
i ,

n to be an index for T k
i�1, and ns to be an index for bT k;s

i�1, for each s > k. Check
whether for some s, S.m; ns; i; s; �/ succeeds, where � is the longest string in the set
¹�k

�1; �k
0 ; �k

1 ; : : : ; �k
i�1; �k�1

i ; : : : ; �k�1
k�1

º.
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If it does succeed, let �k
i D �k�1

i and T k
i be S.m; n; i; k; �k

i /, and set �k.i/ D 0,
then proceed to the construction of T k

iC1. Note that we are applying the algorithm S

to a different string than the one which we checked for success on; this is because we
cannot in general computably find the string � of the previous paragraph, and will
want to construct our tree by a method which is able to be computably approximated
once our strategy has settled.

Otherwise, check whether there is some leaf �0 on T k�1
i which extends every �k

j

for j < i and every �k�1
j for i < j < k, and which has an extension � 2 T k

i�1

and such that for some x < 2�2i�4j�j every extension � of � in bT k;s
i for any s

has ˆ
�
i .x/ ". In this case, set T k

i to be the tree obtained by adding to T k�1
i the

downward closure of the string �. Set �k
i to be �, and set �k.i/ D 1, and proceed to

the construction of T k
iC1.

If no such leaf �0 exists, set �k
i D �k�1

i and T k
i D T k�1

i , and set �k.i/ D 0, and
proceed to the construction of T k

iC1.

Constructing the new tree T k
k

Finally, we define �k
k

D �k
k�1

, �k.k/ D �1, and we
let T k

k
be the downward closure of �k

k
.

This concludes the construction of the trees T k
i for i � k.

5 Verification

It now remains to be seen that the construction carried out above will satisfy our
requirements, namely, that for each i , the �k

i converge to some �i , and that the �i are
among the initial segments of some real X . Furthermore, we need X �T ;0 and
dimP .X/ > 0, but whenever ˆX

i is a total reduction, we require dimP .ˆX
i / < 1.

Theorem 5.1 For each i , there is some L such that when L < k1 < k2, we
have �

k1

i D �
k2

i , �k1.i/ D �k2.i/, equal to either 0 or 1, and there is some string
� 2 T k

i�1 such that j�j � i , � � �k
i , and K.�/ �

1
4
j�j � 1. In addition, we may

choose L so that if k > L, then for s � k we have bT k;s
i D T s

i . Now define

Ti D

[
k

T k
i

and
�i D lim

k
�k

i :

Then Ti is a c.e. pruned clumpy tree, and there is a path X through Ti such that for
each k, each �k

j is an initial segment of X for each j � k. In particular, �i is an
initial segment of X .

Proof In proving this theorem, it will be useful to prove several other properties
to hold throughout the induction. Therefore we will also show that at each stage k,
we define �k

i 2 T k
i with the properties that �k

i � �kC1
i , and either �k

i�1 � �k
i or vice

versa. In addition, T k�1
i � T k

i and T k
i � T k

i�1. We will also see that whenever
A D A \ �2�j�j is a pruned clump on T k

i for k > L, and A’s root is an initial
segment of a path through Ti , A contains at least 2q� many leaves of �2�j�j, where
q� is the least integer greater than or equal to .1 �

Pi
j D�1 2�2j �4/j�j.
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Note that for the case i D �1, �k
�1 and T k

�1 are chosen specifically so that they
meet the requirements of the theorem, as well as the additional properties mentioned
above.

Also note that at each stage of the construction we preserve the requirement that
T k�1

i � T k
i and that T k

i � T k
i�1 for each i < k, and ensure that T k

k
� T k

k�1
by

choice, so that these conditions will hold of all the trees we build. In addition, at each
stage of the construction we ensure that �k

j � �k
i or �k

i � �k
j for each i; j < k, and

define �k
k

D �k
k�1

, so that comparability of the strings is preserved at every stage.
Furthermore, we always set �k�1

i � �k
i . But this means that if we let �k be the

longest of the �k
i at stage k, then we have �k � �kC1 at each stage k, so it is clear

that there is a path through all of the �k which lies in T�1.
Now let i � 0, and fix L so large that the statements in the theorem and the

additional hypotheses mentioned hold for each j < i at stage L of the construction.

Lemma 5.2 For sufficiently large M , whenever k > M , �k
i D �M

i and
�k.i/ D �M .i/ ¤ �1. Furthermore, there is some string � with j�j � i , � � �k

i ,
and K.�/ > 1

4
j�j � 1. In particular, j�k

i j � i .
In the case that k > M and �k.i/ D 1, there is some x such that each string

� 2 Ti�1 which extends �k
i has ˆ

�
i .x/ ".

On the other hand, if k > M and �k.i/ D 0, then for each string � 2 Ti which is
the root of a pruned clump on Ti with �k

i � �, and each leaf � of that clump, there is a
stringb� 2 Ti with � � b� and ˆ O�.x/ # for each x < 2�2i�4j�j. Furthermore, for any
two extensions b�1; b�2 of � on Ti , and each x < 2�2i�4, we have ˆ

O�1

i .x/ D ˆ
O�1

i .x/.

Proof By assumption, there is a path through Ti�1 which has �j as an initial seg-
ment for each j < i . Thus we may choose M0 large enough to satisfy all of the
hypotheses imposed for j < i , and such that there is a pruned clump A which is on
each T k

i�1 for stages k > M0, and whose root extends �j for j < i , and is of length
greater than i . Assume that for no j < i do we have �k.j / D �1 for any k > M0.

Now suppose that for some k > M0, �k�1.i/ D �1. Note that for each j > i

we also have �k.j / D �1, and �k
j D �k

i , because we only allow the least i with
��1.i/ D �1 to make any changes at stage k. The construction of T k

i proceeds by
searching on T k�1

i for a string � with j�j � i and K.�/ > 1
4
j�j � 1, and which is

consistent with our choices �k
j for j < i and �k�1

j for i < j < k. There is some
string � 2 A with the property that K.�/ > 1

4
j�j�1 by Lemma 2.2 and the inductive

hypothesis, and so we will set �k
i D � for some such �.

Because of our choice of M0, we know that there is no stage k > M0 at which
�k.j / changes for any j < i . Therefore once �k

i has an initial segment satisfying the
complexity condition discussed above, the only way that we can have a stage k0 > k

for which �k0�1
i ¤ �k0

i is if �k0

.i/ D 1 but �k0�1.i/ D 0. But in this case we choose
�k0

i to be a string which extends �k0�1
i , and thus inherits satisfaction of the complexity

condition. Also note that if we never set �k1.i/ D 1 at any stage k1 > k, then every
time we add a pruned clump to T

k1

i with root �, it is added in a single step, and we
add extensions b� of each leaf � of the pruned clump so that for each x < 2�2i�4j�j,
we have ˆ

O�
i .x/ #, and so that for any two such extensions b�1; b�2 of � on Ti , if

ˆ
O�1

i .x/ # and ˆ
O�2

i .x/ # for some x < 2�2i�4, we have ˆ
O�1

i .x/ D ˆ
O�1

i .x/. This
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agreement of halting computations will obviously be preserved under extensions, and
since the construction only ever extends strings which are already leaves, will hold
of all extensions of � in Ti .

Finally, note that if �k1.i/ D 1 at some stage k1 > M0, and we set � to be the
longest string in the set ¹�

k1

�1; �
k1

0 ; �
k1

1 ; : : : ; �
k1

i�1; �
k1�1
i ; : : : ; �

k1�1

k1�1
º, then we know

that there is some leaf �0 on T
k1�1
i which extends � , and which has an extension

� 2 T
k1

i�1 such that for some x < 2�2i�4j�j, every extension � of � in bT k1;s
i�1 for any

s has ˆ
�
i .x/ ". In this case we have set �

k1

i D �, and T
k1

i is the tree obtained by
adding the downward closure of � to T k0�1

i .
By the assumption on bL, it follows from the inductive hypothesis on the treesbT k;s

i�1 that the strings which are in bT k;s
i�1 for some s are precisely those strings in

Ti�1. From this we may therefore conclude that there is some x such that every
string � on Ti�1 which extends �k0

i now has the property that ˆ
�
i .x/ ", as desired.

It clearly suffices to take M > M0 to be some stage such that for k > M ,
�k

i D �M
i and such that if �k.i/ D 1 for any k > M , this is true of every k > M .

Lemma 5.3 For sufficiently large M , whenever k > M , and s � k, T s
i D bT k;s

i .
Thus Ti is the union of the bT k;s

i at such stages.

Proof Choose M > L larger than the M of the previous lemma, so that �k
j and

�k.j / are constant for all j � i and k > M . Then note that by inductive assumption,
for s � k we have bT k;s

i�1 D T s
i�1. Fix some k > M . Notice that we have bT k;k

i D T k
i

by definition. In addition, because � s.j / and �s
j are fixed for j � i and s � k, it

follows that the construction of T s
i for s � k either always proceeds via application

of S or always by applications of T , and that the algorithm which constructs bT k;s
i

will use the same algorithm, taking as input bT k;s�1
i and bT k;s

i�1 rather than T s�1
i and

T s
i�1. In either case, for each s � k we know that bT k;s

i�1 D T s
i�1, and it will follow

inductively that T s
i D bT k;s

i .

Lemma 5.4 For sufficiently large M , whenever k0 > M , for each leaf �0 of T
k0

i

which is extended by some path through Ti , there is some k > k0 and a pruned
clump on T k

i whose root � is an extension of �0. Furthermore, this clump has at
least 2q� many leaves of �2�j�j, where q� is the least integer greater than or equal
to .1 �

Pi
j D�1 2�2j �4/j�j.

Proof Take M to be large enough to satisfy each of the previous lemmas, and
k0 > M .

Fix some leaf �0 of T
k0

i which is an initial segment of a path through Ti . Notice
that this means that we must have �

k0

i � �0, since after stage k0, we only ever add
strings to Ti which extend �

k0

i . Now Ti�1 is a pruned clumpy tree and �0 lies on
a path through it (since Ti � Ti�1), so we know that there is a pruned clump on
Ti�1 with a root extending �0, and that we may choose the root to be as long a
string as we like (but the form of T�1 forces all pruned clumps to have roots whose
lengths are powers of 4). Thus, for large enough k1 we may note that �0 has an
extension � 2 T

k1

i�1 which is the root of a pruned clump on Ti�1, and such that
4N D j�j > 4j�0j for some N > i C 2. By assumption, the pruned clump on Ti�1
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has at least 2q� many leaves of �2�j�j, where q� is the least integer greater than or
equal to .1 �

Pi�1
j D�1 2�2j �4/j�j.

Now suppose that we have �k.i/ D 0; then we know that at no stage k > k0 do
we set �k.i/ D 1. But this means that at each stage k > k0 of the construction, we
only ever add extensions to T k

i if they are given by running S to search for them in
T k

i�1. Choose k1 > k large enough that �0 is extended by a pruned clump A with root
� � �0 on T

k1

i�1 whose length is of form 4N > 4j�0j�22iC4 for some N > i C2. Also
assume that for each leaf on A we have some extension � 2 T

k1

i�1 with ˆ
�

i;k1
.x/ #

for each x < 2�2i�4j�j (if this is not true at any stage k1, then we will never extend
�0 in Ti , so it is not on a path through that tree, contrary to assumption). At the first
such stage k1 of the construction, the algorithm S will detect the extensions of �,
and will add a pruned clump to T

k1

i .
The pruned clump B on T

k1

i with root � is given as follows. The strings which
are added to B are chosen from among those of the pruned clump A. For each leafb� of B we will have ˆ

O�
i .x/ # whenever x < 2�2i�4j�j. Furthermore, any two

such leaves will output the same 2�2i�4j�j many bits in this computation; we take
B to have the maximum possible number of leaves extending � and satisfying this
condition. Note that there are 22�2i�4j�j binary strings of length 2�2i�4j�j, and that
the pruned clump A on T

k1

i�1 with root � has at least 2q� many leaves, where q� is the
least integer greater than or equal to .1 �

Pi�1
j D�1 2�2j �4/j�j. From this it follows

by a simple count that B will have at least 2q0
� leaves, where q0

�
is the least integer

greater than or equal to .1 �
Pi

j D�1 2�2j �4/j�j.
If �k.i/ D 1, then there is a pruned A � T k

i with root � � �0, since at this stage
all extensions of �k

i on T k
i�1 are added to T k

i . Notice that the number of leaves on
this pruned clump is at least 2q� , where q� is the least integer greater than or equal
to .1 �

Pi�1
j D�1 2�2j �4/j�j, which is greater than .1 �

Pi
j D�1 2�2j �4/j�j.

This concludes the proof of the inductive claims on the Ti .
Define �i D limk �k

i for each i . Note that we have �i � �j or vice versa for every
i and j , because this is true at each stage of the construction. Note that each tree Ti

contains �j for every j , since �k
j 2 T k

i whenever j � k. But we have j�j j � j for
every j , and so it follows that there is a unique path X through Ti which has each of
the �j as initial segments.

The real X with initial segments given by the �j is the real which we desired to
construct.

Lemma 5.5 With X as constructed, dimP .X/ �
1
4
.

Proof For each j , there is some initial segment � of X with K.�/ > 1
4
j�j � 1 and

j�j � j . Therefore it follows that dimP .X/ D lim supn
K.X�n/

n
�

1
4
.

Now we must show that the conditions given on the trees are sufficient to guarantee
that if Y is a real computed by X , then dimP .Y / < 1.
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6 Combinatorial Estimate

Note that if �k.i/ has limit 1, then for some x, every string � on Ti has ˆ
�
i .x/ ",

and so in particular ˆi cannot compute any reals from X . Therefore to show that for
each i such that ˆX

i computes a real, dimP .ˆX
i / < 1, we need only consider i such

that �k.i/ has limit 0.
Thus, throughout this section, suppose that we are in the case that �k.i/ has

limit 0. In this case, every time we added a pruned clump to Ti with a root � ex-
tending �i , we made sure that for each leaf � of that pruned clump, we also added
some extension b� of � with the property that ˆ

O�
i .x/ # for each x < 2�2i�4j�j,

and furthermore, for any extensions b�1; b�2 of � such that for some x < 2�2i�4j�j,
ˆ

O�1

i .x/ # and ˆ
O�2

i .x/ #, we have ˆ
O�1

i .x/ D ˆ
O�2

i .x/.
The goal of this section is to provide an upper bound on the Kolmogorov com-

plexity of the strings in ˆ
Ti

i which are initial segments of ˆX
i , and thus to show that

this path has effective packing dimension less than 1. We will do so by defining two
prefix-free machines M1 and M2 which will provide descriptions of strings in ˆ

Ti

i ,
using the construction of Ti to provide short descriptions.

The computation presented here is perhaps less elegant than that presented by
Conidis [3], but more general. Its directness is intended to offer some intuition as
to why the complexities of initial segments of paths through ˆ

Ti

i are bounded away
from 1, as well as indicating roughly where the strings of (comparatively) high com-
plexity might be found on those paths.

Throughout what follows, we will regard Ti as a computably enumerable set of
strings, with the enumeration given by

Ti D

[
s�k

T k
i ;

where k is some stage chosen to be sufficiently large that T s
i D bT k;s

i for each s � k.
In order to have a record of what order clumps were added to the tree Ti , number

the pruned clumps on T k
i via a computable numbering N as follows. If A is the

unique pruned clump on Ti with root � � �i , and there is no pruned clump on Ti

with rootb� such that �i � b� � �, then set N.A/ D 1. Supposing that we have defined
the pruned clumps A for which N.A/ D j , define N.B/ D j C1 for a pruned clump
B exactly when the root � of B extends the root �0 of some pruned clump A with
N.A/ D j , but such that for no pruned clump C with rootb� do we have �0 � b� � �.
It should be noted that if A is a pruned clump on Ti and N.A/ D j , and we are
given some leaf � on A such that some pruned clump on Ti has a root extending �, it
is possible to computably identify the unique pruned clump B with N.B/ D j C 1

and whose root extends �. This is because the enumeration of Ti will add all of B at
some stage, and this will be the first time it adds any extension of �.

Definition 6.1 Let Aj be a pruned clump on Ti for 1 � j � n, and for each j

let �j be the root of Aj . Suppose that we have �j � �j C1 for each j < n, and that
N.Aj / D j for each j . Then we call A1; A2; : : : ; Aj a sequence of adjacent pruned
clumps.

The idea is that if we have a string � 2 ˆ
Ti

i which is an extension of �i , then for some
string � 2 Ti , we have ˆ

�
i D � . We will let the sequence A1; A2; : : : ; An of adjacent
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pruned clumps consist of the pruned clumps on Ti whose roots �i have �i � � .
Notice that each pruned clump on Ti with a root of length l has at most 2l leaves,
and so each can be identified with a string of length l by assigning those strings
according to the lexicographical order of the leaves. This assignment is computable,
since all of the leaves on such a pruned clump are added simultaneously at some
stage of the enumeration of Ti .

The first of the two prefix-free machines, M1, will be used to compute those initial
segments � of the real ˆX

i which have the property that

3.1 C 2�2i�4/j�j � j� j � 2�2i�4
j�j;

where � is a root of a pruned clump A on Ti , and the root b� of a pruned clump B

with N.B/ D N.A/C1 extends �; in this case, there are extensions b� ofb� on Ti that
have the property that ˆ

O�
i .x/ D �.x/ for each x < j� j. In this case, the computation

used will find some extension of b� on Ti which gives a halting computation at least
as long as � , and then to note that extensions of b� giving such a computation all give
the same computation, so that � has been computed. In this case, we will have used
approximately 2

3
j� j many bits in the computation.

More specifically, M1, on input of a binary string � , attempts to decompose �

into the form 0n1�1�2 � � � �n0l1� as follows:

Step 1 The machine M1 takes j�1j to be the length of the root of the unique pruned
clump on Ti with N.A/ D 1, and sets A1 D A, unless � is too short to parse in
this way, in which case M1 does not halt. Suppose that k < n, and M1 has com-
puted �1; : : : ; �k , and a sequence of adjacent pruned clumps A1; : : : ; Ak such that
for j � k, Ak has root �k with j�kj D j�kj. Then M1 interprets �k as corresponding
to some r 2 ! with r < 2j�k j as a binary expansion (possibly with some leading
zeros), and searches for a pruned clump AkC1 on Ti which extends the r th leaf of
Ak , and such that N.AkC1/ D k C 1. Note that if such a pruned clump exists, it is
unique. If no such pruned clump exists, or if Ak does not have r leaves, M1 does not
halt.

Otherwise, letting �kC1 be the root of AkC1, M1 will set �kC1 to be the j�kC1j

bits of � which follow those we have labeled �k . If the string � does not have another
j�kC1j many bits, then M1 does not halt.

Step 2 Once M1 has found �1; : : : ; �n and A1; : : : ; An, it then identifies the number l

for which the bits immediately following �n are of the form 0l1, and then, if there are
precisely l bits following those in the string � , interprets those l bits as the expansion
� of a binary number m < 2l (if the number of bits in � is not correct, M1 does not
halt).

At this point, M1 finds the string � 2 Ti which is the leaf on An whose lexico-
graphic position is given by �n (we interpret the position as an n-bit binary number,
possibly with some leading zeros). M1 then searches for a pruned clump AnC1 on Ti

with N.AnC1/ D n C 1 and whose root �nC1 satisfies �nC1 � �. If no such pruned
clump is found, M1 will not halt. If such a pruned clump is found, note that there
is some extension � � �nC1 on Ti such that ˆ�

i .x/ # for each x < 2�2i�4j�nC1j,
and that all strings b� which extend �nC1 have the property that if ˆ

O�
i .x/ # for some

x < 2�2i�4, then ˆ
O�
i .x/ D ˆ�

i .x/. This means that we can uniformly compute an
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unambiguous value ˆ�
i .x/ � 2�2i�4j�nC1j which is equal for all such �. At this

point, M1 checks whether m < 2�2i�4j�nC1j. If not, then M1 will not halt.
Finally, we are ready to give the output of M1. Assuming that all of the compu-

tations given above are carried out correctly, and M1 has not yet been stated not to
halt, we set M1.�/ D ˆ�

i .x/ � 2�2i�4m, with � as in the previous paragraph.
Note that M1 is a prefix-free machine, since any prefix of a string on which M1

halts will at some point not have the correct syntactical form and will be rejected.
In what follows, the next two lemmas will prove vital in providing the estimates

we require.

Lemma 6.2 If A1; : : : ; AnC1 is a sequence of pruned clumps, where Aj ’s root is
�j for each j � n C 1, then for each j � n we have j�j C1j � 4 � 22iC4j�j j.

Proof The construction of Ti ensures that if �j � �j C1 and N.Aj / D j , and
N.Aj C1/ D j C 1, then when we added the clump Aj to Ti , we added some exten-
sion � of the leaf of Aj which �j C1 extends, by applying the algorithm S . Because
of the way this algorithm operates, we must then have j�j C1j � 4 � 22iC4j�j >

4 � 22iC4j�j j.

Lemma 6.3 Let � be a string in ˆ
Ti

i that is an initial segment of the path ˆX
i

through ˆ
Ti

i , and assume that A1; : : : ; AnC1 is a sequence of adjacent pruned
clumps with �j the root of Aj , that some extension � of �nC1 has ˆ

�
i .x/ D �.x/ for

each x < j� j, and that 2�2i�4j�nj < j� j � 2�2i�4j�nC1j. Then we have

K.�/ � n C

nX
j D1

j�j j C 2 log2

�
j� j

�
C C

for some C , and in particular if j� j � 3.1 C 2�2i�4/j�nj, then we have

K.�/ �
2

3
j� j C D

�
log2

�
j� j

��
for some D.

Proof The first result follows immediately. Let � be given by 0n1�1�2 � � � �n0l1�,
where j�j j D j�j j, and �j tells us which leaf of the pruned clump with root �j has
the root of Aj C1 on it, and � is the binary expansion for j� j, of length l . Then we
have M1.�/ D � .

In the case where we have j� j � 3.1 C 2�2i�4/j�nj, we use the fact that the
construction of Ti ensures that j�j C1j � 4 � 22iC4j�j j for each j ; therefore we have

nX
j D1

j�j j �

n�1X
j D1

�2�2i�4

4

�n�j

j�nj C j�nj

�
3

2
j�nj

�
2

3
j� j:

But then we have K.�/ �
2
3
j� j C n C 2 log2 j� j C C , and noting that we have

j� j � j�nj � 4n, it follows that n � log2.j� j/, and the result follows.
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Now I give a second prefix-free machine M2 which will bound the complexity of
other strings on ˆ

Ti

i . This machine will be used to compute initial segments of ˆX
i

in the cases which M1 was unable to provide adequate bounds for.
The machine M2 proceeds as follows. Given a string � , M2 tries to parse � to

be of the form 0n1�1�2 � � � �n0l1�01� in a similar manner to M1. It first mimics
the behavior of M1’s step 1, to check whether the initial segment of the string is of
the form 0n1�1�2 � � � �n, where the �j correspond to a sequence of adjacent pruned
clumps, and to specify which leaf of Aj is to be extended to find the root of Aj C1.
In this way it is either able to compute the root of the pruned clump AnC1, or does
not halt.

After this, M2 checks whether � is of length 2l , and that for each j < l , the 2j th
and (2j C 1)-st bits of � are equal. If not, M2 will not halt. If the property does hold
of �, M2 then deletes every second bit of � to obtain a string of length l ; it interprets
this string as a binary expansion of a number L, and then checks whether L is the
length of the string �. If so, then M2 searches for an extension � of the root �nC1 of
AnC1 such that ˆ�

i .x/ # for every x < 2�2i�4j�nC1j. It then takesb� to be the string
such that jb� j D 2�2i�4j�nC1j and ˆ�

i .x/ D b�.x/ for each x < 2�2i�4jb� j.
Finally, we have M2.�/ D b��, that is, the concatenation of the two strings.

Lemma 6.4 Let � be a string in ˆ
Ti

i that is an initial segment of the path ˆX
i

through ˆ
Ti

i , and assume that A1; : : : ; AnC1 is a sequence of adjacent pruned
clumps with �j the root of Aj , that some extension � of �nC1 has ˆ

�
i .x/ D �.x/ for

each x < j� j, and that 2�2i�4j�nj < j� j � 2�2i�4j�nC1j. Then we have

K.�/ � n C

n�1X
j D1

j�j j C 3 log2

�
j� j

�
C j� j � 2�2i�4

j�nj C C

for some C , and in particular if j� j � 3.1 C 2�2i�4/j�nj, then we have

K.�/ �

�
1 �

2�2i�4

6.1 C 2�2i�4/

�
j� j C D log2

�
j� j

�
for some D.

Proof Once again, the first result follows very easily. Let � be given by
0n1�1�2 � � � �n�10l1��, where �j tells us which leaf of the pruned clump with
root �j has the root of Aj C1 on it, and � is the doubled binary expansion for j�j,
which is of length l . Then we have M2.�/ D � . The 3 log2.j� j/ term comes from
the fact that j�j � log2.�/ and so j0l1�j � 3 log2.�/ C 1, whereas j� j � 2�2i�4j�nj

is the length of �.
Suppose that we have j� j � 3.1 C 2�2i�4/j�nj. Note that we have

n�1X
j D1

j�j j �

n�1X
j D1

�2�2i�4

4

�n�j

j�nj

�
2�2i�4

2
j�nj:
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Now we once again bound all of the smaller terms by a single term which is logarith-
mic in size, and apply our assumption on j� j:

K.�/ �
2�2i�4

2
j�nj C j� j � 2�2i�4

j�nj C D log2

�
j� j

�
D j� j �

2�2i�4

2
j�nj C D log2.�/

� j� j �
2�2i�4

6.1 C 2�2i�4/
j� j C D log2

�
j� j

�
D

�
1 �

2�2i�4

6.1 C 2�2i�4/

�
j� j C D log2

�
j� j

�
;

which provides the bound we sought.

Now for each string � which lies on the path ˆX
i through ˆ

Ti

i , we have a sequence
of pruned clumps A1; : : : ; AnC1 with roots �j such that some extension � of �nC1

has ˆ
�
i .x/ D �.x/ for every x, and that if � is sufficiently long, we may choose the

sequence so that 2�2i�4j�nj < j� j � 2�2i�4j�nC1j, simply by choosing a sequence
of adjacent pruned clumps which is of suitable length. This is sufficient for our needs
regarding the reals computed by X .

Lemma 6.5 For some D, all sufficiently long initial segments � of ˆX
i have the

property that

K.�/ �

�
1 �

2�2i�4

6.1 C 2�2i�4/

�
j� j C D log2

�
j� j

�
:

We have now completed all of the work which is required to prove the main theorem
(Theorem 1.2).

Proof of Theorem 1.2 If X is the real defined by taking the �i as initial segments,
then X �T ;0 by construction. In addition, we have dimP .X/ �

1
4
, as seen in

Lemma 5.5. Furthermore, for any i such that ˆX
i D Y is a total reduction, we have

dimP .Y / < 1.

Finally, we consider a result on extraction of Kolmogorov complexity.

Theorem 6.6 ([7, Theorem 5.2], as stated by [2, Theorem 2.5]) For any X 2 2!

with dimP .X/ > 0 and any � > 0, there is some Z 2 2! such that Z �T X and
dimP .Z/ � 1 � �.

This result, applied directly to the Turing degree of X , yields Corollary 1.3.

7 Future Directions

Many results which prove the existence of real numbers possessing properties ex-
pressed in terms of Kolmogorov complexity, effective packing dimension, and ef-
fective Hausdorff dimension are able to be effectivized to show that such reals exist
below any array noncomputable degree (see, e.g., papers of Downey and Greenberg
[4], Downey and Ng [6], and Kummer [9]). This common trend suggests that the
obvious analogue may hold in the current case.
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Question 7.1 Given an array noncomputable degree a, is there a real X �T a
which has nonzero effective packing dimension, but which cannot compute any real
of effective packing dimension 1?

Given the suggestive pattern noted above, it seems reasonable to suppose that the
answer is very likely “yes.” Indeed, the author feels that the proof is likely to proceed
somewhat as follows. Noting that the only oracle questions which we are asking are
about either the prefix-free Kolmogorov complexity of a string, or asking whether
some string forces divergence of an oracle machine, rewrite the list of requirements
for the construction so that the oracle questions asked of ;0 are given as a uniformly
computable list of questions which are wtt -computable by ;0. But we know that
any array noncomputable real will answer infinitely many of these oracle questions
correctly, and so such a real should suffice to find strings of high complexity if given
a sequence of pruned clumps, and likewise to find strings which force divergence of
computations.

It should be noted that if a real X has nonzero effective packing dimension, but
cannot compute any real of effective packing dimension 1, then X is necessarily itself
array computable, as an immediate corollary of a result of Downey and Greenberg
[4, Theorem 1.5].

Theorem 7.2 ([4]) Every array noncomputable degree a computes a set A with
effective packing dimension 1.

From this it is clear that the array noncomputable degrees cannot be the set of degrees
which compute a real X as above. However using the work of [9, Theorem 2.2] Kum-
mer and the above result, it follows that among the c.e. degrees, array computability
may be characterized as follows.

Theorem 7.3 ([5, Theorem 1.5]) A c.e. degree is array noncomputable if and only
if it computes a real Y with dimP .Y / > 0.

This implies that no degree whose members are computed by an array computable
c.e. degree can have nonzero effective packing dimension. From this we see that the
only c.e. degrees below which it is possible to carry out a construction of a degree
with the properties set out in this paper are the array noncomputable ones. As sug-
gested above, it seems likely that this is precisely the set of c.e. degrees below which
such a construction can occur. This conjecture will be explored in a future paper.
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