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Reverse Mathematics
and Ramsey Properties of Partial Orderings

Jared Corduan and Marcia Groszek

Abstract A partial ordering P is n-Ramsey if, for every coloring of n-element
chains from P in finitely many colors, P has a homogeneous subordering iso-
morphic to P. In their paper on Ramsey properties of the complete binary tree,
Chubb, Hirst, and McNicholl ask about Ramsey properties of other partial order-
ings. They also ask whether there is some Ramsey property for pairs equivalent
to ACA0 over RCA0.

A characterization theorem for finite-level partial orderings with Ramsey
properties has been proven by the second author. We show, over RCA0, that one
direction of the equivalence given by this theorem is equivalent to ACA0 (for
n � 3), and the other is provable in ATR0.

We answer Chubb, Hirst, and McNicholl’s second question by showing that
there is a primitive recursive partial ordering P such that, over RCA0, “P is
2-Ramsey” is equivalent to ACA0.

1 Introduction

A fruitful branch of inquiry in reverse mathematics has been combinatorics, in par-
ticular, Ramsey’s theorem [17] and variants thereof.

The infinitary Ramsey theorem for colorings of n-tuples, for standard n � 3, is
equivalent to ACA0 over RCA0 (Simpson [19]). For colorings of 1-tuples, Ramsey’s
theorem becomes the infinite pigeonhole principle, which was shown by Hirst [11] to
be equivalent to B†0

2 over RCA0. Ramsey’s theorem for pairs is a more complicated
case. It is strictly weaker than ACA0 (Seetpun, see [18] and [12]), and not equivalent
to any of the standard second-order systems. Some recent results in the ongoing
investigation of the strength of Ramsey’s theorem for pairs and of related, generally
weaker, combinatorial results, can be found in Cholak, Jockusch, and Slaman [1],
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Chong, Slaman, and Yang [2], Dzhafarov [6], Hirschfeldt et al. [9], Hirschfeldt and
Shore [10], and Kach, Lerman, and Solomon [13].

Structural Ramsey theory is centered around the following variant: Let F be some
finite structure, color substructures of A isomorphic to F in finitely many colors,
and look for a monochromatic substructure B of a given type; to say that A has a
Ramsey property is to say that, for any coloring [in k colors], such a B exists. If A
is countably infinite, we often look for B Ñ A. Nešetřil gives some overview of this
program (see [15], [16]). A classic, but still not completely understood, case is the
study of edge colorings of graphs.

An example of a structural Ramsey theorem is the following: The complete bi-
nary tree T, viewed as a partial ordering, is n-Ramsey for every natural number n.
That is, if the n-element chains of T are colored in finitely many colors, then there is
a monochromatic subset of T isomorphic to T as a partial ordering. This is a conse-
quence of a theorem of Milliken [14]. Chubb, Hirst, and McNicholl [3] investigated
the proof-theoretic strength of “T is n-Ramsey” in the context of reverse mathemat-
ics. In that paper, they asked about Ramsey properties of other partial orderings.

A first step toward an answer was to consider other trees. A nontrivial countable
rooted tree is n-Ramsey if and only if it contains a copy of the complete binary tree.
Corduan, Groszek, and Mileti [5] investigated the proof-theoretic strength of this
statement.

It seemed, however, that an ideal answer to Chubb, Hirst, and McNicholl’s ques-
tion would be first to prove a general theorem about n-Ramsey partial orderings, and
then to determine the proof-theoretic strength of that theorem. The second author has
characterized the finite-level n-Ramsey partial orderings for n � 3 (see [8]). Here
we investigate the proof-theoretic strength of this characterization theorem.

Before giving a more detailed outline, we give one additional definition. Partial
orderings P and Q are biembeddable (P � Q) if each contains a copy of the other.
In this case, if P is n-Ramsey, then so is Q. (This is because a coloring on Q induces
a coloring on an embedded copy of P, which must contain a monochromatic copy of
P, which then contains a monochromatic copy of Q.) Hence n-Ramseyness can be
viewed as a property of biembeddability classes.

An easy argument in RCA0 shows that it is sufficient to consider well-founded
partial orderings of height !. Such a partial ordering is called finite-level if there are
finitely many elements of any given height, and bounded-level if there is a function
g such that the elements of height n are all less than g.n/. Given ACA0 these notions
are the same.

For the moment we will consider partial orderings with least element. This is
because a 1-Ramsey bounded-level partial ordering is biembeddable with a partial
ordering with least element, and for partial orderings with least element, n-Ramsey
implies m-Ramsey for all m < n.

The characterization theorem states that, for n � 3, a bounded-level partial order-
ing P with least element is n-Ramsey if and only if

1. P is weakly proto-Ramsey; that is, P has certain structural properties detailed
in Section 2;

2. the collection G .P/ of finite bipartite graphs naturally associated with P is
edge-Ramsey and has the joint embedding property (defined in Section 2);
and
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3. P is biembeddable with a densely self-embeddable weakly proto-Ramsey par-
tial ordering (P is densely self-embeddable if there is a copy of P above every
point in P) (see [8]).

In Section 2, we show that RCA0 suffices to prove that if P is a 3-Ramsey bounded-
level partial ordering with least element, then P is weakly proto-Ramsey and G .P/
satisfies the joint embedding property and is edge-Ramsey. These proofs use some
tricks with colorings, and an analysis of how colorings and embeddings of P corre-
spond to colorings and embeddings of graphs in G .P/.

In Section 3, we show ATR0 proves that every 2-Ramsey weakly proto-Ramsey
partial ordering is biembeddable with a densely self-embeddable, weakly proto-
Ramsey partial ordering. This proof is similar to the proof in ATR0 that every bi-
nary tree with uncountably many branches has a perfect subtree (see [19]); the ana-
logue of a complete Cantor–Bendixson decomposition provides a counterexample to
2-Ramseyness, and the analogue of a perfect subtree is the desired self-embeddable
partial ordering.

In Section 4, we show that, for standard n � 3, ACA0 is equivalent over RCA0

to “If P is weakly proto-Ramsey and densely self-embeddable and G .P/ is edge-
Ramsey and has the joint embedding property, then P is n-Ramsey, which we denote
Rn.P/.” This is a theorem from the first author’s thesis [4]. The general idea of the
proof is similar to that for Ramsey’s theorem [19] and n-Ramseyness of the complete
binary tree [3].

As noted above, one of the most interesting results about Ramsey’s theorem is that
whileRn.!/ (the infinitary Ramsey’s theorem for colorings of n-tuples) is equivalent
to ACA0 for standard n � 3, R2.!/ is strictly weaker than ACA0. Whether R2.T/ is
weaker than ACA0 is unknown. (R3.T/ is equivalent to R3.!/, and hence to ACA0

[3], but R1.T/ is strictly stronger than R1.!/ [5].) Chubb, Hirst, and McNicholl [3]
asked whether there is a Ramsey property for pairs on some class of partial order-
ings equivalent to ACA0. Corduan, Groszek, and Mileti [5] showed that there is an
arithmetically definable class of trees T such that “every tree in T is 2-Ramsey” is
equivalent to ACA0, but this is for various reasons not a completely satisfying answer.
In Section 5 we give a better answer by showing that there is a primitive recursive P
such that “P is 2-Ramsey” is equivalent to ACA0.

In Section 6, we mention some open questions.

2 Structural Properties from Ramsey Properties in RCA0

In this section, we show that RCA0 suffices to prove that if P is bounded-level and
n-Ramsey for n D 1; 2, and 3, then P must be equivalent to a weakly proto-Ramsey
partial ordering. That is, P has certain structural properties, which will be specified
in this section.

Then we show (again in RCA0) that a weakly proto-Ramsey partial ordering P de-
termines a collection G .P/ of finite bipartite graphs and that Ramsey properties of P
imply Ramsey properties of G .P/: if P is 2-Ramsey, then G .P/must be edge-Ramsey
and have the joint embedding property.

2.1 Weak proto-Ramseyness

Definition 2.1 For a partial ordering P and natural numbers n and k, we say
that P has the n; k-Ramsey property, Rn

k
.P/, if for every coloring of n-element
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chains from P in k colors, there is a monochromatic subordering of P isomorphic
to P.

If Rn
k
.P/ for all k, then P is n-Ramsey, Rn.P/.

Definition 2.2 If P D hP;�Pi, then P� D hP;�Pi.

From the known proof that the rationals do not have the 2; 2-Ramsey property, we
can derive the following fact (see [5]).

Proposition 2.3 (RCA0) If P is a countably infinite partial ordering and R2.P/
holds, then P is either !-linearizable or !�-linearizable.

Proof Assume P � !. Color 2-element chains from P according to whether or
not the <P ordering agrees with the usual ordering < on !; for p <P q,

c.p; q/ D

´
0 p < qI

1 p > q:

Let Q be a monochromatic subordering isomorphic to P. Suppose that Q is
monochromatic in color 0; that is, for p <Q q we have p < q. Then the enumeration
of Q in its natural ordering shows that Q is !-linearizable. If Q is monochromatic
in color 1, then Q is !�-linearizable. Since Q is isomorphic to P, this shows that P
is either !-linearizable or !�-linearizable.

If P is !�-linearizable, then P� is !-linearizable. As P� is n-Ramsey if and only if P
is, we will restrict our attention to !-linearizable partial orderings. We will further
assume that P � ! and that the natural ordering � on ! is a linearization of �P; that
is, p <P q H) p < q.

Definition 2.4 If P is an !-linearizable partial ordering, and p 2 P, then
lev.p/ D n if the height of p in P is n,
Pn D ¹p 2 P j lev.p/ D nº,
P<n D

S
m<n Pm,

Predm.p/ D ¹q 2 Pm j q �P pº.
If p belongs to more than one relevant partial ordering and there is some possibility
of ambiguity, then for Predn.p/ we may write PredP

n.p/.

Definition 2.5 P is finite-level if each Pn is finite, and bounded-level if there is a
bounding function g such that Pn � ¹i j i < g.n/º.

Given ACA0, all finite-level partial orderings are bounded-level. In RCA0 it makes
sense to restrict our attention to bounded-level partial orderings. In particular, if P is
bounded-level and infinite, then P has infinite height; if ' W P ! P is an embedding,
then the range of ' is a set.

Proposition 2.6 (RCA0) If P is an infinite, bounded-level partial ordering with
least element and k < n, then Rn.P/ H) Rk.P/.

Proof Assume Rn.P/, and let c be a coloring of k-element chains of P. First
color n-element chains according to the color of their final k elements. Let Q be a
monochromatic subordering isomorphic to P. Now color n-element chains according
to whether their least element is above level n � k of Q. A subordering monochro-
matic for this coloring is also monochromatic for c.
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The assumption that P has a least element and is infinite ensures that a subor-
dering monochromatic for the second embedding is entirely contained above level
n � k, as the minimal element is the least element of some n-element chain. For
example, a disconnected partial ordering consisting of a copy of ! plus a discrete set
of incomparable minimal elements is 2-Ramsey but not 1-Ramsey, simply because
all 2-element chains are contained in the copy of !: assuming a minimal element
(and infinite height) rules out similar trivial counterexamples.

Proposition 2.7 (RCA0) Suppose that P is an infinite, bounded-level partial order-
ing, andR1.P/ holds. Then P is biembeddable with a bounded-level partial ordering
Q with a least element and an infinite chain.

Proof By assumption, P has finitely many minimal points. Color the points of P
according to the least (in the sense of the ordering on !) minimal point below them.
ByR1.P/ there are a minimal point p0 and an embedding ' of P into ¹p j p �P p0º.
Let Q D range.'/ [ ¹p0º. Then P � Q.

To show that Q has an infinite chain, note that Q � P, and so R1.Q/ holds.
By coloring the least element p0 of Q red and all other elements blue, we get from
R1.Q/ an embedding ' W Q ! Q such that p0 <P '.p0/. Then the downward
closure of ¹'.p0/; '.'.p0//; : : : ; '

n.p0/; : : : º is an infinite chain in Q. (This chain
is a set in the model, since p is on the chain if, for some n, p �P '

n.p0/, and p is
not on the chain if, for some n, lev.'n.p0// > lev.p/ and p —P '

n.p0/.)

In light of this proposition, we can restrict our attention to partial orderings that have
a least element. Without loss of generality, this least element is 0.

So far we have justified restricting our attention to !-linearizable partial order-
ings with least element. Now, assuming that P is bounded-level and 3-Ramsey, we
develop some deeper structural properties.

Definition 2.8 Points p and q in P are compatible if they have a common upper
bound r (that is, p �P r and q �P r), and incompatible otherwise. If p and q are
incompatible, then we write p ? q.

Lemma 2.9 (RCA0) Suppose that P is a bounded-level partial ordering with least
element and R3.P/ holds. Then, for any p in P, there is an n 2 ! such that if
p0 <P p1 <P � � � <P pn is any increasing chain, either p �P pn or p ? pn.

Proof Loosely, moving up a chain p0 <P p1 <P p2 � � � adds new elements in the
cone below pi at each step; we use 3-Ramseyness to show that we may assume the
least new element added below piC1 is greater (in the usual ordering on !) than the
least new element added below pi . Then (viewing p as both an element of ! and an
element of P) the least new element added below ppC2 must be larger than p, and
so p is either below or incomparable to pn for n � p C 2.

In more detail, color 3-chains p <P q <P r as follows: For q <P r , let i.q; r/ be
the least i (in the sense of the usual ordering < on !) such that i —P q but i �P r .
Color the chain hp; q; ri color 0 if i.p; q/ < i.q; r/ and color 1 if i.p; q/ > i.q; r/.

Let ' be an isomorphism of P onto a monochromatic isomorphic subordering Q.
As Q must have an infinite increasing chain q0 <P q1 <P � � � , Q must be monochro-
matic in color 0; we must have i.qk ; qkC1/ < i.qkC1; qkC2/ rather than the reverse.

Now let q D '.p/ and n D q C 2. Suppose toward a contradiction that p —P pn

and p 6? pn for some increasing chain p0 <P p1 <P � � � <P pn. Let qk D '.pk/
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for k � n. Then q —P qn and q 6? qn in Q. Because the function i increases along
chains in Q, i.qn�1; qn/ � n�1 > q. Since q 6? qn, let r be a common upper bound
in Q. Then as q —P qn but q �P r , we have i.qn; r/ � q < i.qn�1; qn/. This means
the chain hqn�1; qn; ri has color 1, a contradiction.

Proposition 2.10 (RCA0) Suppose that P is a bounded-level partial ordering with
least element, and suppose that R3.P/ (hence also R2.P/) holds. Then the following
forbidden configuration does not occur in P: points p and q that are incomparable
but compatible with common successor s, and a point r that is below p but not
below q.

s

p

q

r

Proof By Lemma 2.9, for every p in P there is a level h.p/ such that any point on
level h.p/ or above must be either above or incompatible with p; furthermore, such
a function h can be computed from P, a bounding function for P, and the embedding
' in the proof of Lemma 2.9. Because P is bounded-level, we can define a function
f as follows: f .0/ D 0; given f .n/, choose f .nC 1/ > f .n/ so that, for any point
p on or below level f .n/, we have h.p/ < f .nC 1/. That is, any point on or below
level f .n/ is either below or incompatible with any point on or above level f .nC1/.

Color chains p <P q as follows: Let n be least such that p is below level f .n/.
Then the chain hp; qi has color 0 if q is above level f .nC 2/, and color 1 otherwise.

Let Q be an isomorphic monochromatic subordering. Because Q has infinite
height, it must be monochromatic in color 0. Suppose toward a contradiction that
p; q; s; r realize the forbidden configuration in Q, and let n be least such that the level
of r is below f .n/. By definition of f , as r and q are incomparable but compatible,
the level of q is below f .nC1/, and as p and q are incomparable but compatible, the
level of p is below level f .nC 2/. But this means that the chain hr; pi has color 1,
a contradiction.

This forbidden configuration, when augmented by a bottom point, becomes a copy
of the pentagon lattice N5.

Definition 2.11 A partial ordering with least element in which this forbidden
configuration does not occur is called N5-omitting.

Definition 2.12 The partial ordering P is densely self-embeddable if, for every
p 2 P, there is an embedding ' of P into ¹q j p �P qº.

Definition 2.13 A partial ordering P is proto-Ramsey if P is !-linearizable,
N5-omitting, and densely self-embeddable, and has a least element.

A partial orderingP is weakly proto-Ramsey ifP is!-linearizable andN5-omitting
and has a least element (but is not necessarily densely self-embeddable).
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Theorem 2.14 (RCA0) Let n be any standard number with n � 3.
If a bounded-level partial ordering with least element is n-Ramsey, then it is biem-

beddable with a weakly proto-Ramsey, bounded-level partial ordering.

Proof This follows from Propositions 2.6, 2.7, and 2.10.

Noting some structural properties of weakly proto-Ramsey partial orderings will be
useful.

Proposition 2.15 (RCA0) Suppose that P is a weakly proto-Ramsey partial order-
ing. Since the forbidden configuration consists exactly of incomparable but com-
patible points p and q such that p has a predecessor not shared by q, any two
incomparable but compatible points of P must have exactly the same predecessors.

It follows that if p and q are incomparable but compatible, then p and q are on
the same level. Also, p and q have a common successor on the next level; otherwise,
they have compatible but different successors on the next level, which are compatible
but incomparable points with different predecessors, realizing the forbidden config-
uration.

It follows that predecessors of p on different levels, being compatible and not on
the same level, must be comparable. Thus the predecessors of p are in a sense almost
linearly ordered: if q <P p has level n, and r <P p has level m < n, then r <P q.

This means that if p is above level n, and p �P q, then p and q have the same
predecessors on level n.

It also follows that if p is above level n, then Predn.p/ D Predn.q/ for some
q 2 PnC1; in fact, this holds for any q <P in PnC1.

Also, the ordering <P is the transitive closure of ¹hp; qi j p <P q & lev.q/ D

lev.p/C 1º: if r <P p is on level n, p is above level nC 1, and q <P p is on level
nC 1, then since Predn.p/ D Predn.q/, we have r <P q <P p; inductively, we can
build a chain from r to p moving up one level at each step.

In general, the structure and complexity of a weakly proto-Ramsey partial ordering
are completely determined by the ordering between successive levels. The general
picture of a weakly proto-Ramsey partial ordering is as follows: Put a single point
on level 0. Once level n is defined, place points on level n C 1; for each p on level
nC 1, choose as predecessors of p finitely many (but not zero) points on level n, all
of which must have the same predecessors on level n� 1. Having defined each level
and the connections between adjacent levels, take the transitive closure.

2.2 Bipartite graphs associated with P Suppose that P is weakly proto-Ramsey. For
any n, we create a bipartite graph by taking level n of P and level n C 1 of P as
the two sets of vertices and putting an edge between �P-comparable elements. We
then take a quotient, by identifying elements on level n C 1 if they have the same
predecessors on level n. The connected components of this graph are in a sense
the basic building blocks of P; in fact, for proto-Ramsey bounded-level P (with the
exception of some trivial, or at least uncomplicated, cases), these building blocks
determine P up to biembeddability. Furthermore, Ramsey properties of P correspond
to Ramsey properties of the associated collection of graphs. In this section we make
this statement precise.

Definition 2.16 A bipartite graphG D hM.G/; S.G/;E.G/i consists of disjoint
sets of vertices M.G/ and S.G/ and a set of edges E.G/ � M.G/ � S.G/.
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Our bipartite graphs have distinguished parts, so an embedding of G into H must
send M.G/ to M.H/ and S.G/ to S.H/.

Definition 2.17 For bipartite graphs G and H , if H contains a copy of G we
write G ,! H .

If G and H are collections of bipartite graphs, and for every G 2 G there is
H 2 H such that G ,! H , then we write G ,! H .

If G ,! H and H ,! G , then G � H .

Definition 2.18 If G and H are bipartite graphs and k 2 !, then

G ! .H/ek

if, for every coloring of the edges of G in k colors, G contains a monochromatic
copy of H .

Definition 2.19 A collection of bipartite graphs G is edge-Ramsey, if for every
H 2 G and every k 2 !, there is G 2 G such that G ! .H/e

k
.

A collection of bipartite graphs G has the joint embedding property if, for every
G;H 2 G , there is some K 2 G such that G ,! K and H ,! K.

Edge-Ramseyness of collections of finite graphs has been much studied in its own
right.

Throughout the remainder of this section, P will denote a bounded-level weakly
proto-Ramsey partial ordering. From P we define a collection G .P/ of bipartite
graphs. We will show that if P is 2-Ramsey, then G .P/ is edge-Ramsey and has the
joint embedding property.

Definition 2.20 Define � to be the transitive closure of the compatibility relation
on Pn (where p and q are compatible if they have a common successor); denote the
equivalence class of p by Œp�.

Because P is N5-omitting, equivalent points must have the same predecessors. By
definition, each set s D Predn.p/ is contained within a single �-class.

Definition 2.21 For each �-class a D Œp� for p 2 Pn, define a connected bipar-
tite graph Ga. Set M.Ga/ D a and S.Ga/ D ¹s � a j .9q/ .Predn.q/ D s/º. The
edge relation of Ga is membership.

If p belongs to more than one relevant partial ordering and there is some possi-
bility of ambiguity, then for GŒp� we may write GP

Œp�
.

Note that the function taking p toGŒp� can be computed from P and a bounding func-
tion for P. This is because each Predn.q/ is equal to Predn.r/ for some r 2 PnC1.

Definition 2.22 G .P/ D ¹GŒp� j p 2 Pº.
We say that P is edge-Ramsey, or j.e.p., just in case G .P/ is.

Now we show that if P is 2-Ramsey, then G .P/ is edge-Ramsey and has the joint
embedding property. We do this by associating colorings of the edges of the graphs
GŒp� with colorings of pairs in P, and using a monochromatic embedded copy of P
to produce monochromatic subgraphs.

Definition 2.23 If G is a collection of bipartite graphs, an edge coloring of G in
k colors is a collection ¹cG W E.G/ ! ¹0; 1; : : : ; k � 1º j G 2 G º.
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In the above definition, G must be understood as a collection of individual graphs
rather than isomorphism types. Isomorphic elements of G may be colored differently.

Definition 2.24 If c is an edge coloring of G .P/, then c induces a coloring c of
2-element chains in P by

c.p1; p2/ D cGŒp1�

�
p1;Predlev.p1/.p2/

�
:

Such a coloring is called graph-induced.
If c is an edge coloring of G .P/ such that, for hp; si 2 E.Ga/, the color cGa

.p; s/

depends only on p, and we denote that color by cGa
.p/, then c induces a coloring c

of 1-tuples in P by c.p/ D cGŒp�
.p/.

Remark 2.25 Any coloring c of 2-element chains in P, such that c.p; q/ depends
only on p and Predlev.p/.q/, is graph-induced, and c determines the corresponding
edge coloring c of G .P/ by cGa

.p; s/ D c.p; q/, where Predlev.p/.q/ D s; by as-
sumption, this depends only on s and not on the choice of q.

Proposition 2.26 (RCA0) An embedding of bounded-level, weakly proto-Ramsey
partial orderings ' W Q ! P induces a (not necessarily unique) embedding of
GŒp� into GŒ'.p/�. If the range of ' is monochromatic in color i for some coloring
c induced by an edge coloring c of G .P/, then the image of GŒp� is a subgraph
of GŒ'.p/� monochromatic in color i for cGŒ'.p/�

. Conversely, if, for some i , each
image of each GŒp� is monochromatic for cGŒ'.p/�

in color i , then the range of ' is
monochromatic for c in color i .

Proof Define k W GŒp� ! GŒ'.p/� as follows: For q 2 M.GŒp�/ D Œp�, let
k.q/ D '.q/. For s 2 S.GŒp�/, choose r such that s D Predlev.p/.r/, and let
k.s/ D Predlev.'.p//.'.r//. This function k is an embedding: q is connected to s iff
q 2 s D Predlev.p/.r/ iff q <Q r iff '.q/ <P '.r/ iff '.q/ 2 Predlev.'.p//.'.r//, iff
k.q/ 2 k.s/.

(This embedding is not necessarily unique; if also s D Predlev.p/.r
0/, and r ? r 0,

we can have Predlev.'.p//.'.r// ¤ Predlev.'.p//.'.r
0//, as long as their difference

lies outside the range of '.)
The edge in GŒ'.p/� between k.p/ D '.p/ and k.s/ D Predlev.'.p//.'.r// is

assigned color cGŒ'.p/�
.'.p/;Predlev.'.p//.'.r/// D c.'.p/; '.r//, so if the range

of ' is monochromatic (for c) in color i , so is the range of k (for cGŒ'.p/�
). Simi-

larly, if the range of k is monochromatic in color i for all k, then the range of ' is
monochromatic in color i .

Theorem 2.27 (RCA0) Let P be a weakly proto-Ramsey partial ordering. If P is
2-Ramsey, then G .P/ is edge-Ramsey and has the joint embedding property.

Proof If G .P/ fails to have the joint embedding property, choose GŒp� and GŒq�

such that no element of G .P/ contains copies of both GŒp� and GŒq�. Edge color
G .P/ by coloring all edges of G color 0 if GŒp� ,! G, and color 1 otherwise, which
induces a coloring c of pairs in P. Any embedding ' of P into itself must send GŒp�

to a graph with color 0 edges, and GŒq� to a graph with color 1 edges, and so the
range of ' cannot be monochromatic. Hence R2.P/ fails.

If G .P/ fails to be edge-Ramsey, choose a counterexample GŒp� and k such that,
for each G 2 G .P/, there is a coloring cG of the edges of G in k colors such that G
contains no monochromatic copy of GŒp�. The collection of cG is an edge coloring
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of G .P/, which induces a coloring c of pairs in P. Any embedding ' of P into itself
must send GŒp� to a graph that is not monochromatic, and so the range of ' cannot
be monochromatic. Hence R2.P/ fails.

Definition 2.28 Points p and q in P are strongly incompatible, written p ?st q,
if, for all p0 � p and q0 � q, we have p0 ? q0.
Remark 2.29 Equivalently, if lev.p/ � lev.q/ and r �P q has the same level as
p, then p ?st q if and only if p 6� r .

If p ? q, p <P p
0 and q <P q

0, then p0 ?st q
0.

Proposition 2.30 (RCA0) If P and Q are bounded-level weakly proto-Ramsey par-
tial orderings, then there are incompatible points above every point in P, and every
G 2 G .Q/ is realized above every point p 2 P (i.e., there is q �P p such that
G ,! GŒq�), then Q ,! P.

Furthermore, Q can be embedded above any point in P.
The embedding technique in the proof of this proposition will be used again in the
proof of Theorem 4.2. The proposition itself is used in the proof of Theorem 3.1.

Defining an embedding ' by recursion on levels is fairly straightforward in the
case that Q and P are trees; this is the case in which G .Q/ D G .P/ contains only
the graph consisting of a single edge. If level n of Q is embedded in P in any way
at all, then we can extend the embedding to level n C 1 by sending the (necessarily
incompatible) immediate successors of � to incompatible successors of '.�/, which
by assumption on P must have infinitely many incompatible successors. That is,
extending the embedding from one level to the next is merely a local problem.

In the general case, if we have embedded points p, q, and r of Qn, and now wish
to embed a point s that is above p and q but not r , then our embedding on level n
must be such that there is some point in P above '.p/ and '.q/ but not '.r/; that
is, when embedding level n we must look ahead. However, because the structure
of the partial ordering is determined by the ordering between adjacent levels, this is
still a local problem; it merely requires looking ahead one level. We do this by using
the graphs in G .Q/, whose edges capture the ordering between levels. We know by
Proposition 2.26 that if ' is an embedding, then it must induce an embedding ofGŒp�

into GŒ'.p/�, and we will see that choosing such an embedding as we define ' on Qn

suffices to guarantee that we can extend ' to the next level.
Definition 2.31 An embedding ' from Q�n into P is extendible if it satisfies the
following properties:

(1) If p and q are in Qn and p 6� q, then '.p/ ?st '.q/.
(2) If p and q are in Qn and p � q, then '.p/ � '.q/.
(3) For each equivalence class a D Œp� � Qn, there is an embedding ja W

G
Q
a ! GP

b
such that, for q 2 a, ja.q/ D '.q/. This implies b D Œ'.p/�.

(It also implies condition (2), but, in practice, we will first guarantee condi-
tion (2) and then act to satisfy condition (3).)

The key property of P, that every GQ
a is realized above every point in P, guarantees

that an extendible embedding of Q�n can be extended to an extendible embedding
of Q�nC1, which allows us to recursively embed Q into P.

Proof of Proposition 2.30 Choose any p 2 P. We will recursively define an em-
bedding ' W Q ! P with range above p as the limit of extendible embeddings of Qn.
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For the least element 0 2 Q, the graph GŒ0� consists of a single edge .0; ¹0º/. By
assumption, we can choose q �P p and an embedding j W GŒ0� ! GŒq�. Choose
'.0/ D j.0/, and set jŒ0� D j .

Now, suppose we have defined an embedding ' of Q�n that is extendible on
Q�m for all m � n. We must show that we can extend j to level n C 1 preserving
extendibility.

As every point of P has incompatible extensions, we can find above any point in
P infinitely many incompatible extensions, and by further extending each, infinitely
many strongly incompatible extensions. We will use this to find strongly incompati-
ble points above which to embed the graphs Gd for equivalence classes d � QnC1.

For any equivalence class d � QnC1, suppose p 2 d , s D Predn.p/, q 2 s,
a D Œq�. (By the weakly proto-Ramsey structure of P, as in Proposition 2.15, d
uniquely determines s and a.) We have ja W Ga ! Gb where b � Pn, and ' maps a
into b. Let ja.s/ D Predn.r/, and choose pd >P r . Since r <P pd and n < lev.r/,
we have Predn.pd / D Predn.r/ D ja.s/.

By further extending the pd if necessary, guarantee that if d ¤ d , then
pd ?st pd .

If we define ' on QnC1 to embed each d into an equivalence class above pd ,
then (1) and (2) of the definition of extendible embedding will be satisfied. We will
show that ' is still an embedding. Note that, for p 2 d , since pd �P '.p/, we have
Predn.'.p// D Predn.pd / D ja.s/.

Suppose as above that p 2 PnC1, Œp� D d , Predn.p/ D s 2 Ga, and a D Œq�.
First, consider q 2 Pn.

If q <P p, then q 2 a and q 2 s. Therefore, since ja is a graph embedding,
'.q/ D ja.q/ 2 ja.s/ D Predn.'.p//, so '.q/ <P '.p/.

If q 2 a but q –P p, then q … s; so, in the same way, '.q/ –P '.p/.
If q … a (in which case q –Q p), then q 6� q, so '.q/ ?st '.q/. We have seen

that '.q/ <P '.p/, so we must have that '.q/ –P '.p/.
Now, suppose q 2 Qm for m < n, and choose r 2 Qm with r <Q q, so

'.r/ <P '.q/ <P '.p/. If r 6� q (in which case q –Q p), then '.r/ ?st '.q/, and
so '.q/ –P '.p/.

If r � q, then '.r/ and '.q/ are on the same level of P below the level of '.q/;
so by the structure of P we have '.q/ <P '.p/ iff '.q/ <P '.q/; because ' is an
embedding on Q�n we have '.q/ <P '.q/ iff q <P q; and by the structure of Q we
have q <P q iff q <P p.

In any case, q <Q p iff '.q/ <P '.p/. It remains only to show that we can find a
suitable graph embedding jd into a graph above pd .

Because every graphGQ
d

is realized above every point of P, there is some p � pd

with an embedding jd W Gd ! GŒp�. Choose such p and jd , and for q 2 d , define
'.q/ D jd .q/. Do this for every equivalence class d � QnC1; this extends ' to be
an extendible embedding of QnC1 and completes the proof.

Notice that the embeddings ja used in this construction are exactly the embeddings
of Ga induced by ' as in Proposition 2.26. This is because if Predn.p/ D s � a, we
always choose '.p/ so that Predn.'.p// D ja.s/.

Corollary 2.32 If P and Q are bounded-level proto-Ramsey partial orderings and
have incompatible points, and G .P/ � G .Q/, then P � Q.
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Proof Since P is proto-Ramsey and has incompatible points, there are incompat-
ible points above every p 2 P: Suppose that p0 and p1 are incompatible. Because
P is densely self-embeddable, there are q0 >P p0 and q1 >P p1 in P, and (by
incompatibility of p0 and p1) no other relations hold. Now, because P is densely
self-embeddable, above every p 2 P, there are q0 >P p0 and q1 >P p1 such that no
other relations hold. Since q0 and q1 are incomparable points with different prede-
cessors, and P is N5-omitting, q0 and q1 are incompatible.

Now Proposition 2.30 shows that Q ,! P, and the same argument shows
P ,! Q.

The assumption of incompatible points is necessary in both Proposition 2.30 and
Corollary 2.32. (We can drop this assumption in Proposition 2.30 if Q has no incom-
patible points, and Corollary 2.32 also holds if neither P nor Q has any incompatible
points.) We will use these results in later sections; therefore, we will need to under-
stand the exceptional cases.

Suppose that P is bounded-level and weakly proto-Ramsey. If there is any
GŒp� 2 G .P/ such that S.GŒp�/ has more than one element, then necessarily there
are incompatible points in P: We know that S.GŒp�/ contains at least two elements,
s and t . If lev.p/ D n, then we can set s D Predn.p0/ and t D Predn.p1/ for
p0; p1 2 PnC1. Then p0 and p1 are incomparable points with different predeces-
sors, and hence incompatible.

Thus, by Proposition 2.26 and Corollary 2.32, for proto-Ramsey P and Q that fall
into this case, P � Q iff G .P/ � G .Q/.

If, on the other hand, for every GŒp� 2 G .P/ there is only one element of S.GŒp�/,
then by Proposition 2.30, P must be isomorphic to a subordering of the partial order-
ing S defined below.

Definition 2.33

S D
®
.�; n/ j � 2 2<! & n � length.�/

¯
;

.�; n/ �S .�;m/ ” � � �:

Essentially, S is obtained from the full binary tree by replacing each point on level
n with n C 1 many points. Proposition 2.30 applies because any finite bipartite G
with only one element of S.G/ is realized above every point in S; if M.G/ has n
elements, then G ,! Gp for any p above level n of S.

For P that fall into this case, there are two biembeddability classes of proto-
Ramsey Q such that G .Q/ � G .P/, one with incompatible points (hence, by the
above comments, incompatible points above every point) and one with no incompat-
ible points. For example, if P is proto-Ramsey and every GŒp� consists of two points
joined by a single edge, then P may be biembeddable with either ! or the full binary
tree.

3 Structural Properties from Ramsey Properties in ATR0

In this section we show from ATR0 that every weakly proto-Ramsey, 2-Ramsey
bounded-level partial ordering is biembeddable with a proto-Ramsey bounded-level
partial ordering.

Theorem 3.1 (ATR0) If P is a bounded-level, weakly proto-Ramsey, 2-Ramsey
partial ordering, then P is biembeddable with a proto-Ramsey partial ordering.
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This proof uses the main technique of the proof from ACA0 that any perfect tree with
uncountably many branches has a perfect subtree (see [19, pp. 186–188]). Either
P has the analogue of a Cantor–Bendixson decomposition that removes all of P in
˛-many steps for some ˛ (which contradicts R2.P/), or P has the analogue of a
perfect subtree (a proto-Ramsey Q � P with G .Q/ � G .P/).

Proof If every GŒp� 2 G .P/ has only one element in S.GŒp�/, then P is a subor-
dering of S (Definition 2.33). In this case it requires only RCA0 to show that P must
be biembeddable with S, 2<! , !, or the partial ordering S with n C 1 elements on
level n and p <S q iff lev.p/ < lev.q/ (see [4, Proposition 2.17]; the arguments are
similar to those for trees [5]). Each of these partial orderings is proto-Ramsey.

Therefore we may assume that some S.GŒp�/ contains at least two elements.
For any (downward closed) subordering Q of P, define an analogue of the Cantor–

Bendixson derivative,

Q0
D

®
p 2 Q j

�
8G 2 G .P/

�
.9r �P p/ .r 2 Q & G ,! G

Q
Œr�
/
¯
:

Taking this Cantor–Bendixson derivative removes q from Q if some graph realized
in P cannot be realized in Q above q.

Let hX; �X i be any countable well-ordering with least element 0. By arithmetic
transfinite recursion, we can iterate this derivative along X : there is a sequence˝

P.x/ j x 2 X
˛

with P.0/ D P, and for all x 2 X ,

P.x/ D

\
y<X x

�
P.y/

�0
:

If for some x 2 X we have P.x/ D ;, then we get a contradiction to R2.P/: For
p 2 P, let d.p/ be the unique x 2 X such that p 2 P.x/ but p … .P.x//0; that is,
d.p/ is the stage of the iteration at which p is removed. Note that if p <P q then
d.p/ �X d.q/; p cannot be removed at an earlier stage than q. Color pairs p <P q
by

c.p; q/ D

´
0 d.p/ D d.q/I

1 d.p/ >X d.q/:

Since P has a branch, a monochromatic copy of P in color 1 would produce an infinite
descending sequence in X , contradicting the fact that X is well ordered. On the
other hand, a monochromatic copy of P in color 0 would also yield a contradiction:
Let ' W P ! P have range of color 0, so that for some x and for all '.p/ we
have d.'.p// D x. In particular, '.P/ � P.x/. This means that if 0 is the least
element of P, then every graphGŒp� is realized in P.x/ above '.0/, which contradicts
'.0/ … .P.x//0.

Therefore, for every countable well-ordering X , there is such a sequence with all
P.x/ nonempty. Because ATR0 proves that the collection of countable well-orderings
is not †1

1-definable (see [19]), there must be a non-well-founded countable linear
ordering X associated to which there is also such a sequence. Because X is not
well-founded, there is an infinite descending sequence hx.i/ j i 2 !i in X .

Set Q D
S

i P.x.i//. Every G 2 G .P/ is realized above every p 2 Q:
If p 2 P.x.i//, then since P.xi / � .P.xiC1//

0, G is realized above p in
P.x.i C 1// � Q. Since also Q � P, we have that G .Q/ � G .P/, and every
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G 2 G .Q/ is realized above every point in Q. Since some GŒp� has more than one
element in S.GŒp�/ and is realized above every point in Q, we know that Q has
incompatible elements above every point. By Proposition 2.30, then, Q is densely
self-embeddable and so is proto-Ramsey, and P ,! Q. As Q � P, we have P � Q,
as required.

4 Ramsey Properties from Structural Properties in ACA0

We have shown that RCA0 suffices to show every bounded-level 3-Ramsey partial or-
dering with least element is biembeddable with a weakly proto-Ramsey, j.e.p., edge-
Ramsey partial ordering, and ATR0 shows every bounded-level 3-Ramsey partial or-
dering with least element is biembeddable with a proto-Ramsey, j.e.p., edge-Ramsey
partial ordering.

In this section, we look at the opposite direction of the characterization of
n-Ramsey partial orderings. We show ACA0 proves that every bounded-level, proto-
Ramsey, j.e.p., edge-Ramsey partial ordering is n-Ramsey for every standard n. As
! is an example of such a partial ordering, and R3.!/ implies ACA0, over RCA0

(see [19]), we have the following theorem.

Theorem 4.1 The following are equivalent for any standard n � 3:
1. ACA0.
2. Every bounded-level, proto-Ramsey, j.e.p., edge-Ramsey partial ordering is
n-Ramsey.

3. The partial ordering ! is n-Ramsey.
4. There is an infinite, bounded-level, n-Ramsey partial ordering with least ele-

ment.

Proof It is clear that .2/ H) .3/ H) .4/, and we are about to prove
.1/ H) .2/; Simpson [19] showed that .3/ H) .1/. To see .4/ H) .3/, sup-
pose that P is n-Ramsey and has a least element, and let c be a coloring of n-element
chains in!. Colorn-element chains inPbyc.p1; : : : ; pn/ D c.lev.p1/; : : : ; lev.pn//.
Let Q be a monochromatic suborder of P, and let b be a branch through Q (guar-
anteed by Proposition 2.7); then ¹levP.p/ j p 2 bº is a monochromatic subset
of !.

The following theorem gives .1/ H) .2/.

Theorem 4.2 (ACA0) If P is a bounded-level, proto-Ramsey partial ordering and
G .P/ is edge-Ramsey and satisfies the joint embedding property, then P is n-Ramsey
for all standard n.

We deal first with the case that P has incompatible points.
The only use of the full strength of arithmetic comprehension here is in Propo-

sition 4.6. Because the arithmetic recursions in Lemmas 4.4 and 4.7 are of finite
length, weaker assumptions (in this case, I†0

2) actually suffice. We make use of
Proposition 2.26, connecting embeddings and colorings of P to embeddings and col-
orings of graphs in G .P/, in these proofs.

We prove Rn.P/ by induction on n. The base step, Proposition 4.3, shows that
if c is a graph-induced 2-coloring of P, then there is an embedding ' W P ! P
with monochromatic range. In particular, since every 1-coloring is equivalent to a
graph-induced 2-coloring, R1.P/ holds.
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Proposition 4.3 (ACA0) If P satisfies the conditions of Theorem 4.2 and has
incompatible points, and c is a graph-induced 2-coloring of P in m colors (i.e.,
c.p0; p1/ depends only on p0 and Predlev.p0/.p1/), then there is an embedding
' W P ! P with range Q monochromatic for c.

The idea behind the proof is to use the fact that G .P/ is edge-Ramsey to embed P
in such a way that each graph GŒp� is sent to a monochromatic subgraph of GŒ'.p/�.
The following lemma guarantees that we can make all these graphs the same color.

Lemma 4.4 (ACA0) If P satisfies the conditions of Theorem 4.2, and c is a graph-
induced 2-coloring of P in m colors, then there are a point p 2 P and a color i such
that, for every G 2 G .P/, color i copies of G are dense in P above p. That is, for
every q �P p there are an r �P q and an embedding j W G ! GŒr� such that the
image of j is monochromatic in color i for cGŒr�

. (That is, for every edge .x; y/ inG,
and every r 0 >P r such that Predlev.r/.r

0/ D j.y/, we have c.j.x/; r 0/ D i .)

Proof of Lemma 4.4 If not, by arithmetic recursion, define a sequence hpi ; Gi j

i � mi such that Gi 2 G .P/, pi 2 P, pi �P piC1, and there is no color i copy of Gi

in P above piC1. Hence, for all i < m, there is no color i copy of Gi in P above pm.
Because G .P/ satisfies the joint embedding property, there is a graph G 2 G .P/

such that for every i < m we have Gi ,! G. Thus there is no monochromatic copy
of G, in any color i < m, in P above pm.

Because G .P/ is edge-Ramsey, there is an H 2 G .P/ such that H ! .G/em.
Because P is proto-Ramsey, there is p �P pm such that H ,! GŒp�; hence
GŒp� ! .G/em.

This is now a contradiction: Color GŒp� by c.q;Predlev.q/.r// D c.q; r/; be-
cause c is graph-induced, this coloring is well-defined. Choose an embedding
j W G ! GŒp� with monochromatic range of color i ; because GŒp� ! .G/em, this
is possible. But since Gi ,! G, this gives a color i copy of Gi in P above pi ,
contradicting the choice of Gi and pi .

Proof of Proposition 4.3 Choose p0 2 P and i as in Lemma 4.4. We will induc-
tively define an embedding ' W P ! P with range monochromatic of color i .

Construct an embedding of P into P above p0 as a limit of extendible embeddings,
as in the proof of Proposition 2.30; when choosing the jd W Gd ! GŒp�, choose
so that the image GŒp� is monochromatic in color i . This is possible because of
the choice of p0 and i as in Lemma 4.4. Since the jd are the graph embeddings
induced by the embedding ', and all their ranges are monochromatic in color i , by
Proposition 2.26, the range of ' is monochromatic for c.

The inductive step in the proof of Theorem 4.2 is contained in the following propo-
sition. First we need a definition.

Definition 4.5 For n > 2, an n-coloring of P is graph-induced if c.p0; : : : ; pn�1/

depends only on .p0; p1; : : : ; pn�2/ and Predlev.pn�2/.pn�1/.
That is, c.p0; : : : ; pn�1/ depends only on .p0; p1; : : : ; pn�3/ and the edge in

GŒpn�2� determined by .pn�2; pn�1/. Globally, c is determined by a family of edge
colorings c.p0;:::;pn�3/ of graphs GŒp� for pn�3 <P p.

Proposition 4.6 (ACA0) If P satisfies the conditions of Theorem 4.2 and has in-
compatible points, and if c is a graph-induced n-coloring of P for any n > 2,
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then there is an embedding ' W P ! P with range Q such that on Q the color
c.p0; : : : ; pn�1/ depends only on .p0; : : : ; pn�3;Predlev.pn�3/.pn�2//; that is, Q is
a copy of P on which the coloring c is equivalent to a graph-induced .n�1/-coloring,
c.q0; : : : ; qn�2/ D c.q0; : : : ; qn�2; q/ for any successor q of qn�2 in Q.

To prove this proposition, we embed P into itself by nesting constructions like that in
the proof of Proposition 4.3 for the family of 2-colorings c.p0;:::;pn�3/.pn�2; pn�1/ D

c.p0; : : : ; pn�1/, in such a way that the color chosen for c.p0;:::;pn�3/.pn�2; pn�1/

depends only on .p0; : : : ; pn�3/ and Predlev.pn�3/.pn�2/.
The dependence on Predlev.pn�3/.pn�2/ is because the inductive definition of '

forces us to have a different version of the construction for c.p0;:::;pn�3/ above each
such set.

As before, we need a lemma to tell us that we can choose colors in this way.

Lemma 4.7 (ACA0) Suppose that c and c are graph-induced 2-colorings of P,
in k and m colors, respectively, and suppose that p0 2 P and ` < k are such
that, for every G 2 G .P/, color ` copies of G for c are dense in P above p0.
Then there are a point p �P p0 and a color i < m such that, for the coloring
.c; c/.q; r/ D .c.q; r/; c.q; r//, for every G 2 G .P/, color .`; i/ copies of G are
dense in P above p.

The proof is essentially the same as that of Lemma 4.4, working above p0 and inside
graphs that are monochromatic for c in color `.

Proof of Lemma 4.7 Suppose not. Then by arithmetic recursion define a sequence
hpi ; Gi j i � mi such that p0 is given in the statement of the lemma, Gi 2 G .P/,
pi 2 P, pi �P piC1, and there is no color .`; i/ copy of Gi in P above piC1. Hence,
for all i < m, there is no color .`; i/ copy of Gi in P above pm.

Because G .P/ satisfies the joint embedding property, there is a graph G 2 G .P/
such that, for every i , we haveGi ,! G. Thus there is no monochromatic copy ofG,
in any color .`; i/ for i < m, in P above pm.

Because G .P/ is edge-Ramsey, there is an H 2 G .P/ such that H ! .G/em. By
assumption, there is p �P pm such thatGŒp� contains a copyH ofH monochromatic
for c in color `.

This is now a contradiction: Color H by c.q;Predlev.q/.r// D .c; c/.q; r/; be-
cause c and c are graph-induced, this coloring is well-defined. Choose an embedding
j W G ! GŒp� with monochromatic range of color .`; i/; because H ! .G/em and
H is already monochromatic for c in color `, this is possible. But since Gi ,! G,
this gives a color .`; i/ copy of Gi in P above pi , contradicting the choice of Gi

and pi .

Proof of Proposition 4.6 Define by arithmetic recursion an embedding ' W P ! P
and a function i such that c.'.p0/; : : : ; '.pn�1// D i.p0; : : : ; pn�3;

Predlev.pn�3/.pn�2//. The definition of ' is again as a limit of extendible em-
beddings, as in the proof of Proposition 2.30; since our construction guarantees
that p0; : : : ; pn�3;Predlev.pn�3/.pn�2/ is determined by .'.p0/; : : : ; '.pn�3/;

lev'.pn�3/.'.pn�2/// on the range of ', and c will be a graph-induced coloring of
n-element chains.

At the kth stage we define both ' on Pk and i.p0; : : : ; pn�3;Predlev.pn�3/.pn�2//

for lev.pn�3/ D k � 1.
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To define ', we need only to specify how we choose the pd and the graph embed-
dings jd . We also need to give the definition of i .

For d D Œp� � Pk and s D Predk�1.p/ � Œq� D a, choose ps with
Predlev.'.q//.ps/ D ja.s/.

By abuse of notation, if either q 2 s or lev.q/ < k � 1 and q <P p for some
(hence all) p 2 s, we will say q �P s. For i < k, we shall use Predi .s/ to denote
Predi .r/ for any r such that Predk�1.r/ D s. (This does not depend on r . By this
definition, Predk�1.s/ D s.)

Further extend the ps so that for some colors i.q0; : : : ; qn�3; s/with q0 <P � � � <P
qn�3 <P s and for all G 2 G .P/, for the coloring

C.x; y/ D
˝
c.'.q0/;:::;'.qn�3//.x; y/ j q0 <P � � � <P qn�3 �P s

˛
;

color hi.q0; : : : ; qn�3;Predlev.qn�3/.s// j q0 <P � � � <P qn�3 �P si copies of G are
dense in P above ps .

This is possible by Lemma 4.7, applied to the colorings˝
c.'.q0/;:::;'.qn�3//.x; y/ j q0 <P � � � <P qn�3 <P s

˛
;˝

c.'.q0/;:::;'.qn�3//.x; y/ j q0 <P � � � <P qn�3 2 s
˛
;

and color hi.q0; : : : ; qn�3;Predlev.qn�3/.s// j q0 <P � � � <P qn�3 <P si, which
satisfy the conditions of the lemma by induction. Note that this gives the kth stage
definition of i .

Now further extend the ps to choose pd for d � s as in the proof of Propo-
sition 2.30. Finally, choose jd so that the image of jd is monochromatic for the
coloring

C.x; y/ D
˝
c.'.q0/;:::;'.qn�3//.x; y/ j q0 <P � � � <P qn�3 �P s

˛
in color hi.q0; : : : ; qn�3;Predlev.qn�3/.s// j q0 <P � � � <P qn�3 �P si. This is
possible by choice of ps .

This completes the construction. As in the proof of Proposition 4.6, the fact that
the induced graph embeddings jd have monochromatic range guarantees that ' is as
desired.

Proof of Theorem 4.2 If P does not have incompatible elements, then whenever
lev.p/ < lev.q/ we have p <P q. (Otherwise, p and q, being incomparable with
different predecessors, must be incompatible.) Hence, for all p 2 P, each S.GŒp�/

has only one element. Since G .P/ is edge-Ramsey, either eachM.GŒp�/ has only one
element or the sizes of theM.GŒp�/ are unbounded. In the first case, P is isomorphic
to !, and in the second, P is biembeddable with a partial ordering S with n C 1

elements on level n and p <S q iff lev.p/ < lev.q/. We know that ACA0 proves ! is
n-Ramsey (see [19]), and a very similar proof shows that S is n-Ramsey.

If P has incompatible elements, then the theorem holds by induction on n, using
Propositions 4.3 and 4.6.

5 Ramsey for Pairs and ACA0

In this section, we prove the following theorem.

Theorem 5.1 There is a primitive recursive partial ordering P such that, over
RCA0, the statement R2

2.P/ is equivalent to ACA0.
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Definition 5.2 Define P as follows: the elements of P are the points of the com-
plete !-branching tree (i.e., finite sequences of natural numbers). The ordering on P
is defined as follows:

For elements � and � , we have that � <P � iff j� j D m < j� j and one of the
following:
(a) � D � � m;
(b) � � .m � 1/ D � � .m � 1/ & �.m � 1/ < �.m � 1/.

One way to picture this partial ordering is to envision the usual drawing of the com-
plete !-branching tree (growing upward), and put in additional connections as fol-
lows: connect every immediate successor �_i_k of �_i downward and to the left,
to every �_j for j < i .

As another helpful visualization, � <P � iff � is shorter than � , and either � is
a proper initial segment of � or � agrees with � up to the final entry of � and then
branches off to the left.

This partial ordering is proto-Ramsey without being finite-level. Every element
of G .P/ (except the trivial one) is isomorphic to the graph G defined byM.G/ D !,
S.G/ D !� ¹0º, E.G/ D ¹.j; i/ j j < iº. (For fixed � , �_i and �_j are compat-
ible, and no other nodes on the same level are compatible, so a typical equivalence
class a consists of all �_j for a fixed � . The sets of Ga are all sets of the form
siC1 D ¹�_j j j < i C 1º; siC1 consists of all predecessors �_j of any exten-
sion of �_i .) From R2.!/ one can easily see that G ! .G/e

k
for all k, as an edge

coloring of G is precisely a coloring of pairs from !. Hence G .P/ is edge-Ramsey,
and since all elements of G .P/ are isomorphic, G .P/ trivially has the joint embed-
ding property. The proof in ACA0 that P is 2-Ramsey is similar to the proof of the
finite-level case Theorem 4.2, although the fact that each GŒp� is infinite induces an
extra layer of complexity; the colorings in the conclusion of Proposition 5.11 below
are precisely the graph-induced colorings.

The proof of ACA0 from R2.P/ uses the fact that the �-classes of P (above the
root) are infinite. Each element of P is associated with a pair of natural numbers, the
height of p in P and the number of elements of the equivalence class of p to the left
of p; we can first choose the height of p to be arbitrarily large, and then given this
choice, choose p to be arbitrarily far to the right in its equivalence class. We use this
to associate with each pair p <P q a triple .x; s0; s1/ of natural numbers, which by
choice of hp; qi can be made arbitrarily large successively, each choice depending
on the previous one. We then color pairs using the same coloring of triples that
gives ACA0 from R3.!/. The fact that an embedding of P into P carries equivalence
classes to equivalence classes allows the proof to go through.

Definition 5.3 By a predecessor or successor of � we mean a point lying below
or above � in the ordering �P on P. By a restriction or extension of � we mean a
point lying below or above � in the ordering � on the complete !-branching tree.
(A restriction [extension] must also be a predecessor [successor], but not conversely.)

Definition 5.4 Define an equivalence relation on P by setting � � � if and only if,
for some �, we have � D �_i and � D �_j . In this case, we say that � is to the left
of � if i < j . (This is actually the same equivalence relation as in Definition 2.20;
points are equivalent iff they are on the same level and are compatible.) That is, the
immediate extensions of � form an equivalence class, ordered from left to right in
the natural way.
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Note that if � is to the left of � , then all proper successors of � are also successors
of � , but not conversely.

Lemma 5.5 (RCA0) If ' W P ! P is an embedding (of partial orderings), then '
preserves the relations �, 6�, and “to the left of.”

This implies, in particular, that if ' is an embedding and �_i is in its range (but
not the least element of its range), then infinitely many points �_j (infinitely many
elements of the equivalence class of �_i ) are also in its range.

Proof These relations can be defined existentially in the ordering: � � � iff � and
� either are equal or are incomparable and have a common successor, � 6� � iff �
and � have different predecessors, and if � � � , then � is to the left of � iff there is
a successor of � that is not a successor of � .

Lemma 5.6 (RCA0) If ' is an injection of P to P that preserves the relations �,
6�, “to the left of,” and �, then ' is an embedding.

An embedding need not preserve �.

Definition 5.7 An embedding that preserves � is called a strong embedding.

Remark 5.8 Because embeddings preserve �, if ' is an embedding, then, for
every � , there is some  .�/ �P '.�/ such that if � is an immediate extension of � ,
then '.�/ is an immediate extension of  .�/. (The equivalence class of immediate
extensions of � maps into the equivalence class of immediate extensions of  .�/.)
The embedding ' is strong just in case we always have  .�/ � '.�/.

A consequence of this lemma is that to inductively produce a strong embedding ',
we must choose  .�/ � '.�/ and map the immediate extensions of � to immediate
extensions of  .�/, in order from left to right. If the embedding need not be strong,
it suffices to choose  .�/ �P '.�/ (or choose  .�/ to the right of � ); we must then
ensure that points to the right of � embed to the right of  .�/ (or its restriction to
the appropriate level).

Proposition 5.9 (RCA0) If R2
2.P/, then ACA0.

Proof As usual, we show that, for any set X , we can color pairs from P in two
colors so that a monochromatic copy of P allows us to recover X 0.

Given a pair � <P � , suppose � D �_i . Let x D j� j, and let s0 D j� j and
s1 D i . Color the pair h�; �i color 0 if s0 � s1 and X 0 � xŒs0� D X 0 � xŒs1�, and
color 1 otherwise.

A monochromatic copy Q � P must be of color 0: To see this, choose some
� 2 Q, and set x D j� j. Choose s large enough so that X 0 � xŒs� D X 0 � x, and
choose � >P � in Q with j� j D s0 � s. If � D �_j , then there is some i > s0
with �_i in Q (since, as embeddings preserve equivalence classes, there must be
infinitely many elements of Q equivalent to � , and those elements are exactly the
�_i ). Then the pair h�; �_ii has color 0.

Now from such a Q we can compute X 0: To find X 0 � x, choose � in Q with
j� j � x, and choose �_i >P � in Q. Then we must have X 0 � x D X 0 � xŒj�j�. If
not, then there is some j > i with �_j in Q such that X 0 � xŒj � ¤ X 0 � xŒj�j�,
from which it follows that h�; �_j i has color 1, contradicting the assumption that Q
is monochromatic of color 0.
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Proposition 5.10 (RCA0) If ACA0, then R2
2.P/.

In fact, we can replace R2
2.P/ with Rn

k
.P/ for any standard n and any k. However,

we give the proof only for n D k D 2.
It is clear that this follows immediately from Propositions 5.11, 5.12, and 5.13.

Proposition 5.11 (ACA0) If c is a coloring of pairs from P in two colors, then
there is an embedding of P into itself with range on which the color of h�; �i depends
only on � and � � j� j.

Proposition 5.12 (ACA0) If c is a coloring of pairs from P in two colors such that
the color of h�; �i depends only on � and � � j� j, then there is an embedding of P
into itself with range on which the color of h�; �i depends only on � .

Proposition 5.13 (ACA0) If c is a coloring of single points from P in two colors,
then there is an embedding of P into itself with monochromatic range.

The proofs of these propositions make use of the fact that ACA0 suffices for carrying
out constructions by arithmetic recursion. We assume an underlying !-ordering on
P that respects both the ordering on P and the relation “to the left of”; our definitions
are by recursion on this ordering.

Proof of Proposition 5.13 Given a coloring c of single points of P in two colors,
we define a strong embedding with monochromatic range, by cases.

Intuitively, in case 1, there is a point above which every node has infinitely many
red immediate extensions. In this case, define the range of the embedding by choos-
ing any red node above that point as the root, and once any node has been included
in the range, include all its red immediate extensions. Otherwise, in case 2, there is
a dense set of nodes with cofinitely many blue extensions. In this case, we choose
any blue node as the root, and once any node has been included in the range, find an
extension � with cofinitely many blue immediate extensions, and include all the blue
immediate extensions of � .

Case 1: There is a point � , such that for every extension � � � , there are infinitely
many i such that c.�_i/ D 0. In that case, choose the least such � for which
c.�/ D 0, let '.hi/ D � , and, in general, if '.�/ D � and '.�_i/ have been defined
for all i < j , define '.�_j / to be the least �_k unequal to any '.�_i/ for i < j

such that c.�_k/ D 0.
Case 2: Otherwise, for every � , there is � � � such that c.�_i/ D 1 for all but

finitely many i . In this case, define ' and an auxiliary  , as in Remark 5.8. (The
function  acts as guide to creating a strong embedding; the equivalence class of
immediate extensions of � will be embedded into the equivalence class of immediate
extensions of  .�/ � '.�/.)

Let '.hi/ be the least � with c.�/ D 1, and let  .hi/ be the least � � � such
that c.�_i/ D 1 for all but finitely many i . In general, if '.�/,  .�/, '.�_i/, and
 .�_i/ have been defined for all i < j , and  .�/ D � , then define '.�_j / to
be the least �_k unequal to any '.�_i/ for i < j , such that c.�_k/ D 1, and let
 .�_j / be the least � � '.�_j / such that c.�_i/ D 1 for all but finitely many i .

This constructs a monochromatic embedding of P by Lemma 5.6.

Proof of Proposition 5.11 Given a coloring c of pairs from P in two colors, we
produce an embedding of P with range on which the color of h�; �i depends only on
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� and � � j� j. Note that when � <P � we must have � D �_j and � � �_i for
some � and i � j ; we are demanding that the color of h�; �i depend only on �_i

(i.e., � � j� j) and j (i.e., the additional piece of information needed to determine � ).
Intuitively, we construct the desired suborder Q more or less as follows, using

the previous proposition that P is Ramsey for colorings of single points: Include the
minimal element hi of P in Q. Choose an isomorphic suborder of points that all
realize the same color, say red, when paired with hi, and work within that suborder.
Within that suborder, above the first immediate extension �0 of hi, restrict to an
isomorphic suborder of points that all form (say) blue pairs with �0. Above the next
immediate extension �1 of hi, restrict to an isomorphic suborder of points that form
(say) red pairs with �0, and then working within that suborder, further restrict to an
isomorphic suborder of points that form (say) blue pairs with �1. Continue in this
way, nesting copies of the construction in the previous proposition.

We don’t literally nest copies of the construction, as each iteration would increase
in complexity, and the end result would not be arithmetic. Instead, when working
above �1, we choose the color red for �0, and a node above which we are guaranteed
to always have sufficiently many nodes that form red pairs with �0 (and red pairs
with hi); then we choose the color blue for �1, and a node above which we are guar-
anteed to always have sufficiently many nodes that form red pairs with �0 and blue
pairs with �1 (and red pairs with hi). When working at higher levels, we restrict
ourselves to including only extensions of �1 that form correctly colored pairs with
all three of hi, �0, and �1.

The formal construction follows.
Again, we use Lemma 5.6 and arithmetic induction to produce a strong embedding

with the desired properties. By Proposition 5.13, we may assume without loss of
generality that, for all � >P hi, we have c.hi; �/ D 0.

Recursively define the embedding ' and associated functions  W P ! P, and
� on P. The function  acts as in Case 2 of the previous proposition, as a guide to
making ' a strong embedding. The function� chooses colors: each�.�_i/ will be
a function from ¹j j j � iº to ¹0; 1º; we will guarantee that, for � � �_i , the pair
h'.�_j /; '.�/i has color�.�_i/.j /. This suffices to ensure that ' has the desired
property.

First we set '.hi/ D  .hi/ D hi, and �.hi/ D ;.
Now suppose that we have defined '.
/,  .
/, and�.
/ for all 
 below or to the

left of �_i . We will say that � �  .�/ is acceptable if, for all 
_k � � and all
j < k, we have c.'.
_j /; �/ D �.
_k/.j /. (Intuitively, � is a possible element
of the range of ', in light of commitments made by our definition of � so far; pairs
hı; �i are correctly colored for all predecessors ı already in the range of '.) We
say that � �  .�/ is good if infinitely many �_k are acceptable. (Similarly, � is a
possible element of the range of  ; it has infinitely many immediate extensions that
are possible elements of the range of '.)

Assume as inductive hypothesis that  .�/ is good and every extension of  .�/
has a further extension that is also good.

Since  .�/ is good, there are infinitely many acceptable  .�/_k. Let '.�_i/

be the least acceptable  .�/_k unequal to any previously defined '.�_j /.
For d W ¹j j j � iº ! ¹0; 1º, let � � '.�_i/ be d -acceptable if � is acceptable

and for all j � i we have c.'.�_j /; �/ D d.j /. Here d represents a potential
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choice for �.�_i/, and � is d -good if the colors of pairs h'.�_j /; �i are as deter-
mined by � and d . That is, if we define �.�_i/ D d , � will still be acceptable, a
possible element of the range of ' in light of these new commitments.

Let � be d -good if infinitely many �_k are d -acceptable. That is, if we define
�.�_i/ D d , � will still be good, a possible element of the range of  .

Every acceptable extension � of '.�_i/ is d -acceptable for a unique d (namely,
the d that chooses the colors actually realized by �). Hence, every good extension
of '.�_i/ is d -good for at least one d . (The infinitely many acceptable immediate
extensions are each d -acceptable for one of the finitely many values of d , so for
at least one d there must be infinitely many d -acceptable immediate extensions.)
Hence, for some d and some � � '.�_i/, we must have that � is d -good, and every
extension of � has a further extension that is d -good. (The proof of this is like that
of Lemma 4.4; if not, then we can build an ascending chain of nodes above '.�_i/,
the i th of which has no extension d -good for the i th d . Since there are finitely many
d ’s we eventually reach a node with no extension d -good for any d . This contradicts
the inductive hypothesis that every extension of  .�/ has further extensions that are
good, and hence d -good for some d .)

Choose the least such � and d . Set  .�_i/ D � and �.�_i/ D d . Since we
choose � to be d -good and have densely many d -good extensions, we now have that
 .�_i/ is good and has densely many good extensions, so the inductive hypothesis
is satisfied.

This completes the construction.
In the range of ', the color of hı_j; "i for ı_i � ", j < i , depends only on ı_i

and j , as desired: Let ı D  .�/ (since ı has more than one immediate extension
in the range of ', there must be such a � ), ı_j D '.�_j /, ı_i D '.�_i/,
and " D '.�/. Because we chose " D '.�/ to be acceptable, we must have
c.ı_j; "/ D �.�_i ; j /. Since ı, i , and j determine � , i , and j , they also de-
termine c.ı_j; "/.

Proof of Proposition 5.12 Given a coloring c of pairs of P in two colors such that
the color of h�; �i depends only on � and � � j� j, we produce an embedding of P
with range on which the color of h�; �i depends only on � .

As noted above, setting � D �_i , we have � � �_j D � � j� j for some j � i ;
for fixed �, the color of h�; �i depends only on i and j . That is, for each �, the
color h�_i; �i for �_j � � is actually a coloring of pairs .i; j /; we would like it to
depend only on the first coordinate i , that is, only on � .

As a first approximation, to produce Q on which this holds, we will carry out
the inductive step of the proof of (ordinary) Ramsey’s theorem for pairs to prune
the immediate extensions of � so that, on ¹k j �_k 2 Qº, this coloring depends
only on i . Simply pruning immediate extensions in this way would build a strong
embedding. We cannot quite do this because the coloring is defined for i � j , not
merely i < j , and it is possible that the color of .i; i/ is different from that of .i; j /
for i < j .

We may suppose, though, that we have made the color depend only on i ; so, for
example, any pair h�_0; �i is red unless � is actually an extension, not merely a
successor, of �_0. Now we can remove all proper extensions of �_0 from Q, and
we can also remove �_1 (but not its proper extensions) from Q; so if the embedding
maps 
 to �_0, then it maps the proper extensions of 
 to proper extensions of �_1.
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Since proper extensions of �_1 are successors of �_0, we still have an embedding.
Now, as there are no extensions of �_0 left in Q, any pair h�_0; �i must be red; that
is, it depends only on �_0, as desired.

Actually, we won’t quite do this, but we will combine the pruning strategies to
make the color depend only on i for j > i and to eliminate the problem case i D j .

The formal construction follows.
First we set '.hi/ D  .hi/ D hi, and h.hi/ to be the color of pairs hhi; �i, which

by assumption is the same for all � . The function  will now be a guide to building
an embedding that is not strong; we will still embed the immediate extensions of �
into the immediate extensions of  .�/, but now we will choose  .�/ to the right of
'.�/. The function h will be our choice of colors; any ordered pair h'.�/; '.�/i will
have color h.�/.

Suppose that we have defined '.ı/,  .ı/, and h.ı/ for all ı below or to the left of
�_`.

We assume the following inductive hypotheses: '.
_j / and  .
_j / are imme-
diate extensions of  .
/; and '.
_.j C 1// is to the right of  .
_j /, which is to
the right of '.
_j /. (Hence extensions of  .
_j / are successors of '.
/ but not
extensions of '.
/.) For all � �  .
_j / and all i � j , the pair h'.
_i/; �i has
color h.
_i/.

We have a further inductive assumption allowing us to keep the coloring commit-
ments made by h, as in the last proof: Say that k is good if, first, k is large enough so
that for all i < ` (all i for which '.�_i/ and  .�_i/ have been defined),  .�/_k
is to the right of  .�_i/ and '.�_i/ (this makes sense because by inductive hy-
pothesis  .�_i/ and '.�_i/ immediately extend  .�/); and, second, for all i < `,
h'.�_i/; �i for � �  .�/_k has color h.�_i/. (By the hypothesis of the theorem,
this color is independent of � , depending only on  .�/_k and '.�_i/.) The final
inductive hypothesis is that there are infinitely many good k. Note that if ` D 0, all
k are good, and this final inductive hypothesis holds trivially.

Let '.�_`/ D  .�/_k0 where k0 is the least good k. This preserves the induc-
tive hypothesis that '.�_`/ is an immediate extension of  .�/ and to the right of
'.�_i/ and  .�_i/ for i < `.

Let h.�_`/ be 0 if there are infinitely many good k > k0 such that h'.�_`/; �i

for � �  .�/_k has color 0, and h.�_`/ D 1 otherwise. Finally, let  .�_`/ D

 .�/_k1 where k1 is the least good k > k0 such that h'.�_`/; �i for � �  .�/_k

has color h.�_`/. This preserves the inductive hypothesis that  .�_`/ is an imme-
diate extension of  .�/ and to the right of '.�_`/.

It also preserves the inductive hypothesis that h'.�_i/; �i for � �  .�/_k has
color h.�_i/ for i � `, for i < ` because k1 is good, and for i D ` by choice of k1 to
realize h.�_`/. Finally, since those formerly good k > k1 such that h'.�_`/; �i for
� �  .�/_k has color h.�_`/ are still good, it preserves the inductive hypothesis
that there are infinitely many good k.

This completes the construction.
The embedding ' is as required; that is, if ı <P 
 , then h'.ı/; '.
/i has color

h.ı/. If ı D hi, then this is by assumption. Otherwise, ı D �_i and 
 � �_k for
some k � i . By construction, '.
/ D � �  .�_k/, and since  .�_k/ was chosen
to be good, h'.�_i/; �i has color h.�_i/, that is, h.ı/.
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6 Questions

Theorem 4.1 shows that one direction of the characterization of countably infinite,
bounded-level, n-Ramsey partial orderings (n � 3) is equivalent to ACA0 over RCA0.
The other direction, by Theorem 3.1, is provable from ATR0. Can it be proven from
less? In particular, can Theorem 3.1 be proven from ACA0? We know that the special
case of Theorem 3.1 restricted to trees is provable from RCA0 (see [5]). We also
know that we cannot have a reverse mathematics result (proving, for example, ATR0

from Theorem 3.1), since in the !-model consisting of the recursive sets there are
no infinite, bounded-level, n-Ramsey partial orderings for any n � 2, and so the
theorem holds vacuously.

Theorem 5.1 says that there is a primitive recursive partial ordering P such that,
over RCA0, the statement R2

2.P/ is equivalent to ACA0. The proof makes essen-
tial use of the fact that the levels of P are infinite. Is this necessary? That is, is
there a bounded-level partial ordering P such that R2.P/ is equivalent to ACA0?
More specifically, to repeat a question of Chubb, Hirst, and McNicholl [3], is R2.T/,
where T denotes the complete binary tree, equivalent to ACA0? Dzhafarov, Hirst, and
Lakins [7] have investigated aspects of R3.T/ related to relevant aspects of R2.!/.
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