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Refining the Taming of the Reverse Mathematics Zoo

Sam Sanders

Abstract  Reverse mathematics is a program in the foundations of mathematics.
It provides an elegant classification in which the majority of theorems of ordi-
nary mathematics fall into only five categories, based on the “big five” logical
systems. Recently, a lot of effort has been directed toward finding exceptional
theorems, that is, those which fall outside the big five. The so-called reverse
mathematics zoo is a collection of such exceptional theorems (and their rela-
tions). It was previously shown that a number of uniform versions of the zoo
theorems, that is, where a functional computes the objects stated to exist, fall
in the third big five category, arithmetical comprehension, inside Kohlenbach’s
higher-order reverse mathematics. In this paper, we extend and refine these pre-
vious results. In particular, we establish analogous results for recent additions to
the reverse mathematics zoo, thus establishing that the latter disappear at the uni-
form level. Furthermore, we show that the aforementioned equivalences can be
proved using only intuitionistic logic. Perhaps most surprisingly, these explicit
equivalences are extracted from nonstandard equivalences in Nelson’s internal
set theory, and we show that the nonstandard equivalence can be recovered from
the explicit ones. Finally, the following zoo theorems are studied in this paper:
H(I)G (existence of uniformly H?-generics), FIP (finite intersection principle),
1-GEN (existence of 1-generics), OPT (omitting partial types principle), AMT
(atomic model theorem), SADS (stable ascending or descending sequence), AST
(atomic model theorem with subenumerable types), NCS (existence of noncom-
putable sets), and KPT (Kleene—Post theorem that there exist Turing incompara-
ble sets).

1 Introduction: Reverse Mathematics and Its Zoo

The subject of this paper is the reverse mathematics classification in Kohlenbach’s
[11] framework of uniform versions of principles from the reverse mathematics zoo
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(Dzhafarov [5]), specifically as equivalent to arithmetical comprehension. A number
of theorems from the reverse mathematics zoo have been classified in this way in
Sanders [15], and this paper continues and refines this classification. We first discuss
the aforementioned italicized notions in more detail.

First of all, an overview of the foundational program reverse mathematics (RM)
may be found in Simpson [17], [18]. Perhaps the main conceptual result of RM is that
the majority of theorems from ordinary mathematics, that is, about countable and
separable objects, fall into only five classes of which the associated logical systems
have been christened the big five (see, e.g., Montalban [12, p. 432] and Hirschfeldt
[8, p. 69] for this point of view). Recently, considerable effort has been spent identi-
fying theorems falling outside of the big five systems. For an overview, exceptional
theorems (and their relations) falling below the third big five system ACA( have been
collected in Dzhafarov’s so-called RM zoo (see [5]).

It was established in [15] that a number of exceptional principles inhabiting the
RM zo0 become nonexceptional at the uniform level, namely, that the uniform ver-
sions of RM zoo principles are all equivalent to arithmetical comprehension, the
aforementioned third big five system of RM. As an example of such a “uniform ver-
sion,” consider the principle UDNR from [15, Section 3],

AP H[(VAH (V) (W (A)(e) # DL (e))]- (UDNR)
Clearly, UDNR is the uniform version of the zoo principle' DNR, defined as

(VAHESHVEN[ fle) # Dl(e)] (DNR)

Now, the principle DNR was introduced by Giusto and Simpson [7] and is strictly
weaker than WWKL (see Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [1]),
where the latter principle sports a small number of RM equivalences (see [12], Yu
[23], Yu and Simpson [24]), but is not counted as a big five system. The exceptional
status of DNR notwithstanding, it was shown in [15, Section 3] that UDNR <> 3,
where the second principle is the functional version of arithmetical comprehension,
the third big five system of RM, defined as

Gp*)(V ) (@(f) = 0 < (3n) f(n) # 0). €D

In other words, the exceptional status of DNR disappears completely if we consider
its uniform version UDNR. Furthermore, the proof of the equivalence UDNR <« (32)
takes place in RCA{ (see Section 2), the base theory of Kohlenbach’s higher-order
RM. This system is a conservative extension of RCAg, the usual base theory of RM,
for the second-order language.

More generally, a number of uniform zoo principles are shown to be equivalent to
arithmetical comprehension over RCA{ in [15]. A general template for classifying
(past and future) zoo principles in the same way was also formulated in the latter. In
Section 3, we show that this template works for a number of new theorems from the
RM zoo, and we refine the associated results considerably, as discussed next.

The methodology by which the aforementioned equivalences are obtained consti-
tutes somewhat of a surprise. In particular, the equivalences in this paper are formu-
lated as theorems of Kohlenbach’s base theory RCA (see [11] and Section 2.2), but
are obtained by applying the algorithm & (see Section 2.4) to associated equiva-
lences in nonstandard analysis, in particular, Nelson’s internal set theory (see Nelson
[13] and Section 2.1). Besides providing a streamlined and uniform approach, the use



Taming of Reverse Mathematics Zoo 581

of nonstandard analysis via @ also results in explicit’ equivalences without extra
effort. In particular, we shall just prove equivalences inside nonstandard analysis
without paying any attention to effective content and extract the explicit equivalences
using the algorithm :&. This new computational aspect of nonstandard analysis is
perhaps the true surprise of our taming of the RM zoo.

The following zoo theorems are studied in Section 3 in the aforementioned way:
H(I)G (existence of uniformly H?-generics), FIP (finite intersection principle), 1-GEN
(existence of 1-generics), OPT (omitting partial types principle), AMT (atomic model
theorem), SADS (stable ascending or descending sequence), AST (atomic model the-
orem with subenumerable types), NCS (existence of noncomputable sets), and KPT
(Kleene—Post theorem that there exist Turing incomparable sets).

Furthermore, we shall refine the results from [15] and Section 3 of this paper as
follows in Section 4. First of all, while all results sketched above are proved using
classical logic, we show in Section 4.1 that they also go through for intuitionistic
logic. Second, we formulate in Section 4.2 a special kind of explicit equivalence,
called Herbrandization, from which we can reobtain the original equivalence in
nonstandard analysis. In other words, the Herbrandization is metaequivalent to the
nonstandard implication from which it is extracted.

In conclusion, this paper continues and refines the taming of the RM zoo initi-
ated in [15]; that is, we establish the equivalence between uniform RM zoo princi-
ples and arithmetical comprehension using intuitionistic logic. Furthermore, thanks
to a new computational aspect of nonstandard analysis, we obtain for free explicit’
equivalences (not involving nonstandard analysis) from (noneffective) equivalences
in nonstandard analysis and vice versa.

2 About and Around Internal Set Theory

In this section, we introduce Nelson’s internal set theory, first introduced in [13], and
its fragment P from van den Berg, Briseid, and Safarik [21]. We shall also introduce
Kohlenbach’s base theory RCA{ from [11] and the system RCAX, which is based
on P. These systems are also introduced in [15, Section 2], but we include their
definitions for completeness.

2.1 Introduction: Internal set theory In Nelson’s [13] syntactic approach to non-
standard analysis, as opposed to Robinson’s [ 14] semantic one, a new predicate st(x),
read as “x is standard” is added to the language of ZFC, the usual foundation of
mathematics. The notations (V*x) and (3*y) are short for (Vx)(st(x) — ---) and
Fy)(st(y) A --+). A formula is called internal if it does not involve st and is called
external otherwise. The three external axioms idealization, standard part, and trans-
fer govern the new predicate st; they are introduced in Definition 2.1 below, where
the superscript fin in (I) means that x is finite; that is, its number of elements are
bounded by a natural number.

Definition 2.1 (External axioms of IST)
(1) (vt inx)@3y)(Vz € x)p(z.y) — (3y)(Y'x)p(x, y), for internal ¢ with any
(possibly nonstandard) parameters.
(8) (V¥x)(F*y)(V¥'z)(z € y < (z € y A ¢(2))), for any formula ¢.
(M (vV*OI(Y*x)p(x,1) — (¥Yx)@(x,1)], where ¢ is internal and only has free
variables ¢, x.
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The system IST is (the internal system) ZFC extended with the aforementioned exter-
nal axioms. Furthermore, IST is a conservative extension of ZFC for the internal
language, as proved in [13].

In [21], the authors study Godel’s system T extended with special cases of the
external axioms of IST. In particular, they consider nonstandard extensions of the
(internal) systems E-HA® and E-PA®, respectively, Heyting and Peano arithmetics
in all finite types and the axiom of extensionality. We refer to [21, Section 2.1]
for the exact details of these (mainstream in mathematical logic) systems. We do
mention that, in these systems of higher-order arithmetic, each variable x° comes
equipped with a superscript denoting its type, which is however often implicit. As to
the coding of multiple variables, the type p* is the type of finite sequences of type
0, a notational device used in [21] and this paper. Underlined variables x consist of
multiple variables of (possibly) different type.

In the next section, we introduce the system P, assuming familiarity with the
higher-type framework of Godel’s system T (see, e.g., [21, Section 2.1] for the latter).

2.2 The system P In this section, we introduce the system P. We first discuss some
of the external axioms studied in [21]. First of all, Nelson’s axiom standard part is
weakened to HAC;; as

(V) (FyT)p(x, y) = @FFP7T)(VxP)(3y" € F(x))p(x,y),  (HACiw)

where ¢ is any internal formula. Note that F' only provides a finite sequence of
witnesses to (3%y), explaining its name: Herbrandized axiom of choice. Second,
Nelson’s axiom idealization | appears in [21] as

(VX7 )@y)(V27 € X)p(z, y) > @DV x)p(x, y), 0
where ¢ is again an internal formula. Finally, as in [21, Definition 6.1], we have the

following definition.

Definition 2.2 The set T7* is defined as the collection of all the constants in the
language of E-PA®*. The system E-PA%* is defined as E-PA®* + T* + IA™, where
T° consists of the following axiom schemas:

1. The schema® st(x) A x = y — st(y).
2. The schema providing for each closed term ¢ € T* the axiom st(z).
3. The schema st( f) A st(x) — st(f(x)).

The external induction axiom IA% is
®(0) A (V') (@(n) = @(n + 1)) — (V'n°)D(n). (IA%)

For the full system P = E-PAZ* 4+ HACiy + |, we have the following theorem. Here,
the superscript Sy, is the syntactic translation defined in [21, Definition 7.1].

Theorem 2.3 Let ®(a) be a formula in the language of E-PA®*, and suppose

st

qD(g)SSt = Vs'x EIStX @(x, y.a). If Aint is a collection of internal formulas and
P+ At F ®(a), (2.1)
then one can extract from the proof a sequence of closed terms t in T* such that
E-PA”" + A = Vx 3y € 1(x) ¢(x, y,a). (2.2)
Proof  This is immediate by [21, Theorem 7.7]. O
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It is important to note that the proof of the soundness theorem in [21, Section 7]
provides a term-extraction algorithm 4 to obtain the term ¢ from the theorem.

The following corollary is essential to our results. We shall refer to formulas of
the form (V*'x)(3y)¥ (x, v, a) for internal ¥ as (being in) the normal form.

Corollary 2.4 If for internal  the formula ®(a) = (Vs‘i)(EIS‘X)w (x,y,a) sat-
isfies (2.1), then (Vg)(EIX e t(x))y(x, Y. a) is proved in the corresponding formula
(2.2).

Proof Clearly, if for ¢ and ® as given we have ®(a)S* = ®(a), then the
corollary follows immediately from the theorem. A tedious but straightforward
verification using the clauses (i)—(v) in [21, Definition 7.1] establishes that indeed
®(a)St = ®(a). This verification is performed in full detail in [15, §2] and
[16]. O

Finally, the previous theorems do not really depend on the presence of full Peano
arithmetic. Indeed, let E-PRA® be the system defined in [11, Section 2], and let
E-PRA®* be its extension with types for finite sequences as in [21, Section 2].

Corollary 2.5 The previous theorem and corollary go through for P replaced by
Po = E-PRA®* 4+ 7" + HACjnt + I.

Proof  The proof of [21, Theorem 7.7] goes through for any fragment of E-PA®*
which includes EFA, sometimes also called |Ag + EXP. In particular, the exponential
function is (all that is) required to easily manipulate finite sequences. [

Finally, we define RCA{' as the system Py + QF-AC!. Recall that Kohlenbach
defines RCA{ in [11, Section 2] as E-PRA® + QF-AC!"?, where the latter is the
axiom of choice limited to formulas (¥ £ 1)(3n%)@o( f. n), with ¢y quantifier-free.

2.3 Notation and remarks We introduce some notation regarding RCAé\. First of
all, we shall mostly follow Nelson’s notation as in van den Berg and Sanders [22].

Remark 2.6 (Standardness) As suggested above, we write (V*'x7)®(x7) and also
(F'Xx%)W(x?) as short for (Vx7)[st(x*) — ®(x7)] and (Ix%)[st(x7) A ¥(x)],
respectively. We also write (Vx° € Q)®(x°) and (3x° € Q)W (x?) as short for
(VX9 [=st(x%) — ®(x%)] and (Fx%)[—st(x®) A ¥(x?)], respectively. Furthermore,
if —st(x0) (resp., st(x?)), we also say that x° is infinite (resp., finite) and write
x% e Q. Finally, a formula A is internal if it does not involve st, and A% is defined
from A by appending st to all quantifiers (except bounded number quantifiers).

Second, the notion of equality in RCA{)‘ is important to our enterprise.

Remark 2.7 (Equality) ~ The system RCA{ includes equality between natural num-
bers =¢ as a primitive. Equality =; for type t-objects x, y is defined as

[x =ry] = (szl ---Z;")[le S Zk =0 YZ1°° Zk] 2.3)

if the type 7 is composed as T = (t; — -+ — 1% — 0). In the spirit of nonstandard
analysis, we define approximate equality ~; as

[x e y] = (V2 )Xz ez =0 21 2] 24
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with the type 7 as above. Furthermore, the system RCA{ includes the axiom of
extensionality as

(Yo7 (VxP, yP)[x =p y = o(x) = 0()]. (E)

However, as noted in [21, p. 1973], the axiom of standard extensionality (E)* cannot
be included in the system P (and hence RCAé\). Finally, a functional E2 is called an
extensionality functional for o171 if

(YK, f1, e[ fE(f. &.k) =0 TE(S &.k) = o(/)k =0 (2)k]. (2.5
In other words, E witnesses (E) for ®. As will become clear in Section 2.4, standard
extensionality is translated by our algorithm & into the existence of an extension-
ality functional, and the latter amounts to merely an unbounded search.

2.4 General template In this section, we formulate a general template for obtaining
explicit equivalences between arithmetical comprehension and uniform versions of
principles from the RM zoo. This template was first formulated in [15] and will be
applied to a number of new members of the RM zoo in Section 3; it will be refined
to systems of intuitionistic logic in Section 4.1.

First of all, the notion of explicit implication is defined as follows.

Definition 2.8 (Explicit implication) An implication (3®)A(®) — (AV)B(V) is
explicit if there is a term ¢ in the language such that additionally (V®)[A(P) —
B(t(®))]; that is, W can be explicitly defined in terms of ®.

Given that an extensionality functional as defined in Remark 2.7 amounts to nothing
more than an unbounded search, an implication as in the previous definition will still
be called explicit if the term ¢ additionally involves an extensionality functional &
for ® as defined in (2.5).

Second, we need the following functional version of arithmetical comprehension,
called Feferman’s nonconstructive search operator (see, e.g., Avigad and Feferman
[2, Section 8.2]),

F @) f() = 0— f(u(f)) =0), (u?)

which is equivalent to (3%) over RCAY by [1 1, Proposition 3.9]. We also require the
following special case of the IST axiom transfer:

V(@) f(n) = 0 — @F'm®) f(m) = 0). (T19-TRANS)
Third, with these definitions in place, our template is formulated as follows.

Template 2.9 Let T = (VX1)(3Y )p(X,Y) be a RM zoo principle, and let U T
be AP )(VX (X, ®(X)). To prove the explicit implication UT — (u?),
execute the following steps.
() Let UTT be (371 (V X (X, D(X)), where the functional & is addi-
tionally standard extensional. We work in RCA} + UT ™.
(ii) Suppose the standard function h! is such that (V*n)h(n) = O and
(Im)h(m) # 0; that is, h is a counterexample to I19-TRANS.

(iii) For standard V'!, use & to define standard W! = V such that ®(W) %,
®(V); that is, W is V' with the nonstandard elements changed sufficiently to
yield a different image under ®.

(iv) The previous contradiction implies that RCAé\ proves UT+ — T19-TRANS.
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(v) Bring the implication from the previous step into the normal form
(V¥x)(F*y)¥ (x, y) (¥ internal) using the algorithm B from Remark 3.5.
(vi) Apply the term extraction algorithm # using Corollary 2.5. The resulting
term yields the explicit implication UT — (u?).
The explicit implication (u?) — U T is usually straightforward; alternatively, estab-
lish TI{-TRANS — U T+ in RCAY and apply steps 2.9(v) and 2.9(vi).

The algorithm RS is defined as steps 2.9(v) and 2.9(vi) in the template; that is, the
application of the algorithms B and 4 to suitable implications.

By way of example, the following theorem was established in [15, Section 3],
where UDNR(W) and MU(j) are UDNR and (p?) without the leading existential
quantifier.

Theorem 2.10 From the proof of UDNRT <« H?—TRANS in RCAé\, two terms
s, u can be extracted such that RCA] proves

(Yu?)[MU(1) — UDNR(s(1))] A (V&' H[UDNR(¥) — MU(u (W, @))], (2.6)
where ® is an extensionality functional for V.

From this theorem, we may conclude that RCAg proves UDNR <> (u?) and that this
equivalence is explicit as in Definition 2.8.

Finally, the above template treats zoo principles in a kind of I1}-normal form, for
the simple reason that most zoo principles are formulated in such a way. Nonethe-
less, it is a natural question, discussed in [15, Section 6], whether principles not for-
mulated in this normal form give rise to uniform principles not equivalent to (1?).
Surprisingly, the answer to this question turns out to be negative.

3 Classifying the RM Zoo

In this section, we apply the template from Section 2.4 to a number of new theorems
from the RM zoo. In each case, we show that the uniform version of the RM zoo
principle is (explicitly) equivalent to arithmetical comprehension.

3.1 Universal genericity Inthis section, we study the principle I19G from Hirschfeldt,
Shore, and Slaman [9, Section 4] and [8, Definition 9.44], which is the statement that,
for every collection of uniformly T19-dense predicates on 2<N there is a sequence in
2N meeting all predicates. Like in [21], we use the notation o <o+ 1 to denote that
o is a finite binary sequence.

Principle 3.1 (IIYG)  Define D;(0) = ¢(i,0) with ¢ € T1{. We have
(Vi®) (V" <o+ 1)(30°" = 1)D;(0) — (3G <1 )(Vi®) (30 < G)D;(0).

The “fully” uniform version of T19G is then defined as follows. Note the function g!
which realizes the antecedent of H(I)G and the function ®( £, g)(2) which realizes the
numerical quantifier in the consequent of T19G.

Principle 3.2 (UM{G)  Define Dif(o) = (VKO f(k,i,o) # 0. There is
WD) gyeh that for all f1, gt

(Vio)(Vro* <o* 1)[g(i, ) > TA Dif(g(i,r))]
— (Vi)[®(£. 9)(2)(0) < (£ 2)(1) A D] ((£.2)(2)(1))]- (3.1
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Theorem 3.3 In RCAY, we have UTI%G <> (u?), and this equivalence is explicit.

Proof  The reverse implication is immediate as ACAo implies UTTG and (u?)
easily (and explicitly) yields UH(I’G as all relevant notions are arithmetical. We
will now apply the template from Section 2.4 to obtain the explicit implication
UITIG — (u?).

Working in RCAS + UTTYG™, suppose —T19-TRANS; that is, there is a function /
such that (Y*n®)h(n) = 0 A (Im®)h(m) # 0. Recall from Section 2.4 that UTTIG™
expresses that UTTYG holds, and the functional @ in the latter is standard and standard
extensional. Now let !, g! be standard functions such that the antecedent of (3.1)
holds. Define the standard function g¢ as

gO(iv 7:)

gli,tx(k)) ©<@(fg)()A@En <I[thh(n) #0A
= k < 1is the least such that t x (k) £ ®(f,g)(1), (3.2)
g(i,7) otherwise.

By the definition of go, we still have (Vi®)(V1®" <o+ 1)[go(i.7) > 7 A
Dif (go(i, 7))]. Furthermore, define the standard function fy as

Sk,i,7) (Yn <max(|t],i,k))(h(n) = 0) v T £ O(f, g)(1),
0 otherwise.

fo(k,i, ‘L') = {

Intuitively speaking, fo is just f with (long enough) initial segments of ®( f, g)(1)
mapping to zero. Nonetheless, by the definition of fy, go, we still have
(Vi®)(V° <o D[go(i, ) = T A D/ (200, 1)),

as the modification to g in (3.2) is such that “too long” initial segments of ®( f; g)(1)
are never output by go. Since f &1 fp and g & g, standard extensionality implies

(£, 8) ~1x1 D[ go) ~ix1 P(fo.8) ~1x1 P(fo. &o)- (3.3)
Applying UTT?G for fy, go, we obtain, for any i,
O( fo. 20)(2)(0) < D(fo. 20)(1) A DI (®(fo. 20)(2)(0). (34

and by standard extensionality (3.3), we have ®(fo, g0)(2)(i) =o¢ P(f. 2)(2)(i)
and also ®(f, g)(1) =1 D(fo, go)(1) for standard ;. However, now consider the
second conjunct of (3.4), which is (Vk?) fo(k.i, ®(fo.g0)(2)(i)) # 0. For large
enough k and standard i, we are in the second case of the definition of fy as
D(fo,£0)2)([) < P(fo,g0)(1) &1 O(f, 2)(1), by standard extensionality, the first
conjunct of (3.4), and the fact that ®( fy, go)(2) (i) is standard. However, the second
conjunct of (3.4) contradicts the second case of fj, and this contradiction implies
I19-TRANS.

Hence, we have established UTTIG' — TT9-TRANS inside RCAj. We now bring
the former implication into normal form. First of all, note that H?-TRANS implies

(VDY mO)[@En®) f(n) #0 — @i <m) fG) # 0], (3.5
which is a normal form, where C( f,m) is the formula in square brackets in (3.5).
Furthermore, UH?G+ has the form

D) (v 1. g")A(f. g. ®) A @ is standard extensional], (3.6)
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where A(f, g, ®) is exactly (3.1). The second conjunct of (3.6) is

gt ut o r v A f x> O(fg) Rixa P(u.v)).

Resolving all instances of ~,, we obtain that for all standard f Lghul, vl

(VEN®)@N =g TN A fN =¢ gN)
— (Vi < DY) (O(f ) (D)k =0 @(u, v)(D)k).
Bringing all standard quantifiers outside, we obtain
(v gt ut vt k%% < DENO)B(f. g u vk i, N, D), (3.7)
where B is the formula
@N =9 ON A fN =0 gN) — ((f. &)(i)k =0 ®(u,v)(i)k). (3.8)
Combining all the previous statements, UTTYGT — T19-TRANS implies that
(@ D) (V' g")A(h, g. @) A (VZ)F'N®)B(Z, N, )]
- (Y HEmOC(fim),
where Z! codes all the variables in the leading quantifier of (3.7). This yields
(V' o, B)[[(Vh'. g A(h, g. @) A (VZ")B(Z,B(Z), )]
- (Y fHEmOC(fim)],
and by dropping some st and bringing all standard quantifiers to the front,
VD, E, /HFmO)[[(Yh'.g")A(h,g.®) A (YZ")B(Z, E(Z), D)]
— C(, m)], (3.9)

which is a normal form provable in RCA(‘)\. By applying Corollary 2.5, there is a term
¢ such that RCA§ proves

VO, E, £)([3m° € 1(®. E, /))[[(Yh'.g")A(h,g.®) A (YZ")B(Z,E(Z), D)]
- C(f:m)].
where ® is as in UTIYG by (Vh, g)A(h, g, ®) and E is the associated extensionality
functional by (VZ')B(Z, E(Z),®). Now define s(®, E, f) as the maximum of
all t(®, E, f) fori < |t(P, E, f)|, and note that (V f1)C(f.s(®, E, f)) expresses

that s(®, E, f) is Feferman’s nonconstructive search operator. In other words, we
have obtained the explicit implication UH(I’G — (14?), and we are done. [

We immediately obtain the following more explicit corollary, where UH(I)G(CD) is
just UH?G with the leading existential quantifier omitted.

Corollary 3.4 From the proof of Ul'I(l)G+ <~ H?—TRANS in RCA{,\, two terms
s, u can be extracted such that RCAg proves

(V) [MU(n) — UTTYG(s())] A (YO)[UIT]G(D) — MU(u(D, B))]. (3.10)
where E is an extensionality functional for ®.

Proof The second conjunct is immediate from the theorem. The first conjunct
can be obtained by establishing [T9-TRANS — UTI?G™ (which is almost trivial) in
RCA(‘)\ and applying Corollary 2.5 to this implication in normal form. O
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The proof of the theorem also provides a template as follows.

Remark 3.5 (Algorithm 8B) Let T = (VX)@AYYHp(X,Y) be an internal for-
mula, and define the “strong” uniform version U T+ as

@O [(Y X e (X, D(X)) A ® is standard extensional .
The proof of Theorem 3.3 provides a normal form algorithm 8B to convert the impli-
cation UT* — T19-TRANS into a normal form (¥*x)(3y)e(x, y) as in (3.9).

The previous theorem implies that we may extract an explicit equivalence from a
nonstandard one. It is then a natural question (especially in light of RM) whether we
can also reobtain the (proof of the) nonstandard equivalence from the (proof of the)
explicit equivalence. This question will be answered in the affirmative in Section 4.2.

3.2 The finite intersection principle and 1-genericity In this section, we study uni-
form versions of the finite intersection principle FIP from Dzhafarov and Mummert
[6] and the principle 1-GEN related to Cohen forcing from Cholak, Downey, and
Igusa [3]. By [3, Theorem 5.8], the aforementioned principles are equivalent over
RCAy.

First of all, to study 1-GEN in the higher-order framework, we define o%esS }( as

(3% f(o. 7, X|t]) = 0, and we let 1-GEN and its uniform version be as follows.
Principle 3.6 (1-GEN)
vVXHAYHVH[E)Tn e SF) v @n°) (Yo = Ym)(o ¢ ST)].
Principle 3.7 (U1G) There is ®1~(1X2%2) quch that, forall X', 1, we have
(PNOMP(X)2)(f) € SF) v (Yo = 2(X)(HP(X)B)(f))(o ¢ SF). (B.11)

Note that the witnessing functional in the first disjunct is actually superfluous, as the
base theory includes QF-AC!:®. We have the following theorem.

Theorem 3.8 In RCAY, we have U1G <> (u?), and this equivalence is explicit.

Proof  The reverse implication is immediate as ACAg implies 1-GEN and (12) eas-
ily (and explicitly) yields U1G in light of, for example, Downey and Hirschfeldt [4,
Proposition 2.24.2]. We now prove the remaining explicit implication using the tem-
plate from Section 2.4. Thus, working in RCAY 4+ U1G™, suppose —I1J-TRANS;
that is, there is a function & such that (V*'n%)h(n) = 0A (3m®)h(m) # 0. Let fp and
Xo be standard sequences such that the first conjunct of (3.11) is false, and define
the standard function fj as
fo(o,t,p) otherwise,
0 @n < |o)(h(n) # 0).
With this definition, we observe that

o1 := ®(Xo)()P(X0)(2)(f1) =0 P(X0)(1)P(X0)(2)(fo) =: 00,
by standard extensionality, implying the following sequence of equivalences:

[o7 € S}(IO] [(Ero)fl (01, r,7|r|) = O]

[(310)f0(01,1,7|r|) =0]
[@2°) fo(o0. 7. X|7]) = 0] = [og € S7°],

filo.T.p) = {
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where the second step holds by the definition of f; and the fact that o is standard.
In other words, the first conjunct of (3.11) is false for Xy, f1. Hence, the second
conjunct of (3.11) must hold for X and for f7; that is, we have

(Vo = @(Xo)(1)P(X0)(3)(f1))(¥2°) fi(0, 7. Xolt]) # 0.

Since ®(X)(1)®(Xo)(3)(f1) is standard, we can apply the previous statement
for 0 = ®(Xo)(1)M for any nonstandard M. However, this yields a contradic-
tion as f; is zero for long enough o. From this contradiction, we conclude that
RCA(‘,\ proves U1GT — MT9-TRANS. Analogous to the proof of Theorem 3.3,
U1GT — I19-TRANS may be brought into a normal form of the form (3.9), and
applying Corollary 2.5 now finishes the proof. O

Second, we briefly study the principle FIP in the following remark.

Remark 3.9 By [6, Proposition 2.3], ACAy is equivalent to a strengthened version
of FIP where a set I is given such that i € I <« A; € B, where the latter is
the maximal subfamily with the finite intersection property. It is straightforward to
prove a uniform version (involving (142)) of this equivalence.

However, the uniform version of FIP will provide such a set I as in the strength-
ened version of FIP. In other words, the aforementioned results immediately imply
that the uniform version of FIP is equivalent to (x2). Similarly, [6, Proposition 2.3]
implies that the uniform versions of nIP (n > 2) are all equivalent to (u?).

3.3 The omitting partial types principle In this section, we study uniform versions
of the omitting partial types principle OPT, which may be found in [9, Section 5] and
[8, Definition 9.64]. In light of [9, Theorems 5.6-5.7] and particularly [8, Theorems
9.66-9.67], the uniform versions of OPT and HYP are (explicitly) equivalent. Hence,
we study the latter, which is essentially the statement that, for every set X 1 there is a
function which is not dominated by any X -computable function. In symbols, we have

vV fHEgH(¥e® k0 @En° = k)(Ym® 50|l (n) =m — m < g(n)].  (HYP)
following the definition in Soare [19, p. 189, Exercise 3.7]. Hence, the uniform
version is

@'YV (Ve k0 m°, sH[D()2)(e. k) = k
Aol (@))€ k) =m — m < O(f)(1)(D(f)(2)(e.k))].  (UHYP)
Theorem 3.10 In RCAS, we have UHYP <> (u?), and the equivalence is explicit.

Proof  The reverse implication is trivial as (12) can check whether a given Tur-
ing machine halts and avoid the output if necessary. Working in F%CAOA + UHYPT,
suppose —I19-TRANS; that is, there is a function & such that (V'n®)h(n) = 0 A
3m®)h(m) # 0.

First of all, let the standard number e be the code of the following program for
<pej;. On input n, set k = n, and check if f(k) > 0. If so, return this number. If
f(k) = 0, repeat for k + 1. Intuitively speaking, e is such that (pe{) (n) outputs
m > 0 if, when starting at k = n, we eventually find m = f(k) > 0, and undefined
otherwise. Furthermore, let f; be the sequence 00-- -, and define

O(fo)(D)(P(fo)(2)(e0.e0)) (Fs < e)h(s) # 0,

0 otherwise,

fle):= {



590 Sam Sanders

where £ is the exception to H?-TRANS from the first paragraph of this proof. Note
that f a1 fo by definition, implying that ® satisfies ®(f) =1x1 D(fp) due to
standard extensionality. However, the latter combined with UHYP gives us

D(fo)(1)(P(f0)(2)(e0, €0)) =0 (S )(1)(P(f)(2)(eo. €0))
>0 02, 50 (2(f)(2)(eo. €0))
=0 ®(fo)()(P(f0)(2)(eo. €0)). (3.12)

for large enough s¢ such that (3i < s¢)h(i) # 0. Note that it is essential for the first
step in (3.12) that ®( f)(2)(eo, eg) and ®( f)(1)(:) are standard. The contradiction
in (3.12) implies that UHYPt — H?-TRANS in RCA(I)\. Now bring this implication
in normal form and apply Corollary 2.5 to obtain the explicit implication. O

In light of the proof of [8, Theorem 9.66], the uniform version of the atomic model
theorem AMT is also (explicitly) equivalent to (u?) by the previous theorem. Sim-
ilarly, the proof of SADS — AMT in [9, Theorem 4.1] is sufficiently uniform to
(explicitly) yield USADS — UAMT in RCAg.

3.4 Noncomputable sets In this section, we study the uniform version of a principle
very close to RCAy in the RM zoo. In particular, Hirschfeldt [8, p. 174] states that the
principle AST (see [8, Definition 9.71]) is essentially the weakest principle in the zoo,
in light of its equivalence to NCS = (VX )@Y )(Y £r X) by [9, Theorem 6.3].
The proof of the latter is sufficiently uniform to yield the equivalence between the
uniform versions of AST and NCS. Thus, we study the existence of noncomputable
sets

(V1) (3g")(ve®) @) (Vs)[g(n) #o 7, ()], (NCS)
which has the uniform version
FRZEDYV £ (Ve s [@()D(P(F) ()
#0 0 (P()2)(e))]. (UNCS)
Theorem 3.11 In RCAZ, we have UNCS <> (u?), and this equivalence is explicit.

Proof  The explicit implication (142) — UNCS is trivial as (142) supplies the Turing
jump of any set. Working in RCAf,\ + UNCS™, suppose —-H?-TRANS; that is, there
is a function & such that (V*'n%)h(n) = 0 A Am®)h(m) # 0.

First of all, fix a standard pairing function ! and its inverse £!. Now let the
standard number e; be the code of the following program. On input #, set k = n,
and check if k € A and if £(k)(2) > 0. If so, return this nonzero component. If
k ¢ Aor&(k)(2) = 0, repeat for k + 1. Intuitively speaking, e; is such that <pé (n)
outputs m > 0 if, when starting at k = n, we eventually find 7 ((I,m)) € A, and
undefined otherwise. Furthermore, let fy be the sequence 00 - - -, and define

S(fo)(M(@(fo)(2)(er)) (Fi = e)h(i) #0,

0 otherwise,

f(e) 1={

where £ is the exception to T19-TRANS from the first paragraph of this proof. Note
that f ~; fo by definition, implying that & satisfies ®(f) ~1x1 P(fp) due to
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standard extensionality. However, the latter combined with UNCS gives us

D(fo)(D(D(fo)(2)(e1)) = D(/)D(D(f)(2)(er))
# 0l o (P 2(e)
= O(fo)(D(P(fo)(2)(e1)). (3.13)

for large enough (infinite) s¢. Note that it is essential for the first step in (3.13) that
®(f)(2)(eq1) and ®(f)(1)(-) are standard. The contradiction in (3.13) implies that
RCA(‘)\ proves UNCS™ — H?-TRANS. Now bring the latter in normal form and
apply Corollary 2.5 to obtain the explicit implication. O

Related to the above is the Kleene—Post theorem (see Kleene—Post [10] and [19,
Chapter VI]) stating the existence of (Turing) incomparable sets. The related princi-
ple is

vV fH@Eg A f <1 (g.h) Ag T h]. (KPT)

We denote by UKPT the fully uniform, that is, with all existential quantifiers removed,
version of KPT. Clearly, UKPT implies UNCS, and the equivalence UKPT < (u?) is
now straightforward in light of [19, p. 93, Section VI.1].

4 Refining Our Results: Metareversal and Intuitionistic Logic

In this section, we refine some of the results from [15] and the previous sections.
First of all, we derive Theorem 3.3 using only systems based on intuitionistic
logic in Section 4.1. The associated proof gives rise to a refinement of our tem-
plate from Section 2.4. Second, we provide a “metareversal” for Corollary 3.4
in Section 4.2 as follows: we show that a version of (3.10), called the Her-
brandization of UTTIYGT — TI9-TRANS, implies the nonstandard implication
UTTYG* — II9-TRANS from which it was obtained. As we will see, these results
generalize to all explicit equivalences proved above and in [15].

4.1 Nonclassical equivalences The explicit equivalences from the previous sections
and [15] were established in RCA{,\ and RCAY, that is, systems based on classical
logic. We show in this section that Corollary 3.4 essentially goes through for systems
based on intuitionistic logic. As will become clear, the same technique applies to all
theorems in this paper and [15].

This constructive result is somewhat surprising, as our hitherto obtained results
seem to make essential use of nonconstructive principles. For instance, UH(I’G+ —
H?—TRANS was proved via a proof by contradiction, while obtaining the normal
form of this implication involves the independence of premises principle to bring
the standard quantifiers up front. Furthermore, basic results from computability the-
ory, like Post’s complementation theorem ([19, Theorem 1.12]), already require non-
constructive principles (see Troelstra and van Dalen [20, Section 4.5.3]), while our
nonstandard technique will turn out to have a constructive counterpart.

The previous observations notwithstanding, let H be the conservative extension
of Heyting arithmetic introduced in [21, Section 5.2]. Note that P from Section 2.2
is just H with classical instead of intuitionistic logic. We consider two axioms of H,
essential for the proof of Theorem 4.2 below.
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Definition 4.1 (Two axioms of H)
(1) HIPyst

(V)¢ (x) — FV)V)] = FV)[(Y ) (x) — By € )V,
where W(y) is any formula and ¢ (x) is an internal formula of E-HA®*.
(2) HGMP*

[(V0)$ () = ¥] = @N)[(Vx € ) (x) = ¥,

where ¢ (x) and V¥ are internal formulas in the language of E-HA®*,

Intuitively speaking, the two axioms of Definition 4.1 allow us to perform a num-
ber of nonconstructive operations (namely, Markov’s principle and independence of
premises) on standard objects. In other words, the standard world of H is a little non-
constructive, but this does not affect the conservation result over Heyting arithmetic:
H and E-HA® prove the same internal formulas by [21, Corollary 5.6].

Surprisingly, we will observe that the axioms from Definition 4.1 are exactly what
is needed for the proof of Corollary 3.4 to go through constructively. As in the proof
of Theorem 3.3, we shall focus on the implication UTTYGT — TT9-TRANS, while
the other implication is treated analogously. Note that UTT{G(®) is UTT{G with the
leading quantifier omitted, and MU(w) is (Y £ 1)MUP( £, ).

Theorem 4.2 From the proof of Ul'I(l)G'Ir — H?-TRANS inH, atermt can be
extracted such that E-HA®* proves
(Vo' fH{UMY) G(®) — MUP(f.t(V, @, )], 4.1)
where V is an extensionality functional for ®.
Proof To show that H proves UTT9GT — TI9-TRANS, it is straightforward to
verify that the second part of the proof of Theorem 3.3 yields that
urmiat — (v fH[@En) f(n) = 0 > =[(¥"n) f(n) # 0]]. 4.2)

since H is based on intuitionistic logic. However, by Definition 4.1, the system H
proves’ Markov’s principle relative to st, and hence,

=[(¥¥n) f(n) # 0] = 3F*n) f(n) = 0. 4.3)

Combining (4.2) and (4.3), we obtain UTIG" — TI9-TRANS inside H. Now, the
latter system also has a term extraction result, namely, [21, Theorem 5.9], which is
identical to Corollary 2.4. Hence, we only need to bring UH(I)G+ — H?-TRANS
into a normal form like (3.9) inside H, and (4.1) follows. We now bring UH(I)G+ —
H?-TRANS into a slight variation of the normal form (3.9) inside H.

First of all, by applying the principle HIPys« from Definition 4.1 to I[T9-TRANS, the
latter implies (3.5); that is, the former has a normal form, say, (Y £ 1)(3'n®)C(f. n).
Second, the second conjunct of Ul'[(l’G+ immediately implies (in H) that, for all
standard f1, g, u',v!,k%,i% < 1, we have

(VINO)@N =9 TN A fN =9 gN)) = ®(f.2)()k =0 P(u.v)(Dk. (4.4)
and applying HGMP* to (4.4), we obtain
F'N)[(YN® < N)@N =9 N A fN =o gN)
— O(f. &)k =0 D(u.v)(D)k].
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Define Z! as a code for the tuple of variables fl,gl,ul, v k9,79 < 1, and let
B(Z, N’, ®) be the formula in square brackets in the previous centred formula. Thus,
the second conjunct of UTTYG™ has the normal form (V*Z1)(3*M®)B(Z, M, ®)
and UH(I’G"‘ — T19-TRANS implies

[@D) (V'R g A(h, g, D) A (F'E>)(V'Z)B(Z.E(Z). D)]
— (Y HFYO TSy,

where A(-) is (3.1) and the antecedent is strengthened by introducing E. Inside H,
we can bring outside the quantifiers involving the variables W, &, and f, yielding

V', E, N)([(V'h'. g A(h,g. @) A (V'Z")B(Z.E(Z), ?)]
— @VOC(£.).
which has exactly the right syntactic structure to apply HIPys. We obtain
Vo, B, )@ ([(vh!, g")A(h, g, @) A (V' Z1)B(Z,E(Z), D)]
— @’ € 0)C(f. 7)),
and the latter now has exactly the right structure to apply HGMP*'. We obtain
(V0. 8, /)@ W V)
([(vh'. g' e W)A(h.g. ) A (VZ' € V)B(Z,E(Z), D)]

— @ € 0)C(f.y)), (4.5)
which is a slight variation of the normal form (3.9), and the theorem follows by
applying the term extraction result from [21, Corollary 5.9]. O

Corollary 4.3  In E-HA®* UITYG < (u?).

Note that we could have worked in a fragment of H similar to RCAY. We finish
this section with a remark stipulating the refinement using intuitionistic logic of the
template in Section 2.4.

Remark 4.4 Based on the proof of Theorem 4.2, the template from Section 2.4
can be refined as follows to work for intuitionistic instead of classical logic.

1. Replace RCA) and RCAY by H and E-HA®*.
2. Instep 2.9(iv) of the template, we obtain that H = UT+ — T19-TRANS from

UT™ — (¥ fH[En) f(n) = 0 — =[(V"'n) f(n) # 0]]

and HGMP* as in (4.3) from the proof of Theorem 4.2.

3. In step 2.9(v) of the template, use HGMP® and HIPys as in the proof of The-
orem 4.2 to obtain a normal form of UT* — T19-TRANS.

4. In step 2.9(vi) of the template, apply the term extraction result formulated in
[21, Theorem 5.9] to the normal form of UT T — H?-TRANS.

Finally, it is surprising—in our opinion—that H includes exactly the right noncon-
structive axioms—relative to st—as in Definition 4.1 to make the proof of Theo-
rem 3.4 go through in a constructive setting.
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4.2 Hebrandizations In this section, we provide a positive answer to the following
natural RM-style question.

Question 4.5 The algorithm RS takes as input implications in nonstandard
analysis and produces explicit implications related to the RM zoo. Is it possible
to reobtain these nonstandard precursor implications from their postcursor explicit
implications?

To answer this question, we shall study the explicit implication UTTYG — (u?) from
Theorem 3.3, in particular, a variation of the second conjunct of (3.10), defined as

Vo, E, fH[[(VZ' €i(V, E, /)(1))B(Z,E(Z), D)

A(Vfg €i(@.E, )AL g P)]

= (@n) f(n) =0~ (3j <o(¥.E. /) f(j) =0)]. (HIO(. 0))
where A(-) is (3.1) from Ul'I(l’G and B(-) is (3.8) and expresses that E is an
extensionality functional for ®. We refer to HIO(Z, 0) as the Herbrandization of
Ul'[(l)G+ — H?-TRANS. Intuitively speaking, the functional i in the Herbrandiza-
tion tells us how much ® has to satisfy UH(l’G for a particular f' in order to obtain
the value of the p-operator at f via o (and the same for E). In other words, the
Herbrandization is a pointwise version of the second conjunct of (3.10).

We have the following theorem establishing a metareversal between the implica-
tion UTT9G™ — TT9-TRANS and its Herbrandization HIO(i, 0).

Theorem 4.6 (Metareversal)  From the proof of UTI9GT — TI9-TRANS in RCA%,
two terms i, 0 can be extracted such that RCAy proves HIO(i, 0). If there are terms
i, 0 such that RCA{ proves HIO(i, 0), then RCAé\ proves UH‘I’G"‘ — T19-TRANS.

Proof  The first part of the theorem easily follows from the proof of Theorem 3.3.
Indeed, consider (3.9), but without the st in the antecedent dropped, as

(V' E, /H@FmO)[[(V'h', gHA(f. . @) A (Y'ZN)B(Z,E(Z). D)]

- C(f:m)].
which yields the following by bringing out the standard quantifiers:

V', E, /) @m® k', g' . ZH[[A(h. 5. ®) A B(Z.E(Z). D)]

— C(f.m)]. (4.6)
Apply Corollary 2.5 to RCA{,\ I (4.6) to obtain a term ¢ such that RCA§ proves
(YO, B, )@m°. n'. g". Z" e t(®. B, f))[[A(h.g. D) A B(Z.E(Z), D)]
— C(f, m)].

Define the term o as the maximum of all entries of ¢ pertaining to m; define
i(W,E, f)@@) fori = 1 (resp., i = 2) as all entries of ¢ pertaining to &, g (resp.,
pertaining to Z). Then HIO(i, o) follows, and this part is done.

For the second part of the theorem, suppose i, o are terms such that RCA{, proves
HIO(i, 0). By the second standardness axiom (see Definition 2.2), these terms are
standard in RCAé\; that is, the latter proves HIO(i, 0) A st(i) A st(o). Hence, for
standard ®, E, f, the terms o(®, &, f) and i (P, E, f) are standard (by the third
standardness axiom in Definition 2.2), and the consequent of HIO(Z, 0) clearly yields
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H?-TRANS, while the antecedent of the HIO(i, 0) holds if UH(I’G+ does. Thus, we
obtain that RCAY proves UTTYG™ — TT19-TRANS, and we are done. O

Similar results hold for the first disjunct in (3.10). In general, one can obtain the
Herbrandization for any nonstandard equivalence from this paper and [15] and prove
a result similar to the previous theorem. Intuitively speaking, the nonstandard impli-
cation UTTYGT — TT9-TRANS and its Herbrandization HIO(i, 0) can be said to be
metaequivalent or “share the same computational content” in the sense of the theo-
rem, namely, that one can be obtained from the latter via an algorithmic manipula-
tion.

Notes

1. We sometimes refer to inhabitants of the RM zoo as “theorems” and sometimes as “prin-
ciples.”

2. An implication (A®)A(P) — (V) B(W) is explicit if there is a term ¢ in the language
such that additionally (V®)[A(P) — B(t(P))]; that is, ¥ can be explicitly defined in
terms of .

3. An implication (A®)A(P) — (W) B(V) is explicit if there is a term ¢ in the language
such that additionally (V®)[A(®) — B(t(®))]; that is, ¥ can be explicitly defined in
terms of .

4. The language of E-PA2* contains a symbol sty for each finite type o, but the subscript
is always omitted. Hence, 7 is an axiom schema and not an axiom.

5. Take ¢ = [0 = 1] and ¢ a decidable formula in HGMP® in Definition 4.1.
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