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A Propositional Theory of Truth

Yannis Stephanou

Abstract The liar and kindred paradoxes show that we can derive contradic-
tions if our language possesses sentences lending themselves to paradox and we
reason classically from schema (T) about truth:

S is true iff p,

where the letter p is to be replaced with a sentence and the letter S with a name
of that sentence. This article presents a theory of truth that keeps (T) at the
expense of classical logic. The theory is couched in a language that possesses
paradoxical sentences. It incorporates all the instances of the analogue of (T) for
that language and also includes other platitudes about truth. The theory avoids
contradiction because its logical framework is an appropriately constructed non-
classical propositional logic. The logic and the theory are different from others
that have been proposed for keeping (T), and the methods used in the main proofs
are novel.

1 Introduction

The semantic paradoxes make it difficult to construct a coherent and plausible for-
mal theory of truth, for they show that apparent platitudes about truth can lead to
contradiction. The main platitude here is schema

S is true iff p: (T)

To get an instance of the schema, we must replace the letter p with a declarative
sentence and the letter S with a name of that sentence. Schema (T) seems to be a
principle that characterizes the concept of truth and that should be incorporated in
any theory of truth.
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As is well known, the simplest semantic paradox is the liar. In a characteristic
version, it concerns the sentence (L):

(L) is not true.

One instance of (T) is the biconditional

(L) is true iff (L) is not true.

Assume that (L) is true. Then, because of the biconditional, it is not true. Hence, by
reductio ad absurdum, we can deny the assumption: (L) is not true. Consequently,
because of the biconditional again, it is true—a contradiction.

Another paradox is Curry’s. It concerns sentences such as (C):

If (C) is true, then ?.

Here, ? abbreviates a contradiction. One instance of (T) is the equivalence

(C) is true iff (if (C) is true, then ?).

Assume that (C) is true. Then, because of the equivalence, if (C) is true, then ?.
So, by modus ponens, ?. Hence, by conditional proof, if (C) is true, then ?. Thus,
because of the equivalence again, (C) is true. Therefore, by modus ponens, ?.

One treatment of the paradoxes keeps (T) in its unrestricted form at the expense
of classical logic. We endorse the biconditionals “(L) is true iff (L) is not true”
and “(C) is true iff (if (C) is true, then ?)” and deviate from classical logic. That
treatment comprises two distinct approaches. One of them accepts contradictions
“p and not-p.” This approach has been connected mainly with the work of Priest
(see, e.g., [10]), but others, such as Beall [3], have also done work along the same
lines. The other approach does not accept contradictions and, in some way or other,
disables the inference from the problematic instances of (T) (like “(L) is true iff (L) is
not true”) to a contradiction. Perhaps the most well-known advocate of that approach
is Field (see, e.g., [4]), but others, such as Zardini [12], have also made important
contributions to it.

This article presents a theory of truth that falls within the approach exemplified
by Field. The theory is couched in a language that possesses paradoxical sentences,
like (L) and (C). It incorporates all the instances of the analogue of (T) for that
language and also incorporates other platitudes about truth. It does not include any
contradiction, though. The theory avoids contradiction because its logical framework
is an appropriately constructed nonclassical propositional logic. Both the logic and
the theory are presented in a model-theoretic, rather than proof-theoretic, way.

The theory of truth (and its extensions in a first-order framework) should be com-
pared philosophically with other theories that have been proposed for keeping (T) in
its unrestricted form at the expense of classical logic, but such a comparison goes
beyond the scope of the present article. Let me note, however, that the main dif-
ference between Field’s logic and that presented here is that his logic validates the
substitution of equivalents but does not include the law of noncontradiction, while
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the logic to be presented includes the law of noncontradiction but does not validate
all inferences of the form “: : : A : : : I A $ B. Hence, : : : B : : : .”

Unless we restrict (T) or reject, in at least some cases, the equivalence between a
sentence A and the conjunction A ^ A, accepting both the law of noncontradiction
and the substitution of equivalents leads to contradiction (see Section 2 below and
[4, p. 9, fn. 8]).1 It seems that in the literature on truth, whenever one was faced with
a choice between the law and the substitution, one opted for the substitution. I think
that, in this way, we underestimate the law of noncontradiction and overestimate the
need for a sentence to be intersubstitutable with an attribution of truth to it. It would
take a separate article to argue for that, but let me offer an outline of the argument.

We have a practice of never assenting to both a sentence and its negation. As is
well known, endorsing the law of noncontradiction, :Œp ^ :p�, is neither necessary
nor sufficient for following the practice. Field follows it without accepting the law,
whereas Priest does just the opposite. But it has not been realized that those of us
who follow the practice ought to endorse the law. We need to explain, for an arbitrary
sentence A, why we are unwilling to assert both A and not-A. Unless we explain that,
we do not rule out the possibility that our attitude may be due to epistemic reasons:
perhaps we believe that A and not-A can jointly be true, but that one can never have
adequate evidence for assenting to both. If we endorse the law of noncontradiction,
then we can offer an explanation. We may say: it is not the case that A and not-A. Of
course, one can offer an alternative explanation: anything follows from a sentence
and its negation. But that principle, in contradistinction to the law, possesses no
immediate obviousness, so one should not just assert it without support.

One way to support it is to appeal to this simple argument: assume both A and
not-A and take any other sentence B; from A we infer A-or-B, and then from this
disjunction and not-A we derive B. The problem here is that, within the scope of
assuming both A and not-A, the inference from A-or-B and not-A to B is not ratio-
nal. Supporters of classical logic will balk at the suggestion that a classical pattern
of reasoning may not always be rational or that its rationality may depend on the
assumptions in whose context it is used. In fact, when we are thinking within the
scope of some assumptions, they constrain what we may accept and even how we
may reason. When we infer from a disjunction S-or-S0 and the negation of S to S0,
the idea is that, with S being false, the disjunction cannot hold unless S0 is true.
When, however, we have assumed both A and not-A and inferred from A to A-or-B,
we can take it that the disjunction is sustained by A, so we no longer have reason to
conclude B; the disjunction is supported by A and needs no support from B.2

One may vary the simple argument and avoid reasoning within the scope of con-
tradictory assumptions. One may argue as follows: for any sentence B, A-or-B fol-
lows from A; B follows from A-or-B and not-A; hence B follows from A and not-A.
But as long as we leave room for the possibility that A and not-A may both be true,
we should not claim that B follows from A-or-B and not-A. For the idea behind the
claim is, once more, that, with A being false, the disjunction cannot hold unless B
is true, and that idea would prove wrong if A should turn out to be both true and
false. When we do not deny that A and not-A are both true, and we are still arguing
that anything follows from a sentence and its negation, we have not yet excluded the
possibility that A and not-A may both be true.

Another way to argue for the principle that anything follows from a sentence and
its negation is to appeal to a traditional concept of following from and point out that
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it is not possible for A and not-A to be true while B is false. But this is so because it
is not possible for both A and not-A to be true. And whoever accepts that should also
accept that A and not-A are not both true, which does not differ significantly from
accepting :ŒA ^ :A� and thus endorsing the law of noncontradiction.

On the other hand, the need for a theory to allow replacing a sentence with an
attribution of truth to it and conversely has been overestimated. We know that we
cannot validly make such replacements in modal contexts. It may necessarily be the
case that every rose is a flower, but it is not necessarily the case that the sentence
“Every rose is a flower” is true, since the sentence could have meant something other
than what it actually means and been false. This may seem a superficial remark,
correct at the level of sentences but not at that of propositions. Surely, a sentence
expressing a proposition and an attribution of truth to that proposition can replace
each other in modal contexts. But for those who are existentialists about propositions
in the sense of Plantinga [7], things are not so simple. We existentialists believe
that at least some propositions are contingent entities; in particular, a proposition
expressed in a sentence that contains a nonempty name would not exist if the bearer
of the name did not exist. So the proposition that Virgil is a poet, as well as its
negation, would not exist if Virgil had not existed. In that case, the proposition
would not be true (nor would it have any other property). As for Virgil himself, he
would not be a poet, just because he would not even have existed. Thus, (Virgil is not
a poet) iff (the proposition that Virgil is not a poet is true), but it could have been that
Virgil was not a poet and the proposition was not true, whereas of course it could
not have been that the proposition was true and was not true.3 Existentialism is a
controversial doctrine, but at least it shows that the problems with intersubstituting
an attribution of truth with what is described as true run deep. At any rate, as we
cannot validly replace a sentence with an attribution of truth to it and conversely
in all contexts, it will not be a very negative aspect of a theory if it disallows such
replacements in some more contexts than those frequently recognized. The theory to
be presented disallows them in some contexts involving conjunction or implication,
though in none involving only negation and disjunction.

The next section develops the logic presupposed by the theory of truth, while
Section 3 turns to the theory itself. Section 4 is devoted to proving the Central
Theorem, to the effect that the theory has models (of the kind specified in Section 2)
and so is consistent. The methods used in the proof are different from what one can
find in the literature, and one may reasonably expect that they can also be used for
different theories of truth in different logical frameworks. Section 5 indicates how I
have extended the work presented in this article.

2 A Logic

The symbols of our language are the sentential letters p1; p2; p3; : : : , the predicate
letter T , the individual constants a1; a2; a3; : : : , and the connectives :, _, ^, and
!. The atomic well-formed formulas (wffs) are the sentential letters and, for every
individual constant a, the combination T a. If A and B are wffs, so are :A, ŒA _ B�,
ŒA ^ B�, and ŒA ! B�. Every wff either is atomic or is built from atomic wffs
through a finite number of applications of connectives as just shown. So our language
is a standard propositional language except that it possesses a predicate letter and
individual constants.



A Theory of Truth 507

I use bold letters as metalinguistic variables. A, B, C, D, and E (with or without
primes and subscripts) will range over the wffs of our language, whereas a, b, c, d,
and e range over the individual constants. The atomic wffs Ta1, Ta2, and so on will
be called T -attributions. As usual, ŒA $ B� is defined as ŒŒA ! B� ^ ŒB ! A��.
Brackets will be omitted according to standard conventions.4

Our language is geared to the needs of the theory of truth which will be pre-
sented later. That is why it possesses individual constants and a predicate letter. As
far as the logic is concerned, though, there will be no semantic difference between
T -attributions and sentential letters.

The semantics involves three values, the numbers 0, 1=2, and 1, which are dis-
tributed among wffs in accordance with tables like the truth tables of classical seman-
tics. The treatment of the values 1 and 0 in the tables will be similar to the treatment
of truth and falsehood, respectively, in classical semantics. Indeed, our tables will
incorporate the classical ones, if the latter are set out in terms of the numerical values
1 and 0. Having value 1, however, is not the same as being true, and having value 0
is not the same as being false.

Our semantics, including the distribution of numerical values to wffs, is a way
of defining a class of valid inferences and wffs. In other words, it aims to set apart
the inferences and wffs which comprise the logic that is being constructed. It is
also a way of defining a theory of truth. The values are not implicitly identified
with any interesting properties of statements. So the word “semantics” is here used
conventionally for model theory; it has nothing to do with meaning or other semantic
notions. The notion of truth will of course emerge explicitly in our object-language
when we turn from the logic to the theory of truth. It would be problematic to identify
1 and 0 with truth and falsehood. For one thing, it would be incoherent to propose
a nonclassical logic for statements about truth, but use classical logic (as I do) when
reasoning about the assignment of numerical values. And, as we shall see, there
would be other problems as well.

One difference from classical semantics is that some connectives are not value-
functional. The value of a wff A^B or a wff A ! B is not always determined by the
values of A and B. So the semantics is nondeterministic in Avron’s sense (see [2]).5

There are two kinds of models, valuations� and valuations. The former include
the latter. A valuation� is an assignment, to each wff, of one of the three values. The
connectives are governed by Tables 1–4.

There are additional rules for cases (i) and (ii) in Tables 3 and 4, respectively.
To set them out, we need some terminology. We say that A is a deep conjunct of
B if and only if A is not a conjunction or double negation (does not have the form
C ^ D or the form ::C) and there is an occurrence O of A in B such that every
symbol, in B but outside O, in whose scope O lies is either a ^ or a : in a string of
:’s, where that string is not immediately preceded by another :, consists of an even

Table 1 Negation.

A :A
1 0
1=2 1=2

0 1
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Table 2 Disjunction.

A B A _ B
at least one has 1 1
both have 1=2, or the one has 1=2 and the other 0 1=2

both have 0 0

Table 3 Conjunction.

A B A ^ B
both have 1 1
both have 1=2, or the one has 1=2 and the other 1 1=2 or 0 (i)
at least one has 0 0

Table 4 The conditional.

A B A ! B
1 1 1
1 1=2 1=2

1 0 0
1=2 1 1
1=2 1=2 1 or 1=2 (ii)
1=2 0 1=2

0 1 1
0 1=2 1
0 0 1

number of :’s and is immediately followed either by O or by a symbol that is not a
: and lies before O. Note that any wff that is not a conjunction or double negation
counts as a deep conjunct of itself. A conjunction is built out of its deep conjuncts
through repeated application of ^ and possibly also ::. The wffs ŒC ^ D� ^ E and
C ^ ŒE ^ D� have the same deep conjuncts: those of C, those of D, and those of
E. Again, p1 ^ Œp1 ^ p1� has only one deep conjunct. And the deep conjuncts of
p1 ^ ::Œp2 ^ :::p3� are p1, p2, and :p3. A wff B gets 1 in a valuation� V if and
only if all its deep conjuncts have 1 there. And if every deep conjunct of B, or even
just one, has 0 in V , then B gets 0 there.

We say that B0 ! A0 is a contrapositive of A ! B if and only if one wff in
the pair ¹A; A0º is the negation of the other and, also, one wff in the pair ¹B; B0º

is the negation of the other. So :p1 ! :p2 has four contrapositives: p2 ! p1,
::p2 ! p1, p2 ! ::p1, and ::p2 ! ::p1.

We have two additional rules for conjunctions that fall under case (i): such a
conjunction must get the value 1=2 if it has only one deep conjunct; and there are no
conjunctions C and D such that every deep conjunct of C is a deep conjunct of D,
C gets 0, but D gets 1=2. We have two additional rules for conditionals in case (ii):
there are no wffs A, B, and C such that A, B, and C get 1=2, A ! B and B ! C get
1, but A ! C gets 1=2; and there are no wffs A and B such that A and B get 1=2,
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A ! B gets 1, but a contrapositive of A ! B gets 1=2. Any assignment that does
not conform with those rules is not a valuation�.

As usual, the value of a wff A in a valuation� V will be designated as jAjV . By
saying that A implies B, we mean that, for every valuation� V , jAjV � jBjV . For
instance, A and ::A imply each other.

A valuation, now, is also an assignment, to each wff, of one of the values 1, 1=2,
and 0. The tables remain the same, and the additional rules still hold, but we have
two more rules, one for ^ and one for !. Rule (˛) says that if A ^ B falls under case
(i), and there is no valuation� in which all its deep conjuncts have 1, and there is also
no valuation� in which they all have 0, then A ^ B must get 0. And rule (ˇ) says that
if A ! B falls under (ii), and A implies B, then A ! B must get 1. Any valuation�

that does not conform with those rules is not a valuation.
In the case of ^, it should be noted that if the deep conjuncts of A ^ B do not

all have 1 in any valuation� and do not all have 0 in any valuation�, then A ^ B
possesses more than one deep conjunct. For if under such circumstances it possessed
just one, that deep conjunct would get 1=2 in all valuations�. But no wff gets 1=2

in all valuations�, since all wffs have integral values in the valuations� in which the
atomic wffs have such values. Also, if every deep conjunct of C is a deep conjunct
of D, and D has only one deep conjunct, then C, too, has only one deep conjunct.
And if every deep conjunct of C is a deep conjunct of D, and the deep conjuncts of
C do not all have 1, and do not all have 0, in any valuation�, then the deep conjuncts
of D do not all have 1, and do not all have 0, in any valuation�. Thus, when we are
constructing a valuation and want to ensure that the second additional rule governing
^ in valuations� applies to all conjunctions in case (i), it suffices to ensure that it
applies to the conjunctions that do not have to get 1=2 because of possessing only
one deep conjunct and do not have to get 0 because of (˛).

As a result of the tables, if A $ B gets 1 in a valuation�, then the value of A
there is the same as the value of B; but if, in a valuation� or even a valuation, A and
B both have 1=2, then A $ B may or may not get 1 there.

Our focus will be on valuations, and validity is defined in terms of them.
Valuations� served as a prerequisite for formulating two of the rules that govern
valuations. 1 is the only designated value. An inference from premises A1; : : : ; Aj

to conclusion B is valid (A1; : : : ; Aj � B) if and only if B has 1 in every valuation
in which A1; : : : ; Aj have 1. A wff A is valid (� A) if and only if it has 1 in every
valuation.

We will sometimes talk about the opposite of a wff A. If A does not begin with a
:, then its opposite is :A. But if A is :B, then its opposite is B. We will also say
that 1 is the opposite of the value 0, and 0 is the opposite of 1; 1=2 is the opposite of
itself. So a wff and its opposite get opposite values.

Eschewing value-functionality for ! in case (ii) of Table 4 will give us a flex-
ibility we need in order to accommodate all instances of schema (T). As for ^,
permitting the value 0 in case (i) allows us to give that value to various contradic-
tions and other conjunctions with incompatible conjuncts. For example, we want to
be able to assign 0 to a contradiction A ^ :A even if A and :A have 1=2. We also
want to be able to give 0 to a conjunction ŒA ^ B� ^ Œ:A _ :B� even if none of A, B,
and :A _ :B has 0. On the other hand, if A has 1=2, then we should give the same
value to the conjunction A ^ A. Uttering an unembedded conjunction is equivalent
to uttering the two conjuncts: asserting the conjunction hardly differs from asserting
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the conjuncts, assuming the conjunction by way of a hypothesis is like assuming the
conjuncts, and so on. Hence, saying A ^ A is equivalent to saying A twice. So A ^ A
is repetitive in a strong sense, and we are precluded from giving it a value other than
that of A. Thus, value-functionality is eschewed for ^ too.6

Once we have abandoned value-functionality, the rules that accompany the tables
restore the validity of various classical principles which we would otherwise lose just
because of the flexibility we allowed ourselves in cases (i) and (ii). There is no reason
to deviate from classical logic in respects that do not serve the purpose of accommo-
dating schema (T) or other platitudes about truth. The point of the particular rules
will become clear once we see some inferences and wffs that are valid and some that
are not.

Modus ponens is validated. (For any A and B) A ! B; A � B. Thus, if the
conditional A ! B is valid, then so is the inference from A to B. On the other hand,
it may be that the inference is valid but the conditional is not. For the validity of the
inference turns only on what the value of B is when A gets 1, whereas the validity of
the conditional depends also on what is the case when A gets 1=2.

Generally, if � A1 ^ � � � ^ Ai ! B, then A1; : : : ; Ai � B. But it may be that
A1; : : : ; Ai � B yet ² A1 ^ � � � ^ Ai ! B. For example, ² ŒA ! B� ^ A ! B; that
is, it is not the case that, for every A and every B, the conditional ŒA ! B� ^ A ! B
is valid. For it is easy to construct a valuation V in which p1 gets 1=2, p2 gets 0,
and Œp1 ! p2� ^ p1 gets 1=2. (Say that V gives 1=2 to every conjunction E1 ^ E2

in case (i) of Table 3 unless the deep conjuncts of E1 ^ E2 do not all have 1 in any
valuation� and do not all have 0 in any valuation�.) Then, Œp1 ! p2� ^ p1 ! p2

will get 1=2 in V .
� A ! A. A wff of the form A ! A is as tautological as any one can be. So

it should be validated. This is ensured by rule (ˇ). Owing to that rule, A ! A
gets 1 in a valuation even if A has 1=2. Generally, the effect of (ˇ) is to validate
various conditionals in which it is valid to infer the consequent from the antecedent.
Other such conditionals are those of the form A ! ::A and those of the form
::A ! A. It validates them because it makes them get 1 in a valuation even when
their antecedent and consequent have 1=2. On the other hand, it may be valid to infer
B from A although A does not imply B; then (ˇ) does not validate A ! B.

� A ! A _ B, � B ! A _ B, and � :A ^ :B ! :ŒA _ B�. Thanks to the
table of ! and to rule (ˇ), in order to show the validity of a conditional C ! D, it
suffices to show that, in every valuation� V , jCjV � jDjV .

A _ B, A ! C, B ! C � C. Yet ² ŒA _ B� ^ ŒA ! C� ^ ŒB ! C� ! C. For
there is a valuation where p1 and p2 get 1=2, p3 gets 0, but Œp1 _ p2� ^ Œp1 ! p3�

^ Œp2 ! p3� gets 1=2. Also, � :ŒA _ B� ! :A, and � :ŒA _ B� ! :B.
Of course, � A _ A ! A, � A _ B ! B _ A, and � ŒA _ B� _ C ! A _ ŒB _ C�.

² A _ :A; it is not the case that, for every A, the disjunction A _ :A is valid. The
law of excluded middle is not validated. For if A has 1=2 in a valuation, then A_:A
also has 1=2 there.

A _ B; :A � B. But ² ŒA _ B� ^ :A ! B. For instance, there is a valuation in
which p1 has 1=2, p2 has 0, Œp1 _p2�^:p1 gets 1=2, and so Œp1 _p2�^:p1 ! p2

gets 1=2 too. However, � A _ B ! Œ:A ! B�. For, in every valuation� V ,
jA _ BjV � j:A ! BjV . On the other hand, ² :A ! ŒA _ B ! B�. There is a
valuation V in which p1 has 0, p2 has 1=2, and p1 _ p2 ! p2 gets 1=2. (Say that,
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in case (ii) of Table 4, V gives 1=2 to every conditional C ! D unless C implies D.)
So :p1 ! Œp1 _ p2 ! p2� gets 1=2 in V .

A_B, A ! C, B ! D � C_D. But ² ŒA_B�^ ŒA ! C�^ ŒB ! D� ! C_D.
For example, there is a valuation where p1 and p2 have 1=2, p3 and p4 have 0, and
Œp1 _ p2� ^ Œp1 ! p3� ^ Œp2 ! p4� gets 1=2.

A; B � A ^ B. Yet ² A ! ŒB ! A ^ B�. For it is easy to construct a valuation
V in which p1 gets 1, p2 gets 1=2, and p1 ^ p2 gets 0. (Say that V gives 0 to
every conjunction E1 ^ E2 in case (i) of Table 3 unless E1 ^ E2 has only one deep
conjunct.) Then, p1 ! Œp2 ! p1 ^p2� will get 1=2 in V . Also, � :A ! :ŒA^B�,
� :B ! :ŒA ^ B�, � A ^ B ! A, and � A ^ B ! B.

As is presumably desirable, � A ! A ^ A. One of the factors guaranteeing this
validity is the rule that, when in a valuation� we have case (i) of Table 3, A ^ B
must get 1=2 if it has only one deep conjunct. Without some such rule it could be
that a sentential letter p had 1=2 in a valuation� while p ^ p, or p ^ Œp ^ p�, had 0.
Now, assume that A gets 1=2 in a valuation� V . A can be seen as having the form
: � � � :„ ƒ‚ …
n times

B, where n is an even number, possibly zero, and B is not a double negation.

B has 1=2 in V . If it is not a conjunction, then A ^ A has only one deep conjunct
and so gets 1=2 in the valuation�. But A ^ A also gets 1=2 there, and not 0, if B is
a conjunction. For then B comes under case (i) (i.e., either both conjuncts of B have
1=2 in V or the one has 1=2 and the other 1) and every deep conjunct of A ^ A is a
deep conjunct of B. Generally, in every valuation� V , jAjV D jA ^ AjV .

� A ^ B ! B ^ A and � ŒA ^ B� ^ C ! A ^ ŒB ^ C�. It is here that we can
clearly see the effect of the rule that in no valuation� are there conjunctions C and D,
falling under case (i), such that every deep conjunct of C is a deep conjunct of D, C
gets 0, but D gets 1=2. For this rule does not allow the consequent of any conditional
A ^ B ! B ^ A or ŒA ^ B� ^ C ! A ^ ŒB ^ C� to get 0 in a valuation� in which
the antecedent has 1=2. Let us begin with A ^ B ! B ^ A. Note that B ^ A has the
same deep conjuncts as A^B. Suppose that A^B gets 1=2 in a valuation� V . Then,
A ^ B comes under case (i), as does B ^ A. So B ^ A cannot get 0 in V ; it must get
1=2. Generally, in every valuation� V , jA ^ BjV D jB ^ AjV .

The case of ŒA ^ B� ^ C ! A ^ ŒB ^ C� is more complicated. Here we must note
that every deep conjunct of B ^ C is a deep conjunct of ŒA ^ B� ^ C, and A ^ ŒB ^ C�

has the same deep conjuncts as ŒA ^ B� ^ C. Suppose that ŒA ^ B� ^ C gets 1=2 in
a valuation� V . Then, ŒA ^ B� ^ C comes under case (i) of Table 3, none of A, B,
and C has 0 in V , and at least one of A, B, and C has 1=2 there (they do not all have
1). So either (I) B ^ C comes under case (i) or (II) both B and C have 1 in V . In (I)
B ^ C must get 1=2, and not 0, in V ; in (II) B ^ C gets 1 there, but then A has 1=2.
In either (I) or (II), A ^ ŒB ^ C� comes under case (i). Then it cannot get 0 in V ; it
must get 1=2. So, in every valuation� V , jŒA ^ B� ^ CjV � jA ^ ŒB ^ C�jV . We can
similarly see that, also in every valuation� V , jA ^ ŒB ^ C�jV � jŒA ^ B� ^ CjV .

� :ŒA ^ :A�. A conjunction of the form A ^ :A is a straightforward contra-
diction. Denying it seems as natural as endorsing a straightforward tautology of the
form A ! A. Of course, when we diverge from classical logic, we are bound to
deviate from principles that seem natural. Yet not all principles are equally central to
logical orthodoxy. If we do not validate the wffs of the form :ŒA^:A�, we abandon
the law of noncontradiction. That is one of the most central laws in standard logic;
abandoning it marks as radical a deviation as abandoning A ! A. Such radicalism
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is not required by the project of providing a logical framework for a theory of truth
containing all biconditionals T a $ A where T means “true” and the constant a is
a name of A. The history of logic attests to how central the law of noncontradiction
has been.7

The validity of :ŒA ^ :A� is ensured by rule (˛). It is clear that if A has 1 or 0 in
a valuation, A ^ :A gets 0 there. What is due to (˛) is that A ^ :A not only can, but
must, get the value 0 if A and :A have 1=2. The deep conjuncts of A ^ :A are the
deep conjuncts of A and those of :A. If in a valuation� V they all had 1, then both
A and :A would get 1 in V . And if all the deep conjuncts had 0 in V , then both A
and :A would get 0 there. Thus :ŒA ^ :A� gets 1 in all valuations. Rule (˛) also
ensures that � :ŒA ^ ŒB ^ Œ:A _ :B���. Generally, the effect of the rule is to make
various conjunctions whose conjuncts clearly seem incompatible take on the value 0
in all valuations. In this way, it validates the negations of those conjunctions.

It may be asked why the rule in question did not assume the simpler form “If there
is no valuation� in which all the deep conjuncts of A ^ B have 1, then A ^ B must
get 0.” What is the purpose of the clause “there is no valuation� in which all the deep
conjuncts have 0”?

Some wffs, such as :Œp1 _ :p1� and :ŒŒp1 ! :p1� ! :p1�, get 1=2 in some
valuations but do not get 1 in any valuation�. Conjunctions in which such a wff
is the single deep conjunct give rise to a problem. If the rule assumed the simpler
form, then it would prescribe the value 0 for :Œp1 _ :p1� ^ :Œp1 _ :p1� in the
valuations that give 1=2 to :Œp1 _ :p1�, and so it would clash with our rule that
conjunctions in case (i) of Table 3 get 1=2 if they have only one deep conjunct. But
even if we ignore our rule about only one deep conjunct, it would be unmotivated to
validate the negation of :Œp1 _ :p1� ^ :Œp1 _ :p1� when we do not validate the
negation of :Œp1 _ :p1�. The problem extends to conjunctions that have more than
one deep conjunct, including some whose deep conjuncts each get 1 in a valuation�;
:Œp2 _ :p1� ^ :Œp1 _ :p2� is such a conjunction. Its deep conjuncts, which are
also its conjuncts, are :Œp2 _ :p1� and :Œp1 _ :p2�. Each one of them has 1 in
a valuation�, but there is no valuation� where both have 1. So if the rule under
discussion assumed the simpler form, we would give 0 to the conjunction in the
valuations that give 1=2 to :Œp2 _ :p1� and :Œp1 _ :p2�. Since there is also no
valuation� where one of the conjuncts has 1 and the other 1=2, the conjunction would
get 0 in all valuations, and so its negation would be validated. But, as we will see, we
want substitution to be validity-preserving: if in a valid wff we replace a sentential
letter with some wff, then the result of the replacement should also be valid. If we
replace p2 with p1 in the negation of :Œp2 _ :p1� ^ :Œp1 _ :p2�, then we get the
negation of :Œp1 _ :p1� ^ :Œp1 _ :p1�. So we would end up validating the latter
negation.

We therefore need to strengthen the condition “there is no valuation� in which
all the deep conjuncts of A ^ B have 1” in the rule. The idea here is to replace
a condition that is analogous to the ordinary concept of incompatibility with one
(“there is no valuation� in which all the deep conjuncts of A ^ B have 1 and there is
no valuation� in which they all have 0”) which is analogous to a standard notion of
contradictoriness. According to that notion, two statements are contradictory if and
only if they cannot both be true and they cannot both be false (see, e.g., Sainsbury
[11, pp. 19–23]). In this way, the conjunction :Œp1 _ :p1� ^ :Œp1 _ :p1�, as well
as :Œp1 _:p1�^:Œp2 _:p2� and :Œp2 _:p1�^:Œp1 _:p2�, does not have to get
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0 in the valuations that give its conjuncts 1=2. The condition chosen here is merely
analogous to that standard notion of contradictoriness, since it may concern more
than two deep conjuncts and replaces truth and falsehood with the numerical values
1 and 0. It is an open question whether there is any weaker condition that avoids the
problem explained in the preceding paragraph.

It may also be asked why the possibility of two values for A^B, 1=2 and 0, arises
not only when both A and B have 1=2, but also when one of them has 1=2 and the
other has 1. Why not stipulate that A^B should get 1=2 in the latter case? The prob-
lem is that some conjunctions whose negations we want to validate would sometimes
get 1=2. Two examples are p1 ^ Œp2 ^ Œ:p1 _ :p2�� and p1 ^ Œp2 ^ :Œp1 ^ p2��.
It is good to give either conjunction 0 in all valuations, since intuitively its deep
conjuncts are incompatible and even contradictory. If we adopted the suggested stip-
ulation, but p1 and p2 had 1 and 1=2 respectively in a valuation V , then :p1 _ :p2

and :Œp1 ^ p2� would get 1=2. Then, p2 ^ Œ:p1 _ :p2� and p2 ^ :Œp1 ^ p2�

might well get 1=2. We could not force either of those conjunctions to get 0, since
there is no problem with giving 1, in a valuation�, to both p2 and :p1 _ :p2 or
with giving 1 to both p2 and :Œp1 ^ p2�. And then p1 ^ Œp2 ^ Œ:p1 _ :p2�� and
p1 ^ Œp2 ^ :Œp1 ^ p2�� would have 1=2 in V rather than 0.

Further, it may be asked why the definition of “deep conjunct” involves double
negation. Why did we not stipulate, more simply, that A is a deep conjunct of B if
and only if A is not a conjunction and there is an occurrence O of A in B such that
every symbol, in B but outside O, in whose scope O lies is a ^? The problem is that
if we adopted the simpler stipulation, we would end up giving 0 in every valuation to
p1 ^ Œ:p1 ^p2� and to Œp1 ^p2�^ Œ:p1 ^:p2�, but not to p1 ^::Œ:p1 ^p2� or to
::Œp1 ^ p2� ^ ::Œ:p1 ^ :p2�. For (in whichever of the two ways we may define
“deep conjunct”) p1, :p1, and p2 do not all have 1, and do not all have 0, in any
valuation�, whereas p1 and ::Œ:p1 ^p2� do not both have 1 in any valuation�, but
there is a valuation� where both have 0. Similarly, there is a valuation� where both
::Œp1 ^ p2� and ::Œ:p1 ^ :p2� get 0. But, as a referee pointed out, any reason for
validating the negation of p1 ^ Œ:p1 ^p2� is also a reason for validating the negation
of p1 ^ ::Œ:p1 ^ p2�.

Since we validate :ŒA ^ :A� and do not permit a conjunction A ^ A to have
0 in a valuation where A has 1=2, we abandon the substitution of equivalents:
: : : B : : : ; A $ B ² : : : A : : :; that is, it is not the case that, for every wff : : : B : : :

and every wff A, the inference from : : : B : : : and A $ B to : : : A : : : is valid. The
reason is that some valuations give 1 to certain biconditionals of the form A $ :A.
Indeed, it is crucial that there should be such valuations, for we want to allow val-
uations that give 1 to all the statements about truth contained in the theory to be
presented in the next section. The theory contains all biconditionals T c $ C where
T means “true” and the constant c is a name of C. If C is a liar sentence, then the
relevant biconditional has the form A $ :A. If, now, a valuation V gives 1 to
A $ :A, then it must assign the value 1=2 to A. Thus V will give 1 to :ŒA ^ :A�,
like any valuation, but not to :ŒA ^ A�, for it cannot give 0 to A ^ A. The value of
:ŒA ^ A� in V will be 1=2.

Although � A ! A, it is not the case that, for every A and every valid wff >,
� A ! A ^ >. Whatever > may be, there is a valuation that assigns 1=2 to p1 and
0 to p1 ^ > and so gives 1=2 to p1 ! p1 ^ >. That may seem odd, but there are
independent reasons for not validating such conditionals. For example, we should
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not validate :Œp3 _ :p3� ! :Œp3 _ :p3� ^ :Œ:p3 ^ ::p3�. The antecedent will
have 1=2 in any valuation that gives 1=2 to p3. But we ought always to give 0 to the
consequent; it has the form :ŒA _ B� ^ :Œ:A ^ :B�, so its conjuncts are intuitively
contradictory. Then, since we should not validate that conditional, and we want
substitution to be validity-preserving, we should not validate p1 ! p1^:Œp2^:p2�

either. And it would be unmotivated to validate p1 ! p1 ^ > for some choices of >

and not for others.
A ^ ŒB _ C� � ŒA ^ B� _ ŒA ^ C�. But ² A ^ ŒB _ C� ! ŒA ^ B� _ ŒA ^ C�. For

instance, there is a valuation V in which p1, p2, and p3 have 1=2, p1 ^ Œp2 _ p3�

gets 1=2 too, but p1 ^ p2 and p1 ^ p3 get 0. (Say that, in case (i) of Table 3, V

gives 0 to every conjunction E1 ^ E2 if and only if either the deep conjuncts of
E1 ^ E2 do not all have 1 in any valuation� and do not all have 0 in any valuation�

or E1 ^ E2 has more than one deep conjunct and one of its deep conjuncts is p2

or p3.) Then p1 ^ Œp2 _ p3� ! Œp1 ^ p2� _ Œp1 ^ p3� gets 1=2 in V . Likewise,
ŒA ^ B� _ ŒA ^ C� � A ^ ŒB _ C�, but ² ŒA ^ B� _ ŒA ^ C� ! A ^ ŒB _ C�.

Also, A _ ŒB ^ C� � ŒA _ B� ^ ŒA _ C� and ŒA _ B� ^ ŒA _ C� � A _ ŒB ^ C�, but
² A_ŒB^C� ! ŒA_B�^ŒA_C� and ² ŒA_B�^ŒA_C� ! A_ŒB^C�. There is a
valuation V in which p1, p2, and p3 have 1=2, p2^p3 gets 0, and Œp1_p2�^Œp1_p3�

also gets 0. The value of p1 _ Œp2 ^ p3� ! Œp1 _ p2� ^ Œp1 _ p3� in V is 1=2. And
there is a valuation V 0 in which p1 has 0, p2 and p3 have 1=2, p2 ^ p3 gets 0, but
Œp1 _ p2� ^ Œp1 _ p3� gets 1=2. The value of Œp1 _ p2� ^ Œp1 _ p3� ! p1 _ Œp2 ^ p3�

in V 0 is 1=2.
As regards De Morgan’s laws, we have already seen that � :A^:B ! :ŒA_B�.

Similarly, � :A _ :B ! :ŒA ^ B�. For, in every valuation� V , j:A _ :BjV �

j:ŒA ^ B�jV . Also, :ŒA _ B� � :A ^ :B. Yet ² :ŒA _ B� ! :A ^ :B. For
example, there is a valuation in which p1 has 1=2, so :Œp1 _ :p1� gets 1=2 too,
but of course :p1 ^ ::p1 has 0, and so :Œp1 _ :p1� ! :p1 ^ ::p1 gets 1=2.
Moreover, :ŒA ^ B� ² :A _ :B; it is not the case that, for all A and B, inferring
:A _ :B from :ŒA ^ B� is valid. If that were the case, then all disjunctions A _ :A
would be valid. For � :ŒA ^ :A�, and :A _ ::A � A _ :A.

Similarly, if, for all A and B, inferring A _ B from :Œ:A ^ :B� were valid,
then all disjunctions A _ :A would be valid. For � :Œ:A ^ ::A�. Thus
:Œ:A ^ :B� ² A _ B. On the other hand, :Œ:A _ :B� � A ^ B. Yet
² :Œ:A _ :B� ! A ^ B. There is a valuation in which p1 and p2 have 1=2,
but p1 ^ p2 gets 0, and so the value of :Œ:p1 _ :p2� ! p1 ^ p2 is 1=2. Also,
since inferring from a conditional to a contrapositive of it is valid (as we will see),
� A _ B ! :Œ:A ^ :B� and � A ^ B ! :Œ:A _ :B�.

� :A ! ŒA ! B�, � B ! ŒA ! B�, � :ŒA ! B� ! A, and
� :ŒA ! B� ! :B. Given these validities, our conditional can fairly be described
as a material conditional. Also, A, :B � :ŒA ! B�. But ² A ^ :B ! :ŒA ! B�.
It is easy to construct a valuation V in which p1, p2, and p1 ^ :p2 get 1=2, but
p1 ! p2 gets 1. (Say that V gives 1=2 to every conjunction E1 ^ E2 in case (i) of
Table 3 unless the deep conjuncts of E1 ^ E2 do not all have 1 in any valuation� and
do not all have 0 in any valuation�, and that V gives 1 to every conditional in case
(ii) of Table 4.) The value of p1 ^ :p2 ! :Œp1 ! p2� in V is 1=2.

A ! B, B ! C � A ! C. For if A ! B and B ! C get 1 in a valuation
V , then jAjV � jBjV and jBjV � jCjV . So jAjV � jCjV . This guarantees that
A ! C gets 1 in V unless A and C have 1=2 in V . But, if they have 1=2, then
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B also has 1=2 there, and one of the additional rules for conditionals in case (ii)
ensures that, once more, A ! C gets 1 in V . The purpose of the rule is to help
validate the inference from A ! B and B ! C to A ! C. On the other hand,
² ŒA ! B� ^ ŒB ! C� ! ŒA ! C�. For there is a valuation in which, say, p1, p2,
and p3 have 1, 1=2, and 0, respectively, while Œp1 ! p2� ^ Œp2 ! p3� gets 1=2.
Then Œp1 ! p2� ^ Œp2 ! p3� ! Œp1 ! p3� gets 1=2.

� ŒA ! B� ! ŒB0 ! A0�, where B0 ! A0 is a contrapositive of A ! B. For,
in every valuation� V , jA ! BjV � jB0 ! A0jV . If A ! B gets 1 in V , then
jAjV � jBjV . So jB0jV � jA0jV . This guarantees that B0 ! A0 gets 1 in V unless B0

and A0 have 1=2 there. If they have 1=2, then the value of A and B is also 1=2, and
one of the additional rules for conditionals in case (ii) ensures that, again, B0 ! A0

gets 1 in V . Clearly, the purpose of the rule is just to help validate the inference from
A ! B to B0 ! A0. And it cannot be that, in V , A ! B and B0 ! A0 get 1=2 and
0, respectively. For if B0 and A0 have 1 and 0, then A and B have 1 and 0, so A ! B
gets 0.

A ! :A ² :A and :A ! A ² A. There is a valuation in which p1 has 1=2,
but both p1 ! :p1 and :p1 ! p1 get 1. On the other hand, A ! B ^ :B � :A
and :A ! B ^ :B � A. However, ² ŒA ! B ^ :B� ! :A. For instance,
p1 ! p2 ^:p2 does not imply :p1: there are valuations� in which p1 ! p2 ^:p2

has 1, but :p1 has 1=2, and there are also valuations� in which p1 ! p2 ^:p2 gets
1=2, but :p1 gets 0. Thus it is easy to construct a valuation V in which p1 has 1=2,
so p1 ! p2 ^ :p2 also has 1=2, and Œp1 ! p2 ^ :p2� ! :p1 gets 1=2. (Say that,
in case (ii) of Table 4, V gives 1=2 to every conditional C ! D unless C implies D.)
Likewise, ² Œ:A ! B ^ :B� ! A.

Of course, � :A _ B ! ŒA ! B�. But A ! B ² :A _ B. For example, there
is a valuation in which p1 has 1=2, so :p1 _ p1 gets 1=2 too, but p1 ! p1 gets 1.
Again, :ŒA ! B� � A ^ :B. But ² :ŒA ! B� ! A ^ :B. There is a valuation
where p1 has 1, p2 has 1=2, p1 ^ :p2 gets 0, and so :Œp1 ! p2� ! p1 ^ :p2 gets
1=2.

Up to now, we have considered only inferences whose premises are wffs.
We can now touch upon inferences whose premises, or at least some of them,
are other inferences. To be precise, we can consider inferences of the form
“�1; : : : ; �k ; A1; : : : ; An; hence, B” (k � 1, n � 0). Here, A1; : : : ; An and B
are wffs, but each one of �1; : : : ; �k is an inference in which the premises and
conclusion are wffs. For example, we make an inference whose premise is another
inference whenever we conclude C ! D once we have inferred D from C.8

In order to evaluate inferences whose premises include other inferences, we
need to extend our concept of validity to them. Here is how: the inference from
�1; : : : ; �k ; A1; : : : ; An to B is valid (�1; : : : ; �k ; A1; : : : ; An � B) if and only if B
has value 1 in every valuation in which �1; : : : ; �k are 1-preserving and A1; : : : ; An

have 1. An inference from the wffs C1; : : : ; Cj to the wff D is 1-preserving in a
valuation V just in case either C1; : : : ; Cj do not all have 1 in V or D has 1 there.

A _ B, .AI C/, .BI D/ � C _ D, where .AI C/ is the inference from A to C and
.BI D/ is the inference from B to D. On the other hand, .AI B/ ² A ! B; that is, it
is not the case that, for all A and B, inferring A ! B once one has inferred B from
A is valid. For instance, inferring p1 ! p2 from .p1I p2/ is not valid. There is a
valuation V in which p1 has 1=2, so .p1I p2/ is 1-preserving, but p2 has 1=2 or 0,
and p1 ! p2 gets 1=2. However, A _ :A; .AI B/ � A ! B. Also, .AI :A/ ² :A
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and .AI B ^ :B/ ² :A. This is shown by V again. For, in V , .p1I :p1/ and
.p1I p2 ^ :p2/ are 1-preserving, but :p1 gets 1=2. Still, A _ :A, .AI :A/ � :A
and A _ :A, .AI B ^ :B/ � :A.

If we wish to treat disjunction analogously to conjunction, we can allow that A_B
may get either 1=2 or 1 in a valuation� when A and B have 1=2 or the one has 1=2

and the other 0. We can then define a concept of deep disjunct by analogy with that
of deep conjunct and stipulate that, in any valuation where A and B have such values,
A _ B will get 1 if there is no valuation� in which all its deep disjuncts have 0. We
may here add “and there is also no valuation� in which they all have 1.” If we make
those changes, we will validate A _ :A for every A. On the other hand, we will
cease validating the inference from p1 _ :p1, p1 ! p2, and :p1 ! p2 to p2. For
some valuations will give 1=2 to p1 and p2 but 1 to all of p1 _ :p1, p1 ! p2,
and :p1 ! p2. So it will not be generally valid to infer from A _ B, A ! C, and
B ! C to C. We will also cease validating the inference from p1 ^ Œp2 _ :p2� to
Œp1 ^ p2� _ Œp1 ^ :p2�. For some valuations will give 1 to both p1 and p2 _ :p2

but 1=2 to p2 and also 1=2 to p1 ^ p2, p1 ^ :p2, and their disjunction. So it will
not be always valid to infer from A ^ ŒB _ C� to ŒA ^ B� _ ŒA ^ C�. It seems that
overall no significant gain would stem from making those changes.

It is worth showing that substitution is validity-preserving. In other words, replac-
ing a sentential letter with a wff, or an individual constant with another individual
constant, throughout a valid wff or a valid inference yields a wff or inference that is
also valid. Sentential letters and individual constants are schematic letters. So wffs
are schemas, and inferences are patterns of reasoning. If we begin with a wff or infer-
ence, and in it we replace a sentential letter with a wff, or an individual constant with
another one, then the result is either a more restricted schema or pattern than what we
began with or an alphabetic variant of what we began with. For example, when in a
wff A we replace a sentential letter with a wff that is not a sentential letter, the result
can be seen as a schema that is more restricted than A. When in A we replace an
individual constant with another one c, the result can be seen as a schema that either
is more restricted than A or is just an alphabetic variant of A (depending on whether
c already occurred in A). If we validate a schema or a pattern of reasoning, then we
should also validate its alphabetic variants, as well as the more restricted schemas or
patterns. So substitution should be validity-preserving. That it is will be a corollary
of the next theorem.

For any A, B, and C, AŒB=C� will be the result of substituting B for C through-
out A. Similarly, if � is an inference, then � ŒB=C� will be the result of substituting
B for C throughout � .

Theorem 1 If V is a valuation, E is an atomic wff, and E0 is any wff, then there
is a valuation which, for every A, gives A the value that V gives to AŒE0=E�.

Proof For any valuation� V , let V ŒE0=E� be the assignment of values to wffs which,
for every wff A, gives A the value that V gives to AŒE0=E�. We can prove that V ŒE0=E�

is a valuation�. Of course, V ŒE0=E� does not assign 1 to A and 1=2 to :A. It does not
go against the table of any connective. So how can it fail to be a valuation�? Three
possibilities arise.

(i) Perhaps, there are A and B such that V ŒE0=E� gives 1=2 to both, or 1=2 to the
one and 1 to the other, and then gives 0 to A ^ B, yet A ^ B has only one
deep conjunct, D. But then, V will be assigning 1=2 to both AŒE0=E� and
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BŒE0=E�, or 1=2 to the one and 1 to the other, and will also be assigning 0
to AŒE0=E� ^ BŒE0=E�. Note that the deep conjuncts of AŒE0=E� ^ BŒE0=E�

are just the deep conjuncts of DŒE0=E�. Moreover, V will be assigning 1=2 to
DŒE0=E�; for if it assigned it 1, it would assign 1 to both AŒE0=E� and BŒE0=E�,
and if it assigned it 0, it would assign 0 to both AŒE0=E� and BŒE0=E�. Now,
DŒE0=E�, like any wff, can be seen as having the form : � � � :„ ƒ‚ …

n times

C where n is an

even number, possibly zero, and C is not a double negation. C has 1=2 in V .
The deep conjuncts of DŒE0=E� are those of C. If C is not a conjunction, then
AŒE0=E�^BŒE0=E� has only one deep conjunct. This goes against the fact that
V gives 0 to AŒE0=E� ^ BŒE0=E�. If, on the other hand, C is a conjunction,
then V will be assigning 1=2 to both conjuncts of C or 1=2 to the one and
1 to the other. And then the values 0 and 1=2 of AŒE0=E� ^ BŒE0=E� and C,
respectively, go against the fact that every deep conjunct of AŒE0=E�^BŒE0=E�

is a deep conjunct of C.
(ii) Perhaps, there are conjunctions C and C0 such that V ŒE0=E� gives them 0 and

1=2, respectively, yet they both come under case (i) of Table 3, and every
deep conjunct of C is a deep conjunct of C0. But then, V will be assigning 0
to CŒE0=E� and either 1=2 to both its conjuncts or 1=2 to the one and 1 to the
other, and V will also be assigning 1=2 to C0ŒE0=E� and either 1=2 to both its
conjuncts or 1=2 to the one and 1 to the other. This goes against the fact that
every deep conjunct of CŒE0=E� will be a deep conjunct of C0ŒE0=E�. And
that is a fact because any wff A is a deep conjunct of CŒE0=E� if and only if it
is a deep conjunct of DŒE0=E� for some deep conjunct D of C, and any wff A0

is a deep conjunct of C0ŒE0=E� if and only if it is a deep conjunct of D0ŒE0=E�

for some deep conjunct D0 of C0.
(iii) Perhaps, there are wffs A, B, and C such that V ŒE0=E� gives 1=2 to A, B, and C,

1 to A ! B and B ! C, but 1=2 to A ! C. Or there are wffs A and B such
that V ŒE0=E� gives 1=2 to A and B, 1 to A ! B, but 1=2 to a contrapositive of
A ! B. It is clear that either case goes against the fact that V conforms with
the additional rules governing conditionals in valuations�.

Thus, for any valuation� V , V ŒE0=E� is also a valuation�. As a consequence, we
see that if D1; : : : ; Di do not all have 1 in any valuation� and do not all have 0 in
any valuation�, then D1ŒE0=E�; : : : ; Di ŒE0=E� do not all have 1 in any valuation� and
do not all have 0 in any valuation�. For if there is a valuation� V in which all of
D1ŒE0=E�; : : : ; Di ŒE0=E� get 1 (or one in which all get 0), then all of D1; : : : ; Di get 1
(or 0) in V ŒE0=E�. We similarly see that if A implies B, then AŒE0=E� implies BŒE0=E�.

We can further prove that, for any valuation V , V ŒE0=E� is also a valuation. We
already know it is a valuation�. How can it fail to be a valuation? Two possibilities
arise.

(iv) Perhaps, there are wffs A and B such that V ŒE0=E� gives 1=2 to both, or 1=2

to the one and 1 to the other, and gives 1=2 to A ^ B, yet the deep conjuncts
D1; : : : ; Di of A ^ B do not all have 1 in any valuation� and do not all have
0 in any valuation�. But then, V will be assigning 1=2 to both AŒE0=E� and
BŒE0=E�, or 1=2 to the one and 1 to the other, and will also be assigning 1=2 to
AŒE0=E�^BŒE0=E�. Moreover, a wff is a deep conjunct of AŒE0=E�^BŒE0=E�

if and only if it is a deep conjunct of at least one of D1ŒE0=E�; : : : ; Di ŒE0=E�.
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Also, D1ŒE0=E�; : : : ; Di ŒE0=E� do not all have 1 in any valuation� and do not
all have 0 in any valuation�. Thus it is not the case that, in some valuation�,
the deep conjuncts of D1ŒE0=E�; : : : , and the deep conjuncts of Di ŒE0=E� all
have 1 or all have 0. So the value 1=2 of AŒE0=E� ^ BŒE0=E� goes against
the fact that the deep conjuncts of that conjunction do not all have 1 in any
valuation� and do not all have 0 in any valuation�.

(v) Perhaps, there are wffs A and B such that V ŒE0=E� gives 1=2 to both and also
gives 1=2 to A ! B, yet A implies B. Then, V will be assigning 1=2 to
AŒE0=E�, BŒE0=E�, and AŒE0=E� ! BŒE0=E�, although AŒE0=E� will imply
BŒE0=E�.

Corollary Let E be an atomic wff, and let E0 be any wff. If � A, then
� AŒE0=E�. If A1; : : : ; Aj � B, then A1ŒE0=E�; : : : ; Aj ŒE0=E� � BŒE0=E�.
If �1; : : : ; �k ; A1; : : : ; An � B, then �1ŒE0=E�; : : : ; �k ŒE0=E�; A1ŒE0=E�; : : : ;

AnŒE0=E� � BŒE0=E�.

Proof If there is a valuation V in which AŒE0=E� gets a value other than 1, then
there is a valuation, namely, V ŒE0=E�, in which A gets a value other than 1. Thus if
² AŒE0=E�, then ² A. A similar point applies to inferences.

The corollary does not only cover the case of replacing a sentential letter with a wff,
but also the case of replacing an individual constant with another individual constant.
For, in our language, substituting b for a amounts to substituting T b for T a.

3 Truth

At the level of the logic just expounded, the predicate letter T and the individual
constants had no particular meaning. In the theory of truth that will be presented now,
they take on their intended meanings: T means “true,” and the individual constants
are names of the wffs of our language. I assume that we have a function R from the
set of the individual constants onto the set of the wffs. Each constant a is a name
of R.a/.9 R can be any function from the constants onto the wffs. So R.a/ may
contain A. For example, it may be the liar sentence :T a. Or again, R.a/ may
be a Curry sentence T a ! B ^ :B. Or R.a/ and R.b/ may be :T b and T a,
respectively.

The theory will be specified model-theoretically. I will select a set S of valuations
and define the theory as C1 [ C2, where C1 is the class of the wffs that have the
designated value, 1, in all valuations in S , and C2 is the class of the simple inferences
where the conclusion has 1 in every valuation V 2 S in which the premises have 1.
An inference is simple if and only if the premises and conclusion are wffs (and not
other inferences). The members of C1 in which T occurs are the statements and
principles about truth that are sanctioned by the theory. The members of C2 in which
T occurs are the simple inferences involving truth that the theory approves. (Of
course, C1 contains the valid wffs of our logic irrespective of whether T occurs in
them. Likewise, C2 contains all valid simple inferences.)

Let R.a1/; R.a2/; : : : be A1; A2; : : : . The class C1 should contain all bicondi-
tionals Tai $ Ai . (To be precise, it should contain all conjunctions of the form
ŒTai ! Ai � ^ ŒAi ! Tai �.) It is those biconditionals, more than anything else,
that characterize the concept of truth. An attribution of truth to a sentence is equiv-
alent to that sentence. So even Tai $ :Tai should belong to C1 if ai names a
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liar sentence :Tai . Thus S should contain only valuations that give 1 to all of
Ta1 $ A1; Ta2 $ A2; : : : . This is our basic stipulation about S .

There are other statements and inferences about truth which we would like to
include in our theory because they seem obvious. Some are automatically included
once we make the basic stipulation about S . One example is the wffs of the form
Tai ! :Tan where An is :Ai . If Ai is true, then its negation is not true. Any
valuation that assigns 1 to Tai ! Ai and to Tan ! :Ai will also, by contraposition
and transitivity, give 1 to Tai ! :Tan. Other statements about truth may not
be automatically included, though. For example, there seems to be no guarantee
that each valuation assigning 1 to all of Ta1 $ A1; Ta2 $ A2; : : : will give 1 to
:ŒTai ^ Tan� for all Ai and An that are related as explained.

All valuations give 0 to conjunctions of the form A ^ :A and thus give 1 to
:ŒA ^ :A�. But we also want the valuations in S to assign 1 to :ŒTai ^ Tan� if
the wff An is the negation of the wff Ai ; for valuations intended to articulate the
concept of truth should assign the designated value to the claim that those two wffs
are not both true. Just as the law of noncontradiction is a basic principle of logic,
so it is a basic principle about truth (very akin to noncontradiction) that a statement
and its negation are not both true. The inference from :ŒAi ^ An�, Tai $ Ai ,
and Tan $ An to :ŒTai ^ Tan� is not valid in our logic unless Ai meets special
conditions. I stipulate that S should contain only valuations V that have the following
property.

(Prop) For any C and D, C^D gets 0 in V if there are sequences E1; : : : ; Em and
E0

1; : : : ; E0
m of wffs (m � 2) such that for every i (1 � i < m): Ei is a T -attribution

Taji
prefixed with zero, one, or more negation signs; E0

i is also a T -attribution,
Taj 0

i
, prefixed with zero, one, or more negation signs; E1 and E0

1 are deep conjuncts
of C ^ D; EiC1 results from Ei by replacing Taji

with Aji
; E0

iC1 results from E0
i by

replacing Taj 0
i

with Aj 0
i
; and, in every valuation, Em and E0

m have opposite values.

(Prop) guarantees that if An is :Ai , then Tai ^Tan gets 0 and so :ŒTai ^Tan� gets
1: take m D 2, and let Tai , Ai , Tan, :Ai be E1, E2, E0

1, E0
2, respectively.

(Prop) also guarantees that TaiC ^ TanC gets 0, and so :ŒTaiC ^ TanC � gets 1,
if AiC is Tai while AnC is Tan. The attribution of truth to Ai and the attribution
of truth to :Ai are not both true. Further, (Prop) ensures that :ŒTai ^ :Tad � gets
1 if Ad is ::Ai . It cannot be that Ai is true but its double negation is not. (Take
m D 2, and let Tai , Ai , :Tad , :::Ai be E1, E2, E0

1, E0
2, respectively.) (Prop)

also ensures that :ŒTaiC ^ :TadC � gets 1 if AdC is Tad . It cannot be that the
attribution of truth to Ai is true but the attribution of truth to the double negation of
Ai is not true.

However, a valuation that has (Prop) may not give 0 to the wffs Tai ^ ŒTan_

ŒB ^ :B��, Tai ^ ŒTan _ :ŒB ! B��, and the like. We can modify the property so as
to secure that value for all such wffs. We can do that by replacing the clause “E1 and
E0

1 are deep conjuncts of C ^ D” in (Prop) with “each one of E1 and E0
1 is equivalent

to a deep conjunct of C ^ D,” where two wffs are equivalent if and only if, in each
valuation, the one has the same value as the other. For any B, Tan is equivalent to
Tan _ ŒB^:B�. In this way, the negation of Tai ^ ŒTan _ ŒB^:B�� is certain to be in
our theory. Still, that way will not secure the value 0 for Tai ^ ŒTan _ ŒTaj ^ Tam��,
where Am is :Aj , j ¤ n, and m ¤ n, and it is an open question how to secure
0 for that conjunction. It is desirable to have :ŒTai ^ ŒTan _ ŒB ^ :B��� and
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:ŒTai ^ ŒTan _ ŒTaj ^ Tam��� in our theory, but at any rate if we have the one,
then we should also have the other. Thus I do not modify (Prop).

So, a valuation belongs to S if and only if it gives 1 to all biconditionals
Ta1 $ A1; Ta2 $ A2; : : : and also has the property (Prop). I do not claim that
if we select S in that way, then our theory (C1 [ C2) contains all the statements
and inferences about truth that seem obvious. For example, there seems to be no
guarantee that the valuations in S will give 1 to every conditional Tak ! Tai _Taj

where Ak is Ai _ Aj . (On the other hand, if Tak gets 1 in a valuation V in S , then
Tai _ Taj also gets 1 there. For T a has 1 in V if and only if R.a/ has 1 in V ;
and a disjunction has 1 in a valuation if and only if one of its disjuncts has 1 there.
Thus the inference from Tak to Tai _ Taj makes it into C2.) Nevertheless, thanks
especially to the biconditionals Ta1 $ A1; Ta2 $ A2; : : : , the theory is quite close
to our pretheoretic conception of truth.

Or rather, that is so if S , as defined, is not empty. If it is empty, then C1 will con-
tain all wffs, and C2 will contain all simple inferences, in our language. In this case,
our theory of truth will not be particularly interesting. Happily, things are different.
We can prove that there are valuations with the features required for membership in
S . Indeed, any assignment of values (1, 1=2, 0) to sentential letters can be extended
to a valuation in S .

Central Theorem For each assignment K of values to one or more sentential let-
ters, there is a valuation that gives 1 to all of Ta1 $ A1; Ta2 $ A2; : : : , incorpo-
rates K, and has (Prop).

Proving the Central Theorem will be our task in Section 4. The proof is complicated.
One difficulty in constructing the desirable valuation is of course that, on the one
hand, the values of compound wffs depend on the values of shorter ones, but, on the
other, the value of any atomic wff Tai should be the same as the value of the possi-
bly compound Ai . We cannot use a fixed-point construction of the kind developed
by Kripke [6] here. There is a property of monotonicity that is crucial for that con-
struction: if all atomic wffs that have integral values in a model M keep those values
in a model M 0, then all wffs that have integral values in M keep those values in M 0.
Tables 1–4 of Section 2 do not guarantee that property, and the reason is that value 0
is possible in case (i) of Table 3 for conjunction and value 1 is possible in case (ii) in
Table 4 of the conditional.

We can see here how some paradoxical wffs lead us to eschew value-functionality
in case (ii). Say that aj names the wff Taj ! :Taj . We want to give 1 to the
biconditional Taj $ ŒTaj ! :Taj �. Suppose that we have selected the tables
that will govern the connectives, except for rows (i) and (ii), and we have determined
that A ^ B does not get 1 unless both A and B get 1. Then the only way to ensure
value 1 for the biconditional is to assign 1=2 to Taj and to :Taj , consider that
Taj ! :Taj gets 1=2, and consider that each one of the conditionals that make up
the biconditional gets 1 while its antecedent and consequent have 1=2.

If Ai1 ; : : : ; Ain � Aj , then the inference from Tai1 ; : : : ; Tain to Taj belongs
to C2; for, in any valuation in S , T a gets 1 just in case R.a/ gets 1. Also, if
� Ai ! Aj , then the conditional Tai ! Taj belongs to C1. For every valua-
tion in S gives 1 to Tai ! Ai and Aj ! Taj , so by transitivity it also gives 1 to
Tai ! Taj .
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We have seen that the inference from Tak to Tai _ Taj , where Ak is Ai _ Aj ,
belongs to C2. Likewise, the converse inference, from Tai _ Taj to Tak , belongs
to C2. Our theory also contains the inference from Tai ^ Taj to Tal , where Al is
Ai ^Aj , and that from Tal to Tai ^Taj . Moreover, the inference from Tai ! Taj

to Tam, where Am is Ai ! Aj , and the inference from Tam to Tai ! Taj , make
it into the theory because, by transitivity, Tai ! Taj gets 1 in any valuation V in S

if and only if Ai ! Aj gets 1 in V .
Perhaps unexpectedly, our theory of truth leaves no room for sentences that are

neither true nor false. (Do not see the numerical values; see what the theory says.)
Of course, we have no predicate F for falsity, but we can equate the falsity of a
sentence with the truth of its negation. This equation is usually accepted by those
who believe that some sentences are neither true nor false. Let Ai be any wff, and
let An be :Ai . We have that C1 contains the conditional :Tai ! Tan, which
effectively tells us that if Ai is not true, then it is false. For every valuation in S gives
1 to Ai ! Tai and An ! Tan, so by contraposition and transitivity it also gives 1
to :Tai ! Tan. The theory also contains :Tan ! Tai : if Ai is not false, then it
is true. This is partly due to the fact that � ::Ai ! Ai . And, just as :ŒTai ^ Tan�

belongs to the theory, so does :Œ:Tai ^ :Tan�: it is not the case that Ai is not true
and not false. To see that, apply (Prop), taking m D 2 and letting :Tai , :Ai , :Tan,
::Ai be E1, E2, E0

1, E0
2, respectively.

On the other hand, our theory does not characterize every sentence as being either
true or false. It may not contain the disjunction Tai _ Tan (Ai is true or false).
The logic does not validate the inference from :Œ:Tai ^ :Tan� to Tai _ Tan. For
example, the theory does not contain the disjunction if Ai is a liar sentence :Tai .
For every valuation in S , in order to give 1 to Tai $ :Tai , must assign 1=2 to Tai .
So it also assigns 1=2 to ::Tai , which is An, and to Tan. Thus Tai _ Tan gets 1=2

and not 1.
Here we see another problem that would result if we identified values 1 and 0

with truth and falsehood. We base our theory of truth and falsehood on the valuations
in S . Thus, since a liar sentence (like other paradoxical sentences) does not get either
1 or 0 in any one of those valuations, the identification would lead us to say that the
sentence is not true and not false. But that is something that the theory denies.

One may ask why we want our theory to contain the biconditionals Tai $ Ai

and do not rest content with the inferences from Tai to Ai and from Ai to Tai .
After all, why say that it is the biconditionals, rather than the inferences, that char-
acterize the concept of truth? First, if we rested content with the inferences, then
our theory would become poorer. Second, we would risk losing conditionals such
as Tai ! :Tan (if Ai is true, then it is not false) and :Tai ! Tan. We would
also risk losing the conditionals Tai ! Taj where � Ai ! Aj , for example,
Tai ! Tad where Ad is ::Ai . It would require special maneuvers to keep such
conditionals. The point of having them becomes clear when we move from the propo-
sitional to a first-order theory of truth. We would like the latter to contain principles
like “If a sentence is true, then it is not false” and “If a sentence is true, then its
double negation is true too.” It would be very odd if the theory contained the gen-
eral principles but lacked the corresponding conditionals for particular sentences. A
propositional theory of truth should resemble such a first-order theory as far as this
is allowed by the lack of quantifiers. The first-order theories alluded to in Section 5
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endorse those principles, as well as “If a sentence is not true, then it is false” and oth-
ers. And third, it seems that if we abandoned the biconditionals, then we would lose
the inference from Tai ! Taj to Tam, where Am is Ai ! Aj , and the inference
from Tam to Tai ! Taj .

Iteration of T can make a difference. If Al is a liar sentence :Tal , then every
valuation V in S gives 1=2 to Tal ^ Tal . But if Ak is Tal , then by (Prop) V gives 0
to Tak ^ Tal . So :ŒTak ^ Tal � belongs to the theory, but :ŒTal ^ Tal � does not,
and in fact, for any wff B, the theory contains the inference from :ŒTal ^ Tal � to
B. The wff Tak can be seen as implicitly involving an iteration of T ; it is like “the
sentence al is true is true.”

If we want, we can add another component, C3, to our theory. C3 is a class of
inferences of the form “�1; : : : ; �k ; B1; : : : ; Bn; hence, C” (k � 1, n � 0), where
each one of �1; : : : ; �k is a simple inference. An inference of that form belongs
to C3 if and only if C has 1 in every valuation V 2 S in which �1; : : : ; �k are
1-preserving and B1; : : : ; Bn have 1. For example, the third component will contain,
for all C, D, i � 1, and j � 1, the inference from C _ D, .CI Ai /, and .DI Aj / to
Tai _ Taj .

Now, it is not the case that our theory contains all wffs of the form :ŒTak ^ Tah�

where, for some B and C, Ak is B _ C while Ah is :B ^ :C. Proving that some
such wffs have a value other than 1 in a valuation in S will have to await the proof
of the Central Theorem. But, as we can already see, (Prop) does not guarantee that
all wffs Tak ^ Tah, where Ak and Ah are as described, get the value 0. For there
are many B and C where it is not the case that B _ C and :B ^ :C have opposite
values in all valuations. For instance, there are valuations in which p1 and p2 have
1=2, so p1 _p2 has 1=2, but :p1 ^:p2 gets 0. If the clause “in every valuation, Em

and E0
m have opposite values” in (Prop) were replaced with “there is no valuation in

which Em and E0
m both have 1 or both have 0,” then the value 0 would be guaranteed

for all wffs Tak ^ Tah where Ak and Ah are as described. But it is not clear to me
how the proof of the Central Theorem should then be modified. Admittedly, since
� :ŒŒB _ C� ^ Œ:B ^ :C��, it would be preferable if our theory contained all wffs
:ŒTak ^ Tah�.

Also, it is not the case that our theory contains all wffs of the form :ŒAi ^ :Tai �.
For example, as we will see after the proof of the Central Theorem, the theory does
not contain :Œp1 ^ :Tam�, where Am is p1. (Prop) does not guarantee the value
0 for p1 ^ :Tam. It may appear that our theory should preferably contain the wffs
:ŒAi ^:Tai �, but appearances are misleading. Say that Al is the liar sentence :Tal .
Then, :Tal ^ :Tal has the form Ai ^ :Tai , but also has the form B ^ B. Our
theory is to contain just the wffs that get 1 in certain preselected valuations. These
valuations must assign 1=2 to the liar sentence. How should we treat the conjunction
:Tal ^ :Tal? I think that its repetitive character leaves no room for giving it any
value other than that of :Tal . Thus, the relevant valuations rightly give it 1=2, so
that :Œ:Tal ^:Tal � is not in our theory. But then :Œp1^:Tam�, too, should be left
out. For the sentential letters, like p1, are schematic letters, and :Œ:Tal ^ :Tal �

is an instance of :Œp1 ^ :Tam�. It would be unmotivated if we incorporated the
schematic principle in our theory, but left out some of its instances.

Likewise, it is not the case that our theory contains all wffs of the form
:ŒTai ^ :Ai �. For example, it does not contain :ŒTam ^ :p1�, where Am is p1.
(Prop) and our logic do not guarantee the value 0 for conjunctions Tai ^ :Ai except
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in special circumstances (if, for instance, Ai is Tai itself). That is, I think, accept-
able. Take the liar sentence :Tal again. Tal ^ ::Tal has the form Tai ^ :Ai but
also the form B ^ ::B. Since � B $ ::B, it might initially seem that we ought to
give the same value to a conjunction B ^ ::B as we give to B. In particular, once
we assign 1=2 to Tal , as do the valuations that determine which wffs and which
inferences make it to our theory, should we give the conjunction Tal ^ ::Tal the
same value or should we give it 0 because it has the form Tai ^ :Ai ? The answer
is not clear. Our rules are such that we give 1=2 to the conjunction because it has
only one deep conjunct. If, however, we had adopted the simpler definition of “deep
conjunct” discussed in Section 2, we would allow the conjunction to get either 1=2

or 0. At any rate, :ŒTal ^ ::Tal � does not make it to our theory. Finally, as before,
it would be unmotivated if we incorporated the wff :ŒTam ^ :p1� in the theory but
left out :ŒTal ^ ::Tal �, which is an instance of :ŒTam ^ :p1�.

4 Proving the Central Theorem

4.1 In this and the next three subsections, I present some definitions and prove
some lemmas that will be used in Subsections 4.5 and 4.6, which are the main parts
of Section 4. The Central Theorem is proved in Subsection 4.6.

Let C be a class of sets of wffs which meets the following four conditions: each
S 2 C is an unordered pair; for each S 2 C , every member of S is a T -attribution
or the negation of a T -attribution; ¹T a; T bº 2 C if and only if ¹:T a; :T bº 2 C ;
and ¹T a; :T bº 2 C if and only if ¹:T a; T bº 2 C . We will say that C involves a
T -attribution just in case a pair in C contains that T -attribution. And we will say that
C connects the wff B with (or and) the wff C just in case there are wffs A1; : : : ; An

(n � 2) such that A1 is B, An is C, and for every i (1 � i < n) ¹Ai ; AiC1º 2 C .10

Clearly, C connects B with B if B belongs to a member of C ; C connects B with C
if and only if it connects C with B; and if C connects B with C and also connects
C with D, then it connects B with D. Moreover, C connects T a and T b if and only
if it connects :T a and :T b. This we can see if we assume that A1 and An are
T a and T b, respectively (or :T a and :T b, respectively), and take the opposites of
A1; : : : ; An. Likewise, C connects T a and :T b if and only if it connects :T a and
T b.

Furthermore, we will say that C combines a T -attribution T a with (or and) a
T -attribution T b if and only if C either connects T a with T b or connects T a with
:T b. Of course, C combines T a with T a if T a belongs to a member of C ; C

combines T a with T b just in case it combines T b with T a; and if C combines
T a with T b and also combines T b with T c, then it combines T a with T c. So
combination by C divides the T -attributions that C involves into equivalence classes.
A T -attribution T a will be called a C -associate of a T -attribution T b if and only
if C combines T a with T b. And a class C will be called appropriate just in case
it meets the four conditions set out at the beginning of the preceding paragraph and
also does not connect any T -attribution with its negation. We will use appropriate
classes in order to make sure that the valuations we are constructing assign the same
value to wffs to which we want them to assign the same value.

Given any appropriate class C , a C -valuation will be a valuation that, for each
S 2 C , gives the same value to both wffs in S . Thus, if V is a C -valuation, and C
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connects T a with T b, then V assigns the same value to T a and T b. And if C con-
nects T a with :T b, then V assigns opposite values to T a and T b. Of course, every
valuation is a ¿-valuation. By saying that A C -implies B, we will mean that, for
every C -valuation V , jAjV � jBjV . And by saying that A and B are C -equivalent,
we will mean that, in each C -valuation, A has the same value as B. Thus, A and B are
C -equivalent just in case they C -imply each other. Of course, C -implying is transi-
tive, and if A C -implies B, then :B C -implies :A. Also, A and B are C -equivalent
if and only if :A and :B are C -equivalent; and A is C -equivalent to :B if and only
if :A is C -equivalent to B.

Lemma 1 Take any appropriate class C , any C -valuation V , and any wffs
A1; : : : ; An (n � 2). If, for each i , 1 � i � n, Ai gets 1=2 in V or (Ai gets 1 in
V and, for some j where 1 � j � n and j ¤ i , C -implies either Aj or :Aj ) or
(:Ai gets 1 in V and, for some j where 1 � j � n and j ¤ i , C -implies either
Aj or :Aj ), then either all of A1; : : : ; An get 1=2 in V or there are i and j among
1; : : : ; n such that i ¤ j and Ai is C -equivalent to Aj or to :Aj .

Proof If not all of A1; : : : ; An get 1=2 in V , then for some i (1 � i � n) Ai or
:Ai gets 1. So for some j (1 � j � n, j ¤ i ) Aj or :Aj gets 1 and is C -implied
by whichever of Ai and :Ai has 1. Thus for some k (1 � k � n, k ¤ j ) Ak or
:Ak gets 1 and is C -implied by whichever of Aj and :Aj has 1, and so forth. Since
1; : : : ; n are finitely many, the sequence i; j; k; : : : must somewhere form the circle
: : : ; h; h0; : : : ; h; : : : . In other words, there are h and h0 (1 � h � n, 1 � h0 � n,
h ¤ h0) such that Ah0 or :Ah0 gets 1 and is C -implied by whichever of Ah and
:Ah has 1, and again Ah or :Ah gets 1 and is C -implied by whichever of Ah0 and
:Ah0 has 1. Thus, the one out of Ah and :Ah which has 1 (in V ) is C -equivalent
to the one out of Ah0 and :Ah0 which has 1. So Ah is C -equivalent to Ah0 , or Ah is
C -equivalent to :Ah0 .

There follow more definitions. A set I of wffs of the form A ! B is C -insertable
between a wff C and a wff D if and only if there are wffs E1; : : : ; En (n � 2) such
that E1 is C, En is D, and for every i (1 � i < n) either Ei C -implies EiC1 or
Ei ! EiC1 belongs to I. Clearly, when J is a subset of I and is C -insertable
between C and D, I too is C -insertable between C and D. If J � I, then we will
say that I is C -insertable between C and D in the presence of at least one wff in J

just in case there are wffs E1; : : : ; En (n � 2) such that E1 is C, En is D, for every
i (1 � i < n) either Ei C -implies EiC1 or Ei ! EiC1 belongs to I, and there is at
least one wff A ! B belonging to J where, for some i , Ei ! EiC1 is A ! B.

4.2 Now, suppose that we have T -attributions T a1; : : : ; T al and wffs A1; : : : ; Al

(l � 1). For each j (1 � j � l) Aj will be ¹Aj ! T aj , T aj ! Aj ,
:T aj ! :Aj , :Aj ! :T aj º. Let C be any appropriate class, and consider
the set A1 [ � � � [ Al . It is easy to see that if that set is C -insertable both between
B and C and between C and D, then it is C -insertable between B and D. But we can
also see the following.

Lemma 2 If A1 [ � � � [ Al is C -insertable between C and D, then it is also
C -insertable between D0 and C0, where D0 ! C0 is any contrapositive of C ! D.

Proof If the set A1 [ � � � [ Al is C -insertable between C and D, then there are
wffs E1; : : : ; En (n � 2) such that E1 is C, En is D, and for every i (1 � i < n)
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either Ei C -implies EiC1 or Ei ! EiC1 belongs to that set. Consider the wffs
D0; :En; : : : ; :E1; C0. The wff D0 C -implies :En, and :E1 C -implies C0. Take
any i , 1 � i < n. If Ei C -implies EiC1, then :EiC1 C -implies :Ei . Otherwise,
for some j , :EiC1 ! :Ei is :T aj ! :Aj , :Aj ! :T aj , ::Aj ! ::T aj ,
or ::T aj ! ::Aj . If it is ::Aj ! ::T aj , then insert Aj and T aj , in that
order, between :EiC1 and :Ei in D0; :En; : : : ; :E1; C0. If it is ::T aj ! ::Aj ,
then insert T aj and Aj , in that order, between :EiC1 and :Ei . If :EiC1 ! :Ei is
:T aj ! :Aj or :Aj ! :T aj , then insert nothing. By making all such insertions,
we end up with a sequence of wffs which shows that A1 [ � � � [ Al is C -insertable
between D0 and C0.

Sets like A1 [ � � � [ Al will play a major role in the rules about ! in the valuations
we construct. When defining an assignment of values to wffs, we can stipulate that if
C and D have 1=2, then C ! D will get 1 or 1=2 depending on whether A1[� � �[Al

is or is not, respectively, C -insertable between C and D. This stipulation guarantees
that the assignment will conform with (ˇ) and the other two additional rules for
conditionals in case (ii) of Table 4.

Lemma 3 If A1 [� � �[Al is C -insertable between C and D, then A1 [� � �[Al�1

(¿ if l D 1) is C -insertable between C and D, or A1 [ � � � [ Al�1 [ ¹Al ! T al ,
:T al ! :Alº is C -insertable between C and D in the presence of at least one
of the wffs in ¹Al ! T al , :T al ! :Alº, or A1 [ � � � [ Al�1 [ ¹T al ! Al ,
:Al ! :T alº is C -insertable between C and D in the presence of at least one of
the wffs in ¹T al ! Al , :Al ! :T alº.

Proof Suppose that A1 [ � � � [ Al is C -insertable between C and D. Then there
are E1; : : : ; En (n � 2) such that E1 is C, En is D, and for every i (1 � i < n)
either Ei C -implies EiC1 or Ei ! EiC1 belongs to A1 [ � � � [ Al�1 [ ¹Al ! T al ,
T al ! Al , :T al ! :Al , :Al ! :T alº. If, for some i , Ei ! EiC1 is Al ! T al ,
and, for some j , Ej ! Ej C1 is T al ! Al , then take the smallest number k such
that Ek ! EkC1 is Al ! T al or T al ! Al . If Ek ! EkC1 is Al ! T al and not
T al ! Al , then consider the largest number h such that Eh ! EhC1 is T al ! Al .
Then the wffs E1; : : : ; Ek ; EhC2; : : : ; En (if h C 1 < n) or the wffs E1; : : : ; Ek (if
hC1 D n) show that A1[� � �[Al�1[¹Al ! T al , :T al ! :Al , :Al ! :T alº is
C -insertable between C and D. If, on the other hand, Ek ! EkC1 is T al ! Al , then
consider the largest number h such that Eh ! EhC1 is Al ! T al . Then the wffs
E1; : : : ; Ek ; EhC2; : : : ; En (if hC1 < n) or the wffs E1; : : : ; Ek (if hC1 D n) show
that A1 [ � � � [ Al�1 [ ¹T al ! Al , :T al ! :Al , :Al ! :T alº is C -insertable
between C and D. Finally, if there is no i where Ei ! EiC1 is Al ! T al , or there is
no j where Ej ! Ej C1 is T al ! Al , then of course A1 [� � �[Al�1 [¹Al ! T al ,
:T al ! :Al , :Al ! :T alº or A1 [ � � � [ Al�1 [ ¹T al ! Al , :T al ! :Al ,
:Al ! :T alº is C -insertable between C and D.

We can similarly see that if A1 [ � � � [ Al�1 [ ¹Al ! T al , :T al ! :Al ,
:Al ! :T alº is C -insertable between C and D, then A1[� � �[Al�1[¹Al ! T al ,
:T al ! :Alº or A1 [ � � � [ Al�1 [ ¹Al ! T al , :Al ! :T alº is C -insertable
between C and D; and that if A1 [ � � � [ Al�1 [ ¹T al ! Al , :T al ! :Al ,
:Al ! :T alº is C -insertable between C and D, then A1[� � �[Al�1[¹T al ! Al ,
:T al ! :Alº or A1 [ � � � [ Al�1 [ ¹T al ! Al , :Al ! :T alº is C -insertable
between C and D.
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Now, suppose that there are E1; : : : ; En (n � 2) such that E1 is C, En is D,
and for every i (1 � i < n) either Ei C -implies EiC1 or Ei ! EiC1 belongs
to A1 [ � � � [ Al�1 [ ¹Al ! T al , :Al ! :T alº. Also suppose that Al does
not C -imply T al , :Al does not C -imply :T al , and neither Al ! T al nor
:Al ! :T al belongs to A1 [ � � � [ Al�1. Finally, assume that there are k and h

where Ek ! EkC1 and Eh ! EhC1 are Al ! T al and :Al ! :T al , respectively.
Then there are, in particular, k� and h� such that k� < h� and either (˛)

Ek� ! Ek�C1 is Al ! T al , Eh� ! Eh�C1 is :Al ! :T al , and A1 [ � � � [ Al�1

is C -insertable between Ek�C1 and Eh� , or (ˇ) Ek� ! Ek�C1 is :Al ! :T al ,
Eh� ! Eh�C1 is Al ! T al , and A1 [ � � � [ Al�1 is C -insertable between Ek�C1

and Eh� . So, by Lemma 2, A1 [ � � � [ Al�1 is C -insertable between Ek� and
Eh�C1. Thus there are wffs E0

1; : : : ; E0
m such that the first k� wffs in E0

1; : : : ; E0
m are

E1; : : : ; Ek� and so E0
1 is C, the last n � h� wffs in E0

1; : : : ; E0
m are Eh�C1; : : : ; En

and so E0
m is D, for every i (1 � i < m) either E0

i C -implies E0
iC1 or E0

i ! E0
iC1

belongs to A1 [ � � � [ Al�1 [ ¹Al ! T al , :Al ! :T alº, the numbers k such
that E0

k
! E0

kC1
is Al ! T al are fewer than the numbers k such that Ek ! EkC1

is Al ! T al , and the numbers h such that E0
h

! E0
hC1

is :Al ! :T al are fewer
than the numbers h such that Eh ! EhC1 is :Al ! :T al . Since decreasing the
membership in a finite set will eventually empty it, there are EC

1 ; : : : ; EC
r (r � 2)

such that EC
1 is C, EC

r is D, for every i (1 � i < r) either EC

i C -implies EC

iC1

or EC

i ! EC

iC1 belongs to A1 [ � � � [ Al�1 [ ¹Al ! T al , :Al ! :T alº,
and either there is no k where EC

k
! EC

kC1
is Al ! T al or there is no h where

EC

h
! EC

hC1
is :Al ! :T al . But then, A1 [ � � � [ Al�1 [ ¹Al ! T alº or

A1 [ � � � [ Al�1 [ ¹:Al ! :T alº is C -insertable between C and D. That is also
the case if Al C -implies T al , if :Al C -implies :T al , and if either Al ! T al or
:Al ! :T al belongs to A1 [ � � � [ Al�1.

We can similarly see that if A1 [ � � � [ Al�1 [ ¹T al ! Al , :T al ! :Alº

is C -insertable between C and D, then so is A1 [ � � � [ Al�1 [ ¹T al ! Alº or
A1 [� � �[Al�1 [¹:T al ! :Alº. The overall conclusion is that A1 [� � �[Al�1[

¹Al ! T al , :T al ! :Alº or A1 [ � � � [ Al�1 [ ¹T al ! Al , :Al ! :T alº is
C -insertable between C and D.

4.3 Given any appropriate class C , we can easily construct C -valuations in which
no wff gets 1=2. To see that, consider all T -attributions T a such that C involves T a
and, if T b is any other T -attribution that C combines with T a, then a has a smaller
subscript than b; that is, T a has the smallest subscript in its equivalence class of
T -attributions that C involves. For any such T a, assign it 1 or 0, and then give the
same value to every T -attribution with which C connects T a, and give the opposite
value to every T -attribution with whose negation C connects T a. Of course C does
not connect T a with both T b and :T b, since otherwise it would connect T b with
:T b. Also assign 1 or 0 to each sentential letter and to each T -attribution that C

does not involve. As the reader can demonstrate, the resulting valuation, in which no
wff gets 1=2, is a C -valuation.

When we define an assignment of values to wffs, we can adopt the following rule
about conjunction, which consists of two clauses.
(Con) (a) When A and B have 1=2, or the one has 1=2 and the other 1, then A ^ B

gets 0 if there is no C -valuation in which the deep conjuncts of A^B all have
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1 or all have 0.
(b) When A and B have 1=2, or the one has 1=2 and the other 1, then A ^ B
gets 1=2 if there is such a C -valuation.

We will say that (Con), or (Con)(a) or (Con)(b), is followed with respect to C . Note
that, by following (Con) with respect to C , we conform with rule (˛) and the other
two additional rules for conjunctions in case (i) of Table 3. In the first place, if A ^ B
comes under case (i) and possesses only one deep conjunct, then following (Con)
with respect to C will give 1=2 to A^B. For if the single deep conjunct did not have
1 or 0 in any C -valuation, it would have 1=2 in all C -valuations. In the second place,
if the conjunctions C and D come under case (i), and every deep conjunct of C is a
deep conjunct of D, then following (Con) with respect to C will not give 0 to C and
1=2 to D. For if the deep conjuncts of C do not all have 1 in any C -valuation and do
not all have 0 in any C -valuation, then the same must be true of the deep conjuncts
of D.

4.4 If C and C 0 are classes of sets of wffs, then we will say that C 0 is an extension
of C just in case there are appropriate classes C1; : : : ; Cn (n � 2) of sets of wffs
such that C1 is C , Cn is C 0, and for each i (1 � i < n) either CiC1 is Ci or, for some
distinct T -attributions T a and T b where Ci does not combine T a and T b, CiC1 is
Ci [ ¹¹T a; T bº; ¹:T a; :T bºº or Ci [ ¹¹T a; :T bº; ¹:T a; T bºº. Of course, every
appropriate class is an extension of itself. If C 0 is an extension of C , then both C

and C 0 are appropriate.
It is clear that if C 0 is an extension of C , then every C 0-valuation is a C -valuation.

Hence, if a wff A C -implies B, then A also C 0-implies B. If A and B are
C -equivalent, then they are also C 0-equivalent. And if a valuation V follows
(Con)(a) with respect to C 0, then it follows (Con)(a) with respect to C too. On the
other hand, we are not entitled to claim that if V follows (Con) with respect to C 0,
then it follows (Con) with respect to C too.

Lemma 4 If C is an appropriate class while T a and T b are distinct wffs
that are not combined by C , then the classes C [ ¹¹T a; T bº; ¹:T a; :T bºº and
C [ ¹¹T a; :T bº; ¹:T a; T bºº are also appropriate.

Proof Let C 0 be C [ ¹¹T a; T bº; ¹:T a; :T bºº. Of the conditions that C 0 must
meet in order to be appropriate, the only one that is not obvious is that it should
not connect a T -attribution with its negation. So suppose that it does: there are
A1; : : : ; An (n > 1) such that A1 is T c, An is :T c, and for every k (1 � k < n)
¹Ak ; AkC1º 2 C 0. As C does not connect T c and :T c, there is at least one pair
¹Al ; AlC1º that belongs to C 0 � C .

Say there are two such pairs. Then, there will be two pairs ¹Al ; AlC1º and
¹Al 0 ; Al 0C1º such that l < l 0, both pairs belong to C 0 � C , and for no k, l < k < l 0,
does ¹Ak ; AkC1º belong to C 0 � C . Since C does not combine T a with T b and
connects neither T a with :T a nor T b with :T b, AlC1 must be Al 0 (whether or not
l C 1 D l 0) and so Al will be Al 0C1. Then we can remove the section Al ; : : : ; Al 0

from A1; : : : ; An and get a shorter sequence of wffs showing that C 0 connects T c
and :T c. As a finite sequence of wffs cannot be shortened ad infinitum, there must
be wffs B1; : : : ; Bm such that B1 is T c, Bm is :T c, for every k (1 � k < m)
¹Bk ; BkC1º 2 C 0, and there is just one pair ¹Bl ; BlC1º that belongs to C 0 � C . It
will be that m > 2, for ¹T c; :T cº … C 0 � C .
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Since C connects neither T a with :T b nor T b with :T a, we have that 1 < l

and l C 1 < m. But then C connects T c with Bl and also connects BlC1 with :T c.
So it connects Bl with the opposite of BlC1. In other words, it combines T a with
T b, contrary to the hypothesis of the lemma.

We can similarly show that C [ ¹¹T a; :T bº; ¹:T a; T bºº does not connect a
T -attribution with its negation.

4.5 We will now prove two theorems, numbered 2 and 3, that pave the way for
the Central Theorem. Theorem 2 suffices to show that if T a is any T -attribution
and A is the wff named by a (or it is any wff, for that matter), then there is a val-
uation in which T a $ A gets 1. Indeed, a simpler version of Theorem 2 that
involved a single T -attribution T a and mentioned no appropriate class would suf-
fice to show that. The idea is to define a valuation V which gives 1=2 to T a and
is so constructed that if A has 1=2 in V , then T a $ A gets 1 there, but if A has
an integral value in V , then it also has that value in some valuations that give the
same value to T a. In its current version, Theorem 2 involves many T -attributions so
that it can be used in proving Theorem 3. It also mentions an appropriate class C

and an assignment Q of values. These are needed in the proofs of both Theorem 3
and the Central Theorem. (In addition, Q is needed because the Central Theorem
mentions an assignment K of values to sentential letters.) Theorem 3 shows that if
T a1; : : : ; T al are finitely many T -attributions and A1; : : : ; Al are the wffs named
by a1; : : : ; al , respectively (or they are any wffs, for that matter), then there is a val-
uation in which all of T a1 $ A1; : : : ; T al $ Al get 1. It is proved through an
induction that involves repeated application of Theorem 2. Finally, in the Central
Theorem we show that there is a valuation in which all the infinitely many bicondi-
tionals Ta1 $ R.a1/; Ta2 $ R.a2/; : : : get 1. It is proved through an induction
that involves repeated application of Theorem 3.11

Theorems 2 and 3 both rest on various assumptions about T a1; : : : ; T al ,
A1; : : : ; Al , Q, and C . We assume that T a1; : : : ; T al (l � 1) are distinct
T -attributions, while A1; : : : ; Al are any wffs. Q is an assignment of values to
zero, one, or more atomic wffs other than T a1; : : : ; T al . C is an appropriate class
that does not combine any one of T a1; : : : ; T al with any T -attribution receiving a
value in Q. Q conforms with C ; in other words, if T b and T c receive values in
Q, then they receive the same value if C connects T b with T c, and they receive
opposite values if C connects T b with :T c. Moreover, if C connects T ai with T aj

(1 � i � l , 1 � j � l), then Ai and Aj are C -equivalent, and if C connects T ai

with :T aj , then Ai and :Aj are C -equivalent. (So, also, if C connects :T ai with
:T aj , then :Ai and :Aj are C -equivalent, and if C connects :T ai with T aj ,
then :Ai and Aj are C -equivalent.)

Theorem 2 also rests on some assumptions about V . We assume that V is a
C -valuation in which we incorporate Q; we give 1=2 to all atomic wffs that receive
no value in Q and are not C -associates of any T -attribution receiving a value in Q;
we follow (Con) with respect to C ; and if C and D get 1=2, then we give 1 or 1=2 to
C ! D depending on whether A1 [ � � � [ Al is or is not (respectively) C -insertable
between C and D.

Theorem 2 All of A1; : : : ; Al get 1=2 in V or (an Aj from among A1; : : : ; Al

gets 1 in V , but also has 1 in every C -valuation that assigns 1 to T aj , incorporates
Q, follows (Con)(a) with respect to C , gives 1 to all of T a1 $ A1; : : : ; T al $ Al
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other than T aj $ Aj , and gives 1 to E ! E0 if it gives 1=2 to E and to E0 and E
C -implies E0) or (an Aj from among A1; : : : ; Al gets 0 in V , but also has 0 in every
C -valuation that assigns 0 to T aj , incorporates Q, follows (Con)(a) with respect to
C , gives 1 to all of T a1 $ A1; : : : ; T al $ Al other than T aj $ Aj , and gives 1

to E ! E0 if it gives 1=2 to E and to E0 and E C -implies E0) or there are i and j

among 1; : : : ; l such that i ¤ j and Ai is C -equivalent to Aj or to :Aj .

Proof We will first focus on Al and demonstrate that Al gets 1=2 in V or (it gets
1 in V , but also has 1 in every C -valuation that assigns 1 to T al , incorporates Q,
follows (Con)(a) with respect to C , gives 1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1,
and assigns 1 to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies E0) or (it gets
0 in V , with l > 1, and is C -implied by A1 or :A1 or � � � or Al�1 or :Al�1) or (it
gets 0 in V , but also has 0 in every C -valuation that assigns 0 to T al , incorporates Q,
follows (Con)(a) with respect to C , gives 1 to all of T a1 $ A1, . . . , T al�1 $ Al�1,
and assigns 1 to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies E0) or
(it gets 1 in V , with l > 1, and C -implies A1 or :A1 or � � � or Al�1 or :Al�1).
Note that T a1; : : : ; T al have 1=2 in V , since they receive no value in Q and are not
C -associates of any T -attribution receiving a value in Q.

We know from Lemma 3 that if V assigns 1=2 to C and D, then it gives 1
or 1=2 to C ! D depending on whether or not the following disjunctive condi-
tion is met: A1 [ � � � [ Al�1 (¿ if l D 1) is C -insertable between C and D or
A1 [ � � � [ Al�1 [ ¹Al ! T al , :T al ! :Alº is C -insertable between C and
D in the presence of at least one of the wffs in ¹Al ! T al , :T al ! :Alº or
A1 [ � � � [ Al�1 [ ¹T al ! Al , :Al ! :T alº is C -insertable between C and D
in the presence of at least one of the wffs in ¹T al ! Al , :Al ! :T alº. We can
distinguish four cases.

(i) Al contains no part C ! D such that C and D get 1=2 in V and either
A1[� � �[Al�1[¹Al ! T al , :T al ! :Alº is C -insertable between C and
D in the presence of at least one of the wffs in ¹Al ! T al , :T al ! :Alº or
A1[� � �[Al�1[¹T al ! Al , :Al ! :T alº is C -insertable between C and
D in the presence of at least one of the wffs in ¹T al ! Al , :Al ! :T alº.
Then we can prove inductively that, for every well-formed part B of Al ,
B gets 1=2 in V or (it gets 1 in V , but also has 1 in every C -valuation
that incorporates Q, follows (Con)(a) with respect to C , gives 1 to all of
T a1 $ A1; : : : ; T al�1 $ Al�1, and assigns 1 to E ! E0 if it assigns 1=2

to E and to E0 and E C -implies E0) or (it gets 0 in V , but also has 0 in every
C -valuation that incorporates Q, follows (Con)(a) with respect to C , gives
1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1, and assigns 1 to E ! E0 if it
assigns 1=2 to E and to E0 and E C -implies E0). Once we have proved that,
what we are trying to demonstrate about Al follows as a corollary. The inter-
esting cases in the induction are two. (˛) B is a conjunction C ^ D and gets
0 in V while C and D have 1=2 or the one has 1=2 and the other 1. Then, as
B gets 0 in V by application of (Con), it also has 0 in every C -valuation that
follows (Con)(a) with respect to C . For it cannot get 1 in such a valuation
V 0, since its deep conjuncts do not all have 1 in any C -valuation. So it will
have 0 in V 0 either because one of its conjuncts has 0 or because it falls under
case (i) of Table 3 so that (Con)(a) applies. (ˇ) B is C ! D and gets 1 in V

while C and D have 1=2. Then A1 [ � � � [ Al�1 is C -insertable between C
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and D. In this case, B also has 1 in every C -valuation that gives 1 to all of
T a1 $ A1; : : : ; T al�1 $ Al�1 and assigns 1 to E ! E0 if it assigns 1=2

to E and to E0 and E C -implies E0. For, in such a valuation, all the members
of A1 [ � � � [ Al�1 get 1, and moreover Ei ! EiC1 gets 1 if Ei C -implies
EiC1. Thus by transitivity C ! D, too, will get 1.

(ii) Al contains at least one part C ! D such that C and D get 1=2 in V

and A1 [ � � � [ Al�1 [ ¹Al ! T al , :T al ! :Alº is C -insertable
between C and D in the presence of at least one of the wffs in ¹Al ! T al ,
:T al ! :Alº, but Al contains no part C ! D such that C and D
get 1=2 in V and A1 [ � � � [ Al�1 [ ¹T al ! Al , :Al ! :T alº is
C -insertable between C and D in the presence of at least one of the wffs
in ¹T al ! Al , :Al ! :T alº. Then we can prove inductively that, for
every well-formed part B of Al , B gets 1=2 in V or (it gets 1 in V , but also
has 1 in every C -valuation that assigns 1 to T al , incorporates Q, follows
(Con)(a) with respect to C , gives 1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1,
and assigns 1 to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies
E0) or (it gets 0 in V , but also has 0 in every C -valuation that assigns 1 to
T al , incorporates Q, follows (Con)(a) with respect to C , gives 1 to all of
T a1 $ A1; : : : ; T al�1 $ Al�1, and assigns 1 to E ! E0 if it assigns 1=2

to E and to E0 and E C -implies E0). The only case in the induction that
differs from (i) above is that in which B is C ! D and gets 1 in V while C
and D have 1=2. Then A1 [ � � � [ Al�1 [ ¹Al ! T al , :T al ! :Alº is
C -insertable between C and D. In this case, B also has 1 in every C -valuation
that assigns 1 to T al , gives 1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1, and
assigns 1 to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies E0.
For, in such a valuation V 0, Al ! T al and :T al ! :Al get 1, so all the
members of A1 [ � � � [ Al�1 [ ¹Al ! T al , :T al ! :Alº get 1. Moreover,
as in (i) above, Ei ! EiC1 gets 1 in V 0 if Ei C -implies EiC1.

We have assumed that Al contains a part C ! D such that C and D get
1=2 in V and there are E1; : : : ; En (n � 2) where E1 is C, En is D, for
every i (1 � i < n) either Ei C -implies EiC1 or Ei ! EiC1 belongs to
A1 [ � � � [ Al�1 [ ¹Al ! T al , :T al ! :Alº, and for some i Ei ! EiC1

is Al ! T al or :T al ! :Al . Suppose, in addition, that Al gets 0 in V .
If there is a number i such that Ei ! EiC1 is Al ! T al , then let k be the
smallest such number. Let h be the largest number among 1; : : : ; k such that
either h D 1 or Eh�1 ! Eh belongs to A1 [ � � � [ Al�1 [ ¹:T al ! :Alº.
Then Ek , that is, Al , is C -implied by Eh. But Al is not C -implied by any one
of C, T a1; : : : ; T al�1, and :T a1; : : : ; :T al�1. For all these wffs have 1=2

in V , Al has 0 there, and V is a C -valuation. Nor is Al C -implied by :Al , as
they have 0 and 1, respectively, in V . Hence Eh is A1 or :A1 or � � � or Al�1

or :Al�1, and so l > 1. If, on the other hand, there is no i where Ei ! EiC1

is Al ! T al , then let k be the largest number such that Ek�1 ! Ek is
:T al ! :Al . And let h be the smallest number among k; : : : ; n such that
either h D n or Eh ! EhC1 belongs to A1 [ � � � [ Al�1. Then Ek , that is,
:Al , C -implies Eh. But :Al , which gets 1 in V , does not C -imply any one
of D, T a1; : : : ; T al�1, and :T a1; : : : ; :T al�1. Hence Eh is A1 or :A1 or
� � � or Al�1 or :Al�1, and so l > 1. And since :Al C -implies Eh, :Eh
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C -implies Al . So, once again, Al is C -implied by A1 or :A1 or � � � or Al�1

or :Al�1.
Therefore, Al gets 1=2 in V or (it gets 1 in V , but also has 1 in every

C -valuation that assigns 1 to T al , incorporates Q, follows (Con)(a) with
respect to C , gives 1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1, and assigns 1
to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies E0) or (it gets 0
in V , with l > 1, and is C -implied by A1 or :A1 or � � � or Al�1 or :Al�1).

(iii) Al contains at least one part C ! D such that C and D get 1=2 in V and
A1[� � �[Al�1[¹T al ! Al , :Al ! :T alº is C -insertable between C and
D in the presence of at least one of the wffs in ¹T al ! Al , :Al ! :T alº,
but Al contains no part C ! D such that C and D get 1=2 in V and
A1[� � �[Al�1[¹Al ! T al , :T al ! :Alº is C -insertable between C and
D in the presence of at least one of the wffs in ¹Al ! T al , :T al ! :Alº.
Then we can prove inductively that, for every well-formed part B of Al , B
gets 1=2 in V or (it gets 1 in V , but also has 1 in every C -valuation that
assigns 0 to T al , incorporates Q, follows (Con)(a) with respect to C , gives
1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1, and assigns 1 to E ! E0 if it
assigns 1=2 to E and to E0 and E C -implies E0) or (it gets 0 in V , but also
has 0 in every C -valuation that assigns 0 to T al , incorporates Q, follows
(Con)(a) with respect to C , gives 1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1,
and assigns 1 to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies E0).
The only difference from the induction in (ii) above consists in the fact that
T al ! Al and :Al ! :T al get 1 when T al is assigned 0.

We have assumed that Al contains a part C ! D such that C and D get
1=2 in V and there are E1; : : : ; En (n � 2) where E1 is C, En is D, for
every i (1 � i < n) either Ei C -implies EiC1 or Ei ! EiC1 belongs to
A1 [ � � � [ Al�1 [ ¹T al ! Al , :Al ! :T alº, and for some i Ei ! EiC1

is T al ! Al or :Al ! :T al . Proceeding as in (ii), we can show that if
Al gets 1 in V , then l > 1 and Al C -implies A1 or :A1 or � � � or Al�1 or
:Al�1. Thus, in the end, Al gets 1=2 in V or (it gets 0 in V , but also has 0
in every C -valuation that assigns 0 to T al , incorporates Q, follows (Con)(a)
with respect to C , gives 1 to all of T a1 $ A1; : : : ; T al�1 $ Al�1, and
assigns 1 to E ! E0 if it assigns 1=2 to E and to E0 and E C -implies E0)
or (it gets 1 in V , with l > 1, and C -implies A1 or :A1 or � � � or Al�1 or
:Al�1).

(iv) Al contains at least one part C ! D such that C and D get 1=2 in V and
A1[� � �[Al�1[¹Al ! T al , :T al ! :Alº is C -insertable between C and
D in the presence of at least one of the wffs in ¹Al ! T al , :T al ! :Alº,
and Al also contains at least one part C ! D such that C and D get 1=2

in V and A1 [ � � � [ Al�1 [ ¹T al ! Al , :Al ! :T alº is C -insertable
between C and D in the presence of at least one of the wffs in ¹T al ! Al ,
:Al ! :T alº. Then because of the former kind of part, it is the case, as in
(ii) above, that if Al gets 0 in V , then l > 1 and Al is C -implied by A1 or
:A1 or � � � or Al�1 or :Al�1. And because of the latter kind of part, it is the
case, as in (iii), that if Al gets 1 in V , then l > 1 and Al C -implies A1 or
:A1 or � � � or Al�1 or :Al�1. This ends (iv).
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Now assume that no Aj from among A1; : : : ; Al gets 1 in V , but also has 1 in
every C -valuation that assigns 1 to T aj , incorporates Q, follows (Con)(a) with
respect to C , gives 1 to all of T a1 $ A1; : : : ; T al $ Al other than T aj $ Aj , and
gives 1 to E ! E0 if it gives 1=2 to E and to E0 and E C -implies E0. Also assume
that no Aj from among A1; : : : ; Al gets 0 in V , but also has 0 in every C -valuation
that assigns 0 to T aj , incorporates Q, follows (Con)(a) with respect to C , gives 1 to
all of T a1 $ A1; : : : ; T al $ Al other than T aj $ Aj , and gives 1 to E ! E0 if it
gives 1=2 to E and to E0 and E C -implies E0. Then Al gets 1=2 in V or (Al gets 1
in V , with l > 1, and C -implies A1 or :A1 or � � � or Al�1 or :Al�1) or (:Al gets
1 in V , with l > 1, and C -implies A1 or :A1 or � � � or Al�1 or :Al�1).

The reasoning from the beginning of the proof up to this point can be repeated
with any k from among 1; : : : ; l � 1 in place of l and with ¹1; : : : ; lº � ¹kº in place
of ¹1, . . . , l � 1º. Thus we can conclude, within the scope of the assumptions made
in the preceding paragraph, that, for each i , 1 � i � l , Ai gets 1=2 in V or (Ai gets
1 in V and, for some j where 1 � j � l and j ¤ i , C -implies either Aj or :Aj ) or
(:Ai gets 1 in V and, for some j where 1 � j � l and j ¤ i , C -implies either Aj

or :Aj ). Hence, by Lemma 1, either all of A1; : : : ; Al get 1=2 in V or there are i

and j among 1; : : : ; l such that i ¤ j and Ai is C -equivalent to Aj or to :Aj .

Theorem 3 There are an extension C 0 of C and a C 0-valuation V such that if
all T -attributions among T a1; : : : ; T al that get 1=2 in V are T ak1

; : : : ; T akr
, then:

C 0 � C involves only T -attributions from among T a1; : : : ; T al ; for any kh and kh0

where h; h0 2 ¹1; : : : ; rº and akh
is other than akh0 , C 0 connects T akh

and T akh0 if
and only if Akh

and Akh0 are C 0-equivalent, and C 0 connects T akh
and :T akh0 if

and only if Akh
and :Akh0 are C 0-equivalent; V incorporates Q; V assigns 1=2 to

all atomic wffs that are not in ¹T a1; : : : ; T alº, receive no value in Q, and are not
C 0-associates of any T -attribution in ¹T a1; : : : ; T alº and any T -attribution receiv-
ing a value in Q; T a1 $ A1; : : : ; T al $ Al get 1 in V ; V follows (Con) with
respect to C 0; and if V assigns 1=2 to C and to D, then it gives 1 or 1=2 to C ! D
depending on whether Ak1

[ � � � [ Akr
(¿ if r D 0) is or is not, respectively,

C 0-insertable between C and D.

Proof This is by induction on l .
(i) l D 1. Take the set S D ¹T b W T b receives a value in Q; and if T c is other

than T b; is a C -associate of T b; and receives a value in Q; then b has a
smaller subscript than cº [ ¹p W p is a sentential letter receiving a value in
Qº. Of course, no two T -attributions in S are C -associates of each other,
and so no two T -attributions in S have a C -associate in common. Also, C

does not connect T b with both T c and :T c, for otherwise it would connect
T c with :T c.

Consider the valuation V in which: we incorporate Q as regards the mem-
bers of S ; for every T b in S and for every C -associate T c of T b, we give T c
the value of T b if C connects T b with T c, and we give it the opposite value
if C connects T b with :T c; we assign 1=2 to all remaining atomic wffs; we
follow (Con) with respect to C ; and if C and D get 1=2, then we give 1 or 1=2

to C ! D depending on whether Al is or is not (respectively) C -insertable
between C and D. Note that T al gets 1=2.

V is a C -valuation. To see that, suppose it is not. Then either (˛)
¹T d; T eº 2 C and we have assigned distinct values to T d and T e, or (ˇ)
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¹T d; :T eº 2 C and we have assigned distinct values to T d and :T e. In
case (˛), as T d and T e do not both have 1=2 in V , neither took on a value
as a remaining atomic wff. (It cannot be that only one of them took on a
value as such a wff.) Thus, C combines T d with a T -attribution, perhaps T d
itself, belonging to S , and C also combines T e with a T -attribution, perhaps
T e itself, belonging to S . (C combines T d with T d, as it does with every
T -attribution it involves.) Since C does not combine any two T -attributions
belonging to S , it combines T d, as well as T e, with the same T -attribution,
T b, in S . Then, C must be connecting T b with a member of ¹T d; T eº and
also connecting T b with the negation of the other member of ¹T d; T eº. So
C connects a T -attribution with its negation, which is impossible given that
C is appropriate. Case (ˇ) is similar.

It is easy to see that, since Q conforms with C , V incorporates the whole
of Q. Thus all the conditions on which Theorem 2 rested are satisfied. So,
by that theorem, Al gets 1=2 in V or (Al gets 1 in V , but also has 1 in every
C -valuation that assigns 1 to T al , incorporates Q, follows (Con)(a) with
respect to C , and gives 1 to E ! E0 if it gives 1=2 to E and to E0 and E
C -implies E0) or (Al gets 0 in V , but also has 0 in every C -valuation that
assigns 0 to T al , incorporates Q, follows (Con)(a) with respect to C , and
gives 1 to E ! E0 if it gives 1=2 to E and to E0 and E C -implies E0).

In the first case (i.e., Al gets 1=2 in V ), T al $ Al has 1 in V , and,
more generally, C and V have all the desirable properties. (C counts as an
extension of itself.) In the second case, consider the valuation V 0 in which:
we incorporate Q as regards the members of S ; we assign 1 to T al ; for every
T b that either belongs to S or is T al and for every C -associate T c of T b, we
give T c the value of T b if C connects T b with T c, and we give it the opposite
value if C connects T b with :T c; we assign 1=2 to all atomic wffs that are
other than T al , do not belong to S , and are not C -associates of either T al or
any member of S ; we follow (Con) with respect to C ; and if C and D get 1=2,
then we give 1 or 1=2 to C ! D depending on whether or not C C -implies
D. As with V , we can see that V 0 is a C -valuation. (S [ ¹T alº now plays the
role that S on its own played in the corresponding proof for V .) And, again
like V , V 0 incorporates Q. Thus Al gets 1 in V 0, as does T al $ Al . More
generally, C and V 0 have the desirable properties. Finally, the third case (i.e.,
Al gets 0 in V ) is like the second.

(ii) Let T a1; : : : ; T alC1, A1; : : : ; AlC1, Q, and C be just as in the assumptions
on which Theorems 2 and 3 rest, but with l C 1 in place of l . Suppos-
ing that what we are trying to prove holds for l , we must show that there
are an extension C 0 of C and a C 0-valuation V which have the follow-
ing properties if all T -attributions among T a1; : : : ; T alC1 that get 1=2 in
V are T ak0

1
; : : : ; T ak0

s
: C 0 � C involves only T -attributions from among

T a1; : : : ; T alC1; for any k0
h

and k0
h0 where h; h0 2 ¹1; : : : ; sº and ak0

h
is

other than ak0
h0

, C 0 connects T ak0
h

and T ak0
h0

if and only if Ak0
h

and Ak0
h0

are C 0-equivalent, and C 0 connects T ak0
h

and :T ak0
h0

if and only if Ak0
h

and :Ak0
h0

are C 0-equivalent; V incorporates Q; V assigns 1=2 to all
atomic wffs that are not in ¹T a1; : : : ; T alC1º, receive no value in Q, and
are not C 0-associates of any T -attribution in ¹T a1; : : : ; T alC1º and any
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T -attribution receiving a value in Q; T a1 $ A1; : : : ; T alC1 $ AlC1 get 1
in V ; V follows (Con) with respect to C 0; and if V assigns 1=2 to C and to
D, then it gives 1 or 1=2 to C ! D depending on whether Ak0

1
[ � � � [ Ak0

s

(¿ if s D 0) is or is not C 0-insertable between C and D.
The set S is defined as in (i) above. Consider the valuation V in which:

we incorporate Q as regards the members of S ; for every T b in S and for
every C -associate T c of T b, we give T c the value of T b if C connects T b
with T c, and we give it the opposite value if C connects T b with :T c; we
assign 1=2 to all remaining atomic wffs; we follow (Con) with respect to C ;
and if C and D get 1=2, then we give 1 or 1=2 to C ! D depending on
whether A1 [ � � � [ AlC1 is or is not C -insertable between C and D. So all
of T a1; : : : ; T alC1 get 1=2 in V . As in (i) above, V is a C -valuation and
incorporates the whole of Q.

Thus, by Theorem 2, all of A1; : : : ; AlC1 get 1=2 in V or (an Aj from
among A1; : : : ; AlC1 has 1 in every C -valuation that assigns 1 to T aj ,
incorporates Q, follows (Con)(a) with respect to C , gives 1 to all of
T a1 $ A1; : : : ; T alC1 $ AlC1 other than T aj $ Aj , and gives 1 to
E ! E0 if it gives 1=2 to E and to E0 and E C -implies E0) or (an Aj from
among A1; : : : ; AlC1 has 0 in every C -valuation that assigns 0 to T aj , incor-
porates Q, follows (Con)(a) with respect to C , gives 1 to all of T a1 $ A1,
. . . , T alC1 $ AlC1 other than T aj $ Aj , and gives 1 to E ! E0 if it
gives 1=2 to E and to E0 and E C -implies E0) or there are i and j among
1; : : : ; l C 1 such that i ¤ j and Ai is C -equivalent to Aj or to :Aj .

In the first case (i.e., if all of A1; : : : ; AlC1 get 1=2 in V ) the biconditionals
T a1 $ A1; : : : ; T alC1 $ AlC1 have 1 in V . Suppose that there are no i

and j among 1; : : : ; l C 1 such that i ¤ j and Ai is C -equivalent to Aj or
to :Aj . Then, more generally, C and V have the properties we must show
(with C counting as an extension of itself).

In the second case (an Aj from among A1; : : : ; AlC1 has 1 . . . ) sup-
pose again that there are no i and k among 1; : : : ; l C 1 such that i ¤ k

and Ai is C -equivalent to Ak or to :Ak . Then C does not combine
T aj with any other T -attribution T ak from among T a1; : : : ; T alC1; for
if it did, Aj would be C -equivalent to Ak or to :Ak . Let us take the
T -attributions T a1; : : : ; T alC1 other than T aj , the corresponding wffs
from among A1; : : : ; AlC1, the assignment Q [ ¹hT aj ; 1iº, and the class
C in the roles played in the formulation of Theorem 3 by T a1; : : : ; T al ,
A1; : : : ; Al , Q, and C , respectively. Then we know by the inductive hypoth-
esis that there are an extension C 0 of C and a C 0-valuation V 0 where if all
T -attributions among T a1; : : : ; T alC1 other than T aj that get 1=2 in V 0

are T ak1
; : : : ; T akr

, then: C 0 � C involves only T -attributions from among
T a1; : : : ; T alC1 other than T aj ; for any kh and kh0 where h; h0 2 ¹1; : : : ; rº

and akh
is other than akh0 , C 0 connects T akh

and T akh0 if and only if Akh
and

Akh0 are C 0-equivalent, and C 0 connects T akh
and :T akh0 if and only if Akh

and :Akh0 are C 0-equivalent; V 0 incorporates Q [ ¹hT aj ; 1iº; V 0 assigns
1=2 to all atomic wffs that are not in ¹T a1; : : : ; T alC1º � ¹T aj º, receive
no value in Q [ ¹hT aj ; 1iº, and are not C 0-associates of any T -attribution
in ¹T a1; : : : ; T alC1º � ¹T aj º and any T -attribution receiving a value in
Q [ ¹hT aj ; 1iº; T a1 $ A1; : : : ; T alC1 $ AlC1 other than T aj $ Aj get
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1 in V 0; V 0 follows (Con) with respect to C 0; and if V 0 assigns 1=2 to C and
to D, then it gives 1 or 1=2 to C ! D depending on whether Ak1

[ � � � [ Akr

(¿ if r D 0) is or is not (respectively) C 0-insertable between C and D. Aj

must have 1 in V 0, so T aj $ Aj gets 1 there. More generally, C 0 and
V 0 have the properties we must show. The third case (an Aj from among
A1; : : : ; AlC1 has 0 . . . ) is like the second.

Next we have the case in which there are i and j among 1; : : : ; l C 1

such that i ¤ j and Ai is C -equivalent to Aj . Then, it may or may not be
that C combines T ai with T aj . If it does, it connects T ai with T aj . For
if it connected T ai with :T aj , then Ai and :Aj would be C -equivalent,
and so Aj and :Aj would be C -equivalent. In that case, Aj would have
1=2 in every C -valuation, which we know to be impossible because there are
C -valuations in which no wff gets 1=2. If C combines T ai with T aj , then
let C C be C . Otherwise, let C C be C [ ¹¹T ai ; T aj º; ¹:T ai ; :T aj ºº. We
know from Lemma 4 that C C is appropriate.

A number of points should be noted here. First, since C does not combine
any one of T a1; : : : ; T alC1 with a T -attribution receiving a value in Q, C C

does not combine any T -attribution in ¹T a1; : : : ; T alC1º � ¹T aj º with one
receiving a value in Q. To see that, suppose that there are B1; : : : ; Bn such
that B1 2 ¹T a1; : : : ; T alC1º � ¹T aj º, Bn is either a T -attribution receiv-
ing a value in Q or the negation of such a T -attribution, and for every k

(1 � k < n) ¹Bk ; BkC1º 2 C C. Then, for some number k, ¹Bk ; BkC1º

will be ¹T ai ; T aj º or ¹:T ai ; :T aj º. Let h be the largest such number. As
T a1; : : : ; T alC1 do not receive values in Q, h C 1 < n. So C will connect
T ai or T aj with Bn or the opposite of Bn.

Second, since Q conforms with C , it also conforms with C C. Suppose
that T c and T d receive values in Q, and there are B1; : : : ; Bn such that B1

is T c, Bn is T d, and for every k (1 � k < n) ¹Bk ; BkC1º 2 C C. In that
case, if for some k ¹Bk ; BkC1º is ¹T ai ; T aj º or ¹:T ai ; :T aj º, then (as in
the preceding paragraph) C will connect T ai or T aj with T d or :T d. As
in fact C does not combine any one of T a1; : : : ; T alC1 with a T -attribution
receiving a value in Q, for every k ¹Bk ; BkC1º 2 C . In other words, C

connects T c with T d, and so Q gives them the same value. We can likewise
see that if T c and T d receive values in Q, and C C connects T c with :T d,
then C connects T c with :T d, and so Q gives opposite values to T c and
T d.

Third, for any h; h0 2 ¹1, . . . , l C1º�¹j º, if C C connects T ah with T ah0 ,
then Ah and Ah0 are C C-equivalent, and if C C connects T ah with :T ah0 ,
then Ah and :Ah0 are C C-equivalent. For example, say that C C is not C

and there are B1; : : : ; Bn such that B1 is T ah, Bn is T ah0 , for some k (1 < k

and k C1 < n) ¹Bk ; BkC1º is ¹T ai ; T aj º or ¹:T ai ; :T aj º, and for every k0

(1 � k0 < k, or k C1 � k0 < n) ¹Bk0 ; Bk0C1º 2 C . We have that C connects
T ah with Bk , as well as BkC1 with T ah0 . Let Ck be Ai , Aj , :Ai , or :Aj

depending on whether Bk is T ai , T aj , :T ai , or :T aj , respectively, and let
CkC1 be Ai , Aj , :Ai , or :Aj depending on whether BkC1 is T ai , T aj ,
:T ai , or :T aj , respectively. Then Ah is C -equivalent to Ck , and CkC1 is
C -equivalent to Ah0 . But, of course, Ck is C -equivalent to CkC1. Hence Ah

and Ah0 are C -equivalent, and so they are C C-equivalent.
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Thus we can take the T -attributions T a1; : : : ; T alC1 other than T aj ,
the corresponding wffs from among A1; : : : ; AlC1, the assignment Q,
and the class C C in the roles played in the formulation of Theorem 3 by
T a1; : : : ; T al , A1; : : : ; Al , Q, and C , respectively. Then we know by the
inductive hypothesis that there are an extension C 0 of C C and a C 0-valuation
V 0 where if all T -attributions among T a1; : : : ; T alC1 other than T aj that get
1=2 in V 0 are T ak1

; : : : ; T akr
, then: C 0 � C C involves only T -attributions

from among T a1; : : : ; T alC1 other than T aj ; for any kh and kh0 where
h; h0 2 ¹1; : : : ; rº and akh

is other than akh0 , C 0 connects T akh
and T akh0

if and only if Akh
and Akh0 are C 0-equivalent, and C 0 connects T akh

and
:T akh0 if and only if Akh

and :Akh0 are C 0-equivalent; V 0 incorporates Q;
V 0 assigns 1=2 to all atomic wffs that are not in ¹T a1; : : : ; T alC1º � ¹T aj º,
receive no value in Q, and are not C 0-associates of any T -attribution in
¹T a1; : : : ; T alC1º � ¹T aj º and any T -attribution receiving a value in Q;
T a1 $ A1; : : : ; T alC1 $ AlC1 other than T aj $ Aj get 1 in V 0; V 0

follows (Con) with respect to C 0; and if V 0 assigns 1=2 to C and to D, then
it gives 1 or 1=2 to C ! D depending on whether Ak1

[ � � � [ Akr
(¿ if

r D 0) is or is not C 0-insertable between C and D.
It is basic to note that C 0 connects T ai with T aj and that V 0 (as well as

any other C 0-valuation) assigns the same value to T ai and T aj . Then, C 0

and V 0 have the properties we must show, as becomes clear mainly through
the following considerations.
(a) If T aj gets 1=2 in V 0, then we must show that, for any h 2 ¹1; : : : ; rº,

C 0 connects T akh
and T aj just in case Akh

and Aj are C 0-equivalent,
and C 0 connects T akh

and :T aj just in case Akh
and :Aj are

C 0-equivalent. Indeed, since T aj gets 1=2 in V 0, T ai also gets 1=2

there, so ai is one of ak1
; : : : ; akr

. Say that akh
is other than ai . C 0

connects T akh
with T aj if and only if it connects T akh

with T ai if
and only if Akh

and Ai are C 0-equivalent. And, as Ai and Aj are
C 0-equivalent, Akh

and Ai are C 0-equivalent if and only if Akh
and

Aj are. We likewise see that C 0 connects T akh
with :T aj if and

only if Akh
and :Aj are C 0-equivalent. On the other hand, in case

akh
is ai , then of course C 0 connects T akh

with T aj , Akh
and Aj are

C 0-equivalent, C 0 does not connect T akh
with :T aj , and Akh

and :Aj

are not C 0-equivalent.
(b) Since T ai $ Ai gets 1 in V 0, T ai and Ai have the same value there.

But, also, T aj has the same value there as T ai , and Ai has the same as
Aj . Thus T aj and Aj have the same value in V 0. If that value is 1 or 0,
then T aj $ Aj gets 1 in V 0. But if the common value of T aj , T ai , Ai ,
and Aj is 1=2 (in which case Ai is one of Ak1

; : : : ; Akr
), then again

T aj $ Aj gets 1 in V 0. The reason is that Ai , and so Ak1
[ � � � [ Akr

too, is C 0-insertable between T aj and Aj , as well as between Aj and
T aj ; for T aj C 0-implies T ai and conversely, and Ai C 0-implies Aj and
conversely.

(c) Assuming that T aj gets 1=2 in V 0, we must show that if V 0 assigns
1=2 to C and to D, then it gives 1 or 1=2 to C ! D depending on
whether Ak1

[ � � � [ Akr
[ Aj is or is not C 0-insertable between C and

D. So what we should demonstrate is that if Ak1
[ � � � [ Akr

[ Aj is
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C 0-insertable between C and D, then so is Ak1
[ � � � [ Akr

. Indeed,
provided that T aj has 1=2 in V 0, T ai will also be getting 1=2 there,
so Ai will be one of Ak1

; : : : ; Akr
. Say there are E1; : : : ; En (n � 2)

such that E1 is C, En is D, and for every h (1 � h < n) either Eh

C 0-implies EhC1 or Eh ! EhC1 belongs to Ak1
[ � � � [ Akr

[ Aj .
For every h such that Eh ! EhC1 belongs to Aj , make the following
insertions between Eh and EhC1: if Eh ! EhC1 is Aj ! T aj and
not T aj ! Aj , insert Ai and T ai (in that order); if Eh ! EhC1 is
T aj ! Aj , insert T ai and Ai ; if Eh ! EhC1 is :T aj ! :Aj ,
insert :T ai and :Ai ; and if Eh ! EhC1 is :Aj ! :T aj and not
:T aj ! :Aj , insert :Ai and :T ai . The resulting (longer) sequence
of wffs shows that Ak1

[ � � � [ Akr
is C 0-insertable between C and D.

For, in each insertion, what is inserted right after Eh is C 0-implied by
Eh, and what is inserted right before EhC1 C 0-implies EhC1.

Finally, the last, fifth case (i.e., there are i and j among 1; : : : ; l C 1 such
that i ¤ j and Ai is C -equivalent to :Aj ) is similar to the case we have just
discussed, but we should consider the set C [ ¹¹T ai ; :T aj º; ¹:T ai ; T aj ºº

instead of the set C [ ¹¹T ai ; T aj º, ¹:T ai ; :T aj ºº.

4.6 If W is a finite and nonempty set of wffs, the classes of subsets of W can be
enumerated. The subsets of W will be finitely many, as will their classes. Say we
already have an enumeration E.W / of the members of W . Then, the subsets of W

can be ordered in such a way that if S1 and S2 are any two subsets, S1 precedes S2

just in case S2 contains B, but S1 does not, where B is the first wff in E.W / with
respect to which S1 and S2 differ (i.e., the one contains it, but the other does not).
Let Es.W / be the resulting enumeration of the subsets of W . Then, the classes of
subsets of W can be ordered in such a way that if C1 and C2 are any two classes,
C1 precedes C2 just in case C2 contains S , but C1 does not, where S is the first
set in Es.W / with respect to which C1 and C2 differ. Let Ec.W / be the resulting
enumeration of the classes of subsets of W .

Again, suppose that V is a finite and nonempty set of valuations, and B1; : : : ; Br

(r � 1) are distinct atomic wffs such that if we take any two valuations in V , there
will be at least one wff among B1; : : : ; Br which receives different values in those
valuations. In that case, the valuations in V can be ordered in such a way that if V1

and V2 are any two valuations, and Bi is the first wff in B1; : : : ; Br with respect to
which they differ, then V1 precedes V2 just in case jBi jV1

< jBi jV2
. Let the resulting

enumeration of the valuations in V be E.V ; B1; : : : ; Br /.
It is time to return to the wffs A1; A2; : : : as these were defined in Section 3, that is,

to R.a1/; R.a2/; : : : . We now have enough tools to establish the Central Theorem,
repeated here.

Central Theorem For each assignment K of values to one or more sentential let-
ters, there is a valuation that gives 1 to all of Ta1 $ A1; Ta2 $ A2; : : : , incorpo-
rates K, and has (Prop).

Proof We will inductively define appropriate classes C1; C2; : : : and valuations
V1; V2; : : : such that, for each n, Vn is a Cn-valuation.

We begin with C1 and V1. If we take l D 1, Ta1 as T al , A1 as Al , K as Q,
and ¿ as C , then the conditions for applying Theorem 3 are met. So there are an
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extension C 0 of ¿ and a C 0-valuation V such that C 0 involves no T -attribution other
than Ta1; V incorporates K; V assigns 1=2 to all atomic wffs that are other than Ta1

and receive no value in K; Ta1 $ A1 gets 1 in V ; V follows (Con) with respect to
C 0; and if V assigns 1=2 to Ta1 and also 1=2 to C and to D, then it gives 1 or 1=2

to C ! D depending on whether A1 is or is not C 0-insertable between C and D,
whereas if V assigns 1 or 0 to Ta1, but 1=2 to C and to D, then it gives 1 or 1=2 to
C ! D depending on whether or not C C 0-implies D. But there is only one extension
of ¿ that involves no T -attribution other than Ta1, namely, ¿ itself. C1 will just be
that extension. So there is a valuation V such that V incorporates K and assigns 1=2

to all atomic wffs that are other than Ta1 and receive no value in K; Ta1 $ A1 gets
1 in V ; V follows (Con) with respect to ¿; and if V assigns 1=2 to Ta1 and also 1=2

to C and to D, then it gives 1 or 1=2 to C ! D depending on whether A1 is or is not
¿-insertable between C and D, whereas if V assigns 1 or 0 to Ta1, but 1=2 to C and
to D, then it gives 1 or 1=2 to C ! D depending on whether or not C ¿-implies D.
If V is the set of such valuations, then V cannot have more than three members. V1

will be the first valuation in E.V ; Ta1/.
Suppose that the appropriate class Cn and the Cn-valuation Vn have been defined

in such a way that if all T -attributions among Ta1; : : : ; Tan that get 1=2 in Vn

are Taj1
; : : : ; Tajl

, where j1; : : : ; jl are distinct from one another and arranged
in increasing order, then: Cn involves no T -attribution other than Ta1; : : : ; Tan;
if Cn connects Tajh

with Tajh0 (1 � h � l , 1 � h0 � l), then Ajh
and Ajh0

are Cn-equivalent; and if Cn connects Tajh
with :Tajh0 , then Ajh

and :Ajh0 are
Cn-equivalent.

Let Tai1 ; : : : ; Taim be all T -attributions among Ta1; : : : ; Tan that get 1 or 0 in
Vn, and let I be the fragment of Vn which concerns all and only the T -attributions
Tai1 ; : : : ; Taim . Then, we can take Taj1

; : : : ; Tajl
; TanC1, Aj1

; : : : ; Ajl
; AnC1,

I [ K, and Cn in the roles played in the formulation of Theorem 3 by T a1; : : : ; T al ,
A1; : : : ; Al , Q, and C , respectively. For Cn does not combine any one of
Taj1

; : : : ; Tajl
with a T -attribution receiving a value in I [ K. If it combined

Taj1
with Tai1 , for example, then Taj1

and Tai1 would have either the same value
or opposite values in Vn. And Cn does not combine TanC1 with any T -attribution,
not even itself. Moreover, I [ K conforms with Cn, since Vn does so.

Thus, as we know from Theorem 3, there are an extension C 0 of Cn and a
C 0-valuation V such that if all T -attributions among Taj1

; : : : ; Tajl
; TanC1

that get 1=2 in V are Tak1
; : : : ; Takr

, then: C 0 involves no T -attribution other
than Ta1; : : : ; TanC1; for any kh and kh0 where h; h0 2 ¹1; : : : ; rº and akh

is
other than akh0 , C 0 connects Takh

with Takh0 if and only if Akh
and Akh0 are

C 0-equivalent, and C 0 connects Takh
with :Takh0 if and only if Akh

and :Akh0 are
C 0-equivalent; V incorporates I and K; V assigns 1=2 to all atomic wffs that are
not in ¹Ta1; : : : ; TanC1º and receive no value in K; Taj1

$ Aj1
; : : : ; Tajl

$ Ajl
,

TanC1 $ AnC1 get 1 in V ; V follows (Con) with respect to C 0; and if V assigns 1=2

to C and to D, then it gives 1 or 1=2 to C ! D depending on whether Ak1
[� � �[Akr

(¿ if r D 0) is or is not C 0-insertable between C and D.
CnC1 will be the first class C 0 in Ec.¹Ta1; :Ta1; : : : ; TanC1; :TanC1º/ such

that, for some valuation V , C 0 and V have the properties set out in the preced-
ing paragraph—where E.¹Ta1; :Ta1; : : : ; TanC1; :TanC1º/ is the enumeration
being displayed. The valuations which together with CnC1 have those properties
are finitely many. For if we take any two such valuations, there will be at least one
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wff among Taj1
; : : : ; Tajl

; TanC1 which receives different values in them. Let
V be the set of those finitely many valuations. VnC1 will be the first valuation in
E.V ; Taj1

; : : : ; Tajl
; TanC1/.

All T -attributions among Ta1; : : : ; TanC1 that get 1=2 in VnC1 are Tak1
; : : : ;

Takr
(i.e., all T -attributions among Taj1

; : : : ; Tajl
; TanC1 that get 1=2 in VnC1).

The appropriate class CnC1 and the CnC1-valuation VnC1 have been defined in such
a way that CnC1 involves no T -attribution other than Ta1; : : : ; TanC1; if CnC1

connects Takh
with Takh0 (1 � h � r , 1 � h0 � r), then Akh

and Akh0 are
CnC1-equivalent; and if CnC1 connects Takh

with :Takh0 , then Akh
and :Akh0 are

CnC1-equivalent.
It is clear that for every n, if all T -attributions among Ta1; : : : ; Tan that get 1=2

in Vn are Taj1
; : : : ; Tajl

, then: Vn incorporates K; it assigns 1=2 to all atomic
wffs that are other than Ta1; : : : ; Tan and receive no value in K; it follows (Con)
with respect to Cn; if Vn assigns 1=2 to C and to D, then it gives 1 or 1=2 to C ! D
depending on whether Aj1

[� � �[Ajl
(¿ if l D 0) is or is not Cn-insertable between

C and D; and for any h and h0 where h; h0 2 ¹1; : : : ; lº and ajh
is other than ajh0 ,

Cn connects Tajh
with Tajh0 if and only if Ajh

and Ajh0 are Cn-equivalent, and
Cn connects Tajh

with :Tajh0 if and only if Ajh
and :Ajh0 are Cn-equivalent. Of

course CnC1 is an extension of Cn, and Tan $ An gets 1 in Vn.
We can now demonstrate that, for any wff B and any n, if B has 1 in Vn, then it

also has 1 in VnC1, and if B has 0 in Vn, then it also has 0 in VnC1. The demonstration
proceeds by induction on the number of occurrences of connectives in B. In the base
clause of the induction, we appeal to the fact that any atomic wff that gets 1 or 0 in
Vn either is one of Tai1 ; : : : ; Taim or receives a value in K, and so it keeps its value
in VnC1. In the inductive clause, the interesting cases are two. (a) Say that B is C^D
and gets 0 in Vn while C and D have 1=2 or the one has 1=2 and the other 1. Since
Vn follows (Con) with respect to Cn, the deep conjuncts of B do not all have 1 in any
Cn-valuation and do not all have 0 in any Cn-valuation. Thus C and D do not both
have 1 in VnC1. If one of them has 0 there, then of course B gets 0, too. But also if
C and D have 1=2 in VnC1, or one has 1=2 and the other 1, then B gets 0 there. For
VnC1 follows (Con) with respect to CnC1, and the deep conjuncts of B will not all
have 1 in any CnC1-valuation and will not all have 0 in any CnC1-valuation. (b) Say
that B is C ! D and gets 1 in Vn while C and D have 1=2. Then Aj1

[ � � � [ Ajl

is Cn-insertable between C and D. But for each h (1 � h � l) all of Tajh
! Ajh

,
Ajh

! Tajh
, :Ajh

! :Tajh
, and :Tajh

! :Ajh
get 1 in VnC1. Moreover, if E

Cn-implies E0, then E ! E0 gets 1 in VnC1. For VnC1 is a Cn-valuation, so it cannot
be that jEjVnC1

> jE0jVnC1
; and if VnC1 assigns 1=2 to both E and E0, then it will

give 1 to E ! E0 because E CnC1-implies E0. Hence, by transitivity, C ! D gets 1
in VnC1.

Thus, for any wff B there are three possibilities: it gets 1=2 in all of V1; V2; : : : ,
or there is an n such that B has 1=2 in all of V1; : : : ; Vn�1 (if n > 1) and gets 1 in
all of Vn; VnC1; : : : , or there is an n such that B has 1=2 in all of V1; : : : ; Vn�1 (if
n > 1) and gets 0 in all of Vn; VnC1; : : : .

We now define the assignment V! of values to wffs. If an atomic wff has 1 in some
one of V1; V2; : : : , then it gets 1 in V! too. If it has 0 in some one of V1; V2; : : : , then
it gets 0 in V! . And if it has 1=2 in all of V1; V2; : : : , then it gets 1=2 in V! . Values
for compound wffs are calculated as follows. If V! assigns 1=2 to A and to B, or
assigns 1=2 to the one and 1 to the other, then it gives 0 or 1=2 to A ^ B depending
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on whether it is or it is not (respectively) the case that A ^ B has more than one deep
conjunct and, for some n, has 0 in Vn. If V! assigns 1=2 to A and to B, then it gives 1
or 1=2 to A ! B depending on whether there is or there is not an n such that A ! B
has 1 in Vn. In all other cases, V! just follows the tables for the connectives.

It can be shown that V! accords with the rules that accompany the tables for !

and ^ in valuations, and so it is a valuation. In the case of ! first, if A implies B,
then A ! B gets 1 in Vn for every n, whether or not Vn assigns 1=2 to A and B.
Moreover, if A ! B has 1 in Vn for some n, and B ! C has 1 in Vm for some m,
then both A ! B and B ! C have 1 in Vl where l D max¹n; mº, so A ! C has 1
in Vl .

In the case of ^ now, if the deep conjuncts of A ^ B do not all have 1 in any
valuation� and do not all have 0 in any valuation�, then A ^ B has more than one
deep conjunct (as we know) and gets 0 in Vn for every n, since it cannot get either 1
or 1=2. Finally, suppose that C and D are conjunctions such that every deep conjunct
of C is a deep conjunct of D, C has more than one deep conjunct, and C gets 0 in
Vn for some n. Then, D of course has more than one deep conjunct. But it also
gets 0 in Vn. This is obvious if a deep conjunct of C has 0 in Vn. If, on the other
hand, no deep conjunct of C has 0 in Vn, then a conjunction C0, possibly C itself,
is a well-formed part of C such that every deep conjunct of C0 is a deep conjunct of
C, and C0 gets 0 in Vn not because it has a conjunct that gets 0 there, but because
Vn follows (Con) with respect to Cn. Thus, the deep conjuncts of C0 do not all have
1 in any Cn-valuation and do not all have 0 in any Cn-valuation. But then the deep
conjuncts of D share that feature. So the conjuncts of D cannot both have 1 in Vn. If
one of them gets 0 in Vn, then so does D. But also if they both have 1=2 in Vn, or the
one has 1=2 and the other 1, then once again D gets 0 in Vn because of (Con).

It should next be demonstrated that, for any wff B, if it has 1 in some one of
V1; V2; : : : , it gets 1 in V! too; if it has 0 in some one of V1; V2; : : : , it gets 0 in
V! ; and if it has 1=2 in all of V1; V2; : : : , it gets 1=2 in V! . The demonstration is
inductive, and I will consider only the nontrivial cases, which are the following five:

(i) B is C _ D and has 1=2 in all of V1; V2; : : : . Then, there are only two possi-
bilities for C and D: either both have 1=2 in all of V1; V2; : : : or the one has
1=2 in all of V1; V2; : : : while the other has 0 in some one of V1; V2; : : : (and
in all subsequent ones of course). For if, say, C had 0 in Vn for some n, and D
had 0 in Vm for some m, then both would have 0 in Vl where l D max¹n; mº,
and so C _ D would also have 0 in Vl . In the first of the two possibilities, C
and D, by the inductive hypothesis, get 1=2 in V! . In the second, again by the
inductive hypothesis, one of C and D gets 1=2 in V! while the other gets 0
there. At any rate, C _ D gets 1=2 in V! .

(ii) B is C^D and has 0 in some one of V1; V2; : : : , but in none of V1; V2; : : : does
either C or D have 0. Then, there are two possibilities for C and D: either
both have 1=2 in all of V1; V2; : : : or the one has 1=2 in all of V1; V2; : : :

and the other has 1 in some one of V1; V2; : : : (and in all subsequent ones).
Thus, in V! , either both C and D get 1=2 or the one gets 1=2 and the other 1.
Moreover, C ^ D possesses more than one deep conjunct. For if it possessed
only one, it could not have 0 in a valuation without C or D also having 0
there. So C ^ D gets 0 in V! .

(iii) B is C ^ D and has 1=2 in all of V1; V2; : : : . The case is similar to the
preceding one, and we can see that C ^ D gets 1=2 in V! .
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(iv) B is C ! D and has 1 in some one of V1; V2; : : : , but in none of V1; V2; : : :

does C have 0, and in none of V1; V2; : : : does D have 1. Then there is only
one possibility for C and D: both have 1=2 in all of V1; V2; : : :. For if C
had 1 in some one of V1; V2; : : : and in all subsequent ones, and D had 1=2

in all of V1; V2; : : : , then, for some n, C ! D would have 1=2 in all of
Vn; VnC1; VnC2; : : : , and so it would have 1 in some one of V1; V2; : : : and
1=2 in some subsequent ones. If C had 1 in some one of V1; V2; : : : and
in all subsequent ones, and D had 0 in some one of V1; V2; : : : and in all
subsequent ones, then C ! D would have 1 in some one of V1; V2; : : : and 0
in some subsequent ones. And if C had 1=2 in all of V1; V2; : : : , and D had
0 in some one of V1; V2; : : : and in all subsequent ones, then C ! D would
have 1 in some one of V1; V2; : : : and 1=2 in some subsequent ones. Thus, by
the inductive hypothesis, C and D get 1=2 in V! . So C ! D gets 1 there.

(v) B is C ! D and has 1=2 in all of V1; V2; : : : . Then there are three possi-
bilities for C and D: C has 1 in some one of V1; V2; : : : and D has 1=2 in all
of V1; V2; : : : , or C has 1=2 in all of V1; V2; : : : and D has 0 in some one of
V1; V2; : : : , or both C and D have 1=2 in all of V1; V2; : : : . By the inductive
hypothesis, in the first possibility C and D get 1 and 1=2, respectively, in V! ,
and in the second possibility they get 1=2 and 0, respectively, in that valua-
tion. In both cases, C ! D gets 1=2 in V! . In the third possibility, both C
and D get 1=2 in V! , so C ! D also gets 1=2 there.

Thus V! gives 1 to all the biconditionals Ta1 $ A1; Ta2 $ A2; : : : and incor-
porates K. It remains to show that it has the property (Prop).

Say there are sequences E1; : : : ; Em and E0
1; : : : ; E0

m of wffs as described in
(Prop). Since, for every k, Tak has the same value in V! as Ak , V! gives the same
value to all of E1; : : : ; Em. Likewise, it gives the same value to all of E0

1; : : : ; E0
m. If

E1 has 0 in V! , then of course C ^ D gets 0 there. If E1 has 1 in V! , then Em gets 1
there, so E0

m and E0
1 have 0, and thus again C ^ D gets 0 in V! .

Now suppose that E1; : : : ; Em and E0
1; : : : ; E0

m all have 1=2 in V! , and consider a
valuation Vn such that j1; : : : ; jm�1; j 0

1; : : : ; j 0
m�1 � n, the numbers j1, and so on,

being as described in (Prop). Clearly, E1; : : : ; Em; E0
1; : : : ; E0

m have 1=2 in Vn, and
so Taj1

; : : : ; Tajm�1
, Taj 0

1
; : : : ; Taj 0

m�1
have 1=2 there. Assuming that EiC1 and

E0
iC1 get opposite values in each Cn-valuation, we can see that Ei and E0

i also get
opposite values in each Cn-valuation. For, as we know,

Ei D

l times‚ …„ ƒ
: � � � : Taji

; EiC1 D

l times‚ …„ ƒ
: � � � : Aji

;

E0
i D

r times‚ …„ ƒ
: � � � : Taj 0

i
; E0

iC1 D

r times‚ …„ ƒ
: � � � : Aj 0

i

for some l and r .
If l and r are both even or both odd, then Aji

and Aj 0
i

have opposite values in
every Cn-valuation. In other words, Aji

and :Aj 0
i

are Cn-equivalent. Moreover, aji

is other than aj 0
i
, for if Aji

is Aj 0
i
, then Aji

will get 1=2 in all Cn-valuations, which
is impossible. Hence, Cn connects Taji

with :Taj 0
i
. Thus Ei and E0

i get opposite
values in every Cn-valuation.

On the other hand, if one of l and r is even and the other is odd, then, in each
Cn-valuation, Aji

and Aj 0
i

have the same value. In other words, Aji
and Aj 0

i
are
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Cn-equivalent. So if aji
is other than aj 0

i
, then Cn connects Taji

with Taj 0
i
. So, in

each Cn-valuation, Taji
and Taj 0

i
get the same value, as is of course also the case if

aji
is aj 0

i
. Thus, once more, Ei and E0

i get opposite values in every Cn-valuation.
Therefore, since Em and E0

m get opposite values in every Cn-valuation, so do E1

and E0
1. Thus C ^ D gets 0 in Vn. For not all its deep conjuncts have 1 in Vn: E1 and

E0
1 do not. And if C and D have 1=2 in Vn, or the one has 1=2 and the other 1, then

C ^ D gets 0 there because Vn follows (Con) with respect to Cn. Moreover, C ^ D
must have more than one deep conjunct. For if it had only one, E1 would be identical
with E0

1 and so get 1=2 in every Cn-valuation.
Thus C ^ D gets 0 in V! , too, if C and D have 1=2 there or the one has 1=2 and

the other 1. Clearly, C ^ D also gets 0 in V! if one of C and D has 0 there. And
it cannot be that both C and D have 1 in V! , since some deep conjuncts of C ^ D
(namely, E1 and E0

1/ do not have 1 there.

4.7 Finally, taking up a few issues that we left over in Section 3, we should demon-
strate that some conjunctions of the form Tak ^ Tah where, for some B and C, Ak

is B _ C while Ah is :B ^ :C get a value other than 0 in a valuation in S . The proof
of the Central Theorem shows how we can define a valuation, V! , which assigns
1=2 to p1 and p2 and meets the conditions for membership in S . Let Ak and Ah be
p1 _p2 and :p1 ^:p2, respectively. Then, p1 and p2 have 1=2 in all of V1; V2; : : : ,
and p1 _ p2 gets 1=2 in V! . As for :p1 ^ :p2, it has 1=2 in Vn for every n. For
Vn follows (Con) with respect to Cn, and it is easy to construct a Cn-valuation in
which :p1 and :p2 both have 1 (or have any combination of values, for that mat-
ter). Thus :p1 ^ :p2 gets 1=2 in V! too. Hence Tak and Tah get 1=2 in V! , and
so they have 1=2 in all of V1; V2; : : : . Consider any n such that k � n and h � n.
If Tak ^ Tah has 0 and not 1=2 in Vn, then Tak and Tah will not both have 1 in
any Cn-valuation. This cannot be so if Cn does not combine Tak and Tah or if it
connects Tak with Tah. Thus Cn will connect Tak with :Tah. But then Ak and
:Ah will be Cn-equivalent, so p1 _ p2 and :p1 ^ :p2 will have opposite values
in all Cn-valuations. In fact, however, it is easy to construct a Cn-valuation in which
p1 _ p2 gets 1=2, but :p1 ^ :p2 gets 0. (Consider a Cn-valuation that assigns 1=2

to p1 and p2, but gives 0 to every conjunction C ^ D in case (i) of Table 3 unless
C ^ D possesses only one deep conjunct.) Thus, Tak ^ Tah has 1=2 in Vn for every
n such that k � n and h � n. So Tak ^ Tah gets 1=2 in V! too.

We should also see that p1 ^ :Tam, where Am is p1, gets a value other than 0
in a valuation in S , so that :Œp1 ^ :Tam� does not belong to the theory of truth.
Indeed, p1 ^ :Tam gets 1=2 in a valuation V! that assigns 1=2 to p1 and is defined
as described in the proof of the Central Theorem. For if p1 gets 1=2 in V! , then
Tam also gets 1=2 there, and so p1 and Tam have 1=2 in all of V1; V2; : : : . Thus,
p1 ^ :Tam has 1=2 in Vn for every n, since there will be a Cn-valuation in which
p1 and :Tam both have 1 (or have any combination of values, for that matter). We
can similarly see that Tam ^ :p1 gets 1=2 in V! .

5 Concluding Remarks

I will end the article by mentioning some of the ways in which I have extended the
work presented here. For one thing, the language has been enriched with a primitive
determinacy operator, �. The meaning of �A is “It is determinate whether A.” The
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idea is that it may not be a determinate matter whether or not the sentence (L) is true.
Reality itself may not have an answer to the question, so to speak. If, however, we
accept that it is not determinate whether (L) is true, we commit ourselves to the view
that it is determinate whether (it is determinate whether (L) is true). I would say
that either it is not a determinate matter whether (L) is true or it is not a determinate
matter whether (it is a determinate matter whether (L) is true) or indeterminacy may
lie even deeper. The theory of truth in the enriched language allows us to prove an
analogue of the Central Theorem and, in fact, has both models (assignments of the
values 1, 1=2, and 0) which assign 1 to the claim “It is not determinate whether the
liar sentence is true” and models which do not assign it 1 (but 1=2).

More importantly, the work has been extended to a first-order setting. The lan-
guage now includes the universal and the existential quantifier. In each model, instead
of assigning values to wffs, we assign values to pairs hs; Ai where s is a sequence
of objects from the domain. The language also possesses function symbols or other
means that enable us to describe wffs syntactically. There result a nonclassical first-
order logic and some theories of truth embedded in the framework of that logic. Each
theory allows us to prove an analogue of the Central Theorem and incorporates var-
ious generalizations about truth. The proofs are, however, more complicated than
those in the present article. If the language possesses a function symbol for concate-
nation, then we can define a falsity predicate F such that to call a wff F is to say that
the concatenation of : and that wff is true. The theories include generalizations to
the effect that no sentence is both true and false and no sentence is both not true and
not false.

Notes

1. Zardini [12], who validates both the law of noncontradiction and the substitution of
equivalents, does not accept that every sentence A entails A ^ A. The main differ-
ence between his logic and that presented here is that the former is substructural in that
it rejects the principle that if A considered twice entails B, then A considered once
entails B.

2. The logic to be presented validates the inferences of the form “S _ S0; :S; hence S0.”
This is consistent with claiming that we should not freely make such inferences when
we have assumed that, contrary to what the logic teaches, a contradictory state of affairs
obtains.

3. The point goes back at least to Fine [5, pp. 142–43, 146–50].

4. Outermost brackets are omitted. The rule of the association to the left applies; for exam-
ple, A ^ B ^ C abbreviates ŒŒA ^ B� ^ C�. The brackets that enclose a disjunction or
conjunction are omitted when the disjunction or conjunction is an argument of an occur-
rence of ! or $; so A ! B _ C abbreviates ŒA ! ŒB _ C��. No other brackets are
omitted.

5. As far as I know, in Avron’s work on propositional logic for nondeterministic semantics,
there are no rules that are additional to the truth tables and constrain the valuations,
such as the rules that will be employed here. A rule of that kind appears in his work on
first-order logic, ensuring the substitutivity of identicals (see [2, pp. 285–87]).
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6. On the other hand, taking a doxastic or epistemic attitude toward each one of two state-
ments is not always the same as taking it toward their conjunction. One can attach a high
probability to S and to S0 without attaching a high probability to S ^ S0. But in the case
of such attitudes, too, it is difficult to treat S and S ^ S differently.

7. For example, Aristotle calls it, or a variant of it, “the most certain of all principles” [1,
p. 66].

8. For the concept of an inference whose premises are other inferences, see, for example,
Prawitz [8, p. 228], [9, pp. 69–70].

9. So in the theory, as opposed to the logic, the letter T and the individual constants are not
schematic letters.

10. Here, and up to the end of the proof of Theorem 3, the subscripted letters A1, A2, An,
and so on, are just variables ranging over all wffs. The letter A1, for example, does not
specifically denote the wff R.a1/.

11. Appropriate classes enter as follows: When we move to a version of Theorem 2 that
involves many T -attributions, a new disjunct appears in the theorem to the effect that
the wffs corresponding to two of those T -attributions are equivalent to each other. This
adds a case to the induction proving Theorem 3. In order to deal with that case, we
need to ensure that the T -attributions get the same value, and we do that by means of
an appropriate class. We also use those classes in order to show that the valuation we
construct in the proof of the Central Theorem has (Prop).
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