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A Partition Theorem of !!˛

Claribet Piña

Abstract We consider finite partitions of the closure F of an !˛-uniform bar-
rier F . For each partition, we get a homogeneous set having both the same
combinatorial and topological structure as F , seen as a subspace of the Cantor
space 2N.

1 Introduction

Given two topological spaces X and Y and an integer l > 1, we denote by
X ! .topY /1

l
the fact that, given any map f W X �! l , there isH a subspace of X

which is homeomorphic to Y and f -monochromatic. A very well-known result on
partitions of topological spaces, due to Baumgartner [2] and Weiss [5], establishes
that a countable ordinal space 
—that is, 
 endowed with its order topology—
satisfies that 8l > 1; 
 ! .top 
/1

l
if and only if 
 D !!˛ for some ˛ < !1.

Translating this statement to the realm of partitions of families in FIN, we get that
given l > 1 and 0 < ˛ < !1, if F � FIN is a family having the same topological
type as !!˛ , and F D F0 [ F1 [ � � � [ Fl�1 is a partition of F , then there exists
a subfamily H � F with the same topological type as F such that H � Fi for
some i < l . We wondered if it is possible to find a homogeneous set H which also
preserves the combinatorial structure of F .

It is known that if F is an !˛-uniform family endowed with the lexicographic
order topology �<lex , then .F ; �<lex/ and .F � M; �<lex/ are both homeomorphic
to !!˛ , for every M 2 NŒ1�, where F � M D ¹s 2 F W s � M º. Then, at
first glance, the Ramsey property for uniform families (see Theorem 2.1) seems to
provide a homogeneous set H D F � M having the same combinatorial behavior
as F (i.e., F � M is as well an !˛-uniform family, on M ). However, this is not
the case, since for our partition problem the homogeneous set H must be considered
with the subspace topology inherited from .F ; �<lex/. Piña and Uzcátegui [3] showed
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that the topological type of a restriction F � M may change so radically, according
to M , that it could be a discrete subspace of .F ; �<lex/. Furthermore, they showed
that given any uniform family F , there is a partition of F such that F � M is a
discrete subspace of .F ; �<lex/ for every M 2 NŒ<1� given by the Ramsey property
of F applied to such a partition. Therefore, in this sense F � M fails to be a
homogeneous set.

A more subtle way of dealing with this problem is considering a different repre-
sentation of the ordinal space !!˛ by using the closure F of an !˛-uniform family
F endowed with the subspace topology inherited from the Cantor space 2N. In this
article, we study the combinatorial characteristics of a homogeneous family for a
partition relation 8l > 1;F ! .top F /1

l
, where F is an !˛-uniform barrier. In

this sense, we cannot get a homogeneous set with exactly the same combinatorial
behavior as F . Say, for example, we cannot get as a homogeneous set a family
F � M , or the closure B of another !˛-uniform family B, since a coloring defined
on F using the sizes of the elements in F clearly forbids any of these families to be
monochromatic. However, in Theorem 3.4, we will obtain a homogeneous set which
is nothing else than the image, under an v-order-preserving embedding, of the clo-
sure of another !˛-uniform barrier. As a consequence of Theorem 3.4, we clearly
obtain an alternative proof for the Baumgartner–Weiss result (Corollary 3.5).

In most of our proofs, we will assume the existence of a nonprincipal selective
ultrafilter. It is well known that the existence of selective ultrafilters requires addi-
tional set-theoretic assumptions. However, it has been proved that they exist under
the assumption of hypothesis as the continuum hypothesis (CH) or as Martin’s axiom
(MA). Therefore, by absoluteness, all the results presented here are in fact ZFC-
results.

The article is organized as follows. In Section 2 we present some basic facts, nota-
tion, and well-known notions from Ramsey theory. In that section, we also prove
some technical lemmas that we will use in our induction proofs. In Section 3 we
prove our main result (Theorem 3.4) making use of Theorem 3.1, and we give an
alternative proof for the Baumgartner–Weiss theorem (Corollary 3.5). Finally, Sec-
tion 4 is devoted to giving an inductive proof of our more technical result (Theo-
rem 3.1).

2 Preliminaries

We will start this section by introducing some notation, definitions, and well-known
facts that we will use throughout the article. We will only include in this section the
proofs of results that, as far as we know, are new. (For all the facts stated without a
proof, see Argyros and Todorcevic [1], Baumgartner [2], and Todorcevic [4].)

2.1 Basic notions We denote by FIN the set of all nonempty finite subsets of N. If
M � N and k 2 N, we denote by M Œk� the set of subsets of M with size k, by
M Œ�k� the set of subsets of M with size less than or equal to k, and by M Œ<1� the
set of all finite subsets of M . If, moreover, M � N is infinite, then we denote by
M Œ1� the set of all infinite subsets of M . Given s 2 FIN and M � N, we denote
by M=s the set ¹x 2 M W max.s/ < xº. If s D ¹nº, we write instead M=n. We
put M > s if min.M/ > max.s/. We write s @ M if there is m 2 M such that
¹0; 1; : : : ; mº \ M D s, we write s v M if s @ M or s D M , and we denote by
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s œ M the negation of s v M . We say that a mapping ', with domain F � FIN
and values in FIN, is v-order-preserving if s v t implies '.s/ v '.t/ whenever
s; t 2 F . We say that a family F � FIN is thin if for every different s; t 2 F we
have s œ t .

Given a family F � FIN and M 2 NŒ1�, we say that F is a front on M if it is
thin, and for every N 2 MŒ1� there is t 2 F such that t @ N . If, moreover, we
have that s ª t for every s; t 2 F , we say that F is a barrier on M . Clearly, every
barrier onM is a front onM . WhenM D N, we simply say that F is a front (resp.,
a barrier). The Schreier barrier, which we will often use, is defined by

S D
®
s 2 FIN W jsj D min.s/C 1

¯
:

If F � FIN and M 2 NŒ1�, the sets F � M and F ŒM � are defined as follows:

F � M D ¹t 2 F W t � M º; F ŒM � D ¹t \M W t 2 F º:

If F is a front (resp., a barrier) on M , and N 2 MŒ1�, then F � N is a front (resp.,
a barrier) on N . We say that a family F � FIN is Ramsey (or that it has the Ramsey
property) if for every finite partition F D F0 [ F1 [ � � � [ Fk and everyM 2 NŒ1�,
there is N 2 MŒ1� such that at most one of the restrictions F0 � N , F1 � N; : : : ,
Fk � N is nonempty. The following classic result of Ramsey theory ensures the
existence of Ramsey families.

Theorem 2.1 (Nash-Williams) Every thin family is Ramsey.

We consider F � FIN as a topological subspace of }.N/ by endowing this last
one with the topology of pointwise convergence from the Cantor space 2N, that is,
identifying sets with their characteristic functions. We say that a sequence .sn/n in
FIN is a block sequence if sn < sm for every n < m. We denote by F the topological
closure of F . Moreover, we say that F is precompact if F � FIN. We will also
consider the downward closures of F � FIN defined by

F
v

D ¹s W s v t for some t 2 F º; F
�

D ¹s W s � t for some t 2 F º:

It is a fact that if F is a front on M , then F
v

D F , and that if F is a barrier on
M , then F

�
D F

v
D F . Moreover, a family F � FIN is precompact if and only

if F
v is compact.

Recall that ifX is a topological space and ˛ < !1, then the ˛th Cantor–Bendixson
derivative of X is defined recursively as follows:

X 0
D ¹x 2 X W x is not isolated in Xº;

X .ˇC1/
D .X .ˇ//0;

X .�/
D

\
ˇ<�

X .ˇ/; if � > 0 is a limit ordinal.

It is known that if A � FIN is compact, then there is ˛ < !1 such that
A.˛/ D A.˛C1/ D ;. The minimal ordinal ˛ < !1 with this property is called the
Cantor–Bendixson rank of A, and we denote it by rkCB.A/.

We recall that the lexicographic order <lex is defined on FIN by s <lex t if and
only if min.s4t / 2 s. An important fact about the lexicographic order is that every
precompact family F � FIN is lexicographically well-ordered. With this in mind,
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we adopt the concept of an order-homeomorphism. We say that A � FIN is order-
homeomorphic to a countable ordinal space 
—that is, 
 endowed with its order
topology—if there is an order isomorphism between .A; <lex/ and 
 which is also a
topological homeomorphism.

Proposition 2.2 If F is an (infinite) precompact family on M 2 NŒ1� with
rkCB.F

v
/ > 0, then .F v

;v/ is order-homeomorphic to !rkCB.F
v

/ C 1. Therefore,
F

v
n ¹;º is homeomorphic to !rkCB.F

v
/.

2.2 ˛-uniform families We now introduce the notion of uniform families, which will
give us a way of representing countable ordinal spaces as families on FIN.

Given F � FIN, M 2 NŒ1�, and ˛ < !1, the concept of an ˛-uniform family on
M is defined recursively as follows. F is ˛-uniform on M if one of the following
conditions holds:

1. ˛ D 0 and F D ¹;º,
2. ˛ D ˇ C 1 and F¹nº WD ¹s 2 FIN W n < s and ¹nº [ s 2 F º is ˇ-uniform on
M=n for every n 2 M ,

3. ˛ is a limit ordinal and there is a strictly increasing sequence of ordinals .˛n/n
converging to ˛ such that F¹nº is ˛n-uniform on M=n for every n 2 M .

We say that a family is uniform on some M 2 NŒ1� if it is ˛-uniform on M for
some ˛ < !1. If a family F is uniform on N, we simply say that F is uniform.
It follows by induction on k that given k > 0, a family F � FIN is k-uniform on
M 2 NŒ1� if and only if F D M Œk�. Therefore, F is !-uniform on M if and only
if there exists a strictly increasing sequence of positive integers .mn/n2M such that
F¹nº D M Œmn� for every n 2 M . Particularly, the Schreier barrier S is an !-uniform
family. On the other hand, it follows from the definition that for every ˛ < !1, there
exists an ˛-uniform family.

Proposition 2.3 Given ˛ < !1 and F an ˛-uniform family on M 2 NŒ1�, we
have the following.

1. F is a front on M . Therefore, F is Ramsey.
2. F � N is an ˛-uniform family on N for every N 2 MŒ1�.
3. The order type of .F ; <lex/ is !˛ . Moreover, rkCB.F / D ˛.

Theorem 2.4 Given F � FIN a nonempty precompact family on M � N with
Cantor–Bendixson rank ˛ < !1, there is N 2 MŒ1� such that F ŒN � is the closure
of an ˛-uniform barrier on N .

Theorem 2.5 Given F � FIN a barrier on M 2 NŒ1� with rkCB.F / D ˛, there
is an infinite set N � M such that F � N is an ˛-uniform barrier on N .

Lemma 2.6 Given ˛ < ˇ < !1, M 2 NŒ1�, A an ˛-uniform family on M , and
B a ˇ-uniform family on M , there is an infinite set N � M such that A � N � B.

We recall that an ultrafilter on N is a collection U of subsets of N with the following
properties:

1. ; … U and N 2 U,
2. M � N and M 2 U imply N 2 U,



A Partition Theorem of !!˛
391

3. N D N0 [N1 and N 2 U imply N0 2 U or N1 2 U, and
4. M 2 U and N 2 U imply M \N 2 U.

We say that an ultrafilter U is nonprincipal if ¹nº … U for all n 2 N. We call
an ultrafilter U selective if given a barrier F and any finite coloring of it, there is
M 2 U such that F � M is monochromatic; or, equivalently, U is selective if for
every sequence .At /t2FIN of elements of U, there is A 2 U such that A=t � At for
every t 2 AŒ<1�. Given a tree T � NŒ<1� and

�!
U D ¹Us W s 2 NŒ<1�º a family of

nonprincipal ultrafilters on N, we call T a
�!
U-tree if ¹n 2 N W t [ ¹nº 2 T º 2 Ut for

every t 2 T . If the sequence
�!
U is constant, that is, if Us D U for every s 2 NŒ<1�,

then we will suppress the arrow. For our proofs, we will always consider U-trees
with stem st.T / D ;; that is, st.T / is the maximal node comparable with every other
node of T . Also, we adopt the convention that, from now on, whenever we consider
a selective ultrafilter we mean a nonprincipal selective ultrafilter.

If T is a U-tree and B is a family on FIN, then we will denote by T � B the set
of elements of T up to B. That is, the terminal nodes of T � B are in B.

Lemma 2.7 Let U be a selective ultrafilter, and let 0 < ˛ < !1. If T is a U-tree
and B is an ˛-uniform barrier on M 2 U, then there is a set N � M in U such
that T \ .B � N/ is an ˛-uniform barrier on N .

Proof (By induction on ˛) Fix U a selective ultrafilter, T a U-tree, and B an
˛-uniform family on M 2 U. If ˛ D 1, then take M1 D ¹n W ¹nº 2 T º 2 U. Since
M 2 U, the setN D M \M1 � M belongs to U. Moreover, T \ .B � N/ D N Œ1�

is a 1-uniform barrier on N .
Suppose that the lemma is true for every 0 < ˇ < ˛. Let .˛i /i be an increasing

sequence of ordinals converging to ˛ if ˛ is limit, and let ˛i D ˇ for all i 2 M

if ˛ D ˇ C 1 such that B¹nº is an ˛n-uniform barrier on M=n for every n 2 M .
Note that T¹nº is a U-tree for every n 2 M1 (for M1 as in the base case). Then,
by the inductive hypothesis, for every n 2 M \ M1 there is Mn � M=n in U

such that T¹nº \ .B¹nº � Mn/ is an ˛n-uniform barrier on Mn. Finally, consider
N � M \ M1 in U such that N=n � Mn for every n 2 N , and note that
T \ .B � N/¹nº D T¹nº \ .B¹nº � N=n/ is an ˛n-uniform barrier on N=n for
every n 2 N .

2.3 Schreier families We now present some combinatorial properties of the
!˛-uniform families. Mainly, we will introduce the families .S˛/˛<!1

, which
are obtained in a very canonical way from the Schreier barrier, and which are con-
tained in the closure of any !˛-uniform family (see Lemma 2.11). In view of this,
later on, these families will be an important tool in our proofs considering partitions
of the closure of !˛-uniform barriers.

Given A and B two families on FIN, we define A ˚ B and A ˝ B by

A ˚ B D ¹s [ t W s < t; s 2 B and t 2 Aº;

A ˝ B D
®
s1 [ s2 [ � � � [ sn W s1 < s2 < � � � < sn are in A and®
min.si / W 1 � i � n

¯
2 B

¯
:

Lemma 2.8 If A;B � FIN are barriers on M 2 NŒ1�, then the following hold:
1. A ˚ B and A ˝ B are barriers on M ,
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2. A ˚ B D A ˚ B,
3. A ˝ B D A ˝ B.

Lemma 2.9 Let ˛; ˇ < !1, let M 2 NŒ1�, let A be an ˛-uniform family on M ,
and let B be a ˇ-uniform family onM . Then, A ˚ B is .˛Cˇ/-uniform onM , and
A ˝ B is .˛ � ˇ/-uniform on M .

Given 0 < ˛ < !1, we define S˛ as follows:
S˛ DS ; if ˛ D 1;

S˛ DSˇ ˝ S ; if ˛ D ˇ C 1;

S˛ D

[
n<!

S˛n
˚

®
¹nº

¯
; if ˛ D sup

n
˛n:

Remark 2.10 Note that for every 0 < ˛ < !1, the barrier S˛ is !˛-uniform.

Lemma 2.11 shows how the families S˛ are in some sense minimal !˛-uniform
barriers. In the following, we will implicitly make use of Lemmas 2.6, 2.8, and 2.9.

Lemma 2.11 Given U a selective ultrafilter and F an !˛-uniform family on
M 2 U, there is N � M in U such that

1. .Sˇ ˝ NŒi�/ � N=i � F¹iº for every i 2 N , if ˛ D ˇ C 1; and
2. S˛i

� N=i � F¹iº for every i 2 N , if ˛ D supi ˛i .

Proof Consider F an !˛-uniform family on M 2 U and .
i /i an increasing
sequence of ordinals converging to !˛ such that F¹iº is 
i -uniform onM=i for every
i 2 M .

If ˛ D ˇ C 1, then for every i 2 M consider ni 2 M such that !˛ � ni < 
i �

!˛ � .ni C 1/. Since i � ni , for every i 2 M there is Mi � M=i in U such that
.S˛ ˝ NŒi�/ � Mi � F¹iº. We consider now N � M in U such that N=i � Mi for
every i 2 N . Then, we get that .Sˇ ˝ NŒi�/ � N=i � F¹iº for every i 2 N .

If ˛ is a limit ordinal, then consider .˛i /i a strictly increasing sequence of
ordinals converging to ˛. For every i 2 M , consider ni 2 M such that
!˛i � !˛ni < 
i � !˛ni C1 . Then, for every i 2 M , we obtain Mi � M=i

such that S˛i
� Mi � F¹iº. Finally, consider N � M in U such that N=i � Mi for

all i 2 N , to get that S˛i
� N=i � F¹iº for every i 2 N .

3 Main Results

In this section we will use Theorem 3.1 to prove our main theorem (Theorem 3.4),
which, besides giving an alternative proof for the Baumgartner–Weiss theorem
(Corollary 3.5), also provides a combinatorial description of a homogeneous set for
the partition relation 8l > 1;F ! .top F /1

l
, where F is an !˛-uniform barrier.

In order to simplify the reading, the proof of Theorem 3.1 will be left to the next
section.

Theorem 3.1 Given l > 1, 0 < ˛ < !1, U a selective ultrafilter, F an
!˛-uniform barrier on some set M 2 U, and a coloring f W F �! l , there exist
a U-tree T , an !˛-uniform barrier B, on some set N � M of U, and a mapping
' W .T � B/ n ¹;º �! F n ¹;º such that

1. f is constant on rg.'/;
2. s � '.s/ for every ; ¤ s 2 T � B;
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3. min.'.s// D min.s/ for every ; ¤ s 2 T � B;
4. if u [ ¹nº 2 T � B, then '.u [ ¹nº/ D '.u/ [ un for some finite set
un > '.u/;

5. if u[¹nº; u[¹mº 2 T � B, u ¤ ; andm > n, then there is a finite set v such
that '.u/ v v @ '.u[¹mº/; '.u[¹nº/ and '.u[¹mº/nv > '.u[¹nº/nv;
moreover, if ¹nº; ¹mº 2 T � B and m > n, then '.¹mº/ > '.¹nº/.

Remark 3.2 As we will see in Section 4, the fact that Theorem 3.1 is stated in
terms of selective ultrafilters and U-trees will allow us to develop a shorter proof for
it, since we will be able to restrict ourselves to infinite sets inside our original set M
without having to carry out diagonalization procedures. However, notice that, given
F an !˛-uniform barrier, and a coloring f W F �! l , for any selective ultrafilter
U and any M 2 U, the barrier F � M is !˛-uniform on M . Hence, if T , B, and
' are as in Theorem 3.1, then, by Lemma 2.7, there will be N 2 MŒ1� such that
T \ .B � N/ � T � B is an !˛-uniform barrier on N . In this way, we obtain the
following simplified version of Theorem 3.1 which is the one that we will essentially
use.
Corollary 3.3 Given l > 1, 0 < ˛ < !1, F an !˛-uniform barrier, and a
coloring f W F �! l , there exist an !˛-uniform barrier B, on some setM 2 NŒ1�,
and a map ' W B n ¹;º �! F n ¹;º such that

1. f is constant on rg.'/;
2. s � '.s/ for every ; ¤ s 2 B;
3. min.'.s// D min.s/ for every ; ¤ s 2 B;
4. if u [ ¹nº 2 B, then '.u [ ¹nº/ D '.u/ [ un for some finite set un > '.u/;
5. if u [ ¹nº; u [ ¹mº 2 B, u ¤ ; and m > n, then there is a finite set v such

that '.u/ v v @ '.u[¹mº/; '.u[¹nº/ and '.u[¹mº/nv > '.u[¹nº/nv;
moreover, if ¹nº; ¹mº 2 B and m > n, then '.¹mº/ > '.¹nº/.

Theorem 3.4 (Main theorem) Given l > 1, 0 < ˛ < !1, F an !˛-uniform
barrier, and a coloring f W F �! l , there exist an !˛-uniform barrier B, on some
setM 2 NŒ1�, and an v-order-preserving embedding ' W B n ¹;º �! F n ¹;º such
that f is constant on rg.'/.
Proof We just need to prove that the map ' given by Corollary 3.3 is indeed
an v-order-preserving embedding. Notice that from property (4), ' is v-order-
preserving and, moreover, that '00Œs� � Œ'.s/� \ rg.'/ for every s 2 B n ¹;º, where
for a given a 2 FIN, Œa� denotes the basic open Œa� D ¹t 2 FIN W a v tº. Thus,
it follows that ' is continuous. For the injectivity, consider a; b 2 B n ¹;º with
a ¤ b, and suppose a × b. Let u @ a; b be such that min.a n u/ ¤ min.b n u/, say,
min.bnu/ D m > n D min.anu/. Then, by properties (4) and (5), there is a finite set
v such that v @ '.u[¹mº/; '.u[¹nº/ and '.u[¹nº/nv < '.u[¹mº/nv v '.b/nv.
Then, min.'.u [ ¹nº/ n v/ 2 '.a/ n '.b/.

Corollary 3.5 (Baumgartner–Weiss) !!˛
! .top!!˛

/1
l
, for every l > 1 and

every 0 < ˛ < !1.
Proof Given l > 1 and 0 < ˛ < !1, we can always consider F an !˛-uniform
barrier, whose closure (by Propositions 2.2 and 2.3(3)) is order-homeomorphic to
!!˛

C 1. Then, given an l-coloring of !!˛ , we naturally get an l-coloring of F .
Then by Theorem 3.4, we get the conclusion.
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4 Proof of Theorem 3.1

The aim of this section is to prove Theorem 3.1, which will be proved by induction
on ˛. In Section 4.1 we deal with the base case ˛ D 1, and then in Section 4.2 we
carry out the inductive step.

4.1 The case ˛ D 1 Let us fix l > 1, U a selective ultrafilter, M 2 U, F an
!-uniform barrier on M , and a coloring f W F �! l . Then we have the following.

Claim 4.1.1 There are B 2 U and l� < l such that for every s 2 F � B , there
is  .s/ � s such that if n D min.s/, then

(i) 8x 2  .s/ .f .¹0; 1; : : : ; xº \ s/ D l�/, and
(ii) x 2  .s/ iff j¹0; 1; : : : ; xº \ sj D mn

i for some 0 < i � kn,
where kn D j .s/j and 0 < mn

1 < m
n
2 < � � � < mn

kn
� jsj depend only on n 2 B .

Proof We start by choosing  .s/ � s for each s 2 F as the biggest of the
sets ¹x 2 s W f .¹0; 1; : : : ; xº \ s/ D 0º, ¹x 2 s W f .¹0; 1; : : : ; xº \ s/ D 1º;

: : : ; ¹x 2 s W .¹0; 1; : : : ; xº \ s/ D l � 1º (if there are several of these sets with
maximal size, pick and fix any of them). Define '0 W F �! l by

'0.s/ D i iff 8x 2  .s/
�
f

�
¹0; 1; : : : ; xº \ s

�
D i

�
:

Since U is selective and F is a barrier, we can pick A � M in U and l� < l such
that '0.s/ D l� for all s 2 F � A. That is,

8s 2 F � A 8x 2  .s/
�
f

�
¹0; 1; : : : ; xº \ s

�
D l�

�
: (4.1)

Since F is an !-uniform family on M , there exits .mn/n a strictly increas-
ing sequence of integers such that F¹nº D M Œmn� for all n 2 M . There-
fore, if t 2 F and min.t/ D n, then j .t/j � jt j D mn C 1. Define
'n W F¹nº � A �! ¹1; 2; : : : ; mn C 1º, for every n 2 A, by

'n.s/ D i iff
ˇ̌
 

�
¹nº [ s

�ˇ̌
D i:

Pick Ln � A=n in U such that 'n is constant on F¹nº � Ln. That is,

9kn 2 ¹1; 2; : : : ; mn C 1º such that
ˇ̌
 

�
¹nº [ s

�ˇ̌
D kn 8s 2 F¹nº � Ln: (4.2)

We now define  n W F¹nº � Ln �! }.mn C 2/ by

 n.s/ D
®ˇ̌

¹0; 1; : : : ; xº \
�
¹nº [ s

�ˇ̌
W x 2  

�
¹nº [ s

�¯
:

Then, pick an 2 }.mn C 2/ and Mn � Ln in U such that  n.s/ D an for all
s 2 F¹nº � Mn. That is, there are 0 < mn

1 < mn
2 < � � � < mn

kn
� mn C 1 such that

for all s 2 F¹nº � Mn,

x 2  
�
¹nº [ s

�
iff

ˇ̌
¹0; 1; : : : ; xº \

�
¹nº [ s

�ˇ̌
D mn

i for some 0 < i � kn: (4.3)

With this procedure we obtain .Mn/n2A as a sequence of sets in U and .kn/n2A

and ¹.mn
i /0<i�kn

W n 2 Aº as sequences of integers such that if s 2 F � A,
min.s/ D n and s=n 2 Mn, then (by (4.1), (4.2), and (4.3)) we have the following:

1. 8x 2  .s/ .f .¹0; 1; : : : ; xº \ s// D l�;
2. j .s/j D kn;
3. x 2  .s/ if and only if j¹0; 1; : : : ; xº \ sj D mn

i for some 0 < i � kn.
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Note that m > kn � l implies km > kn. Then we can assume, by shrinking
A if necessary, that .kn/n2A is strictly increasing. On the other hand, by U being
selective, we can pick B � A in U such that B=n � Mn for all n 2 B . This implies
that for every s 2 F � B , if min.s/ D n, then

(i) 8x 2  .s/
�
f

�
¹0; 1; : : : ; xº \ s

�
D l�

�
; and

(ii) x 2  .s/ iff
ˇ̌
¹0; 1; : : : ; xº \ s

ˇ̌
D mn

i for some 0 < i � kn: (4.4)

Notice that by B 2 U and U being nonprincipal, B Œ<1� is a U-tree. Thus, if for
n 2 B we put rn D max¹mi

ki
W i � nº and we take vn 2 B Œrn� with min.vn/ > n,

then

An WD
®
m 2 N W 9v 2 B Œrn�.m > v > n/

¯
�

®
m 2 N W vn [ ¹mº 2 B Œ<1�

¯
2 U:

Therefore, An 2 U for every n 2 B , and we can choose M� � B in U such that
M�=n � An for every n 2 M�. Consider

G D
®
 .s/ W s 2 F � B

¯
� F :

Claim 4.1.2 There exist N � M� in U and B an !-uniform barrier on N such
that G ŒN � D B.

Proof Since G ŒM�� is a precompact family on M� and G ŒM��ŒN � D G ŒN � for
every N 2 M

Œ<1�
� , by Theorem 2.4, it is enough to show that G ŒM�� has Cantor–

Bendixson rank !.
To see this, we fix p > 1 and q 2 M� such that kq > p. Then, it will be enough to

show that .M�=kq/
Œ�p� � G ŒM��. In the following, we will repeatedly use the fact

thatBnM� is infinite, which follows from the choice ofM�. Let x1 < x2 < � � � < xp

be in M�=kq , and choose u1; u2; : : : ; up � B with

ju1j D m
q
1 � 2 and q < u1 < x1;

ju2j D m
q
2 �m

q
1 � 1 and x1 < u2 < x2;

ju3j D m
q
3 �m

q
2 � 1 and x2 < u3 < x3;

:::

jupj D mq
p �m

q
p�1 � 1 and xp�1 < up < xp:

By (4.4) we can choose s1; s2; : : : ; sp 2 F � B such that ¹qº [ u1 [ ¹x1º @ s1,
¹qº[u1 [¹x1º[u2 [¹x2º @ s2, ¹qº[u1 [¹x1º[u2 [¹x2º[u3 [¹x3º @ s3, . . . ,
¹qº [ u1 [ ¹x1º [ u2 [ ¹x2º [ � � � [ up [ ¹xpº @ sp and s1=x1; s2=x2; s3=x3; : : : ;

sp=xp � B n M�. Then, ¹x1º D  .s1/ \ M�, ¹x1; x2º D  .s2/ \ M�,
¹x1; x2; x3º D  .s3/ \ M�; : : : ; ¹x1; x2; x3; : : : ; xpº D  .sp/ \ M�. Then, it
follows that .M�=kq/

Œ�p� � G ŒM��.

Let T be the U-tree M Œ<1�
� . Then we define ' W .T � B/ n ¹;º �! F n ¹;º,

satisfying the conclusions of the theorem as follows. If ; ¤ t 2 T � B, then
there is s 2 F � B such that t D  .s/ \ N . Let us put min.s/ D p and
t D ¹n1; n2; : : : ; nkº<; then we should have k � kp � kn1

and n2 2 An1
;
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n3 2 An2
; : : : ; nk 2 Ank�1

. From this, we can define the following sets:
u1 D ¹n1º;

u2 D v2 [ ¹n2º; for v2 the <lex � max v � B with
jvj D m

n1

1 � 2 and n2 > v > n1;

u3 D v3 [ ¹n3º; for v3 the <lex � max v � B with
jvj D m

n1

2 �m
n1

1 � 1 and n3 > v > n2;

:::

uk D vk [ ¹nkº; for vk the <lex � max v � B with
jvj D m

n1

k�1
�m

n1

k�2
� 1 and nk > v > nk�1:

It is clear that the choice of such sets is uniquely determined by t . Take
'.t/ D

S
0<j �k uj . Then as u1 < u2 < � � � < uk , we have min.'.t// D n1

and j'.t/j D m
n1

k�1
. Moreover, by (4.4) we can choose v 2 F � B such that

'.t/ @ v and max.'.t// 2  .v/, thus f .'.t// D l�. Then it is clear that ' defined
in this way satisfies conditions (1)–(4) in the statement of Theorem 3.1. To see that
' also satisfies condition (5), note that if t [ ¹mº; t [ ¹nº 2 T � B and m > n,
then '.t [ ¹mº/ D

S
0<j �k uj [ um and '.t [ ¹nº/ D

S
0<j �k uj [ un with

um D vm [ ¹mº and un D vn [ ¹nº, for some vm; vn � B , such that nk < vm < m,
nk < vn < n and jvmj D jvnj D m

n1

k
�m

n1

k�1
� 1. Moreover, m 2 An. Therefore,

there is v � B such that n < v < m and jvj � m
n1

kn1

� m
n1

k
. This, together with

the fact that vm should be taken as the <lex-maximal with such properties, implies
um > un.

4.2 The case ˛ > 1 Consider 1 < ˛ < !1, U a selective ultrafilter, F an
!˛-uniform barrier on M 2 U, and f W F �! l a finite coloring. Let us assume
that Theorem 3.1 holds for every 0 < ˇ < ˛, and let us prove it for ˛.

Case ˛ limit. By Lemma 2.11, we can consider N � M in U such that
S˛i

� N=i � F¹iº for every i 2 N , where ˛ D supi .˛i /. Define the map
fk W S˛k

� N=k �! l by fk.t/ D f .¹kº [ t /, for every k 2 N . Then, apply
the inductive hypothesis to find a U-tree Tk , an !˛k -uniform barrier Bk on some
set Mk � N=k of U, and a map 'k W .Tk � Bk/ n ¹;º �! .S˛k

� N=k/ n ¹;º

satisfying conditions (1)–(5). Let us put f .¹kº [ t / D lk for every t 2 rg.'k/.
Next, consider A � N in U and l� < l such that lk D l� and A=k � Mk

for all k 2 A. Define a coloring � W AŒ2� �! ¹0; 1º by �.¹k;mº/ D 1 if there
is ¹nº 2 Tk � Bk such that k < 'k.¹nº/ < m, and �.¹k;mº/ D 0 if not. Then
there is M� � A in U such that � is constant on M Œ2�

� . Notice that � should be
constant 1 on M Œ2�

� . If k 2 M�, then by property (5) of 'k , there is ¹nº 2 Tk � Bk

such that k < 'k.¹nº/. Therefore, for any m 2 M� bigger than 'k.¹nº/, we have
�.¹k;mº/ D 1.

For each k 2 M� let mk be the minimal integer n such that ¹nº 2 Tk � Bk

and k < 'k.¹nº/ < kC, where kC denotes the successor of k in M�. Since Bk

is an !˛k -uniform barrier on Mk , we can choose .
i .!
˛k //i a sequence of ordi-

nals converging to !˛k such that .Bk/¹iº is a 
i .!
˛k /-uniform barrier on Mk=i

for each i 2 Mk . Moreover, we can assume that !˛k�1 < 
i .!
˛k / < !˛k for

all i < !. Then, it is clear that supk¹
mk
.!˛k /º D !˛ . On the other hand,
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since mk 2 'k.¹mkº/, we get x � kC > mk for every x 2 M�=k. Therefore,
M�=k � A=mk � Mk=mk . From this, .Bk/¹mkº is a 
mk

.!˛k /-uniform barrier on
M�=k for every k 2 M�. Thus, B defined by B D

S
k2M�

.Bk/¹mkº ˚ ¹¹kºº is an
!˛-uniform barrier on M�.

Let T be the U-tree T D .
S

k2M�
.Tk/¹mkº˚¹¹kºº/[¹;º, and define the mapping

' W .T � B/ n ¹;º �! F n ¹;º by
'.s/ D ¹kº [ 'k

�
¹mkº [ s=k

�
; if min.s/ D k:

Then it is clear that f is constant l� on rg.'/ and that it satisfies conditions
(2) and (3) of the statement. On the other hand, if u [ ¹nº 2 T � B and
min.u/ D k, then '.u [ ¹nº/ D ¹kº [ 'k.¹mkº [ u=k [ ¹nº/, and since
'k satisfies condition (4), there is a finite set un > 'k.¹mkº [ u=k/ such that
'k.¹mkº [ u=k [ ¹nº/ D 'k.¹mkº [ u=k/ [ un, and then '.u [ ¹nº/ D ¹kº [

'k.¹mkº [ u=k/ [ un D '.u/ [ un with un > '.u/. Moreover, if also
u [ ¹mº 2 T � B and m > n, then ¹mkº [ u=k [ ¹nº; ¹mkº [ u=k [ ¹mº

are in Tk � Bk , and by the inductive hypothesis, there is a finite set v such that
'k.¹mkº [ u=k/ v v @ 'k.¹mkº [ u=k [ ¹mº/; 'k.¹mkº [ u=k [ ¹nº/ and
'k.¹mkº [ u=k [ ¹mº/ n v > 'k.¹mkº [ u=k [ ¹nº/ n v, and then '.u/ D ¹kº [

'k.¹mkº[u=k/ v ¹kº[v @ '.u[¹mº/; '.u[¹nº/ and '.u[¹mº/n .¹kº[v/ D

'k.¹mkº [ u=k [ ¹mº/ n v > 'k.¹mkº [ u=k [ ¹nº/ n v D '.u[ ¹nº/ n .¹kº [ v/.
Finally, note that if ¹kº; ¹k0º 2 T � B and k0 > k, then k0 � kC > 'k.¹mkº/ > k,
which implies '.¹k0º/ > '.¹kº/.

Case ˛ D ˇ C 1. By Lemma 2.11, we can consider N � M in U such that
.Sˇ ˝ NŒi�/ � N=i � F¹iº for every i 2 N . Let us fix k 2 N , and, in order to
simplify notation, let us put C D Sˇ � N=k. Notice that if a1 < a2 < � � � < ai are
in C and i � k, then ¹kº [ a1 [ a2 [ � � � [ ai 2 F .

Define f0 W C �! l by f0.u/ D f .¹kº [ u/, and apply the inductive hypothesis
to find a U-tree T0, an !ˇ -uniform barrier B0, on some set M0 � N=k of U, and a
mapping '0 W .T0 � B0/ n ¹;º �! C n ¹;º satisfying conditions (1)–(5). Let us put

f
�
¹kº [ '0.v/

�
D l0 8v 2 T0 � B0; v ¤ ;:

For each v 2 T0 \ B0, define f v
1 W C='0.v/ �! l by f v

1 .u/ D f .¹kº ['0.v/[u/,
and consider T v

1 a U-tree, Bv
1 an !ˇ -uniform barrier on some set of U, and a map-

ping 'v
1 W .T v

1 � Bv
1 / n ¹;º �! .C='0.v// n ¹;º satisfying conditions (1)–(5). Let

us put
f

�
¹kº [ '0.v/ [ u

�
D lv 8u 2 rg.'v

1 /:

By Lemma 2.7, there isM1 � M0 in U such that T0 \ .B0 � M1/ is an !ˇ -uniform
barrier on M1. Moreover, by the selectivity of U, we can assume that M1 is such
that lv D lv0 for every v; v0 2 T0 \ .B0 � M1/. That is, there exits l1 < l such that
f

�
¹kº [ '0.v/ [ 'v

1 .w/
�

D l1 8v 2 T0 \ .B0 � M1/ 8w 2 T v
1 � Bv

1 ; w ¤ ;:

In general, by repeatedly applying the inductive hypothesis, we obtain for
each i < k a collection of U-trees T0; T

v0

1 ; : : : ; T
v0;v1;:::;vi�1

i ; a collection of
!ˇ -uniform barriers B0, B

v0

1 ; : : : ;B
v0;v1;:::;vi�1

i on some set of U; a collection of
mappings

'0 W .T0 � B0/ n ¹;º �! C n ¹;º;

'
v0

1 W .T
v0

1 � B
v0

1 / n ¹;º �!
�
C='0.v0/

�
n ¹;º;



398 Claribet Piña

:::

'
v0;v1;:::;vi�1

i W

.T
v0;v1;:::;vi�1

i � B
v0;v1;:::;vi�1

i / n ¹;º �!
�
C='

v0;v1;:::;vi�2

i�1 .vi�1/
�

n ¹;º;

satisfying conditions (2)–(5) of the statement; a color li < l and a set Mi 2 U with
Mi � Mi�1, such that if v0 2 T0 \ .B0 � Mi /, v1 2 T

v0

1 \ .B
v0

1 � Mi /; : : : ;

vi�1 2 T
v0;v1;:::;vi�2

i�1 \ .B
v0;v1;:::;vi�2

i�1 � Mi /;; ¤ vi 2 T
v0;v1;:::;vi�1

i �
B

v0;v1;:::;vi�1

i , then

f
�
¹kº [ '0.v0/ [ '

v0

1 .v1/ [ '
v0;v1

2 .v2/ [ � � � [ '
v0;v1;:::;vi�1

i .vi /
�

D li ; (4.5)

where the superscripts in T v0;v1;:::;vj �1

j , B
v0;v1;:::;vj �1

j , and 'v0;v1;:::;vj �1

j indicate
that the choice of the trees, the uniform barriers, and the mappings depends on the
sets v0; v1; : : : ; vj �1 previously fixed, for every 0 < j � i .

Later on, we find it convenient to regroup the superscripts if we have many of
them. For example, if we put v D ¹v0; v1; : : : ; vj �1º, then 'v

j D '
v0;v1;:::;vj �1

j

indicates the dependence of the mapping on all the sets in v, and we will do the same
for the trees and the uniform barriers. Moreover, we will have a collection of such
trees, barriers, and mappings as above for every different choice of v0; v1; : : : ; vi�1.
On the other hand, notice that by the choice of 'v0;v1;:::;vj �1

j , for every j � i , each
of these maps satisfies conditions (2)–(5) of the statement of Theorem 3.1.

Until now, we have chosen a color li < l for each i < k. Then, for k big
enough, some of these colors must repeat, and then should exist ak � k and
lk < l such that li D lk for every i 2 ak . Suppose ak D ¹i1; i2; : : : ; ipº; then
li1 D li2 D � � � D lip D lk . For future reference, we will put pk WD jakj D p.

The following claim will allow us to define (below) a sequence of barriers (by
varying k 2 N ) with uniformities converging to !ˇC1, so that we may then proceed
as in the ˛-limit case.

Claim 4.2.1 There exist an .!ˇ � pk/-uniform barrier Bk on some set of U, a
U-tree Tk , and a mapping 'k W .Tk � Bk/n¹;º �! F¹kº n¹;º satisfying conditions
(2) and (4) and the following:

10. f .¹kº [ 'k.u// D lk for every ; ¤ u 2 Tk � Bk ,
50. if u[¹nº; u[¹mº 2 Tk � Bk andm > n, then there is a finite set v such that

'k.u/ v v @ 'k.u[¹mº/; 'k.u[¹nº/ and 'k.u[¹mº/nv > 'k.u[¹nº/nv;
moreover, there is a finite set a > k such that a @ 'k.¹nº/ for every
¹nº 2 Tk � Bk , and .'k.¹nº/ n a/n is a block sequence.

Proof In the following, we will recursively define a U-tree Tij , an .!ˇ �j /-uniform
barrier Bij on some set of U, and a map 'ij W .Tij � Bij / n ¹;º �! F¹kº n ¹;º

satisfying conditions (2), (4), (10), and (50) (for 'ij instead of 'k) for each 0 < j � p,
where ii ; i2; : : : ; ip are the elements of ak .

We start by fixing v0 2 T0 \ .B0 � Mi1/, v1 2 T
v0

1 \ .B
v0

1 � Mi1/; : : : ; vi1�1 2

T
v0;:::;vi1�2

i1�1 \ .B
v0;:::;vi1�2

i1�1 � Mi1/, where all these structures are as in the argu-
ment above. Put v D ¹v0; v1; : : : ; vi1�1º, Bi1 D Bv

i1
, and Ti1 D T v

i1
, and define

'i1 W .Ti1 � Bi1/ n ¹;º �! F¹kº n ¹;º by

'i1.u/ D '0.v0/ [ '
v0

1 .v1/ [ � � � [ '
v0;v1;:::;vi1�2

i1�1 .vi1�1/ [ 'v
i1
.u/:
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Then, by (4.5) we have

f
�
¹kº [ 'i1.u/

�
D li1 D lk :

Notice that 'i1 satisfies conditions (2) and (4) because 'v
i1

does. Moreover, 'i1

satisfies (50) since 'v
i1

satisfies (5), where we put a D '0.v0/ [ '
v0

1 .v1/ [ � � � [

'
v0;v1;:::;vi1�2

i1�1 .vi1�1/ for the second part of statement (50). Let Ni1 2 U be the set
on which Bi1 is defined.

In order to define 'i2 , we will consider for each u 2 Ti1 \ .Bi1 � Mi2/, sets
ui1C1 2 T

v;u
i1C1 \ .B

v;u
i1C1 � Mi2/, ui1C2 2 T

v;u;ui1C1

i1C2 \ .B
v;u;ui1C1

i1C2 � Mi2/,

. . . , ui2�1 2 T
v;u;ui1C1;:::;ui2�2

i2�1 \ .B
v;u;ui1C1;:::;ui2�2

i2�1 � Mi2/. Then we will put
u D ¹u; ui1C1; : : : ; ui2�1º, and we will fix the uniform barrier B

v;u
i2

. LetM v;u
i2

2 U

be the set where B
v;u
i2

is defined. We choose, by selectivity, a set Ni2 � Mi2 \ Ni1

in U such that Ni2=u � M
v;u
i2

for every u 2 N
Œ<1�
i2

. Let us now define Bi2 and Ti2

by

Bi2 D

[
u2Ti1

\.Bi1
�Ni2

/

B
v;u
i2

˚ ¹uº;

Ti2 D

� [
u2Ti1

\.Bi1
�Ni2

/

T
v;u
i2

˚ ¹uº

�
[

�
Ti1 \ .Bi1 � Ni2/

�
:

Clearly, Ti2 is a U-tree. Moreover, by Lemma 2.7, we may assume that Ni2 is
such that Ti1 \ .Bi1 � Ni2/ is an !ˇ -uniform barrier on Ni2 . Therefore, Bi2 is a
barrier on Ni2 with rkCB.Bi2/ D !ˇ � 2. Thus, by Theorem 2.5, we may assume,
moreover, that Ni2 was taken such that Bi2 is in fact an .!ˇ � 2/-uniform barrier on
Ni2 .

Define 'i2 W .Ti2 � Bi2/ n ¹;º �! F¹kº n ¹;º by 'i2.s/ D 'i1.s/, if
s 2 Ti1 \.Bi1 � Ni2/; and 'i2.s/ D 'i1.u/['

v;u
i1C1.ui1C1/['

v;u;ui1C1

i1C2 .ui1C2/[� � �

[ '
v;u;:::;ui2�2

i2�1 .ui2�1/ [ '
v;u
i2
.w/, if s D u [ w with u < w, u 2 Ti1 \ .Bi1 � Ni2/

and w ¤ ;.
Clearly, 'i2 satisfies condition (2) since 'i1 and 'v;u

i2
do. Notice that by (4.5), we

have f .¹kº [ 'i2.s// 2 ¹li1 ; li2º for all s 2 Ti2 � Bi2 n ¹;º, but li1 D li2 D lk .
Therefore,

f
�
¹kº [ 'i2.s/

�
D lk for all ; ¤ s 2 Ti2 � Bi2 :

Moreover, 'i2 satisfies conditions (4) and (50). Indeed, if u [ ¹nº 2 Ti2 � Bi2

and u [ ¹nº 2 Ti1 \ .Bi1 � Ni2/, then condition (4) holds since 'i1 satisfies
it. If u 2 Ti1 \ .Bi1 � Ni2/, then by definition of 'i2 , we have 'i2.u/ D 'i1.u/

and 'i2.u [ ¹nº/ D 'i2.u/ [ '
v;u
i1C1.ui1C1/ [ '

v;u;ui1C1

i1C2 .ui1C2/ [ � � � [

'
v;u;:::;ui2�2

i2�1 .ui2�1/['
v;u
i2
.¹nº/. Then take un D '

v;u
i1C1.ui1C1/['

v;u;ui1C1

i1C2 .ui1C2/[

� � � [ '
v;u;:::;ui2�2

i2�1 .ui2�1/ [ '
v;u
i2
.¹nº/ to get (4). Finally, if u … Ti1 \ .Bi1 � Ni2/,

then (4) holds for 'i2 since 'v;u
i2

satisfies it.
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To see that 'i2 satisfies condition (50), consider u[ ¹mº 2 Ti2 � Bi2 withm > n.
Then, if u 2 Ti1 \ .Bi1 � Ni2/, we have

'i2

�
u [ ¹mº

�
D 'i2.u/ [ '

v;u
i1C1.ui1C1/ [ '

v;u;ui1C1

i1C2 .ui1C2/ [ � � �

[ '
v;u;:::;ui2�2

i2�1 .ui2�1/ [ '
v;u
i2

�
¹mº

�
;

'i2

�
u [ ¹nº

�
D 'i2.u/ [ '

v;u
i1C1.ui1C1/ [ '

v;u;ui1C1

i1C2 .ui1C2/ [ � � �

[ '
v;u;:::;ui2�2

i2�1 .ui2�1/ [ '
v;u
i2

�
¹nº

�
:

Thus, since 'v;u
i2

satisfies condition (5), we have 'v;u
i2
.¹mº/ > '

v;u
i2
.¹nº/. Therefore,

if we put

w D 'i2.u/ [ '
v;u
i1C1.ui1C1/ [ '

v;u;ui1C1

i1C2 .ui1C2/ [ � � � [ '
v;u;:::;ui2�2

i2�1 .ui2�1/;

then 'i2.u/ @ w @ 'i2.u[¹mº/; 'i2.u[¹nº/ and 'i2.u[¹mº/nw > 'i2.u[¹nº/nw.
If u D u0 [ x with u0 2 Ti1 \ .Bi1 � Ni2/ and x ¤ ;, then

'i2.u/ D 'i1.u
0/ [ '

v;u0

i1C1.u
0
i1C1/ [ '

v;u0;u0
i1C1

i1C2 .u0
i1C2/ [ � � �

[ '
v;u0;:::;u0

i2�2

i2�1 .u0
i2�1/ [ '

v;u0

i2
.x/;

'i2

�
u [ ¹mº

�
D 'i1.u

0/ [ '
v;u0

i1C1.u
0
i1C1/ [ '

v;u0;u0
i1C1

i1C2 .u0
i1C2/ [ � � �

[ '
v;u0;:::;u0

i2�2

i2�1 .u0
i2�1/ [ '

v;u0

i2

�
x [ ¹mº

�
;

'i2

�
u [ ¹nº

�
D 'i1.u

0/ [ '
v;u0

i1C1.u
0
i1C1/ [ '

v;u0;u0
i1C1

i1C2 .u0
i1C2/ [ � � �

[ '
v;u0;:::;u0

i2�2

i2�1 .u0
i2�1/ [ '

v;u0

i2

�
x [ ¹nº

�
:

Thus, using property (5) of 'v;u0

i2
, we get a finite set w such that 'v;u0

i2
.x/ v w @

'
v;u0

i2
.x[¹mº/; '

v;u0

i2
.x[¹nº/ and 'v;u0

i2
.x[¹mº/nw > '

v;u0

i2
.x[¹nº/nw. Then, if

we putw0 D 'i1.u
0/['

v;u0

i1C1.u
0
i1C1/['

v;u0;u0
i1C1

i1C2 .u0
i1C2/[� � �['

v;u0;:::;u0
i2�2

i2�1 .u0
i2�1/,

we get 'i2.u/ v w0 [w @ 'i2.u[¹mº/; 'i2.u[¹nº/ and 'i2.u[¹mº/n .w0 [w/ >

'i2.u [ ¹nº/ n .w0 [ w/.
Finally, notice that 'i2 satisfies the second part of (50) since 'i2.¹nº/ D 'i1.¹nº/,

for every ¹nº 2 Ti2 � Bi2 . Then, we conclude that 'i2 satisfies conditions (2), (4),
(10), and (50).

Take 1 < r < p, and suppose that for every 1 < j � r , we have already defined
an infinite set Nij � Mij in U, an .!ˇ � j /-uniform barrier Bij on Nij , a U-tree
Tij , and a mapping 'ij W .Tij � Bij / n ¹;º �! F¹kº n ¹;º satisfying the following
conditions:

Bij D

[
u2Tij �1

\.Bij �1
�Nij

/

B
v;u1;u2;:::;uj �1

ij
˚ ¹uº;

where
� u D u1 [ u2 [ � � � [ uj �1 with u1 2 Ti1 \ .Bi1 � Ni2/, u1 [ u2 2

Ti2 \ .Bi2 � Ni3/; : : : ; u
1 [ u2 [ � � � [ uj �2 2 Tij �2

\ .Bij �2
� Nij �1

/,



A Partition Theorem of !!˛
401

� uj �1 2 T
v;u1;:::;uj �2

ij �1
\ .B

v;u1;:::;uj �2

ij �1
� Mij /,

� u
j �1
ij �1C1 2 T

v;u1;:::;uj �2;uj �1

ij �1C1 \ .B
v;u1;:::;uj �2;uj �1

ij �1C1 � Mij /, u
j �1
ij �1C2 2

T
v;u1;:::;uj �2;uj �1;u

j �1

ij �1C1

ij �1C2 \ .B
v;u1;:::;uj �2;uj �1;u

j �1

ij �1C1

ij �1C2 � Mij /; : : : ;

u
j �1
ij �1 2 T

v;u1;:::;uj �2;uj �1;u
j �1

j �1C1
;:::;u

j �1

ij �2

ij �1 \

.B
v;u1;:::;uj �2;uj �1;u

j �1

j �1C1
;:::;u

j �1

ij �2

ij �1 � Mij /,
� uj �1 D ¹uj �1; u

j �1
ij �1C1; : : : ; u

j �1
ij �1º,

� f .¹kº [ 'ij .u// D lk for every ; ¤ u 2 Tij � Bij ,
� 'ij satisfies conditions (2), (4), and (50), and

� if s D u [ x with x 2 B
v;u1;u2;:::;uj �1

ij
, then

'ij .s/ D 'ij �1
.u/ [ '

v;u1;:::;uj �2;uj �1

ij �1C1 .u
j �1
ij �1C1/

[ '
v;u1;:::;uj �2;uj �1;u

j �1

ij �1C1

ij �1C2 .u
j �1
ij �1C2/

[ � � � [ '
v;u1;:::;uj �2;uj �1

ij
.x/:

Let us define BirC1
, TirC1

, and 'irC1
satisfying all those conditions. Notice

that for each w 2 Tir \ .Bir � MirC1
/, there is u 2 Tir�1

\ .Bir�1
� Nir /

as in the list above (we fix u1; u2; : : : ; ur�1 verifying those conditions) and
x 2 T

v;u1;:::;ur�1

ir
\ .B

v;u1;:::;ur�1

ir
� MirC1

/ such that u < x and w D u[ x. Then,
fix

xir C1 2 T
v;u1;:::;ur�1;x
irC1

\ .B
v;u1;:::;ur�1;x
ir C1 � MirC1

/;

xir C2 2 T
v;u1;:::;ur�1;x;xirC1

irC2
\ .B

v;u1;:::;ur�1;x;xir C1

ir C2 � MirC1
/;

:::

xirC1�1 2 T
v;u1;:::;ur�1;x;xir C1;:::;xirC1�2

irC1�1

\ .B
v;u1;:::;ur�1;x;xir C1;:::;xirC1�2

irC1�1 � MirC1
/;

and put x D ¹x; xir C1; : : : ; xirC1�1º. Arguing as we did for j D 2, we can take
NirC1

� MirC1
in U such that BirC1

defined as below is a uniform barrier on
NirC1

,

BirC1
D

[
w2Tir \.Bir �NirC1

/

B
v;u1;:::;ur�1;x
ir

˚ ¹wº;

wherew D u1[u2[� � �[ur�1[x and all the sets u1; u2; : : : ; ur�1; x are determined
as before for every w 2 Tir \ .Bir � MirC1

/. Define the U-tree TirC1
by

TirC1
D

� [
w2Tir \.Bir �NirC1

/

T
v;u1;:::;ur�1;x
irC1

˚ ¹wº

�
[

�
Tir \ .Bir � NirC1

/
�
;
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and the mapping 'irC1
W .TirC1

� BirC1
/n¹;º �! F¹kº n¹;º by 'irC1

.s/ D 'ir .s/,

if s 2 Tir \ .Bir � NirC1
/; and 'irC1

.s/ D 'ir .w/ [ '
v;u1;:::;ur�1;x
ir C1 .xir C1/ [ � � � [

'
v;u1;:::;ur�1;x;:::;xirC1�2

irC1�1 .xirC1�1/['
v;u1;:::;ur�1;x
irC1

.y/, if s D w[y, w D u1 [u2 [

� � � [ ur�1 [ x with x < y ¤ ; and u1; u2; : : : ; ur�1; x are defined as above for
w 2 Tir \ .Bir � NirC1

/.
Then, given s 2 .TirC1

� BirC1
/ n ¹;º, if s 2 Tir \ .Bir � NirC1

/, we get
by hypothesis that f .¹kº [ 'irC1

.s// D f .¹kº [ 'ir .s// D lk . Moreover, by the
last condition on the list and (4.5), we have that f .¹kº [ 'irC1

.s// D lirC1
D lk

if s … Tir \ .Bir � NirC1
/. In order to verify that 'irC1

satisfies conditions (4)
and (50), we just need to proceed as we did for j D 2. Note, moreover, that BirC1

is .!ˇ � .r C 1//-uniform on NirC1
because, by Lemma 2.7, we can choose NirC1

such that Tir \ .Bir � NirC1
/ is .!ˇ � r/-uniform on NirC1

and B
v;u1;:::;ur�1;x
ir

is
!ˇ -uniform on NirC1

=w for every w D u1 [ � � � [ur�1 [ x 2 Tir \ .Bir � NirC1
/.

This finishes the recursion.
Then, we have proved Claim 4.2.1 once we take Bk D Bip , Tk D Tip , and

'k D 'ip .

We are almost ready now to define ' satisfying the conditions in Theorem 3.1. First,
we apply Claim 4.2.1 for every k 2 N in order to get an .!ˇ � pk/-uniform barrier
Bk on some set Nk 2 U, a U-tree Tk , and a mapping 'k W .Tk � Bk/ n ¹;º �!

F¹kº n ¹;º satisfying (10), (2), (4), and (50), where pk D jakj. Moreover, we can
choose A � N in U and l� < l such that A=k � Nk and lk D l� for every k 2 A.
Arguing as in the ˛-limit case, we may also assume that for every ¹k;mº 2 A

Œ2�

there is ¹nº 2 Tk � Bk such that k < 'k.¹nº/ < m, and take mk the smallest
integer satisfying such a property when m D kC is the successor of k in A. For
every k 2 A, consider .
k

i .!
ˇ � pk//i an increasing sequence of ordinals converg-

ing to !ˇ � pk such that .Bk/¹iº is a 
k
i .!

ˇ � pk/-uniform barrier on Nk=i and
!ˇ � pk�1 < 
k

i .!
ˇ � pk/ < !ˇ � pk for every i 2 Nk . Then, as pk ! 1 when

k ! 1, we get that supk¹
k
mk
.!ˇ � pk/º D !ˇ � ! D !˛ . Therefore,

B D

[
k2A

.Bk/¹mkº ˚
®
¹kº

¯
is an !˛-uniform barrier on A. Finally, consider the U-tree

T D

�[
k2A

.Tk/¹mkº ˚
®
¹kº

¯�
[ ¹;º;

and define ' W .T � B/ n ¹;º �! F n ¹;º by
'.s/ D ¹kº [ 'k

�
¹mkº [ s=k

�
; if min.s/ D k:
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