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Comparing Borel Reducibility and
Depth of an ω-Stable Theory

Martin Koerwien

Abstract In “A proof of Vaught’s conjecture for ω-stable theories,” the no-
tions of ENI-NDOP and eni-depth have been introduced, which are variants of
the notions of NDOP and depth known from Shelah’s classification theory. First,
we show that for an ω-stable first-order complete theory, ENI-NDOP allows tree
decompositions of countable models. Then we discuss the relationship between
eni-depth and the complexity of the isomorphism relation for countable models
of such a theory in terms of Borel reducibility as introduced by Friedman and
Stanley and construct, in particular, a sequence of complete first-order ω-stable
theories (Tα)α<ω1 with increasing and cofinal eni-depth and isomorphism rela-
tions which are strictly increasing with respect to Borel reducibility.

1 Introduction

Friedman and Stanley [5] introduced a model theoretic context for the descriptive set
theoretic notion of Borel reducibility. If L is a countable language, the set Mod(σ ) of
models with underlying set ω of an Lω1ω-sentence σ form a standard Borel space and
Borel reducibility applies to the isomorphism relation for those countable models,
which we denote by ∼=σ : If L and L ′ are countable and σ ∈ Lω1ω, σ ′

∈ L ′
ω1ω

,
we say that ∼=σ reduces to ∼=σ ′ (notation: ∼=σ ≤B ∼=σ ′ ) if there is a Borel map
f : Mod(σ ) → Mod(σ ′) such that for all M, N ∈ Mod(σ ), M ∼= N if and only
if f (M) ∼= f (N ). For example, if R is a binary relation symbol and L = {R}, σ
the empty L-theory, it is a well-known fact that every ∼=τ reduces to ∼=σ ; that is, the
theory of graphs is maximal with respect to the partial preordering ≤B .

The investigation of the ordering ≤B is closely related to the classification prob-
lem of countable models: if ∼=σ ≤B ∼=σ ′ then complete isomorphism invariants for
countable models of σ ′ give rise to complete invariants for countable models of σ ;
that is, the classification problem for σ is at most as complicated as the one for σ ′.
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The ordering ≤B has been extensively investigated and special attention has been
payed to so-called essentially countable isomorphism relations (see, e.g., [6], [8],
[10], [7], [9], [11], [16]).

However, not much has been said yet about the case of first-order theories or
more specifically complete first-order theories (for some first results see [14], [15],
and [17]). We focus on the context of ω-stable theories which allows us to use strong
tools; in particular, (in well-behaved cases) we have tree decompositions for models.
References for ω-stability and Shelah’s classification theory are [20] and [1]. If T
is an ω-stable theory, the notion of NDOP (the negation of DOP) can be defined,
which implies that each model M |H T is prime over an independent tree of “finitely
generated” countable submodels (see [20] or [1]). The supremum of ordinal depths
of such decomposition trees is called the depth of T , which is a countable ordinal or
∞. In the latter case we call T deep; otherwise it is shallow. Intuitively, ω-stable
theories with DOP are more complicated than those with NDOP, and among those,
deep theories are more complicated than shallow ones. In the shallow case, the depth
can be considered as a measure of complexity of that theory.

There does not seem to be any relationship between depth and Borel-reducibility,
since theories of any depth and even deep or DOP theories can be ℵ0-categorical.
However, [19] introduces a variation of the notion of depth which is more pertinent
to the case of countable models, the eni-depth. This is done by essentially focusing
on so-called ENI types, that is, strongly regular types based on finite sets that can
have finite dimensions in models. We will add one more natural notion of depth
which we denote by ENI-depth and we will see that ENI-NDOP allows us to decom-
pose countable models by trees (a result established independently in [14]) and that
the eni-depth is to some extent related to the Borel reducibility notion of complex-
ity, whereas the ENI-depth is not an appropriate notion to measure complexity of
countable models.

A third notion of complexity is the Scott height of a theory which roughly speak-
ing measures how long back-and-forths must be to distinguish nonisomorphic mod-
els of that theory. There exist various versions of that notion in literature, some of
which are mentioned in [13]. Our definition here will be the following.

Definition 1.1 Let M and N be two L-structures and for some n < ω, ā ∈ Mn ,
b̄ ∈ N n . Then

1. (M, ā) ≡0 (N , b̄) if ā, b̄ have the same quantifier free type over ∅;
2. (M, ā) ≡α (N , b̄) (α limit) if (M, ā) ≡β (N , b̄) for all β < α;
3. (M, ā) ≡α+1 (N , b̄) if

(a) ∀a ∈ M∃b ∈ N (M, ā, a) ≡α (N , b̄, b) and
(b) ∀b ∈ N∃a ∈ M (M, ā, a) ≡α (N , b̄, b);

4. (M, ā) ≡∞ (N , b̄) if (M, ā) ≡α (N , b̄) for all α.
If T is a theory and M a countable model of T , by Scott’s Isomorphism Theorem,
there exists a countable α such that for all countable N |H T , (M,∅) ≡α (N ,∅)
implies (M,∅) ≡∞ (N ,∅) (and thus actually M ∼= N ). Call a minimal such α the
Scott height SH(M) of M and let SH(T ) = sup{SH(M)|M |H T,M countable }.

By definition, SH(T ) is either countable orω1. Becker and Kechris prove in [2] that it
is ω1 if and only if the isomorphism for countable models of T is not Borel (although
it does have to be analytic). [5] shows that the theory of Abelian p-groups is not
Borel, but not very complicated with respect to ≤B . This example is far from being
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first-order axiomatizable. On the other hand, an isomorphism relation of maximal
complexity (bi-reducible with graphs) must be non-Borel. We do not know any first-
order example which has non-Borel isomorphism but is not of maximal complexity,
and much less a complete or ω-stable such.

Our motivation for considering Scott heights is that countable trees of ordinal rank
at most α have Scott height ω · α and for ω-stable ENI-NDOP theories T , isomor-
phism types of countable models are described by trees of rank at most the ENI-depth
of T . This suggests that such theories of low ENI-depth might have bounds on their
Scott height. We will see here that this intuition is valid for the eni-depth 1 case, but
as will be exposed in another paper (in preparation, presenting an example of [13]),
it fails drastically in general.

The results of this paper are the following:

1. ENI-NDOP allows tree decompositions of countable models (we understand
Laskowski and Shelah prove the same result in [14] independently). More-
over, those decompositions can be chosen to realize only ENI types.

2. If a theory has only κ ≤ ℵ0 many countable models, its isomorphism reduces
to equality on a set of κ elements.

3. Since Laskowski and Shelah already deal with the case of ENI-DOP and
eni-deep theories in [14] by showing that their isomorphism has maximal
complexity, we can focus on eni-shallow theories. We show that eni-depth
1 theories have isomorphisms which reduce to equality on the real numbers
(i.e., they are “smooth”).

4. As our main result, we construct an ω1-sequence of complete first-order ω-
stable theories with strictly increasing eni-depth and also isomorphism rela-
tions which increase strictly with respect to ≤B . Similar theories have been
used in [5] (trees as subsets of [ω]

<ω) and in [10] (hereditarily countable sets
of bounded rank), but these are not complete first-order axiomatizable and
thus do not fit in our context.

2 ENI Types and Tree Decompositions

We assume throughout that our theories eliminate quantifiers (otherwise we can re-
place it with its Morleyization). The main consequences of our general assumption
of ω-stability are the following.

1. There is a well-behaved notion of (forking-)independence of sets in models
(notation for “A is independent from B over C” is A ↓

C
B).

2. This leads to the notion of orthogonality of types (denoted by ⊥): Two types
p over A and q over B are orthogonal, if for all C ⊃ A ∪ B and a, b realizing
nonforking extensions of p and q to C , respectively, a ↓

C
b.

3. We recall that a type p over a set A is strongly regular if there is a formula
ϕ ∈ p such that for all B ⊃ A and q ∈ S(B) containing ϕ, q is either a
nonforking extension of p or orthogonal to p. Strongly regular types have
a well-defined dimension in models and there are “enough” strongly regular
types: for all models M ( N , there is an a ∈ N \ M such that t (a/M) is
strongly regular.

4. All types are based on (i.e., do not fork over) finite sets of parameters. We
can also always find finite sets of parameters which make types stationary,
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that is, such that there is a unique nonforking extension of the type to any
superset of parameters.

5. There are prime models over any set of parameters (which are unique up to
isomorphism fixing pointwise those parameters).

We will also use the notion of a type p being orthogonal to a set A (p ⊥ A) meaning
that p ⊥ q for all q ∈ S(A), and the notion of a set A being independent over B,
meaning that a ↓

B
A \ {a} for all a ∈ A. If p ∈ S(A) is stationary and A ⊂ B, let

p|B denote the unique nonforking extension of p to B.

Notation From now on, throughout this paper, let T be an ω-stable theory.

The notion of an ENI type was first defined in [19]. For another exposition, see [1].
For A finite, a strongly regular type p ∈ S(A) is ENI if there is a finite B ⊃ A such
that the nonforking extension of p to B is nonisolated (strongly regular types are
stationary by definition). Equivalently, p is ENI if its dimension is finite in a prime
model over A. If p is strongly regular and not ENI we say it is NENI. Types over
infinite sets are ENI if they are nonforking extensions of ENI-types over finite sets.
It can be shown that a strongly regular type nonorthogonal to an ENI type must also
be ENI (see [19]).

We now define trees of models and decomposition trees.

Definition 2.1 A tree of models is an application

µ : A → {N |N |H T }

with
(i) A ⊂ κ<ω is a tree (for some cardinal κ);

(ii) µ(∅) is prime (over ∅);
(iii) for s ∈ A nonempty, let s− denote its unique predecessor; then µ(s) is prime

over µ(s−) ∪ {a} for some a realizing a strongly regular type over µ(s−);
(iv) for all s ∈ A, the family {µ(t)|t− = s} is independent over µ(s);
(v) for s ∈ A with |s| ≥ 2, t (µ(s)/µ(s−)) ⊥ µ(s−−).

Later, we will use the following straightforward fact about trees of models.

Lemma 2.2 Let µ be a tree of models, A ⊂ dom(µ) a subtree of dom(µ) and
B ⊂ dom(µ) \ A the set of successors of elements of A in dom(µ) \ A. Then, if M
is prime over

⋃
im(µ � A),

(i) if a ∈ A, {µ(b)|b ∈ B, b ⊃ a} ↓
µ(a)

M ,

(ii) {µ(b)|b ∈ B} is independent over M .

Definition 2.3 A tree of models µ : A → {N |N � M} is called a decomposition
of a model M if M is prime over

⋃
im(µ).

Definition 2.4 An ω-stable theory T has ENI-NDOP if for all models

M0,M1,M2, N with M0 ⊂ M1 ∩ M2,M1 ↓
M0

M2, N prime over M1 ∪ M2,

if p ∈ S(N ) is ENI, then p 6⊥ M1 or p 6⊥ M2.

We have an “ENI-version” (with the same proof) of Lemma XVII, 2.2 in [1].

Lemma 2.5 Let µ be a decomposition of M and p be an ENI type nonorthogonal
to M. Then ENI-NDOP implies that there is an s ∈ dom(µ) with p 6⊥ µ(s).
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3 Maximal Atomic Models

Definition 3.1 A submodel M of N is maximal atomic over a set A ⊂ M in N if
(i) it is atomic over A,

(ii) for all M ′
⊂ N containing M , if M ′ is atomic over A, then M ′

= M .

This notion is already used in [19] and that article also essentially contains the ingre-
dients for the following two lemmas.

Lemma 3.2 If M is maximal atomic in N (over ∅), then all strongly regular types
p ∈ S(M) realized in N are ENI.

Proof Otherwise, if a |H p and p is based on a finite B ⊂ M , then for all finite
C ⊃ B, t (a/C) would be isolated, and hence also t (aC/∅), which shows that
M ∪ {a} is atomic, contradicting maximality of M . �

Lemma 3.3 If M, A ⊂ N with A independent over M and M ′
⊂ N is maximal

atomic in N over M ∪ A, then every strongly regular type p ∈ S(M ′) orthogonal to
M realized in N is ENI.

Proof Assume p is NENI and realized by a ∈ N and let p be based on a finite
B ⊂ M ′. We contradict the maximality of M ′ by showing that for all finite C ⊂ M ′

containing B, t (aC/M A) is isolated. It is enough to show that t (a/M AC) is iso-
lated.

Let A0 ⊂ A be finite with C ↓
M A0

M A. The set A is independent over M ; hence

A \ A0 ↓
M

A0 and thus A \ A0 ↓
M

A0C which implies that A \ A0 is independent

over M A0C . Now p ⊥ M implies p ⊥ t (b/M) for all b ∈ A. In particular,
p ⊥ t (b/M A0C) for all b ∈ A \ A0 and thus p ⊥ t (A \ A0/M A0C). Noting q|X
the nonforking extension of a stationary type q, we now have p|M A0C ` p|M AC
since p was based on C . Since we want to show that t (a/M AC) = p|M AC is
isolated, it now suffices to show that p|M A0C is isolated.

Let D ⊂ M be finite with C A0 ↓
D

M . p ⊥ M implies p ⊥ D, whence

p ⊥ t (M/D). This and C A0 ↓
D

M imply p ⊥ t (M/D A0C) and since p was

based on C , p|D A0C ` p|M A0C . Now, D A0C is finite and p was supposed to be
NENI; hence p|D A0C is isolated as well as p|M A0C . �

4 Construction of ENI-Decompositions

Let M be any countable model of T . Assuming ENI-NDOP and in particular the
conclusion of Lemma 2.5, we will construct a decomposition of M where all types
used in that construction will be ENI. The main idea is to choose certain prime mod-
els maximal atomic and then use Lemmas 3.2 and 3.3.

We will inductively construct the following objects:
1. trees Sn ⊂ ω<n+1 (for each n < ω) such that Sn+1 extends Sn ;
2. for each n < ω and s ∈ Sn+1 \ Sn a cardinal κs ≤ ℵ0 with

{t ∈ Sn+2|t− = s} = {s_i |i < κs};

3. for each n < ω and s ∈ Sn a model Ms ⊂ M ;
4. for each n < ω, s ∈ Sn , i < κs an element as

i ∈ M .
(Notation: As = {as

i |i < κs})
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5. An increasing sequence of submodels Nn of M (n < ω).

These objects will have the following properties throughout the induction:

1. all as
i realize ENI types over Ms ;

2. for s the empty sequence, Ms is maximal atomic in M (over ∅) and As is
maximal independent in M over Ms ;

3. if s = t_i , Ms is maximal atomic in M over Mt at
i and As is independent over

Ms , maximal in M with the property that t (as
j/Ms) ⊥ Mt for all j < κs ;

4. N0 = M∅ and Nn+1 is both prime over Nn ∪
⋃

s∈Sn+1\Sn

Ms and maximal

atomic in M over Nn ∪
⋃

s∈Sn , |s|=n
As .

Our construction is as follows:

1. Let M∅ be maximal atomic in M (over ∅), N0 = M∅ and S0 = {∅}. Choose
a maximal M∅-independent set A∅ of realizations of strongly regular types
over M∅ in M . Let κ∅ = |A∅| and {a∅

i |i < κ∅} be an enumeration of A∅.
By Lemma 3.2, all a∅

i realize ENI-types over M∅.
2. We now assume the following objects are already constructed for some n (and

have the properties mentioned above): Sn , Nn , Ms , As = {as
i |i < κs} for all

s ∈ Sn . Let S = {s ∈ Sn| |s| = n} and An =
⋃
s∈S

As . If An = ∅ we can finish

the construction by setting Nk = Nn and Sk = Sn for all k > n. Otherwise,
(a) let Sn+1 = Sn ∪ {s_i |s ∈ S, i < κs} and let Nn+1 be maximal atomic in

M over Nn An ;
(b) for all s ∈ S and i < κs , let M ′

s_i ⊂ Nn+1 be prime over Msas
i ;

(c) let N ′

n+1 ⊂ Nn+1 be prime over Nn ∪
⋃

s∈Sn+1\Sn

M ′
s ;

(d) N ′

n+1 is also prime over Nn An and thus Nn An-isomorphic to Nn+1; for
all s ∈ S and i < κs , let Ms_i be the image of M ′

s_i under such an
isomorphism;

(e) then we define for each s ∈ Sn+1 \ Sn the sets As as a maximal Ms-
independent set of realizations of strongly regular types over Ms , or-
thogonal to Ms− ;

(f) enumerate As as As = {as
i |i < κs} for some κs ≤ ℵ0; by Lemma 2.2, As

is actually independent over Nn and by Lemma 3.3, all as
i must realize

ENI types over Ms .

Let S =
⋃

n<ω
Sn and define µ as µ(s) = Ms for all s ∈ S. Clearly, µ is a tree of

models realizing only ENI types. We will show that M is prime over
⋃

dom(µ). Set
M̄ =

⋃
n<ω

Nn . We first show that M̄ is prime over
⋃

dom(µ). Let M̄ ′
⊂ M̄ be prime

over
⋃

dom(µ). We will construct inductively an embedding of M̄ into M̄ ′ which
fixes

⋃
dom(µ). Let f0 be the identity on N0. For an arbitrary n < ω, suppose fn is

an embedding of Nn into M̄ ′ such that

1. fn � dom(µ � Sn) is the identity on dom(µ � Sn),
2. im( fn) is prime over dom(µ � Sn).

As a consequence of Lemma 2.2, we can extend fn to an application g defined on
Nn ∪ dom(µ � Sn+1). Now, since Nn+1 is prime over that set, we can extend g to an
embedding of Nn+1 into M̄ ′ which defines fn+1.
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Finally, we show that actually M̄ = M . Suppose not and let c ∈ M \ M̄ be such
that p = t (c/M̄) is strongly regular. There is a minimal n < ω such that p 6⊥ Nn
and thus a strongly regular q ∈ S(Nn) such that q 6⊥ p. We must have n > 0;
otherwise, the existence of c /∈ M̄ contradicts the maximality of A∅. We thus have
p ⊥ Nn−1 and also q ⊥ Nn−1. p must be ENI; otherwise, q is NENI and has
positive dimension in M contradicting the maximality of Nn (Lemma 3.3).

We can now apply Lemma 2.5 and find an s ∈ S such that p 6⊥ Ms . If we take the
minimal such s, p ⊥ Ms− and we find a strongly regular r ∈ S(Ms) nonorthogonal
to p which must also satisfy r ⊥ Ms− . But now, the existence of c /∈ M̄ contradicts
the maximality of As .

5 Depth

Now that we have decomposition trees for countable models, we can define corre-
sponding notions of depth. There are two natural choices: first ENI-depth which
counts only ENI types and thus measures the depth of decomposition trees which
we obtain in Section 4. It will turn out that ENI-depth does not reflect correctly the
complexity of countable models; another notion, denoted by eni-depth, seems more
accurate for that purpose. It measures the lengths of paths in decomposition trees
which have an ENI type on top. Here are the formal definitions.

Definition 5.1 A stationary type p ∈ S(A) is said to support another type q, if
there is a model M ⊃ A and a |H p|M such that q ⊥ M and q 6⊥ M[a] (where
M[a] is a model prime over M ∪ {a}).

Let p be a strongly regular type. We now define its ENI-depth and eni-depth.

Definition 5.2

1. ENI − dp(p) ≥ 0 for all p.
2. For limit α, ENI − dp(p) ≥ α if ∀β < α ENI − dp(p) ≥ β.
3. ENI − dp(p) ≥ α + 1 if p is ENI and supports an ENI type q with

ENI − dp(q) ≥ α .
Then we set ENI − dp(p) = ∞ if ENI − dp(p) ≥ α for all α; otherwise,
ENI − dp(p) = min{α|ENI − dp(p) ≥ α and ENI − dp(p) 6≥ α + 1}.

Note in particular that NENI types have ENI-depth 0 by definition. Also, the original
definition of depth of a type (denoted by dp(p)) is the same as that for ENI-depth,
where the requirements of types being ENI are dropped.

Definition 5.3

1. eni − dp(p) ≥ 0 for all p.
2. eni − dp(p) ≥ 1 if p supports an ENI type.
3. For limit α, eni − dp(p) ≥ α if ∀β < α eni − dp(p) ≥ β.
4. eni − dp(p) ≥ α + 1 if p supports a q with eni − dp(q) ≥ α.

Again we set eni − dp(p) = ∞ if eni − dp(p) ≥ α for all α; otherwise,
eni − dp(p) = min{α|eni − dp(p) ≥ α and eni − dp(p) 6≥ α + 1}

If eni − dp(T ) = ∞ (respectively, ENI − dp(T ) = ∞), we call T eni-deep (ENI-
deep); otherwise, eni-shallow (ENI-shallow).

It is easy to verify that ENI − dp(p) ≤ eni − dp(p) ≤ dp(p) for all p and that
all these notions of depth are invariant under nonorthogonality (see [13] for details).
Also, all depths must be countable ordinals or ∞.
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We then define the ENI-depth and eni-depth of T as follows.

Definition 5.4 Let A be the set of all types realized in tree decompositions of
models of T . Then

1. ENI − dp(T ) = sup{ENI − dp(p)+ 1|p ∈ A},
2. eni − dp(T ) = sup{eni − dp(p)+ 1|p ∈ A}.

In [19], Shelah, Harrington, and Makkai show the following.

Proposition 5.5 If T has ENI-NDOP and eni − dp(T ) ≥ 3, then T must have 2ℵ0

countable models (up to isomorphism).

The condition eni − dp(T ) ≥ 3 is optimal since there exist theories with eni-depth
2 with countably many countable models (see [1] or [13]). This and the following
result by Laskowski and Shelah suggest that eni-depth is a good candidate to measure
the complexity of the class of countable models of T .

Theorem 5.6 ([15],[14]) If T either has ENI-DOP or has ENI-NDOP and is eni-
deep, then the isomorphism relation for countable models (denoted by ∼=T ) of T is
Borel-complete, meaning that for all L and σ ∈ Lω1ω, ∼=σ ≤B ∼=T .

We know examples of ENI-NDOP theories which are eni-deep but have low ENI-
depth. Since they are of maximal complexity by the last theorem, the notion of
ENI-depth is not appropriate to measure complexity for countable models.

Here is a brief description of such an example (complete, ω-stable, eliminating
quantifiers) having ENI-depth 2 (for more details, see [13]): Let L = {U, V, R, S, π}.
U and V are unary predicates which partition the universe and π is a surjection of
V onto U . Let S be a successor function on V (to create ENI types) such that
π-fibers are unions of connected S-components. Finally, let R define a directed
graph without cycles on U such that each element has infinitely many R-successors
and R-predecessors.

R itself defines a deep theory with arbitrary long supportive chains of NENI-types,
and since for each a ∈ U , the type p(x) = {π(x) = a} is ENI, we get eni-depth ∞.
On the other hand, the only chain of successive ENI-types has length 2: for a ∈ U
the type which says “x is not in the connected R-component of a” which supports
the type p(x) mentioned above.

6 Low Complexity

Since Theorem 5.6 deals already with the most complicated theories, we are left
with the case of ENI-NDOP, eni-shallow theories. In this section, we will investigate
theories of minimal eni-depth. But first, we can make an easy remark on theories
with few countable models

In [19], Vaught’s conjecture for ω-stable theories is proved. We now assume
that T has less than 2ℵ0 many countable models; thus T has only countably many
countable models.

Proposition 6.1 If T has κ ≤ ℵ0 many countable models, ∼=T bi-reduces to the
equality relation on a set S with κ elements.

Proof Let X L be the Polish space of L-structures with universeω and Mod(T )⊂ X L
the subspace of models of T . For each M ∈ Mod(T ), its isomorphism type
{N ∈ Mod(T )|N ∼= M} is a Borel set (see, e.g., [12], Theorem 15.14), so the
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obvious reduction maps are Borel maps: in one direction, map each isomorphism
type to a different element of S. In the other direction, map different elements of S
to elements of different isomorphism types. �

Bouscaren proved in [3] Martin’s conjecture for ω-stable theories, which implies that
such a theory with few countable models has Scott height at most ω · 2. This is an
optimal bound since the eni-depth 2 example with ℵ0 many countable models due to
Shelah, exposed in [1] in XVIII,4 has Scott height ω · 2.

Now we can assume that T has 2ℵ0 countable models. We can find a strong bound
on complexity for theories with minimal eni-depth.

Theorem 6.2 If T has ENI-NDOP and eni-depth 1, then ∼=T reduces to equality
on the Cantor space (it is called smooth or tame).

Proof In [4], Bouscaren and Lascar show that if all strongly regular types (over
finite sets of parameters) which are orthogonal to ∅ have infinite dimension in every
model (which in our terminology means that supported types must be NENI; that
is, T must have eni-depth 1), then all countable models are almost homogeneous,
meaning that for all M and ā, b̄ ∈ Mn having same strong type, there exists a strong
automorphism f of M such that f (ā) = b̄.

Pillay shows in [18] that under that condition, countable models are isomorphic if
and only if they realize the same types over ∅. Let (pi )i<ω be a list of all types over
∅ and define χ : Mod(T ) → 2ω by χ(M)(n) = 1 if and only if pn is realized in M .
This application is clearly Borel and, by Pillay’s result, we have M ∼= N if and only
if χ(M) = χ(N ). �

Pillay’s characterization of countable models also implies that under the assumptions
of Theorem 6.2, we must have SH(T ) ≤ ω.

7 A Sequence of Increasing Complexity

We now present a procedure for inductively constructing more and more complicated
theories. Basically, in successor stages, the theory consists of an equivalence relation
with infinitely many classes each of which contains a model of the preceding theory.
In limit stages, we have for each preceding theory a unary predicate which contains a
model of that theory. For technical reasons, our languages have to be relational. We
will obtain a sequence of theories with strictly increasing complexity with respect to
eni-depth, Borel-reducibility, and Scott height. In the following, whenever we do not
give the proof of a lemma or proposition, this means that it is straightforward.

Let L be a language and E a new binary relation symbol. We inductively define
for each L-formula ϕ and variable x an L ∪ {E}-formula ϕE(x,−) by relativizing
quantifiers: ∀yψ becomes ∀y(E(x, y) → ψ) and ∃yψ becomes ∃y(E(x, y) ∧ ψ).

Definition 7.1 If L is relational and T an L-theory, define the L ∪ {E}-theory T ′

by the following axioms:
(1) E is an equivalence relation with infinitely many equivalence classes;
(2) for n < ω and R ∈ L an n-ary relation,

∀x1, . . . , xn(R(x1, . . . , xn) →

∧
1≤i< j≤n

E(xi , x j ));

(3) for all ϕ ∈ T , ∀x ϕE(x,−) (with x not already contained in ϕ).
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It is straightforward to see that if T is complete, ω-stable, or eliminates quantifiers,
T ′ still has these properties.

Notation From now on we assume that T eliminates quantifiers.

If M |H T ′ and a ∈ M , let [a] denote the E-class containing a which is actually a
model of T by axiom (2) and the fact (proven by induction over the complexity of
the formula) that for ϕ ∈ L , [a] |H ϕ if and only if M |H ϕE(a,−). We now describe
what the 1-types in T ′ are.

Proposition 7.2 Let A ⊂ M |H T ′ and p(x) ∈ S1(A).
1. If ¬E(x, a) ∈ p(x) for all a ∈ A, p is completely characterized by the set of

formulas of the form R(x, . . . , x) it contains (for R ∈ L).
2. If E(x, a) ∈ p(x) for some a ∈ A, let p̂ be the T -type obtained from p by

restricting it to L and the parameters A ∩ [a]. Then p is equivalent (modulo
T ′) to p̂ ∪ {E(x, a)}.

Now supposing that T (and thus T ′) is ω-stable, we can show the following.

Proposition 7.3 Let M |H T ′ and p(x) ∈ S1(M).
1. If E(x, a) ∈ p for some a ∈ M, p is strongly regular if and only if

p̂ ∈ S1([a]) is strongly regular. In that case, p is ENI if and only if p̂ is ENI.
2. If {¬E(x, a)|a ∈ M} ⊂ p the p is strongly regular if and only if p � ∅ is

isolated. In that case p is NENI.

Using Lemma 7.4, we can show Proposition 7.5.

Lemma 7.4 Let M |H T ′ and p(x), q(x) ∈ S1(M).
1. If both p and q contain a formula E(x, a) for some a ∈ M, then p ⊥ q if

and only if p̂ ⊥ q̂.
2. Let N be a submodel of M. If p contains E(x, a) for some a ∈ M then

p ⊥ N if and only if p̂ ⊥ N ∩ [a].

Proposition 7.5 If T has the (ENI-)NDOP, then T ′ has the (ENI-)NDOP.

Supposing from now on that T , and thus T ′, has ENI-NDOP, we will show that
eni − dp(T ′) = eni − dp(T ) + 1 and that the ENI-depth does not change. This
follows from the following proposition.

Proposition 7.6 Let M |H T ′ and p(x) ∈ S1(M) strongly regular.
1. If E(x, a) ∈ p for some a ∈ M, then eni − dp(p) = eni − dp( p̂) and

ENI − dp(p) = ENI − dp( p̂).
2. If {¬E(x, a)|a ∈ M} ⊂ p, then eni − dp(p) = eni − dp(T ) and

ENI − dp(p) = 0 (since p is NENI).

Having shown that by our construction, the eni-depth increases by one, we now come
to the notion of Scott height and will see that it increases by ω.

Definition 7.7 For a limit ordinal α, a sequence (Mi )i≤ω of pairwise nonisomor-
phic models is an α-chain if there is an increasing sequence (αi )i<ω cofinal in α such
that for all i < j ≤ ω, Mi ≡αi M j .

Now given a sequence (Mi )i≤ω of models of T , we construct a sequence (M ′

i )i≤ω of
models of T ′ by choosing for each M ′

i exactly one E-class containing M j for each
j < ω and exactly i E-classes containing Mω.
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Proposition 7.8 If (Mi )i≤ω is an α-chain, (M ′

i )i≤ω is an (α + ω)-chain.

Proof We show that for k < l ≤ ω, M ′

k ≡α+k M ′

l by constructing a back-
and-forth procedure of length k resulting in k-tuples ā = (a1, . . . , ak) ∈ (M ′

k)
k ,

b̄ = (b1, . . . , bk) ∈ (M ′

l )
k such that (M ′

k, ā) ≡α (M ′

l , b̄).
Whenever an ai is chosen in an E-class containing a copy of Mn (n < ω), we

choose the corresponding bi using an isomorphism between the copies of Mn in M ′

k
and M ′

l . If ai is in an Mω component, we choose any Mω-component in M ′

l and an
isomorphism between these components to assign a corresponding bi . We use the
symmetric procedure to make an element bi in M ′

l correspond to an ai in M ′

k .
To see that we finally have (M ′

k, ā) ≡α (M ′

l , b̄), we use the following observa-
tion (proved by induction on β). If (Ni )i<ω and (Ñi )i<ω are enumerations of the
E-classes of models N , Ñ |H T ′ and c̄ ∈ N m , d̄ ∈ Ñ m and if for all i < ω,
(Ni , c̄|i) ≡β (Ñi , d̄|i) (where c̄|i is the subtuple of c̄ of elements in Ni ), then
(N , c̄) ≡β (Ñ , d̄).

Using the fact that (Mi )i≤ω is an α-chain and the particular form of our back-
and-forth described above, we can find such enumerations of the E-classes of M ′

k
and M ′

l , respectively. �

This implies that if SH(T ) is a limit ordinal and T admits an SH(T )-chain, T ′ admits
an (SH(T )+ ω)-chain, and thus SH(T ′) ≥ SH(T )+ ω.

To see that SH(T ′) ≤ SH(T ) + ω, we show that for M, N |H T ′ with
M ≡SH(T )+ω N , and M̃ |H T , M and N must contain the same number of
copies of M̃ . This follows from M ≡SH(T )+ω N and the following lemma.

Lemma 7.9 If M, N |H T ′ and ā = (a1, . . . , ak) ∈ Mk , b̄ = (b1, . . . , bk) ∈ N k

satisfy (M, ā) ≡β (N , b̄), then for each i ∈ {1, . . . , k}, ([ai ], ā|i) ≡β ([bi ], b̄|i),
where ā|i is the subtuple of ā of the a j belonging to [ai ].

This finishes our investigation of the construction T ′ for the moment. Next, we will
introduce a construction which can be seen as the “disjoint sum” of theories.

Definition 7.10 For some α and β < α, let Lβ be relational, disjoint languages
and let Tβ be an Lβ -theory. Let Aβ be new unary predicates and let

1.
∑

Lβ be the language
⋃
β<α

(Lβ ∪ {Aβ});

2.
∑

Tβ be the
∑

Lβ -theory axiomatized by
(a) the Aβ are pairwise disjoint,
(b) for all i < α, n < ω and n-ary R ∈ L i : ∀x1, . . . , xn(R(x1, . . . , xn) →∧

1≤ j≤n
Ai (x j )),

(c) for all i < β and ϕ ∈ Ti : the relativization of ϕ to Ai which we denote
by ϕAi (i.e., all quantifiers of ϕAi are relativized to Ai , similar to our
definition of ϕE(x,−) above).

Again, if the Tβ are all complete, ω-stable, or eliminate quantifiers,
∑

Tβ will have
the same properties. If B ⊂ M |H

∑
Tβ , let Aβ(B) be the set of elements of

B satisfying Aβ(x). It is easy to see that Aβ(M) (with the induced structure) is a
model of Tβ .

Proposition 7.11 Let B ⊂ M |H
∑

Tβ and p ∈ S1(B). There are two possibilities:
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1. p is the unique type containing {¬Aβ(x)|β < α};
2. Aβ(x) ∈ p for some β < α; in that case, p is equivalent (modulo

∑
Tβ ) to

the type p̃ ∪ {Aβ(x)}, where p̃ ∈ S1(Aβ(B)) is the Lβ -type obtained from p
by restricting that type to Lβ and to the parameters Aβ(B).

Similar to the construction of T ′ above, we obtain the following results.

Proposition 7.12 If M |H
∑

Tβ and p ∈ S1(M) contains {¬Aβ(x)|β < α}, then
p is strongly regular and ENI.

Proposition 7.13 If M |H
∑

Tβ and p ∈ S1(M) contains Aβ(x) for some β < α,
then

1. p is strongly regular if and only if p̃ is,
2. p is ENI if and only if p̃ is,
3. if q ∈ S1(M) is another type containing Aβ(x), then p ⊥ q if and only if

p̃ ⊥ q̃,
4. if N is a submodel of M, p ⊥ N if and only if p̃ ⊥ Aβ(N ).

This implies that if all Tβ have the (ENI-)NDOP, then also
∑

Tβ .

Proposition 7.14 If M |H
∑

Tβ and p ∈ S1(M) contains Aβ(x) for some β < α,
and is strongly regular, eni − dp(p)=eni − dp( p̃) and ENI − dp(p)=ENI − dp( p̃).

And since a type containing {¬Aβ(x)|β < α} does not support any other type, we
have the following theorem.

Theorem 7.15

eni − dp(
∑

Tβ) = sup{eni − dp(Tβ)|β < α}

and ENI − dp(
∑

Tβ) = sup{ENI − dp(Tβ)|β < α}.

Concerning Scott heights, we get the following result.

Theorem 7.16 SH(
∑

Tβ) = max(ω, sup{SH(Tβ)|β < α}) and moreover, if
SH(

∑
Tβ) is a limit ordinal and each Tβ admits a γβ = SH(Tβ)-chain with (γβ)β<α

strictly increasing, then
∑

Tβ admits a SH(
∑

Tβ)-chain.

This finishes our investigation of the sum of countably many theories and we can
now proceed to the inductive definition of an ω1-sequence of theories (Tα)1≤α<ω1 :

1. Let L1 = {Ci }i<ω where the Ci are unary predicates and let T1 be the L1-
theory stating that all Ci are infinite and pairwise disjoint.

2. Let Tα+1 = T ′.
3. For a limit ordinal α < ω1, let Tα =

∑
Tβ where the β range over all ordinals

smaller than α.
First of all, T1 is complete, ω-stable, and eliminates quantifiers and thus all
Tα have these properties. Also eni − dp(T1) = ENI − dp(T1) = 1 and thus
eni − dp(Tα) = ENI − dp(Tα) = α for all α.

T1 has Scott height ω and admits an ω-chain (Mi )i≤ω (where Mi realizes the type
p(x) = {¬C j (x)| j < ω} exactly i times). Consequently, all Tα admit SH(Tα)-
chains and we have SH(Tα) = ω · α for all α.

There remains to show that the isomorphisms ∼=Tα for countable models of the
theories Tα form a strictly increasing chain with respect to the Borel reducibility
ordering.
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We will prove a slightly weaker result, namely, that the “hereditarily countable
sets of rank α” formalized in [10] reduce to ∼=T1+α which implies that there must be a
strictly increasing (with respect to Borel reducibility) subsequence of (Tα)1≤α<ω of
length ω1, since [10] show that hereditarily countable sets of rank α form a strictly
increasing ω1-sequence which, moreover, is “Borel-cofinal” (meaning that all Borel
isomorphism relations (for countable models of an Lω1ω axiomatizable theory) re-
duce to a member of that sequence).

Since our proof uses standard coding techniques and the details are not very deep
but long to write, we will only give a somewhat informal description of it. For more
details, the reader may refer to [13]. We begin with the definition of κ-uniform
models of Tα .

Definition 7.17 For α < ω1 and κ ≤ ℵ0, let Mκ
α ∈ XTα be inductively defined as

follows.

1. If α = 1, let Mκ
α be the countable model of T1 whose E-classes have all

exactly κ elements realizing {¬C j (x)| j < ω}.
2. Given Mκ

α , let Mκ
α+1 be the model whose E-classes contain copies of Mκ

α .
3. For α a limit ordinal, let Mκ

α be the model omitting the type {¬Aβ(x)|β < α}

which has a copy of Mκ
β in each predicate Aβ (β < α).

First, we show that for α ≤ β, ∼=Tα ≤B ∼=Tβ . Let XTα and XTβ be the Polish spaces
of models of Tα and Tβ with universe ω. We fix α and define a Borel function
gαβ : XTα → XTβ , witnessing that reduction, by induction on β:

1. gαα is the identity function;
2. given gαβ , gα(β+1) maps an M ∈ XTα into one E-class using gαβ and “fills

up” the remaining E-classes with copies of Mℵ0
β ;

3. for limit β, gαβ maps an M ∈ XTα identically onto Aα and fills up the re-
maining Aγ (γ 6= α) with ℵ0-uniform models as before.

The particular form of the models used to “fill up” classes and predicates guarantees
that we have M ∼= N if and only if gαβ(M) ∼= gαβ(N ), and the definitions can be
carried out in a Borel way.

Now, we will recall what precisely the “hereditarily countable sets” used in [10]
are. We start with the natural numbers ω and inductively iterate the process of taking
countable subsets: set P 0(ω) = ω and P α(ω) = [ω ∪

⋃
β<α

P β(ω)]≤ℵ0 . [10] gives

an Lω1ω axiomatization of the class of sets P α(ω) for all α < ω1: For α > 0, let
L(α) = {(Rβ)β≤α, ε, E, F, v0, (ri )i<ω} be the language with Rβ (β < α) unary
predicates, ε, E, F binary relation symbols, and v0 and ri (i < ω) constant symbols.
Let Pα be the class of structures in X L(α) satisfying the following conditions:

(i) The Rβ partition ω, v0 /∈ R0, R0 = {ri |i < ω}, the ri are distinct.
(ii) Noting R+

=
⋃

1≤β≤α

Rβ , E ⊂ (R+)2 defines a symmetric and irreflexive

connected graph, without cycles so that for all elements x ∈ R+, there is a
(unique) path from x to v0. We note y ≺ x if and only if there exists some
n < ω and y1, . . . , yn such that (v0, y1, . . . , yn, x, y) is the unique E-path
from v0 to y. We say that x is a terminal element, if there is no y with y ≺ x .

(iii) The relation ≺ is well-founded.
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(iv) We define the rank rk(x) of an element x by rk(x) = 1 if x is terminal
and rk(x) = sup{rk(y) + 1|y ≺ x} otherwise. Then, we postulate that
Rβ = {x |rk(x) = β} for 1 ≤ β ≤ α (in particular, Rα = {v0}).

(v) F ⊂ R0 × R1.
(vi) To each x , we assign sets ||x || by

(a) ||x || = n if x ∈ R0 and x = rn ,
(b) ||x || = {n|F(rn, x)} if x ∈ R1,
(c) ||x || = {||y|| |y ≺ x} otherwise,

and we stipulate that for every x ∈ R+ which is not terminal and y, z ≺ x ,
we have ||y|| = ||z|| if and only if y = z.

(vii) We define the relation ε by xεy if and only if ||x || ∈ ||y||.

Let ∼=α denote the isomorphism relation on Pα . Then, for M ∈ Pα we set
||M || = ||v0||, and [10] shows that P α(ω) = {||M || |M ∈ Pα} and M ∼= N if and
only if ||M || = ||N || for all M, N ∈ Pα .

Definition 7.18 Let 0 < α < ω1 and M ∈ Pα . Then each x ∈ ω satisfying x Ev0
in M defines (up to isomorphism) a P rk(x)-structure M(x). The universe Bx of M(x)
is the union of R0 and the E-cone

{x} ∪ {y ∈ ω|∃n < ω∃y1, . . . yn (y, y1, . . . yn, x) is a E-path}

and the relations ε, E , F , Rβ (β ≤ rk(x)) are those induced by the corresponding
relations on M . We consider M(x) as an element of P rk(x) (i.e., with universe ω)
using the natural bijections Bx ↔ ω respecting the ordering of ω.

Now, we can inductively define functions fα : Pα → XT1+α which witness the
reductions ∼=α ≤B ∼=T1+α :

1. For α = 1 and M |H P1, let f1(M) ∈ XT2 be a model which contains
exactly one E-class realizing {¬C j (x)| j < ω} exactly i + 1 times if and
only if i ∈ ||M ||. If ||M || is finite, let the remaining E-classes omit
{¬C j (x)| j < ω}.

2. Given fδ : Pδ → XT1+δ for all δ ≤ α and M ∈ Pα+1, let B = {b|E(b, v0)}
and, reusing the functions gβγ defined above, let fα+1(M) be a model whose
E-classes contain the Tα-models grk(a)α( frk(a)(M(b))) for all b ∈ B and fill
up remaining E-classes using 1-uniform models.

3. If α is a limit ordinal and M ∈ Pα , let B = {b|E(b, v0)}, and for all β < α,
let Bβ ⊂ B be defined as Bβ = {a ∈ B|rk(a) = β}. Then, let fα(M) be the
Tα-model omitting {¬Aβ(x)|β < α}, which for all β < α and b ∈ Bβ has
the models fβ(M(b)) in the E-classes of Aβ+1, possibly filling up remaining
classes with 1-uniform models as in the successor case, as well as the Aβ for
limit β.

The definition of the functions fα can be carried out in a Borel manner.
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