
Notre Dame Journal of Formal Logic
Volume 49, Number 2, 2008

Tennenbaum’s Theorem and Unary Functions

Sakae Yaegasi

Abstract It is well known that in any nonstandard model of PA (Peano arith-
metic) neither addition nor multiplication is recursive. In this paper we focus
on the recursiveness of unary functions and find several pairs of unary func-
tions which cannot be both recursive in the same nonstandard model of PA
(e.g., {2x, 2x + 1}, {x2, 2x2

}, and {2x , 3x
}). Furthermore, we prove that for

any computable injection f (x), there is a nonstandard model of PA in which
f (x) is recursive.

1 Introduction

Let {0, 1, +, ×, <} be the usual language of arithmetic. PA is Peano arithmetic. We
write n for the term corresponding to the natural number n, that is, 0 := 0, and

n + 1 :=

n+1 1s︷ ︸︸ ︷
1 + · · · + 1. Let π(x) be the function which denotes the x th prime.

In this paper, we only consider computable functions (i.e., recursive functions).
When f (x1, . . . , x j ) is computable, there is a formula F(x1, . . . , x j , y) such that

PA ` ∀y(y = f (n1, . . . , n j ) ↔ F(n1, . . . , n j , y)),

for all ni ∈ N. In particular, if f is primitive recursive, F is provably total in PA;
that is,

PA ` ∀x1 . . . ∀x j∃!yF(x1, . . . , x j , y).

Definition 1.1 Suppose F0, . . . , F j are provably total in PA. We say that
F0, . . . , F j are recursive in some model M = (M, . . .) of PA if there are recur-
sive functions f0, . . . , f j such that

(M, FM
0 , . . . , FM

j ) ∼= (N, f0, . . . , f j ).

In the rest of the paper, we shall use M instead of M to simplify notation.
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Tennenbaum’s theorem says that there is no nonstandard model of PA in which ad-
dition or multiplication is recursive (see Boolos et al. [1]). Afterward, many studies
about other binary functions were carried out. D’Aquino [2] showed the nonrecur-
siveness of x y and xblog2 yc. On the other hand, Schmerl [4] constructed a nonstan-
dard model in which both gcd(x, y) and lcm(x, y) are recursive.

In this paper, we study about unary functions and prove two results. First, we
find several pairs of functions which cannot be both recursive in the same nonstan-
dard model. For example, {2x, 2x + 1}, {x2, 2x2

}, and {2x , 3x
}, which strengthen

the previous results about addition, multiplication, and exponentiation, respectively.
Second, we show that for all computable injections f (x), there is a nonstandard
model in which f is recursive. This is an extension of the fact proved in [2], which
says that there is a nonstandard model where f (x) is recursive if f has the following
properties: (1) f is a computable injection, (2) N − range( f ) is infinite, (3) f has no
cycles.

The following is the well-known condition which is sufficient to deduce that func-
tions cannot be recursive in any nonstandard model (see Kaye [3]).

Theorem 1.2 Let f1, . . . , f j be functions which are provably total in PA. Let
α(x, y) be a formula, and let {En(x)}n∈N be a recursive sequence of existential for-
mulas which contain only nonlogical symbols among fi . Furthermore, suppose the
next two conditions hold.

1. PA ` ∃y
( ∧

i∈X α(ı, y) ∧
∧

i≤n,i /∈X ¬α(ı, y)
)

for all X ⊆ {0, 1, . . . , n}.

2. PA ` ∀y(α(n, y) ↔ En(y)) for each n ∈ N.
Then f1, . . . , f j cannot be recursive in any nonstandard model of PA.

Example 1.3 Define α(x, y) := π(x) | y and En(x) := ∃w x =

π(n) ws︷ ︸︸ ︷
w + · · · + w. For

X ⊆ {0, 1, . . . , n}, let m =
∏

i∈X π(i). Obviously,

PA `

∧
i∈X

α(ı, m) ∧

∧
i≤n,i /∈X

¬α(ı, m).

Also, PA ` π(n) | y ↔ En(y). Hence, by Theorem 1.2, the addition cannot be
recursive in any nonstandard model of PA.

The rest of this section describes the proof of Theorem 1.2. Let M be a nonstandard
model of PA.

Lemma 1.4 Suppose F(x, x1, . . . , xk) is a formula and t1, . . . , tk ∈ M. Then there
exists s ∈ M such that M � F(n, t1, . . . , tk) ↔ α(n, s) for each n ∈ N.

Proof We write Ft (x) for F(x, t1, . . . , tk). For all n, let X = {i ≤ n : M � Ft (ı)}.
By assumption of Theorem 1.2, M � ∃y

( ∧
i∈X α(ı, y)∧

∧
i≤n,i /∈X ¬α(ı, y)

)
. There-

fore,
M � ∃y∀z ≤ n(Ft (z) ↔ α(z, y)).

By the overspill principle, there exists a nonstandard c ∈ M such that

M � ∃y∀z ≤ c(Ft (z) ↔ α(z, y)).

Hence, M � ∀z ≤ c(Ft (z) ↔ α(z, s)) for some s ∈ M . For all n, M � n < c, and
thus M � Ft (n) ↔ α(n, s). �
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Lemma 1.5 There exists s ∈ M such that {n : M � α(n, s)} is not semirecursive
(i.e., not recursively enumerable).

Proof Let X , Y be two recursively inseparable semirecursive sets. PA can
separate X and Y ; that is, there is a formula U (x) such that if n ∈ X then
PA ` U (n), and if n ∈ Y then PA ` ¬U (n). Thus, M � U (n) if n ∈ X , and
M � ¬U (n) if n ∈ Y . By Lemma 1.4, M � U (n) ↔ α(n, s) for some s ∈ M .
{n : M � α(n, s)} = {n : M � U (n)} separates X and Y ; thus is not recursive.

Using Lemma 1.4 again, there exists t ∈ M such that M � ¬α(n, s) ↔ α(n, t).
Since {n : M � α(n, s)} is not recursive, either {n : M � ¬α(n, s)} = {n :

M � α(n, t)} or {n : M � α(n, s)} is not semirecursive. �

We assume that f1, f2, . . . , f j are all recursive in M . Let s ∈ M arbitrary. By
assumption, M � α(n, s) ↔ En(s) for all n. Since En(s) is an existential for-
mula whose only nonlogical symbols are functions which are recursive in M ,
{n : M � En(s)} is semirecursive. Hence {n : M � α(n, s)} is also semirecursive.
This is a contradiction to Lemma 1.5.

2 On Pairs of Unary Functions

First, we give a short proof of nonrecursiveness of {2x, 2x + 1}.

Theorem 2.1 There is no nonstandard model of PA in which both 2x and 2x + 1
are recursive.

Proof We define α(z, x) as the formula ∃w, u(u < 2
z
∧ x = w2

z+1
+ 2

z
+ u).

α(z, x) means that the zth digit of the binary expansion of x is 1. For X ⊆ {0, 1,
. . . , n}, let mi = 1 if i ∈ X , mi = 0 if i /∈ X , and m =

∑n
i=0 mi 2i . Then clearly,

PA `

∧
i∈X

α(ı, m) ∧

∧
i≤n,i /∈X

¬α(ı, m).

Moreover,

α(n, x) ↔ ∃w, u(u < 2n ∧ x = w2n+1 + 2n + u)

↔ ∃w
∨

0≤k<2n

x = w2n+1 + 2n + k

↔ ∃w
∨

ki =0,1

x = w2n+1 + 2n + kn−12n−1 + kn−22n−2 + · · · + k0

↔ ∃w
∨

ki =0,1

x = 2(· · · 2(2(2w + 1) + kn−1) + kn−2 · · · ) + k0

in PA. Hence α(n, x) is equivalent to an existential formula of 2x and 2x + 1. By
Theorem 1.2, 2x and 2x + 1 cannot be recursive. �

Remark 2.2 If x + y is recursive in a nonstandard model M , then 2x (= x + x)
and 2x + 1 (= x + x + 1) are also recursive in M . Hence, Theorem 2.1 implies
nonrecursiveness of addition.

Remark 2.3 From the proof of Theorem 2.1, we can find some more func-
tion pairs which cannot be recursive. Let f (x) = bx/2c, and g(x) = x mod 2.
Then obviously PA ` α(n, x) ↔ g( f n(x)) = 1. Thus { f (x), g(x)} can-
not be recursive. Moreover, as g(x) = 1 is equivalent to f (x + 1) 6= f (x),
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PA ` α(n, x) ↔ f ( f n(x) + 1) 6= f n+1(x). Hence { f (x), x + 1} cannot be
recursive.

Indeed, Theorem 2.1 can be extended to a more general form.

Theorem 2.4 Let f (x) and g(x) be distinct functions which are provably total in
PA. Suppose for all n and h0, . . . , hn ∈ { f, g},

PA ` ∃z∀w
∧
i≤n

∧
h′

0,...,h
′
i ∈{ f,g}

(h′

0,...,h
′
i )6=(h0,...,hi )

h0 ◦ · · · ◦ hn(z) 6= h′

0 ◦ · · · ◦ h′

i (w).

Then there is no nonstandard model of PA in which both f (x) and g(x) are recursive.

Proof Let α(z, x) be a formula such that

PA ` α(n, x) ↔ ∃w
∨

hi = f,g

x = h0 ◦ · · · ◦ hn−1 ◦ f (w).

(Using primitive recursion, the right side can be expressed by a finite formula of x
and n.) For X ⊆ {0, . . . , n}, let hi = f if i ∈ X and hi = g if i /∈ X . In PA,
choose z as guaranteed for h0, . . . , hn , and let x = h0 ◦ · · · ◦ hn(z). If i ∈ X , then
x = h0◦· · ·◦hi−1◦ f (hi+1◦· · ·◦hn(z)); thus PA ` α(ı, x). Assume i ≤ n and i /∈ X .
Since hi = g, (h′

0, . . . , h′

i−1, f ) 6= (h0, . . . , hi ) for all h′

0, . . . , h′

i−1 ∈ { f, g}.
Thus by assumption of z, PA ` ∀w

∧
h′

j = f,g x 6= h′

0 ◦ · · · ◦ h′

i−1 ◦ f (w). Hence
PA ` ¬α(ı, x). From Theorem 1.2, { f, g} cannot be recursive. �

Example 2.5 Suppose in PA, f, g are both provably total and injective, and
f (x) 6= g(y) for all x, y. In this case, we can prove

PA ` ∀w
∧
i≤n

∧
h′

0,...,h
′
i ∈{ f,g}

(h′

0,...,h
′
i )6=(h0,...,hi )

h0 ◦ · · · ◦ hn(0) 6= h′

0 ◦ · · · ◦ h′

i (w).

Thus { f, g} cannot be recursive from Theorem 2.4. For example, f (x) = ax +b and
g(x) = ax + c such that a ≥ 2 and b 6≡ c (mod a) have the properties above.

Example 2.6 f (x) = 2x2 and g(x) = x2 (respectively, f (x) = 2x and g(x) = 3x )
cannot be recursive. This extends nonrecursiveness of x × y (respectively, x y). Since
f (0) = g(0), the previous example is not applicable. But it is easy to see

PA ` ∀w
∧
i≤n

∧
h′

0,...,h
′
i ∈{ f,g}

(h′

0,...,h
′
i )6=(h0,...,hi )

h0 ◦ · · · ◦ hn(1) 6= h′

0 ◦ · · · ◦ h′

i (w).

3 On Single Unary Function

Our goal in this section is to prove the following theorem.

Theorem 3.1 For all computable injections f (x), there exists a nonstandard model
M of PA such that f is recursive in M.
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Remark 3.2 The “injections” in Theorem 3.1 cannot be replaced by “functions.”
There exists a primitive recursive function f (x) which cannot be recursive in any
nonstandard model. f (x) is defined as follows:

f (x) =


x/4 if x = 22m+2w and 2 - w for some m, w,

2x if x = 22m+1w and 2 - w and π(m + 1) | w for some m, w,

x otherwise.

Let α(x, y) := 2 - y ∧ π(x + 1) | y. For X ⊆ {0, 1, . . . , n}, let m =
∏

i∈X π(i + 1).
It is clear that PA ` α(ı, m) if i ∈ X , and PA ` ¬α(ı, m) if i /∈ X . Moreover, by
Lemma 3.3, α(n, y) is equivalent to an existential formula of f . Hence, by Theorem
1.2, f (x) cannot be recursive.

Lemma 3.3 The following are equivalent in PA.

1. α(n, y).
2. ∃u, v( f (y) = y ∧ f n+1(u) 6= y ∧ f n+2(u) = y ∧ u 6= v ∧ f (u) = f (v)).

Proof We give an informal proof. We first show the implication (1) → (2). By
2 - y, f (y) = y and y 6= 0. Let u = 22n+4 y, v = 22n+1 y. Since y 6= 0, u 6= v. By
π(n + 1) | y, f (u) = f (v) = 22n+2 y. Also, f n+1(u) = 22n+4 y/4n+1

= 4y 6= y,
f n+2(u) = f (4y) = y.

We next prove the implication (2) → (1). By f n+1(u) 6= f n+2(u) = y,
y = f n+1(u)/4 or y = 2 f n+1(u). If y = 2 f n+1(u), then y = 22m+2w and 2 - w
for some w, m. Thus, f (y) = y/4 6= y, which contradicts f (y) = y. Hence,
y = f n+1(u)/4 = 22mw, 2 - w for some w, m. If m ≥ 1, then f (y) = y/4 6= y.
Thus m = 0 and 2 - y.

Since f n+1(u) = f n+1(v) 6= f n+2(u) = f n+2(v), f (u) 6= u and f (v) 6= v.
Moreover, u 6= v and f (u) = f (v); thus we may assume f (u) = u/4 = 2v = f (v)
(the case when f (u) = 2u = v/4 = f (v) is symmetric). Then for some m and
w, v = 22m+1w, 2 - w, π(m + 1) | w, and u = 8v = 22m+4w. If m > n,
then y = f n+2(u) = 4m−nw, which gives a contradiction to 2 - y. Thus, m ≤ n
(m is standard) and f m+2(u) = w. Assume m < n. By 2 - w, f (w) = w.
Moreover, by f m+2(u) = w and m + 2 ≤ n + 1, f n+1(u) = f n+2(u) = w.
This is a contradiction to f n+1(u) 6= y = f n+2(u). Thus m = n. Furthermore,
y = f n+2(u) = f m+2(u) = w. By π(m + 1) | w, π(n + 1) | y. �

Before proving Theorem 3.1, we observe some properties of injections. Let X be a
countable set and let f be an injection on X . Consider the relation on X which holds
if f n(x) = y or f n(y) = x for some n ≥ 0. Clearly, this is an equivalence relation
on X . Every equivalence class is classified into the following types:

1. {x, f (x), f 2(x), . . .} (N);
2. {. . . , f −2(x), f −1(x), x, f (x), f 2(x), . . .} (Z);
3. {x = f m(x), f (x), f 2(x), . . . , f m−1(x)} (Zm , m = 1, 2, . . .).

For D ∈ {N, Z, Z1, Z2, . . .}, let 0 ≤ K X, f
D ≤ ∞ be the number of the equivalence

classes having the type D. It is easy to see that the structure of (X, f ) is completely
determined by K X, f

D ; that is, (X, f ) ∼= (Y, g) if and only if K X, f
D = K Y,g

D for all D.
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Example 3.4 For 1 ≤ n ≤ ∞, there is a computable function hn(x) such that
K N,hn

Z = n and K N,hn
D = 0 for all D 6= Z. First, h1 is defined by the following:

h1(x) =


x + 2 if 2 | x ,

0 if x = 1 ,

x − 2 otherwise.

(N, h1) has only one equivalence class {. . . , 5, 3, 1, 0, 2, 4, . . .}. For 2 ≤ n < ∞,
define hn(x) = h1(p)n + q if x = pn + q and q < n. Let J (x, y) be a pairing
function (computable bijection from N2 to N). We define h∞(x) = J (h1(p), q) if
x = J (p, q).

Claim 3.5 Let f (x) be an injection on X, and (Y, f ) is a substructure of (X, f ).
Then K X, f

Z ≥ K Y, f
Z .

Proof If {. . . , f −1(x), x, f (x), . . .} ⊆ Y , {. . . , f −1(x), x, f (x), . . .} ⊆ X by
Y ⊆ X . Thus K X, f

Z ≥ K Y, f
Z . (Analogously, we can prove K X, f

Zm
≥ K Y, f

Zm
. But

K X, f
N may be less than K Y, f

N when x ∈ Y and {. . . , f −2(x), f −1(x)} ⊆ X − Y for
some x .) �

Claim 3.6 Assume f (x) is an injection on X, g(x) is an injection on Y , and
Th(X, f ) = Th(Y, g). Then K X, f

D = K Y,g
D for all D 6= Z.

Proof Let An be the sentence that asserts that there are precisely n objects that are
not in the range of f . Then clearly,

K X, f
N = n ⇔ An ∈ Th(X, f ),

K X, f
N = ∞ ⇔ An /∈ Th(X, f ) for all n.

Moreover, for m ≥ 1, let Bm
n be the sentence which asserts that there exist exactly

mn xs such that f l(x) 6= x for all 1 ≤ l < m and f m(x) = x . Then

K X, f
Zm

= n ⇔ Bm
n ∈ Th(X, f ),

K X, f
Zm

= ∞ ⇔ Bm
n /∈ Th(X, f ) for all n.

Thus, every K X, f
D but K X, f

Z is determined by Th(X, f ). �

Now we prove Theorem 3.1. Let f (x) be a computable injection on N. (N, f ) has a
countable recursively saturated elementary extension (M, f ). ( f is also injective on
M since Th(N, f ) = Th(M, f ).)

We show that (M, f ) is recursive. By definition of (M, f ), (N, f ) is a sub-
structure of (M, f ), and Th(N, f ) = Th(M, f ). Thus by the above claims,
K M, f

Z ≥ K N, f
Z , and K M, f

D = K N, f
D for all D 6= Z. We can define a computable

injection g(x) such that K N,g
D = K M, f

D for every D. If K M, f
Z = K N, f

Z then g = f .
If K M, f

Z > K N, f
Z , let

p =

{
K M, f

Z − K N, f
Z if K M, f

Z < ∞ ,

∞ if K M, f
Z = ∞ .
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and

g(x) =

{
2 f (x/2) if 2 | x ,

2h p(bx/2c) + 1 if 2 - x .

h p(x) is defined in the above example. Clearly, for each D, K N,g
D = K N, f

D + K
N,h p
D ,

and thus, K N,g
D = K M, f

D . Therefore, (M, f ) ∼= (N, g), which means (M, f ) is
recursive.

Finally, we expand (M, f ) to a model of PA. Add {0, 1, +, ×, <, c} to the lan-
guage. c is a constant. Let F(x, y) be the formula defining the graph of f (x) on N.
Consider the following theory T :

T = Th(M, f ) ∪ PA ∪ {∀x, y(F(x, y) ↔ y = f (x))} ∪ {n 6= c : n ∈ N}.

Since Th(N, f ) = Th(M, f ), N is a model of every finite fragment of T . Hence,
by resplendency, we can expand (M, f ) to a model of T . The model we get is a
nonstandard model of PA in which f (x) is recursive.
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