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Anderson’s Relevant Deontic
and Eubouliatic Systems

Gert-Jan C. Lokhorst

Abstract We present axiomatizations of the deontic fragment of Anderson’s
relevant deontic logic (the logic of obligation and related concepts) and the eu-
bouliatic fragment of Anderson’s eubouliatic logic (the logic of prudence, safety,
risk, and related concepts).

1 Introduction

In 1967, Anderson [2] defined his system of relevant deontic logic as follows: take
relevant system R, add a propositional constant V (“the violation” or “the bad
thing”), and define O (“it is obligatory that”) by O A = ¬A → V , where → is
relevant implication. This proposal naturally leads to the question: to which purely
deontic system, stated in terms of O rather than V , does this definition give rise?
This problem is known as the problem of characterizing the deontic fragment of
this system. This problem was solved by Goble [5], but his solution was long and
complicated because it was based on the Routley-Meyer semantics of R.

In 1968, Anderson [3] defined his system of relevant eubouliatic logic as follows:
take system R, add a constant G (“the good thing”), and define Rw (“it is without
risk that,” “it is safe that”) by Rw A = A → G. This proposal likewise raises the
question: to which purely eubouliatic system, stated in terms of Rw rather than G,
does this definition give rise? This is the problem of characterizing the eubouliatic
fragment of this system. This problem has not yet been addressed in the literature,
as far as we know. In this paper, we show that both problems may be solved by
following a simple syntactic approach.

2 Anderson’s Relevant Deontic Logic

Definition 2.1 Relevant system R is defined as follows.
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Axioms and rules:
R1 A → A self-implication
R2 (A → B) → ((C → A) → (C → B)) prefixing
R3 (A → (B → C)) → (B → (A → C)) permutation
R4 (A → (A → B)) → (A → B) contraction
R5 (A & B) → A, (A & B) → B &elimination
R6 ((A → B) & (A → C)) → (A → (B & C)) &introduction
R7 A → (A ∨ B), B → (A ∨ B) ∨introduction
R8 ((A → C) & (B → C)) → ((A ∨ B) → C) ∨elimination
R9 (A & (B ∨ C)) → ((A & B) ∨ C) distribution
R10 ¬¬A → A double negation
R11 (A → ¬B) → (B → ¬A) contraposition
→E A, A → B/B detachment
&I A, B/A & B adjunction

Definition: A ↔ B = (A → B) & (B → A).

We mention the following theorems of R for later reference.

T1 (A → B) → ((B → C) → (A → C)),
T2 (A → B) → (¬B → ¬A).

T1 follows from prefixing and permutation. T2 can be proven as follows. ` ¬¬¬B
→ ¬B by double negation, hence ` B → ¬¬¬¬B by contraposition, hence
` B → ¬¬B by double negation and T1, hence ` (A → B) → (A → ¬¬B)
by prefixing and T1; ` (A → ¬¬B) → (¬B → ¬A) by contraposition; hence
` (A → B) → (¬B → ¬A) by T1.

Definition 2.2 Deontic system RO is R plus an operator O (“it is obligatory that”)
and the following axioms:

D1 (A → B) → (O A → O B),
D2 O(O A → A).

Definition 2.3 Deontic system R′

O is RO plus a constant V (“the violation” or “the
bad thing”) and the following axioms:

D3 O A → (¬A → V ),
D4 (¬A → V ) → O A.

We refer to those formulas of R′

O in which V occurs, if at all, only in contexts of the
form ¬A → V (so that V is always eliminable in terms of O) as V -formulas of R′

O .
If AV is any V -formula of R′

O , then the O-transform of AV is the formula AO got
by replacing every part of AV of the form ¬B → V by O B. Evidently if AV is a
V -formula of R′

O , then AO will be a formula of RO (as well as R′

O ).

Observation 2.4 If AV is a V -formula of R′

O and AO is its O-transform, then
` AV in R′

O if and only if ` AO in RO .

Proof 1 We first observe that in R′

O we have (¬B → V ) ↔ O B and a derivable
rule of substitution, so ` AV in R′

O if and only if ` AO in R′

O . This is half the
battle; what remains to be proven is that R′

O is a conservative extension of RO , that
is, that each V -free formula of R′

O has a V -free proof. Such a proof will also be a
proof in RO , from which it will follow that if ` AO in R′

O then ` AO in RO .
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The leading idea is that, although V cannot be replaced by the same V -free for-
mula in every proof, it is still possible to find for each proof of a V -free formula, a
particular V -free formula that can replace V throughout that proof.

Let A1, . . . , An (An = A) be a proof of A in R′

O , and let p1, . . . , pm be a list of
all propositional variables occurring in the proof A1, . . . , An . Then, for this proof of
A, we define t as &m

i=1(pi → pi ), f as ¬t, and V ′ as Of.
Let A′

i be the result of replacing V throughout Ai by V ′. We show inductively
that each of A′

1, . . . , A′
n (= A) has a V -free proof in R′

O , which is to say a proof in
RO , as required.

(i) If Ai is one of the axioms R1, . . . , R11, D1, D2 of R′

O , then ` A′

i in RO by
the same axiom.

(ii) If Ai is an axiom D3 of R′

O , then A′

i has the form O B → (¬B → V ′).
We need to show that A′

i is provable in RO . Let q1, . . . , qk be all the
variables occurring in B. Then an easy induction on the length of B shows
that ` &k

j=1(q j → q j ) → (B → B). Evidently, ` &m
i=1(pi → pi ) →

&k
j=1(q j → q j ) since the q j are all among the pi , so ` t → (B → B) by

def. t, hence ` B → (t → B) by permutation, hence ` B → (¬B → f)
by T2 and def. f, hence ` ¬B → (B → f) by permutation, hence
` ¬B → (O B → Of) by D1, hence ` O B → (¬B → Of) by per-
mutation, hence ` O B → (¬B → V ′) by def. V ′, as desired.

(iii) If Ai is an axiom D4 of R′

O , then A′

i has the form (¬B → V ′) → O B.
We need to show that A′

i is provable in RO . ` (Of → f) → (t → ¬Of)
by contraposition and def. f, hence ` t → ((Of → f) → ¬Of) by
permutation, hence ` (Of → f) → ¬Of by ` t (from def. t, self-
implication, and adjunction), hence ` (¬Of → B) → ((Of → f) → B)
by T1, hence ` (¬Of → B) → (O(Of → f) → O B) by D1, hence
` O(Of → f) → ((¬Of → B) → O B) by permutation, hence
` (¬Of → B) → O B by D2, hence ` (¬B → Of) → O B by T2
and double negation, hence ` (¬B → V ′) → O B by def. V ′, as desired.

(iv) If Ai is a conclusion from premises A j and Ak by detachment or adjunction,
then ` A′

j and ` A′

k in RO by the inductive hypothesis, and ` A′

i in RO by
the same rule.

This completes the proof, which shows essentially that the addition of V and axioms
D3 and D4 is otiose, since RO already contains an equivalent deontic theory. �

Definition 2.5 Anderson’s relevant deontic logic RV is R plus a primitive propo-
sitional constant V and the following definition of O: O A = ¬A → V .

Observation 2.6 ` A in RV if and only if ` A′ in R′

O , where A′ is the result of
replacing V throughout A by V ′.

Proof By induction on the derivation of A or A′. Axioms D3 and D4 and a derivable
rule of substitutability of provable equivalents may be used instead of the definition
of O , and vice versa. �

Observation 2.7 If AV is a V -formula of RV and AO is its O-transform, then
` AV in RV if and only if ` AO in RO .

Proof From Observations 2.4 and 2.6. �
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Definition 2.8 The deontic fragment of RV is the set {AO
: ` AV in RV }.

Observation 2.9 RO is an axiomatization of the deontic fragment of RV .

Proof Immediate from Observation 2.7. �

Observation 2.9 was also made in Lokhorst [6], which, however, was based on the
needlessly complicated semantical proof in [5].

Definition 2.10 RO .a is RO plus the axiom O A → ¬O¬A (Anderson called this
the “axiom of avoidance”). RV .a is RV plus the axiom ¬(¬V → V ).

Observation 2.11 RO .a is an axiomatization of the deontic fragment of RV .a.

Proof By obvious extensions of the proof of Observation 2.9. It is easily proven
that ` ¬(¬V ′

→ V ′) in R′

O .a and that ` O A → ¬O¬A in RV .a. �

All these results also hold for the corresponding linear rather than relevant deontic
systems because contraction and distribution are not needed.

Observation 2.12 Axiom D2 of RO may be replaced with either of the following
two axioms:

D2′ A → O¬O¬A;
D2′′ (A → O B) → O(A → B).

Proof First, D2′ and D2′′ are theorems of RO : see [6], §3. Second, if axiom D2 is
replaced with D2′, then D2 becomes a theorem:

1. ` ¬A → (A → ¬(A → A)) by R, hence
2. ` ¬A → (O A → O¬(A → A)) by D1, hence
3. ` ¬A → (¬O¬(A → A) → ¬O A) by R, hence
4. ` ¬O¬(A → A) → (¬A → ¬O A) by permutation, hence
5. ` O¬O¬(A → A) → O(¬A → ¬O A) by D1, hence
6. ` O(¬A → ¬O A) by self-implication and D2′, hence
7. ` O(O A → A) [=D2] by R and D1.

Third, D2′′ yields D2 by self-implication. �

Definition 2.13 It is forbidden that A: F A = O¬A. It is permitted that A:
P A = ¬O¬A. It is elective (optional) that A: E A = ¬O A. A does not exclude B:
A ◦ B = ¬(A → ¬B).

The relations between the four resulting deontic concepts are illustrated in the square
of opposition shown in Figure 1. The axiom of avoidance says that ` O A → P A

O A = ¬A → V F A = O¬A

P A = ¬F A E A = ¬O A
�

���
���

��H
HHH

HHH
HH

Figure 1 Four deontic concepts ([3], Fig. 6).

and ` F A → E A.
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Observation 2.14 RO can also be axiomatized in either of the following three
ways:

1. R plus (A → B) → (F B → F A) and A → F F A;
2. R plus (A → B) → (P A → P B) and P(A ◦ B) → (A ◦ P B);
3. R plus (A → B) → (E B → E A) and E E A → A.

Proof From Observation 2.12 and Definition 2.13. �

RO is inadequate as a system of deontic logic. For example, D2 is intuitively ac-
ceptable while D2′ (“everything that is the case ought to be permitted”; “if there is
slavery, it is forbidden to forbid slavery”) is unacceptable: yet D2 yields D2′ by D1.
This means that D1 has to be rejected. It is better to replace it with the rule of infer-
ence A → B/O A → O B. See [5], §3ff., and [6], §7ff., for relevant deontic systems
along these lines.

3 Anderson’s Relevant Eubouliatic Logic

Definition 3.1 Eubouliatic system RRw has the same language as R except that
there is an additional primitive unary connective Rw, read as “it is without risk that”
or “it is safe that.” RRw has the following axioms in addition to those of R:

E1 (A → B) → (Rw B → Rw A),
E2 A → Rw Rw A.

Definition 3.2 Eubouliatic system R′

Rw
is RRw plus a constant G (“the good

thing”) and the following axioms:

E3 Rw A → (A → G),
E4 (A → G) → Rw A.

We refer to those formulas of R′

Rw
in which G occurs, if at all, only in contexts of

the form A → G (so that G is always eliminable in terms of Rw) as G-formulas of
R′

Rw
. If AG is any G-formula of R′

Rw
, then the Rw-transform of AG is the formula

ARw got by replacing every part of AG of the form B → G by Rw B.

Observation 3.3 If AG is a G-formula of R′

Rw
and ARw is its Rw-transform, then

` AG in R′

Rw
if and only if ` ARw in RRw .

Proof The proof proceeds along the same lines as the proof of Observation 2.4, but
it is simpler because negation plays no role. As above, the “if” part of the proof
is easy. For the “only if” part, we define t as above and G ′ as Rwt. The inductive
proof is modified as follows. (i) As above. (ii) ` B → (t → B) as above, hence
` B → (Rw B → Rwt) by E1, hence ` Rw B → (B → G ′) by permutation
and def. G ′, as desired. (iii) ` (B → Rwt) → (Rw Rwt → Rw B) by E1, hence
` Rw Rwt → ((B → Rwt) → Rw B) by permutation, hence ` (B → Rwt) → Rw B
by ` t and E2, hence ` (B → G ′) → Rw B by def. G ′, as desired. (iv) As above.

�

Definition 3.4 Anderson’s relevant eubouliatic logic RG is R enriched with G and
the definition Rw A = A → G (“A guarantees the good thing”). The eubouliatic
fragment of RG is the set {ARw : ` AG in RG}.

Observation 3.5 RRw is an axiomatization of the eubouliatic fragment of RG .



70 Gert-Jan C. Lokhorst

Proof From Observation 3.3, along the same lines as the proof of Observation 2.9.
�

This result also holds for the corresponding positive and linear systems because
negation, contraction, and distribution play no role.

Definition 3.6 RRw .a is RRw plus the “axiom of avoidance” Rw A → ¬Rw¬A.
RG .a is RG plus the axiom ¬(¬G → G).

Observation 3.7 RRw .a is an axiomatization of the eubouliatic fragment of RG .a.

Proof By obvious extensions of the proof of Observation 3.5. �

Definition 3.8 H A = Rw¬A, C A = ¬Rw¬A, and R A = ¬Rw A.

Anderson read H A as “it is heedless that A,” C A as “it is cautious that A,” and R A
as “it is risky that A,” but he stressed that he was “far from satisfied with the[se]
terminological choices” ([3], p. 279).

The relations between the four resulting eubouliatic concepts are illustrated in
the square of opposition shown in Figure 2. The axiom of avoidance says that

Rw A = A → G H A = Rw¬A

C A = ¬H A R A = ¬Rw A
�

���
���

��H
HHH

HHH
HH

Figure 2 Four eubouliatic concepts ([3], Fig. 8).

` Rw A → C A and ` H A → R A.

Observation 3.9 RRw can also be axiomatized in either of the following three
ways:

1. R plus (A → B) → (H A → H B) and H(H A → A);
2. R plus (A → B) → (C B → C A) and CC A → A;
3. R plus (A → B) → (R A → RB) and R(A ◦ B) → (A ◦ RB).

Proof Similar to the proof of Observation 2.14 because RRw is just a relettered
version of RO (F 7→ Rw, O 7→ H , E 7→ C , P 7→ R). �

4 The Logic of Safety

Anderson’s notion of safety is different from the notion of safety in ordinary lan-
guage. For example, RRw has the theorem Rw A → Rw(A & B), but we do not
normally say that if it is safe that John drinks a glass of water, then it is also safe that
John drinks a glass of water and detonates a bomb.

Anderson explained his conception of safety as follows.
I suppose that we should agree in calling events or states-of-affairs which
ensure avoidance of the bad state-of-affairs “prudent,” or perhaps “safe.” Ac-
tually what is meant is that such a state-of-affairs (or proposition) p is without
risk, in the sense that the proposition guarantees that no trouble will ensue.



Deontic and Eubouliatic Systems 71

Of course no one supposes that this is a logical guarantee, or even an empiri-
cal one; it is as easy to make logical mistakes in practice as it is to be run over
by a bus. But the formal logic of the present logical situation is still, I claim,
clear to all of us. We all know perfectly well that the rules of chess entail
that the opening player may make only one move before his opponent has a
turn. We also know that the rules permit exactly one of twenty possible open-
ing moves, any one of which leads to a position on the board describable by a
sentence (e.g. “A white knight is at KR3 and all other pieces are in their initial
positions”) expressing a proposition (in this case the proposition that a white
knight is at KR3 and all other pieces are in their initial positions). Moreover,
any of these twenty propositions may be true without risk of violating the
rules of chess, so that for any such proposition p we have

p → ¬V .

For reasons which will emerge shortly, I shall abbreviate this as

Rw p,

with some such unidiomatic, but still reasonably unambiguous, interpretation
as “it is without risk that p,” or (again ignoring the use-mention distinction)
“p is riskless,” or “p is safe.” The reader however must bear in mind that
though the word “risk” has prudential, or utilitarian, or strategic connotations
in English, the only risk in question here is a risk of violating the rules defin-
ing the practice in question, and not a risk of e.g. making a strategically poor
move. ([3], pp. 275–6)

In other words, Anderson regarded the proposition that p (where p means that there
is a white knight at KR3 and that all other pieces are in their initial positions) as safe
in the sense that p guarantees that the rules are not violated.

However, p is not safe in this sense. Suppose that q means that a couple of spare
kings are added to the board. p & q guarantees that p, so if p guarantees that the
rules are not violated, then p & q does so too. But this is absurd because it is clear
that p & q violates the rules. So p does not guarantee that the rules are not violated;
p is not safe in Anderson’s sense of “it is safe that.”

The proposition that p is, however, safe in another sense of the word: it is safe
in the sense that the rules do not exclude it. As Anderson put it, “the rules permit
exactly one of twenty possible opening moves.” The proposition that John drinks
a glass of water is safe in the same sense: the good thing (surviving the day, say)
does not exclude it. The proposition that John drinks a glass of water and detonates
a bomb, on the other hand, is not safe in this sense: the good thing rules it out and it
guarantees disaster.

We therefore propose the following alternative analysis of safety and related no-
tions. We assume that G = ¬V .

1. It is safe that A: S A = ¬(A → V ) (“A does not guarantee the bad thing”).
Note that ` S A ↔ (A◦G) and that ` S A ↔ (G◦A). (Safety is compatibility
with the good thing rather than a guarantee for the good thing.)

2. It is unsafe (disastrous) that A: U A = ¬S A = A → V = ¬(A ◦ G).
3. It is mandatory (essential) that A: M A = ¬A → V = G → A.
4. It is inessential that A: I A = ¬M A = ¬(¬A → V ) = ¬A ◦ G.



72 Gert-Jan C. Lokhorst

These notions are illustrated in Figure 3. An axiom of avoidance would say that

M A = G → A U A = A → V

S A = ¬(A → V ) I A = ¬(G → A)
���

���
���HH

HHH
HHHH

Figure 3 Safety and related concepts.

` M A → S A and ` U A → I A.
The “eubouliatic fragment” (in the obvious sense) of the new system can be ax-

iomatized in either of the following four ways:

1. R plus (A → B) → (M A → M B) and M(M A → A);
2. R plus (A → B) → (U B → U A) and A → UU A;
3. R plus (A → B) → (S A → SB) and S(A ◦ B) → (A ◦ SB);
4. R plus (A → B) → (I B → I A) and I I A → A.

The proof is similar to the proof of Observations 2.9 and 2.14 because the new system
is just a relettered version of RO (O 7→ M , F 7→ U , P 7→ S, E 7→ I ).

The new system does not have the theorem S A → S(A & B), so it seems to give a
more adequate account of safety than Anderson’s system did, at least in the particular
examples that we have discussed. But we cannot conclude from this that it is gen-
erally more adequate. The basic problem is that safety is a complicated and unclear
concept with many connotations. The Oxford English Dictionary describes no less
than eleven different senses of “safety” [7]. Causal, epistemic, modal, probabilistic,
and temporal notions all seem to play some role. It would be unrealistic to expect
that we can do full justice to such a complicated concept in the austere language of
propositional logic enriched with nothing but a single propositional constant.

Note

1. This proof is modeled after Anderson et al. [4], ch. 8, §45.1, which closely follows An-
derson and N. D. Belnap [1], §2.
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