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Thin Ultrafilters

O. Petrenko and I. V. Protasov

Abstract A free ultrafilter U on ! is called a T -point if, for every countable
group G of permutations of !, there exists U 2 U such that, for each g 2 G,
the set fx 2 U W gx ¤ x; gx 2 U g is finite. We show that each P -point and
each Q-point in !� is a T -point, and, under CH, construct a T -point, which is
neither a P -point, nor a Q-point. A question whether T -points exist in ZFC is
open.

1 Introduction

LetG be a group with the identity e. A subset T ofG is called thin if the intersection
gT \ T is finite for every g 2 G, g ¤ e. For thin subsets, its modifications,
applications, and references, see Lutsenko and Protasov [6], Protasov [14]. We begin
with the following generalization of thin subsets.

Let X be a set, s W X ! X be an arbitrary mapping. We say that a subset T of X
is s-thin if the set

fx 2 T W sx ¤ x; sx 2 T g

is finite. Clearly, each finite subset of X is s-thin.
Given a subset S of the set XX of all selfmappings of X , we say that T is S -thin

if T is s-thin for each s 2 S . We say that an ultrafilter U on X is S -thin if there is
an S -thin subset of X which is a member of U.

Let S be a family of subsets of XX . We say that an ultrafilter U on X is thin with
respect to S if U is S -thin for each S 2 S . Every ultrafilter onX is thin with respect
to the family of all finite subsets of XX (see Proposition 2.5).

A free ultrafilter U on ! D f0; 1; : : :g is called a T -point if U is thin with respect
to the family of all countable groups of permutations of ! (in words, if for every
countable group G of permutations of ! there exists a G-thin subset T � ! such
that T 2 U). We show that T -points generalize the classical ultrafilters on !: P -
points and Q-points.
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Recall that a free ultrafilter U on ! is
1. selective if, for every partition P of !, either some block of P is a member

of U, or there is U 2 U such that jU \ P j 6 1 for each P 2 P ;
2. P -point if, for every partition P of !, either some block of P is a member

of U, or there is U 2 U such that U \ P is finite for each P 2 P ;
3. Q-point if, for every partition P of ! into finite subsets, there is U 2 U such

that jU \ P j 6 1 for each P 2 P .
In Sections 2 and 3, we prove that each P -point and each Q-point is a T -point,
and, under the Continuum Hypothesis (CH), construct a T -point which is neither
P -point nor Q-point. We do not know if T -points exist in ZFC without additional
set-theoretical assumptions. In Section 4, we use thin subsets to show that each
nonempty open subset of the corona of a countable G-space contains a homeomor-
phic copy of !�. In Section 5, we give a “thin” characterization of selective ultrafil-
ters.

For a discrete space X , we identify the Stone-Čech compactification ˇX of X
with the set of all ultrafilters of X , and denote X� D ˇX n X . We use the universal
property of ˇX stating that each mapping f W X ! K, where K is a compact
Hausdorff space, extends to the continuous mapping f ˇ W ˇX ! K.

2 Thin Subsets and Ultrafilters

Example 2.1 Let G be an infinite group of cardinality �. By Chou’s lemma [1],
there exists a subset X � G such that jX j D � and jgX \ X j 6 3 for each g 2 G,
g ¤ e. Moreover, by [7], there exists Y � G such that jY j D �,G D Y Y �1[Y �1Y
and jgY \ Y j 6 2 for each g 2 G, g ¤ e. Since every subset of a G-thin subset
is G-thin, we conclude that there are 22

�
ultrafilters on G having a G-thin subset

among its members. On the other hand, if U is an idempotent in the semigroup G�

of all free ultrafilters on G (see [3, Chapter 5]) then, for every U 2 U there exist
g 2 U and V 2 U such that V � U and gV � U . It follows that U has no G-thin
members.

Example 2.2 For infinite cardinals �; �,� 6 �, we denote by S� the group of all
permutations of � and put

S�;� D fg 2 S� W jsupp gj < �g;

where supp g D fx 2 � W gx ¤ xg. Clearly, each subset of � is S�;@0 -thin, and each
S�;@1 -thin subset of � is finite.

Example 2.3 Let S � !! be a countable family of finite-to-one mappings. To
construct a countable S -thin subset of !, we enumerate S D fsn W n 2 !g, put
Fn D fsi W i 6 ng, n 2 !, choose an arbitrary element x0 2 ! and suppose that
we have chosen the elements fxi W i 6 ng such that the subsets fFixi W i 6 ng are
pairwise disjoint. Since each mapping from FnC1 is finite-to-one, we can choose
xnC1 2 ! such that FnC1xnC1 \ Fixi D ¿ for every i 6 n. After ! steps, we get
an S -thin subset X D fxn W n 2 !g.

Example 2.4 We point out a countable subset S � !! such that each S -thin
subset of ! is finite. For each n 2 !, we define �n 2 !! by �n.x/ D n for each
x 2 !, and put S D f�n W n 2 !g. Let X be a nonempty S -thin subset of !, n 2 X .
Since X is �n-thin, we see that X is finite.
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In what follows we use the 4-set lemma [3, Lemma 3.33]. Let X be a set,
f W X ! X . Then there exists a partition

X D X0 [X1 [X2 [X3

such that X0 D fx 2 X W f .x/ D xg and f .Xi / \Xi D ¿ for every i 2 f1; 2; 3g.

Proposition 2.5 Let � be a cardinal, U 2 ˇ�. For every finite subset F � �� ,
there exists an F -thin subset T 2 U.

Proof Using the 4-set lemma, for every f 2 F , we choose Tf 2 U such that
either f jTf � id or f .Tf / \ Tf D ¿. Put T D

T
f 2F Tf .

Let X be a topological space, � be an infinite cardinal. A point x 2 X is called a
P�-point if the intersection of any � neighborhood of x is a neighborhood of x. In
the case X D !� and � D @0, we get a P -point in !�.

Proposition 2.6 Let �; � be infinite cardinals, U be a P�-point in ��, S � ��

be a family of finite-to-one mappings, jS j D �. Then there exists an S -thin subset
T 2 U.

Proof Using the 4-set lemma, for each s 2 S , we pick a subset Ts 2 U such that
either sjTs � id or s.Ts/ \ Ts D ¿. Since U is a P�-point in �� and jS j D �, we
can choose a subset T 2 U such that T n Ts is finite for each s 2 S . Since the set
s�1.T n Ts/ is finite, T is s-thin for each s 2 S .

Proposition 2.7 Let G be a countable group of permutations of !, U 2 !�. If U

is a Q-point then there exists a G-thin subset T 2 U.

Proof Enlarging G, we may suppose that G acts transitively on !. We enumerate
G D fgn W n 2 !g, g0 D e, put Fn D fg˙10 ; : : : ; g˙1n g and denote by Fmn the
product of m copies of Fn.

We fix an arbitrary a 2 !, put

X0 D fag; XnC1 D F
nC1
nC1 a n F

n
n a; n 2 !;

and claim that, for each n > 0,

.�/ Fn�1Xn � Xn�1 [Xn [XnC1:

For n D 1, (*) is evident so let n > 2. Since

Xn�1 [Xn [XnC1 D

.F n�1n�1 a n F
n�2
n�2 a/ [ .F

n
n a n F

n�1
n�1 a/ [ .F

nC1
nC1 a n F

n
n a/ D F

nC1
nC1 a n F

n�2
n�2 a;

it suffices to verify that

Fn�1.F
n
n a n F

n�1
n�1 a/ � F

nC1
nC1 a n F

n�2
n�2 a:

Clearly, Fn�1.F nn a n F
n�1
n�1 a/ � Fn�1F

n
n a � F nC1nC1 a. If Fn�1.F nn a n F

n�1
n�1 a/

\ F n�2n�2 a ¤ ¿, then F nn a n F
n�1
n�1 a \ Fn�1F

n�2
n�2 a ¤ ¿, contradicting

Fn�1F
n�2
n�2 � F

n�1
n�1 .

Then we put

Y0 D
[
n2!

X3n; Y1 D
[
n2!

X3nC1; Y2 D
[
n2!

X3nC2:

Since G acts transitively on !, we have ! D
S
n2! Xn so ! D Y0 [ Y1 [ Y2. Since

Xn \ Xm D ¿ for all distinct m; n and U is a Q-point, there exist T 2 U and
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i 2 f1; 2; 3g such that T � Yi and jT \ Xnj 6 1 for each n 2 !. We take an
arbitrary gm 2 G. If t 2 T \ Xn, n > mC 1 and gmt 2 T then, by .�/, gmt 2 Xn
so gmt D t . Hence, T is G-thin.

3 T -Points

Theorem 3.1 Every P -point and every Q-point in !� are T -points.

Proof Apply Propositions 2.6 and 2.7.

Shelah produced a ZFC-model in which there are no P -points in !� [16]. On the
other hand, there is also a model in which there are no Q-points [10]. But it is
unknown [2, Question 25] if there is a model in which there are no P -points and
Q-points. By [4] and [8], if c 6 @2 there is either a P -point or a Q-point (and, by
Theorem 3.1, a T -point).

Recall that the ultrafilters U;V on ! are of the same type if there is a bijection
f W ! ! ! such that, for any X � !, X 2 U if and only if f .X/ 2 V . If V is
an ultrafilter, and .Un/n2! is a sequence of ultrafilters on !, a subset A � ! is a
member of the ultrafilter V - lim Un if and only if fn 2 ! W A 2 Ung 2 V .

Theorem 3.2 Let fUn W n 2 !g be a family of P -points in !� of distinct types, V

be an arbitrary ultrafilter from !�. Then V - lim Un is a T -point.

Proof Let G D fgm W m 2 !g be a countable group of permutations of !. Since
the ultrafilters fUn W n 2 !g are of distinct types, for each m; n; k 2 !, n ¤ k, we
can choose Um;n;k 2 Un and Vm;n;k 2 Uk such that

gmUm;n;k \ Vm;n;k D ¿:

Since Un is a P -point, there exists Un 2 Un such that Un n Um;n;k and Un n Vm;k;n
are finite for all m; n; k; k ¤ n. Thus, gmUn \ Uk is finite for all m; n; k; n ¤ k.

Since gˇm.Un/ is a P -point, gˇm.Un/ is not in the closure of the set fUk W

k 2 !; k ¤ ng. Hence, we can choose inductively the sets fWn W n 2 !g such
that Wn � Un, Wn 2 Un and

gmWn \Wk D ¿

for all m 6 n < k < !.
Using the 4-set lemma, for every n 2 !, we choose a decreasing family

fUn;m 2 Un W m 2 !g such that Un;m � Wn and either gmjUn;m � id or
gmUn;m \ Un;m D ¿. Since Un is a P -point, we can choose Tn 2 Un such that
Tn � Wn and Tn n Un;m is finite for every m 2 !.

At last, we put
T D

[
n2!

.Tn \ Un;n/

and note that T 2 V - lim Un. By the construction, T is G-thin.

Let X be a topological space. A point p 2 X is called a weak P -point if p … clXY
for any countable subset Y � X n fpg. In contrast to P -points, the weak P -points
in !� exist in ZFC (see [5], [9]). To prove this statement, Kunen introduced the
following delicate notion.

A point p 2 X is called an OK-point if, for any countable family fUn W n 2 !g
of neighborhoods of p, there exists an uncountable family F of neighborhoods of p



Thin Ultrafilters 83

such that, for each n > 1 and each subfamily F 0 � F of size n,
T

F 0 � Un. Every
OK-point is a weak P -point and OK-points in !� exist in ZFC.

An ultrafilter U 2 !� is called an NWD-point if, for every injective mapping
f W ! ! R, there exists U 2 U such that f .U / is nowhere dense in R. To see
that every P -point is an NWD-point, we can use the following simple topological
characterization: an ultrafilter U 2 !� is a P -point if and only if, for every Haus-
dorff topology � on !, there exists U 2 U such that U has at most one limit point in
.X; �/.

Proposition 3.3 Under CH, there exists a T -point in !� which is neither a weak
P -point nor an NWD-point nor aQ-point. For every ultrafilter V 2 !�, there exists
a T -point U 2 !� and a mapping f W ! ! ! such that V D f ˇ .U/.

Proof Using CH, we can construct a family fUn W n 2 !g of P -points of distinct
types such that each Un is not a Q-point. Let V be an arbitrary ultrafilter from !�.
By Theorem 3.2, W D V - lim Un is a T -point. Clearly, W is neither a weak P -point
nor a Q-point.

We identify ! with Q and, for each n 2 !, choose an injective sequence
.anm/m2! converging to n. Then we take a family fUn W n 2 !g of P -points of
distinct types such that fanm W m 2 !g 2 Un and each Un is not a Q-point. At last,
we take an ultrafilter V on Q such that every member of V is not nowhere dense
in Q. Then W is not an NWD-point.

To prove the second statement, we choose an arbitrary family fUn W n 2 !g of P -
points of distinct types. Since the set fUn W n 2 !g is discrete in !�, we can choose
a disjoint family fUn 2 Un W n 2 !g. We define a mapping f W

S
n2! Un ! ! by

f .x/ D n if and only if x 2 Un, and extend f on ! arbitrarily. Then V D f ˇ .W/.

Question 3.4 Let U be a T -point in !�, S � !! be a countable family of finite-
to-one mappings. Does there exist an S -thin subset T 2 U?

Question 3.5 Let U be a T -point in !�, f W ! ! ! be a finite-to-one mapping.
Is f ˇ .U/ a T -point?

Question 3.6 Is every weak P -point (OK-point, NWD-point) a T -point?

Let G be a countable group of permutations of !. We say that an ultrafilter U 2 !�

is a TG-point if, for every bijection f W ! ! !, there exists U 2 U such that f .U /
is G-thin. It is easy to see that a T -point is a TG-point for every countable group of
permutations of !. On the other hand, if G is a group of all permutations of ! with
finite support then each U 2 !� is a TG-point.

Question 3.7 Given a countable subgroup G of S! , does there exist a TG-point
which is not a T -point? Does there exist a TG-point in ZFC?

4 Corona

All G-spaces in this section are assumed to be discrete and transitive. Let G be a
group and let X be a G-space with the action G � X ! X , .g; x/ 7! gx. By the
universal property of the Stone-Čech compactification ˇX of X , the action of G on
X extends to the continuous action of G on ˇX . Since the subspace X� D ˇX n X
of all free ultrafilters is G-invariant, it also has a natural structure of G-space.
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We denote by E the orbit equivalence on X� defined by

.x; y/ 2 E , Gx D Gy;

and following [13], consider the smallest by inclusion, closed inX��X� equivalence
LE on X� such that E � LE. The factor-space LX D X�= LE is called a corona of X .

For every U 2 X�, we denote by LU the class of LE-equivalence containing U,
and say that two ultrafilters U;V 2 X� are corona equivalent if LU D LV . To de-
tect whether two ultrafilters are corona equivalent, we use the G-slowly oscillating
functions on X .

A function h W X ! Œ0; 1� is called G-slowly oscillating if, for any g 2 G and
" > 0, there exists a finite subset K of X such that

jh.gx/ � h.x/j < "

for every x 2 X nK.
By [12, Proposition 1], the ultrafilters U;V 2 X� are corona equivalent if and

only if hˇ .U/ D hˇ .V/ for every G-slowly oscillating function h on X .
Given a subset A of X and a filter ˚ on X , we put

A D fU 2 X� W A 2 Ug; ˚ D \fA W A 2 ˚g;

and note that, for every nonempty closed subset Y ofX�, there exists a filter ˚ onX
such that Y D ˚ . For U 2 X�, we denote by  U the filter onX such that  U D

LU.
Now we suppose that G and X are countable and fix some numerations

G D fgi W i 2 !g, X D fxi W i 2 !g. For A � X and f W ! ! !, we
put

	A;f D
[
i2!

gi .A n fx0; : : : ; xf .i/g/:

Proposition 4.1 Let G be a countable group, X be a countable G-space,
U 2 X�. Then the family f	U;f W U 2 U; f 2 !!g forms a base for  U.

Proof We take an arbitrary V … LU. By [12, Proposition 1], there exists aG-slowly
oscillating function h W X ! Œ0; 1� such that hˇ .U/ D 0; hˇ .V/ D 1. We choose
U 2 U and V 2 V such that h.x/ < 1

4
for every x 2 U , and h.x/ > 3

4
for every

x 2 V . Since h is G-slowly oscillating, for every i 2 !, there exists f .i/ 2 ! such
that

jh.gix/ � h.x/j <
1

4

for each x 2 X n fx0; : : : ; xf .i/g. Then gi .U n fx0; : : : ; xf .i/g/ \ V D ¿ so
	U;f \ V D ¿ and V …  U.

On the other hand, assume that 	U;f … V for some U 2 U, f 2 !! and
V 2 LU. Applying Theorem 2.1 from [11], we get a G-slowly oscillating function
h W X ! Œ0; 1� such that hˇ .U/ D 0; hˇ .V/ D 1. By [12, Proposition 1], V … LU

and we get a contradiction.

Proposition 4.2 Let G be a countable group, X be a countable G-space. For an
infinite subset T of X , the following statements are equivalent:

(1) T is G-thin;
(2) the restrictionL jT � of the mappingL W X� ! LX is injective.
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Proof .1/) .2/ We choose distinct U;V 2 X� such that T 2 U, T 2 V and
show that LU ¤ LV . Let Fn D fg0; : : : ; gng; n 2 !. Since T is G-thin, there is an
increasing function h 2 !! such that

Fnx \ Fny D ¿

for all distinct x; y 2 T n fx0; : : : ; xh.n/g. Put t .0/ D h.0/ and define inductively a
function t 2 !! such that, for each n 2 !, t .n/ > h.n/ and

.F �1nC1Fnfx0; : : : ; xh.nC1/g/ \ .T n fx0; : : : ; xt.nC1/g/ D ¿:

Then, for any n;m 2 ! and x 2 T n fx0; : : : ; xt.n/g, y 2 T n fx0; : : : ; xt.m/g,

gnx D gmy ) x D y:

We choose disjoint U 2 U, V 2 V such that U � T , V � T . By the construction
of t ,

	U;t \ 	V;t D ¿;

and, applying Proposition 4.1, we get LU ¤ LV .

.2/ ) .1/ Suppose that T is not G-thin and choose g 2 G such that T is not g-
thin. Then the set A D fx 2 T W gx ¤ x; gx 2 T g is infinite. We take an arbitrary
ultrafilter U 2 X� such thatA 2 U. Since gx ¤ x for all x 2 A, gU ¤ U. Clearly,
T 2 gU but LU D L.gU/ soL jT � is not injective.

Corollary 4.3 Let G be a countable group, X be a countable G-space. Every
nonempty open subset of LX contains a homeomorphic copy of !�.

Corollary 4.4 Let G be a countable group, X be a countable G-space, T be an
infinite G-thin subset of X . If U 2 X� and T 2 U then U is an isolated point in LU.

Question 4.5 Let G be a countable group, X be a countable G-space, U 2 X�.
Has U a G-thin member provided that U is an isolated point in LU? If not then
characterize U 2 X� which are isolated in LU.

Remark 4.6 Let � be a left invariant Banach measure on an infinite group G,
A be a subset of G such that �.A/ > 0. We consider G as a left regular G-space
and show that A is not G-thin. Let �.A/ > 1

n
, g0; : : : ; gn be distinct elements of

G. Since �.G/ D 1 and � is additive, there exist distinct i; j 2 f0; : : : ; ng such
that �.giA \ gjA/ > 0, so �.g�1j giA \ A/ > 0 and A is not g�1j gi -thin. By
[13, Lemma 4.3], there exists a Banach measure � on Z such that if U 2 Z� and
�.U / D 0 for some U 2 U then, for every V 2 LU, there exists V 2 V such that
�.V / D 0. Let W be an ultrafilter on Z such that �.W / > 0 for eachW 2 W . Then
the corona class LW has no G-thin ultrafilters.

Remark 4.7 Let G be a countable group, U;V be right cancelable ultrafilters
from G� (see [8, Chapter 3]). Then W D UV is right cancelable and, by [3, Theo-
rem 8.11], G-orbit of W is discrete, so W is isolated in its orbit. On the other hand,
W is a limit point of the G-orbit of V , so V 2 LW and W is not isolated in LW .

Remark 4.8 We can use G-thin subsets also to extend onto G-spaces the Chou’s
theorem on the number of invariant means (Banach measures) on an amenable
group [1].
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Let X be a discrete G-space, C.X/ be the set of all bounded functions from X to R
with sup norm. A continuous linear functionalm W C.X/! R is called an invariant
mean if

1. m.f / > 0 for all f > 0 and m.1/ D 1;
2. m.fg/ D m.f / for each g 2 G, where fg.x/ D f .gx/.

We assume thatX is an infiniteG-space, jX j D jGj, and there exists aG-thin subset
T of X such that jX j D jT j. Let U;V be distinct free ultrafilters on X such that
T 2 U, T 2 V and jU j D jV j D jT j for all U 2 U, V 2 V . We enumerate
G D fg˛ W ˛ < �g. Since T is G-thin and T 2 U, T 2 V , we can choose
inductively the families fU˛ W ˛ < �g, fV˛ W ˛ < �g of members of U and V such
that g˛U˛ \ g
V
 D ¿ for all ˛; 
 < �. Since .

S
˛<� g˛U˛/\ .

S
˛<� g˛V˛/ D ¿,

we have
clˇXfg

ˇ .U/ W g 2 Gg \ clˇXfg
ˇ .V/ W g 2 Gg D ¿;

and repeating the Chou’s argument, we conclude that if X admits an invariant mean
then there are 22

�
distinct invariant means on X . In particular (see Example 2.2), if

X , G are countable and X is amenable then X admits 2c distinct invariant means.

5 Ballean Context

A ball structure is a triple B D .X; P;B/, where X , P are nonempty sets and, for
any x 2 X and ˛ 2 P , B.x; ˛/ is a subset of X which is called a ball of radius ˛
around x. It is supposed that x 2 B.x; ˛/ for all x 2 X and ˛ 2 P . The set X is
called the support of B, P is called the set of radii. Given any x 2 X;A � X; ˛ 2 P
we put

B�.x; ˛/ D fy 2 X W x 2 B.y; ˛/g; B.A; ˛/ D
[
a2A

B.a; ˛/:

Following [15], we say that a ball structure B D .X; P;B/ is a ballean if
1. for any ˛; ˇ 2 P , there exist ˛0; ˇ0 such that, for every x 2 X ,

B.x; ˛/ � B�.x; ˛0/; B�.x; ˇ/ � B.x; ˇ0/I

2. for any ˛; ˇ 2 P , there exists 
 2 P such that, for every x 2 X ,

B.B.x; ˛/; ˇ/ � B.x; 
/:

A subset Y � X is called bounded if Y � B.x; ˛/ for some x 2 X and ˛ 2 P . We
say that a subset T � X is thin (or pseudodiscrete in terminology from [15]) if, for
every ˛ 2 P , there exists a bounded subset Y � X such that

B.x; ˛/ \ B.x0; ˛/ D ¿

for all distinct x; x0 2 T n Y .
Every G-space X determines the ballean .X;FG ; B/, where FG is the family

of all finite subsets of G containing the identity e and B.x; F / D Fx for all
x 2 X;F 2 FG . It is easy to verify that a subset T of a transitive G-space X is
G-thin if and only if T is thin in the ballean .X;FG ; B/. A metric space .X; d/ can
be considered as the ballean .X;RC; Bd /, whereBd .x; r/ D fy 2 X W d.x; y/ 6 rg

for all x 2 X , r 2 RC. Recall that a metric d on X is an ultrametric if
d.x; y/ 6 max d.x; z/; d.z; y/ for all x; y; z 2 X .

Theorem 5.1 For an ultrafilter U 2 !�, the following statements are equivalent:
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(1) U is selective;
(2) for every metric d on !, there exists a thin subset T of .!; d/ such that

T 2 U;
(3) for every ultrametric d on !, there exists a thin subset T of .!; d/ such that

T 2 U.

Proof .1/) .2/ We fix x0 2 !, r > 0 and put

X0 D fx0g; XnC1 D Bd .x0; .nC 1/r/ n Bd .x0; nr/; n 2 !;

Y0 D
[
n2!

X2n; Y1 D
[
n2!

X2nC1:

Since U is selective, there exist T 2 U and i 2 f0; 1g such that T � Yi and either
jT \ Xnj 6 1 for each n 2 ! or T D Xm for some m 2 !. In the first case,
Bd .x; r/ \ Bd .x

0; r/ D ¿ for all distinct x; x0 2 T . In the second case, T is
bounded. Thus, in both cases T is thin in .!; d/.

.2/) .3/ Evident.

.3/) .1/ Let fPn W n 2 !g be a partition of !. We define an ultrametric d on !
by the rule:

d.x; y/ D

8<: 0; if x D yI
1; if x ¤ y; x; y 2 PnI
maxfn;mg; if x 2 Pn; y 2 Pm; n ¤ m:

Then we choose a thin subset T of .!; d/ such that T 2 U. By the definition of thin
subset, there exists a bounded subset Y of .!; d/ such thatBd .x; 1/\Bd .x0; 1/ D ¿
for all distinct x; x0 2 T nY . If T is bounded then some block Pn is a member of U.
Otherwise, T n Y 2 U and j.T n Y / \ Pnj 6 1 for each n 2 !. Hence, U is
selective.
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