Thin Ultrafilters

O. Petrenko and I. V. Protasov

Abstract A free ultrafilter \mathcal{U} on ω is called a T-point if, for every countable group G of permutations of ω , there exists $U \in \mathcal{U}$ such that, for each $g \in G$, the set $\{x \in U : gx \neq x, gx \in U\}$ is finite. We show that each P-point and each Q-point in ω^* is a T-point, and, under CH, construct a T-point, which is neither a P-point, nor a Q-point. A question whether T-points exist in ZFC is open.

1 Introduction

Let G be a group with the identity e. A subset T of G is called thin if the intersection $gT \cap T$ is finite for every $g \in G$, $g \neq e$. For thin subsets, its modifications, applications, and references, see Lutsenko and Protasov [6], Protasov [14]. We begin with the following generalization of thin subsets.

Let X be a set, $s: X \to X$ be an arbitrary mapping. We say that a subset T of X is s-thin if the set

$$\{x \in T : sx \neq x, sx \in T\}$$

is finite. Clearly, each finite subset of X is s-thin.

Given a subset S of the set X^X of all selfmappings of X, we say that T is S-thin if T is S-thin for each $S \in S$. We say that an ultrafilter U on X is S-thin if there is an S-thin subset of X which is a member of U.

Let \mathcal{S} be a family of subsets of X^X . We say that an ultrafilter \mathcal{U} on X is thin with respect to \mathcal{S} if \mathcal{U} is S-thin for each $S \in \mathcal{S}$. Every ultrafilter on X is thin with respect to the family of all finite subsets of X^X (see Proposition 2.5).

A free ultrafilter $\mathcal U$ on $\omega=\{0,1,\ldots\}$ is called a T-point if $\mathcal U$ is thin with respect to the family of all countable groups of permutations of ω (in words, if for every countable group G of permutations of ω there exists a G-thin subset $T\subseteq \omega$ such that $T\in \mathcal U$). We show that T-points generalize the classical ultrafilters on ω : P-points and Q-points.

Received February 5, 2011; accepted June 9, 2011; printed April 5, 2012 2010 Mathematics Subject Classification: Primary 54D35, 54D80 Keywords: ultrafilter, thin set, *P*-point, *Q*-point, *T*-point © 2012 by University of Notre Dame 10.1215/00294527-1626536

Recall that a free ultrafilter \mathcal{U} on ω is

- 1. *selective* if, for every partition \mathcal{P} of ω , either some block of \mathcal{P} is a member of \mathcal{U} , or there is $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$;
- 2. P-point if, for every partition \mathcal{P} of ω , either some block of \mathcal{P} is a member of \mathcal{U} , or there is $U \in \mathcal{U}$ such that $U \cap P$ is finite for each $P \in \mathcal{P}$;
- 3. *Q-point* if, for every partition \mathcal{P} of ω into finite subsets, there is $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$.

In Sections 2 and 3, we prove that each P-point and each Q-point is a T-point, and, under the Continuum Hypothesis (CH), construct a T-point which is neither P-point nor Q-point. We do not know if T-points exist in ZFC without additional set-theoretical assumptions. In Section 4, we use thin subsets to show that each nonempty open subset of the corona of a countable G-space contains a homeomorphic copy of ω^* . In Section 5, we give a "thin" characterization of selective ultrafilters.

For a discrete space X, we identify the Stone-Čech compactification βX of X with the set of all ultrafilters of X, and denote $X^* = \beta X \setminus X$. We use the universal property of βX stating that each mapping $f: X \to K$, where K is a compact Hausdorff space, extends to the continuous mapping $f^\beta: \beta X \to K$.

2 Thin Subsets and Ultrafilters

Example 2.1 Let G be an infinite group of cardinality κ . By Chou's lemma [1], there exists a subset $X \subset G$ such that $|X| = \kappa$ and $|gX \cap X| \leqslant 3$ for each $g \in G$, $g \neq e$. Moreover, by [7], there exists $Y \subset G$ such that $|Y| = \kappa$, $G = YY^{-1} \cup Y^{-1}Y$ and $|gY \cap Y| \leqslant 2$ for each $g \in G$, $g \neq e$. Since every subset of a G-thin subset is G-thin, we conclude that there are $2^{2^{\kappa}}$ ultrafilters on G having a G-thin subset among its members. On the other hand, if G is an idempotent in the semigroup G^* of all free ultrafilters on G (see [3, Chapter 5]) then, for every G is there exist G and G is an idempotent in the semigroup G is an idempotent in G is an idempotent in

Example 2.2 For infinite cardinals κ , μ , $\mu \leq \kappa$, we denote by S_{κ} the group of all permutations of κ and put

$$S_{\kappa,\mu} = \{g \in S_{\kappa} : |\text{supp } g| < \mu\},$$

where supp $g = \{x \in \kappa : gx \neq x\}$. Clearly, each subset of κ is S_{κ,\aleph_0} -thin, and each S_{κ,\aleph_0} -thin subset of κ is finite.

Example 2.3 Let $S \subset \omega^{\omega}$ be a countable family of finite-to-one mappings. To construct a countable S-thin subset of ω , we enumerate $S = \{s_n : n \in \omega\}$, put $F_n = \{s_i : i \leq n\}$, $n \in \omega$, choose an arbitrary element $x_0 \in \omega$ and suppose that we have chosen the elements $\{x_i : i \leq n\}$ such that the subsets $\{F_i x_i : i \leq n\}$ are pairwise disjoint. Since each mapping from F_{n+1} is finite-to-one, we can choose $x_{n+1} \in \omega$ such that $F_{n+1} x_{n+1} \cap F_i x_i = \emptyset$ for every $i \leq n$. After ω steps, we get an S-thin subset $X = \{x_n : n \in \omega\}$.

Example 2.4 We point out a countable subset $S \subset \omega^{\omega}$ such that each S-thin subset of ω is finite. For each $n \in \omega$, we define $\sigma_n \in \omega^{\omega}$ by $\sigma_n(x) = n$ for each $x \in \omega$, and put $S = \{\sigma_n : n \in \omega\}$. Let X be a nonempty S-thin subset of ω , $n \in X$. Since X is σ_n -thin, we see that X is finite.

In what follows we use the 4-set lemma [3, Lemma 3.33]. Let X be a set, $f: X \to X$. Then there exists a partition

$$X = X_0 \cup X_1 \cup X_2 \cup X_3$$

such that $X_0 = \{x \in X : f(x) = x\}$ and $f(X_i) \cap X_i = \emptyset$ for every $i \in \{1, 2, 3\}$.

Proposition 2.5 Let κ be a cardinal, $\mathcal{U} \in \beta \kappa$. For every finite subset $F \subset \kappa^{\kappa}$, there exists an F-thin subset $T \in \mathcal{U}$.

Proof Using the 4-set lemma, for every $f \in F$, we choose $T_f \in \mathcal{U}$ such that either $f|T_f \equiv id$ or $f(T_f) \cap T_f = \emptyset$. Put $T = \bigcap_{f \in F} T_f$.

Let X be a topological space, μ be an infinite cardinal. A point $x \in X$ is called a P_{μ} -point if the intersection of any μ neighborhood of x is a neighborhood of x. In the case $X = \omega^*$ and $\mu = \aleph_0$, we get a P-point in ω^* .

Proposition 2.6 Let κ , μ be infinite cardinals, \mathcal{U} be a P_{μ} -point in κ^* , $S \subset \kappa^{\kappa}$ be a family of finite-to-one mappings, $|S| = \mu$. Then there exists an S-thin subset $T \in \mathcal{U}$.

Proof Using the 4-set lemma, for each $s \in S$, we pick a subset $T_s \in \mathcal{U}$ such that either $s|T_s \equiv id$ or $s(T_s) \cap T_s = \emptyset$. Since \mathcal{U} is a P_{μ} -point in κ^* and $|S| = \mu$, we can choose a subset $T \in \mathcal{U}$ such that $T \setminus T_s$ is finite for each $s \in S$. Since the set $s^{-1}(T \setminus T_s)$ is finite, T is s-thin for each $s \in S$.

Proposition 2.7 Let G be a countable group of permutations of ω , $\mathcal{U} \in \omega^*$. If \mathcal{U} is a Q-point then there exists a G-thin subset $T \in \mathcal{U}$.

Proof Enlarging G, we may suppose that G acts transitively on ω . We enumerate $G = \{g_n : n \in \omega\}, g_0 = e$, put $F_n = \{g_0^{\pm 1}, \dots, g_n^{\pm 1}\}$ and denote by F_n^m the product of m copies of F_n .

We fix an arbitrary $a \in \omega$, put

$$X_0 = \{a\}, X_{n+1} = F_{n+1}^{n+1} a \setminus F_n^n a, n \in \omega,$$

and claim that, for each n > 0,

$$(*) F_{n-1}X_n \subseteq X_{n-1} \cup X_n \cup X_{n+1}.$$

For n = 1, (*) is evident so let $n \ge 2$. Since

$$X_{n-1} \cup X_n \cup X_{n+1} =$$

$$(F_{n-1}^{n-1}a \setminus F_{n-2}^{n-2}a) \cup (F_n^n a \setminus F_{n-1}^{n-1}a) \cup (F_{n+1}^{n+1}a \setminus F_n^n a) = F_{n+1}^{n+1}a \setminus F_{n-2}^{n-2}a,$$

it suffices to verify that

$$F_{n-1}(F_n^n a \setminus F_{n-1}^{n-1} a) \subseteq F_{n+1}^{n+1} a \setminus F_{n-2}^{n-2} a.$$

Clearly, $F_{n-1}(F_n^n a \setminus F_{n-1}^{n-1} a) \subseteq F_{n-1}F_n^n a \subseteq F_{n+1}^{n+1}a$. If $F_{n-1}(F_n^n a \setminus F_{n-1}^{n-1} a) \cap F_{n-2}^{n-2}a \neq \emptyset$, then $F_n^n a \setminus F_{n-1}^{n-1}a \cap F_{n-1}F_{n-2}^{n-2}a \neq \emptyset$, contradicting $F_{n-1}F_{n-2}^{n-2} \subseteq F_{n-1}^{n-1}$.

Then we put

$$Y_0 = \bigcup_{n \in \omega} X_{3n}, \ Y_1 = \bigcup_{n \in \omega} X_{3n+1}, \ Y_2 = \bigcup_{n \in \omega} X_{3n+2}.$$

Since G acts transitively on ω , we have $\omega = \bigcup_{n \in \omega} X_n$ so $\omega = Y_0 \cup Y_1 \cup Y_2$. Since $X_n \cap X_m = \emptyset$ for all distinct m, n and \mathcal{U} is a Q-point, there exist $T \in \mathcal{U}$ and

 $i \in \{1, 2, 3\}$ such that $T \subseteq Y_i$ and $|T \cap X_n| \le 1$ for each $n \in \omega$. We take an arbitrary $g_m \in G$. If $t \in T \cap X_n$, $n \ge m+1$ and $g_m t \in T$ then, by (*), $g_m t \in X_n$ so $g_m t = t$. Hence, T is G-thin.

3 T-Points

Theorem 3.1 Every P-point and every Q-point in ω^* are T-points.

Proof Apply Propositions 2.6 and 2.7.

Shelah produced a ZFC-model in which there are no P-points in ω^* [16]. On the other hand, there is also a model in which there are no Q-points [10]. But it is unknown [2, Question 25] if there is a model in which there are no P-points and Q-points. By [4] and [8], if $c \leq \aleph_2$ there is either a P-point or a Q-point (and, by Theorem 3.1, a T-point).

Recall that the ultrafilters \mathcal{U}, \mathcal{V} on ω are of the same type if there is a bijection $f: \omega \to \omega$ such that, for any $X \subseteq \omega$, $X \in \mathcal{U}$ if and only if $f(X) \in \mathcal{V}$. If \mathcal{V} is an ultrafilter, and $(\mathcal{U}_n)_{n \in \omega}$ is a sequence of ultrafilters on ω , a subset $A \subseteq \omega$ is a member of the ultrafilter \mathcal{V} - lim \mathcal{U}_n if and only if $\{n \in \omega : A \in \mathcal{U}_n\} \in \mathcal{V}$.

Theorem 3.2 Let $\{U_n : n \in \omega\}$ be a family of P-points in ω^* of distinct types, V be an arbitrary ultrafilter from ω^* . Then V- $\lim U_n$ is a T-point.

Proof Let $G = \{g_m : m \in \omega\}$ be a countable group of permutations of ω . Since the ultrafilters $\{\mathcal{U}_n : n \in \omega\}$ are of distinct types, for each $m, n, k \in \omega, n \neq k$, we can choose $U_{m,n,k} \in \mathcal{U}_n$ and $V_{m,n,k} \in \mathcal{U}_k$ such that

$$g_m U_{m,n,k} \cap V_{m,n,k} = \emptyset.$$

Since \mathcal{U}_n is a P-point, there exists $U_n \in \mathcal{U}_n$ such that $U_n \setminus U_{m,n,k}$ and $U_n \setminus V_{m,k,n}$ are finite for all $m, n, k, k \neq n$. Thus, $g_m U_n \cap U_k$ is finite for all $m, n, k, n \neq k$.

Since $g_m^{\beta}(\mathcal{U}_n)$ is a P-point, $g_m^{\beta}(\mathcal{U}_n)$ is not in the closure of the set $\{\mathcal{U}_k: k \in \omega, k \neq n\}$. Hence, we can choose inductively the sets $\{W_n: n \in \omega\}$ such that $W_n \subseteq U_n, W_n \in \mathcal{U}_n$ and

$$g_m W_n \cap W_k = \emptyset$$

for all $m \le n < k < \omega$.

Using the 4-set lemma, for every $n \in \omega$, we choose a decreasing family $\{U_{n,m} \in \mathcal{U}_n : m \in \omega\}$ such that $U_{n,m} \subseteq W_n$ and either $g_m|U_{n,m} \equiv id$ or $g_mU_{n,m} \cap U_{n,m} = \emptyset$. Since \mathcal{U}_n is a P-point, we can choose $T_n \in \mathcal{U}_n$ such that $T_n \subseteq W_n$ and $T_n \setminus U_{n,m}$ is finite for every $m \in \omega$.

At last, we put

$$T = \bigcup_{n \in \omega} (T_n \cap U_{n,n})$$

and note that $T \in V$ - $\lim \mathcal{U}_n$. By the construction, T is G-thin.

Let X be a topological space. A point $p \in X$ is called a weak P-point if $p \notin cl_X Y$ for any countable subset $Y \subseteq X \setminus \{p\}$. In contrast to P-points, the weak P-points in ω^* exist in ZFC (see [5], [9]). To prove this statement, Kunen introduced the following delicate notion.

A point $p \in X$ is called an OK-point if, for any countable family $\{U_n : n \in \omega\}$ of neighborhoods of p, there exists an uncountable family \mathcal{F} of neighborhoods of p

such that, for each $n \ge 1$ and each subfamily $\mathcal{F}' \subseteq \mathcal{F}$ of size $n, \bigcap \mathcal{F}' \subseteq U_n$. Every OK-point is a weak P-point and OK-points in ω^* exist in ZFC.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an NWD-point if, for every injective mapping $f:\omega\to\mathbb{R}$, there exists $U\in\mathcal{U}$ such that f(U) is nowhere dense in \mathbb{R} . To see that every P-point is an NWD-point, we can use the following simple topological characterization: an ultrafilter $\mathcal{U}\in\omega^*$ is a P-point if and only if, for every Hausdorff topology τ on ω , there exists $U\in\mathcal{U}$ such that U has at most one limit point in (X,τ) .

Proposition 3.3 *Under* CH, there exists a T-point in ω^* which is neither a weak P-point nor an NWD-point nor a Q-point. For every ultrafilter $\mathcal{V} \in \omega^*$, there exists a T-point $\mathcal{U} \in \omega^*$ and a mapping $f : \omega \to \omega$ such that $\mathcal{V} = f^{\beta}(\mathcal{U})$.

Proof Using CH, we can construct a family $\{U_n : n \in \omega\}$ of P-points of distinct types such that each U_n is not a Q-point. Let V be an arbitrary ultrafilter from ω^* . By Theorem 3.2, W = V- $\lim U_n$ is a T-point. Clearly, W is neither a weak P-point nor a Q-point.

We identify ω with \mathbb{Q} and, for each $n \in \omega$, choose an injective sequence $(a_{nm})_{m \in \omega}$ converging to n. Then we take a family $\{\mathcal{U}_n : n \in \omega\}$ of P-points of distinct types such that $\{a_{nm} : m \in \omega\} \in \mathcal{U}_n$ and each \mathcal{U}_n is not a Q-point. At last, we take an ultrafilter \mathcal{V} on \mathbb{Q} such that every member of \mathcal{V} is not nowhere dense in \mathbb{Q} . Then \mathcal{W} is not an NWD-point.

To prove the second statement, we choose an arbitrary family $\{\mathcal{U}_n : n \in \omega\}$ of P-points of distinct types. Since the set $\{\mathcal{U}_n : n \in \omega\}$ is discrete in ω^* , we can choose a disjoint family $\{U_n \in \mathcal{U}_n : n \in \omega\}$. We define a mapping $f : \bigcup_{n \in \omega} U_n \to \omega$ by f(x) = n if and only if $x \in U_n$, and extend f on ω arbitrarily. Then $\mathcal{V} = f^{\beta}(\mathcal{W})$.

Question 3.4 Let \mathcal{U} be a T-point in ω^* , $S \subset \omega^{\omega}$ be a countable family of finite-to-one mappings. Does there exist an S-thin subset $T \in \mathcal{U}$?

Question 3.5 Let \mathcal{U} be a T-point in ω^* , $f:\omega\to\omega$ be a finite-to-one mapping. Is $f^{\beta}(\mathcal{U})$ a T-point?

Question 3.6 *Is every weak P-point (OK-point, NWD-point) a T-point?*

Let G be a countable group of permutations of ω . We say that an ultrafilter $\mathcal{U} \in \omega^*$ is a T_G -point if, for every bijection $f:\omega\to\omega$, there exists $U\in\mathcal{U}$ such that f(U) is G-thin. It is easy to see that a T-point is a T_G -point for every countable group of permutations of ω . On the other hand, if G is a group of all permutations of ω with finite support then each $\mathcal{U}\in\omega^*$ is a T_G -point.

Question 3.7 Given a countable subgroup G of S_{ω} , does there exist a T_G -point which is not a T-point? Does there exist a T_G -point in ZFC?

4 Corona

All G-spaces in this section are assumed to be discrete and transitive. Let G be a group and let X be a G-space with the action $G \times X \to X$, $(g, x) \mapsto gx$. By the universal property of the Stone-Čech compactification βX of X, the action of G on X extends to the continuous action of G on G on G on G on all free ultrafilters is G-invariant, it also has a natural structure of G-space.

We denote by E the orbit equivalence on X^* defined by

$$(x, y) \in E \Leftrightarrow Gx = Gy$$
,

and following [13], consider the smallest by inclusion, closed in $X^* \times X^*$ equivalence \check{E} on X^* such that $E \subseteq \check{E}$. The factor-space $\check{X} = X^*/\check{E}$ is called a corona of X.

For every $\mathcal{U} \in X^*$, we denote by $\check{\mathcal{U}}$ the class of \check{E} -equivalence containing \mathcal{U} , and say that two ultrafilters $\mathcal{U}, \mathcal{V} \in X^*$ are *corona equivalent* if $\check{\mathcal{U}} = \check{\mathcal{V}}$. To detect whether two ultrafilters are corona equivalent, we use the G-slowly oscillating functions on X.

A function $h: X \to [0, 1]$ is called *G-slowly oscillating* if, for any $g \in G$ and $\varepsilon > 0$, there exists a finite subset K of X such that

$$|h(gx) - h(x)| < \varepsilon$$

for every $x \in X \setminus K$.

By [12, Proposition 1], the ultrafilters $\mathcal{U}, \mathcal{V} \in X^*$ are corona equivalent if and only if $h^{\beta}(\mathcal{U}) = h^{\beta}(\mathcal{V})$ for every G-slowly oscillating function h on X.

Given a subset A of X and a filter Φ on X, we put

$$\overline{A} = \{ \mathcal{U} \in X^* : A \in \mathcal{U} \}, \quad \overline{\Phi} = \cap \{ \overline{A} : A \in \Phi \},$$

and note that, for every nonempty closed subset Y of X^* , there exists a filter Φ on X such that $Y = \overline{\Phi}$. For $\mathcal{U} \in X^*$, we denote by $\psi_{\mathcal{U}}$ the filter on X such that $\overline{\psi_{\mathcal{U}}} = \mathring{\mathcal{U}}$.

Now we suppose that G and X are countable and fix some numerations $G=\{g_i:i\in\omega\},\ X=\{x_i:i\in\omega\}.$ For $A\subseteq X$ and $f:\omega\to\omega$, we put

$$\Psi_{A,f} = \bigcup_{i \in \omega} g_i(A \setminus \{x_0, \dots, x_{f(i)}\}).$$

Proposition 4.1 Let G be a countable group, X be a countable G-space, $\mathcal{U} \in X^*$. Then the family $\{\Psi_{U,f} : U \in \mathcal{U}, f \in \omega^{\omega}\}$ forms a base for $\psi_{\mathcal{U}}$.

Proof We take an arbitrary $\mathcal{V} \notin \check{\mathcal{U}}$. By [12, Proposition 1], there exists a G-slowly oscillating function $h: X \to [0,1]$ such that $h^{\beta}(\mathcal{U}) = 0$, $h^{\beta}(\mathcal{V}) = 1$. We choose $U \in \mathcal{U}$ and $V \in \mathcal{V}$ such that $h(x) < \frac{1}{4}$ for every $x \in U$, and $h(x) > \frac{3}{4}$ for every $x \in V$. Since h is G-slowly oscillating, for every $i \in \omega$, there exists $f(i) \in \omega$ such that

$$|h(g_i x) - h(x)| < \frac{1}{4}$$

for each $x \in X \setminus \{x_0, \dots, x_{f(i)}\}$. Then $g_i(U \setminus \{x_0, \dots, x_{f(i)}\}) \cap V = \emptyset$ so $\Psi_{U,f} \cap V = \emptyset$ and $V \notin \psi_U$.

On the other hand, assume that $\Psi_{U,f} \notin \mathcal{V}$ for some $U \in \mathcal{U}$, $f \in \omega^{\omega}$ and $\mathcal{V} \in \mathcal{U}$. Applying Theorem 2.1 from [11], we get a G-slowly oscillating function $h: X \to [0,1]$ such that $h^{\beta}(\mathcal{U}) = 0$, $h^{\beta}(\mathcal{V}) = 1$. By [12, Proposition 1], $\mathcal{V} \notin \mathcal{U}$ and we get a contradiction.

Proposition 4.2 Let G be a countable group, X be a countable G-space. For an infinite subset T of X, the following statements are equivalent:

- (1) T is G-thin;
- (2) the restriction T^* of the mapping $X^* \to X$ is injective.

Proof (1) \Rightarrow (2) We choose distinct $\mathcal{U}, \mathcal{V} \in X^*$ such that $T \in \mathcal{U}, T \in \mathcal{V}$ and show that $\check{\mathcal{U}} \neq \check{\mathcal{V}}$. Let $F_n = \{g_0, \ldots, g_n\}, n \in \omega$. Since T is G-thin, there is an increasing function $h \in \omega^{\omega}$ such that

$$F_n x \cap F_n y = \emptyset$$

for all distinct $x, y \in T \setminus \{x_0, \dots, x_{h(n)}\}$. Put t(0) = h(0) and define inductively a function $t \in \omega^{\omega}$ such that, for each $n \in \omega$, $t(n) \ge h(n)$ and

$$(F_{n+1}^{-1}F_n\{x_0,\ldots,x_{h(n+1)}\})\cap (T\setminus \{x_0,\ldots,x_{t(n+1)}\})=\varnothing.$$

Then, for any $n, m \in \omega$ and $x \in T \setminus \{x_0, \dots, x_{t(n)}\}, y \in T \setminus \{x_0, \dots, x_{t(m)}\},$

$$g_n x = g_m y \Rightarrow x = y.$$

We choose disjoint $U \in \mathcal{U}$, $V \in \mathcal{V}$ such that $U \subseteq T$, $V \subseteq T$. By the construction of t,

$$\Psi_{U,t} \cap \Psi_{V,t} = \emptyset$$
,

and, applying Proposition 4.1, we get $\check{\mathcal{U}} \neq \check{\mathcal{V}}$.

(2) \Rightarrow (1) Suppose that T is not G-thin and choose $g \in G$ such that T is not g-thin. Then the set $A = \{x \in T : gx \neq x, gx \in T\}$ is infinite. We take an arbitrary ultrafilter $\mathcal{U} \in X^*$ such that $A \in \mathcal{U}$. Since $gx \neq x$ for all $x \in A$, $g\mathcal{U} \neq \mathcal{U}$. Clearly, $T \in g\mathcal{U}$ but $\check{\mathcal{U}} = (g\check{\mathcal{U}})$ so T^* is not injective.

Corollary 4.3 Let G be a countable group, X be a countable G-space. Every nonempty open subset of \check{X} contains a homeomorphic copy of ω^* .

Corollary 4.4 Let G be a countable group, X be a countable G-space, T be an infinite G-thin subset of X. If $U \in X^*$ and $T \in U$ then U is an isolated point in \check{U} .

Question 4.5 Let G be a countable group, X be a countable G-space, $\mathcal{U} \in X^*$. Has \mathcal{U} a G-thin member provided that \mathcal{U} is an isolated point in $\check{\mathcal{U}}$? If not then characterize $\mathcal{U} \in X^*$ which are isolated in $\check{\mathcal{U}}$.

Remark 4.6 Let μ be a left invariant Banach measure on an infinite group G, A be a subset of G such that $\mu(A) > 0$. We consider G as a left regular G-space and show that A is not G-thin. Let $\mu(A) > \frac{1}{n}, g_0, \ldots, g_n$ be distinct elements of G. Since $\mu(G) = 1$ and μ is additive, there exist distinct $i, j \in \{0, \ldots, n\}$ such that $\mu(g_i A \cap g_j A) > 0$, so $\mu(g_j^{-1} g_i A \cap A) > 0$ and A is not $g_j^{-1} g_i$ -thin. By [13, Lemma 4.3], there exists a Banach measure μ on \mathbb{Z} such that if $\mathcal{U} \in \mathbb{Z}^*$ and $\mu(U) = 0$ for some $U \in \mathcal{U}$ then, for every $\mathcal{V} \in \check{\mathcal{U}}$, there exists $V \in \mathcal{V}$ such that $\mu(V) = 0$. Let W be an ultrafilter on \mathbb{Z} such that $\mu(W) > 0$ for each $W \in W$. Then the corona class \check{W} has no G-thin ultrafilters.

Remark 4.7 Let G be a countable group, \mathcal{U}, \mathcal{V} be right cancelable ultrafilters from G^* (see [8, Chapter 3]). Then $\mathcal{W} = \mathcal{U}\mathcal{V}$ is right cancelable and, by [3, Theorem 8.11], G-orbit of \mathcal{W} is discrete, so \mathcal{W} is isolated in its orbit. On the other hand, \mathcal{W} is a limit point of the G-orbit of \mathcal{V} , so $\mathcal{V} \in \mathring{\mathcal{W}}$ and \mathcal{W} is not isolated in $\mathring{\mathcal{W}}$.

Remark 4.8 We can use G-thin subsets also to extend onto G-spaces the Chou's theorem on the number of invariant means (Banach measures) on an amenable group [1].

Let X be a discrete G-space, C(X) be the set of all bounded functions from X to \mathbb{R} with sup norm. A continuous linear functional $m:C(X)\to\mathbb{R}$ is called an *invariant mean* if

- 1. $m(f) \ge 0$ for all $f \ge 0$ and m(1) = 1;
- 2. $m(f_g) = m(f)$ for each $g \in G$, where $f_g(x) = f(gx)$.

We assume that X is an infinite G-space, |X| = |G|, and there exists a G-thin subset T of X such that |X| = |T|. Let \mathcal{U}, \mathcal{V} be distinct free ultrafilters on X such that $T \in \mathcal{U}, T \in \mathcal{V}$ and |U| = |V| = |T| for all $U \in \mathcal{U}, V \in \mathcal{V}$. We enumerate $G = \{g_\alpha : \alpha < \kappa\}$. Since T is G-thin and $T \in \mathcal{U}, T \in \mathcal{V}$, we can choose inductively the families $\{U_\alpha : \alpha < \kappa\}$, $\{V_\alpha : \alpha < \kappa\}$ of members of \mathcal{U} and \mathcal{V} such that $g_\alpha U_\alpha \cap g_\gamma V_\gamma = \emptyset$ for all $\alpha, \gamma < \kappa$. Since $(\bigcup_{\alpha < \kappa} g_\alpha U_\alpha) \cap (\bigcup_{\alpha < \kappa} g_\alpha V_\alpha) = \emptyset$, we have

$$cl_{\beta X}\{g^{\beta}(\mathcal{U}):g\in G\}\cap cl_{\beta X}\{g^{\beta}(\mathcal{V}):g\in G\}=\varnothing,$$

and repeating the Chou's argument, we conclude that if X admits an invariant mean then there are $2^{2^{\kappa}}$ distinct invariant means on X. In particular (see Example 2.2), if X, G are countable and X is amenable then X admits 2^{c} distinct invariant means.

5 Ballean Context

A ball structure is a triple $\mathcal{B} = (X, P, B)$, where X, P are nonempty sets and, for any $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$ and $\alpha \in P$. The set X is called the support of \mathcal{B} , P is called the set of radii. Given any $x \in X$, $A \subseteq X$, $\alpha \in P$ we put

$$B^*(x,\alpha) = \{ y \in X : x \in B(y,\alpha) \}, \ B(A,\alpha) = \bigcup_{\alpha \in A} B(\alpha,\alpha).$$

Following [15], we say that a ball structure $\mathcal{B} = (X, P, B)$ is a ballean if

1. for any $\alpha, \beta \in P$, there exist α', β' such that, for every $x \in X$,

$$B(x,\alpha) \subseteq B^*(x,\alpha'), B^*(x,\beta) \subseteq B(x,\beta');$$

2. for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x, \alpha), \beta) \subseteq B(x, \gamma).$$

A subset $Y \subseteq X$ is called *bounded* if $Y \subseteq B(x, \alpha)$ for some $x \in X$ and $\alpha \in P$. We say that a subset $T \subseteq X$ is *thin* (or pseudodiscrete in terminology from [15]) if, for every $\alpha \in P$, there exists a bounded subset $Y \subseteq X$ such that

$$B(x,\alpha) \cap B(x',\alpha) = \emptyset$$

for all distinct $x, x' \in T \setminus Y$.

Every *G*-space *X* determines the ballean (X, \mathcal{F}_G, B) , where \mathcal{F}_G is the family of all finite subsets of *G* containing the identity *e* and B(x, F) = Fx for all $x \in X, F \in \mathcal{F}_G$. It is easy to verify that a subset *T* of a transitive *G*-space *X* is *G*-thin if and only if *T* is thin in the ballean (X, \mathcal{F}_G, B) . A metric space (X, d) can be considered as the ballean (X, \mathbb{R}^+, B_d) , where $B_d(x, r) = \{y \in X : d(x, y) \le r\}$ for all $x \in X, r \in \mathbb{R}^+$. Recall that a metric *d* on *X* is an ultrametric if $d(x, y) \le \max d(x, z), d(z, y)$ for all $x, y, z \in X$.

Theorem 5.1 For an ultrafilter $\mathcal{U} \in \omega^*$, the following statements are equivalent:

- (1) *U* is selective;
- (2) for every metric d on ω , there exists a thin subset T of (ω, d) such that $T \in \mathcal{U}$:
- (3) for every ultrametric d on ω , there exists a thin subset T of (ω, d) such that $T \in \mathcal{U}$.

Proof (1) \Rightarrow (2) We fix $x_0 \in \omega$, r > 0 and put

$$X_0 = \{x_0\}, X_{n+1} = B_d(x_0, (n+1)r) \setminus B_d(x_0, nr), n \in \omega,$$

$$Y_0 = \bigcup_{n \in \omega} X_{2n}, Y_1 = \bigcup_{n \in \omega} X_{2n+1}.$$

Since \mathcal{U} is selective, there exist $T \in \mathcal{U}$ and $i \in \{0,1\}$ such that $T \subseteq Y_i$ and either $|T \cap X_n| \leq 1$ for each $n \in \omega$ or $T = X_m$ for some $m \in \omega$. In the first case, $B_d(x,r) \cap B_d(x',r) = \emptyset$ for all distinct $x,x' \in T$. In the second case, T is bounded. Thus, in both cases T is thin in (ω,d) .

- $(2) \Rightarrow (3)$ Evident.
- (3) \Rightarrow (1) Let $\{P_n : n \in \omega\}$ be a partition of ω . We define an ultrametric d on ω by the rule:

$$d(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{if } x \neq y, \ x, y \in P_n; \\ \max\{n, m\}, & \text{if } x \in P_n, y \in P_m, n \neq m. \end{cases}$$

Then we choose a thin subset T of (ω, d) such that $T \in \mathcal{U}$. By the definition of thin subset, there exists a bounded subset Y of (ω, d) such that $B_d(x, 1) \cap B_d(x', 1) = \emptyset$ for all distinct $x, x' \in T \setminus Y$. If T is bounded then some block P_n is a member of \mathcal{U} . Otherwise, $T \setminus Y \in \mathcal{U}$ and $|(T \setminus Y) \cap P_n| \leq 1$ for each $n \in \omega$. Hence, \mathcal{U} is selective.

References

- [1] Chou, C., "On the size of the set of left invariant means on a semi-group," *Proceedings of the American Mathematical Society*, vol. 23 (1969), pp. 199–205. Zbl 0188.19006. MR 0247444. 80, 85
- [2] Hart, K. P., and J. van Mill, "Open problems on $\beta\omega$," pp. 97–125 in *Open Problems in Topology*, North-Holland, Amsterdam, 1990. Zbl 0718.54001. MR 1078643. 82
- [3] Hindman, N., and D. Strauss, Algebra in the Stone-Čech Compactification. Theory and Applications, vol. 27 of de Gruyter Expositions in Mathematics, Walter de Gruyter & Co., Berlin, 1998. Zbl 0918.22001. MR 1642231. 80, 81, 85
- [4] Ketonen, J., "On the existence of *P*-points in the Stone-Čech compactification of integers," *Fundamenta Mathematicae*, vol. 92 (1976), pp. 91–94. Zbl 0339.54035. MR 0433387. 82
- [5] Kunen, K., "Weak P-points in N*," pp. 741–49 in Topology, Vol. II (Proceedings of the Fourth Colloquium, Budapest, 1978, edited by Á. Csaśzár, vol. 23 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam, 1980. Zbl 0435.54021. MR 588822. 82

- [6] Lutsenko, I., and I. V. Protasov, "Sparse, thin and other subsets of groups," *International Journal of Algebra and Computation*, vol. 19 (2009), pp. 491–510. Zbl 1186.20024. MR 2536188. 79
- [7] Lutsenko, I., "Thin systems of generators of groups," *Algebra and Discrete Mathematics*, vol. 9 (2010), pp. 108–14. Zbl 1209.20033. MR 2808784. 80
- [8] Mathias, A. R. D., "0[#] and the *p*-point problem," pp. 375–84 in *Higher Set Theory* (*Proceedings of the Conference at Mathematisches Forschungsinstitut, Oberwolfach,* 1977), edited by G. H. Müller and D. S. Scott, vol. 669 of *Lecture Notes in Mathematics*, Springer, Berlin, 1978. Zbl 0383.03037. MR 520195. 82, 85
- [9] van Mill, J., "An introduction to $\beta\omega$," pp. 503–67 in *Handbook of Set-Theoretic Topology*, North-Holland, Amsterdam, 1984. Zbl 0555.54004. MR 776630. 82
- [10] Miller, A. W., "There are no Q-points in Laver's model for the Borel conjecture," Proceedings of the American Mathematical Society, vol. 78 (1980), pp. 103–106. Zbl 0439.03035. MR 548093. 82
- [11] Protasov, I. V., "Normal ball structures," *Matematichnī Studīī. Pratsī L 'vīvs 'kogo Matematichnogo Tovaristva*, vol. 20 (2003), pp. 3–16. Zbl 1053.54503. MR 2019592. 84
- [12] Protasov, I. V., "Coronas of balleans," *Topology and its Applications*, vol. 149 (2005), pp. 149–60. Zbl 1068.54036. MR 2130861. 84
- [13] Protasov, I. V., "Dynamical equivalences on G^* ," Topology and its Applications, vol. 155 (2008), pp. 1394–1402. Zbl 1146.22005. MR 2427410. 84, 85
- [14] Protasov, I. V., "Selective survey on subset combinatorics of groups," *Ukraïns 'kiĭ Matematichniĭ Vīsnik*, vol. 7 (2010), pp. 220–57. MR 2768154. 79
- [15] Protasov, I., and M. Zarichnyi, General Asymptology, vol. 12 of Mathematical Studies Monograph Series, VNTL Publishers, L'viv, 2007. Zbl 1172.54002. MR 2406623. 86
- [16] Shelah, S., Proper Forcing, vol. 940 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1982. Zbl 0495.03035. MR 675955. 82

Department of Cybernetics Kyiv University Volodymyrska 64 Kyiv 01033 UKRAINE opetrenko72@gmail.com i.v.protasov@gmail.com