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On the Inconsistency of Mumma’s Eu

Nathaniel Miller

Abstract  Inseveral articles, Mumma has presented a formal diagrammatic sys-
tem Eu meant to give an account of one way in which Euclid’s use of diagrams
in the Elements could be formalized. However, largely because of the way in
which it tries to limit case analysis, this system ends up being inconsistent, as
shown here. Eu also suffers from several other problems: it is unable to prove
several wide classes of correct geometric claims and contains a construction rule
that is probably computationally intractable and that may not even be decidable.

1 Introduction

In several articles ([10], [8], and [9]), Mumma presents a formal diagrammatic sys-
tem Eu meant to give an account of one way in which Euclid’s use of diagrams in
the Elements could be formalized. More detail about how Eu works is found in his
Ph.D. dissertation [7]. Eu is similar in many respects to my earlier diagrammatic for-
mal system for Euclidean geometry FG, which is described in my book Euclid and
his Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry [6].
However, Eu differs from FG in a few key ways:

1. Eu treats diagrams as geometric objects, while FG treats diagrams as topo-
logical objects;

2. Eu requires that representations of line segments, rays, and infinite lines are
actually straight, while FG does not;

3. Eu tries to limit the number of separate cases that must be considered when
elements are added to existing diagrams, while FG provides a method of pro-
ducing all of the topologically distinct diagrams that could result and requires
that they all be considered; and

4. Eu divides proofs into two stages, a construction stage and a demonstration
stage, with different rules, while FG makes no such distinction.
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Figure 1 A diagram and its completion.

All of these differences are ultimately problematic for Eu, with the result that Eu is
inconsistent and suffers from a number of other problems which will be discussed
here. Mumma discusses the differences between Eu and FG from his point of view
in an article in Philosophia Mathematica [9].

Eu shares properties (1)—(3) above with another proposed diagrammatic formal
system for Euclidean geometry, Luengo’s DS1, which is described in a chapter of
the book Logical Reasoning with Diagrams [2] and in her Ph.D. thesis [3]. DS1 is
likewise unsound and suffers from many problems similar to those of Eu. A detailed
account of the problems with DS1 can be found in [6, Appendix C].

2 Equivalent Diagrams in Eu

For completeness, a quick summary of parts of Eu is given here, but an interested
reader can find the full details in Mumma’s Ph.D. dissertation [7]. In Eu, a syntactic
diagram is a square array of evenly spaced dots which can be filled in to represent
points, connected with straight line segments to represent line segments, rays, or
infinite lines (depending on if they have arrows on their ends) and can be connected
to form convex polygons that represent circles. Each object in a diagram can be
labeled by a variable name so that we can refer to it. His system also includes metric
assertions, which are conjunctions of equalities and inequalities that can refer to
objects in diagrams via their labels. The left side of Figure | shows an example of
a diagram; this diagram contains four points labeled x1, x2, x3, and y.; one line
segment, x1x3; one ray, x2x4; one infinite line, x5x6, and one circle ¢ whose center
is at point y..

Because each diagram is intended to represent a range of possible arrangements of
circles, points, and lines in the Euclidean plane and several different diagrams may
represent the same arrangements, Mumma then defines an equivalence relation on
his diagrams. In order to do this, he first defines a completion of a diagram D to be a
new diagram D’ that contains the same geometric elements but such that the number
of dots in the underlying square array of dots is increased so that every intersection
point between two geometric elements in the diagram occurs at a dot in the array and
is added as a point to the diagram. As an example, the diagram on the right side of
Figure | shows a completion of the diagram on the left. Notice that the number of
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dots in the array has been increased so that the intersection point of segment x1x3
and line x5x6 occurs at a dot, and that the new point x7 has been added here. Also
note that there would be further intersection points of objects in the diagram if the
segment and ray were extended, but these intersection points are not added to the
completion of the diagram under this definition.

Having defined a diagram’s completion, Mumma then defines diagram equiva-
lence as follows.

Definition 2.1 Two diagrams D1 and D, are equivalent if there is a completion
D/ of Dy, acompletion D/, of D5, and a bijection f between the points, lines, rays,
segments, and circles of D] and D/, induced by the labelings of each diagram such
that for all points P and Q, linear elements (lines, rays, or segments) M and N, and
circles Cy and C; in D,

1. P lieson M in D} iff f(P) lieson f(M) in D;

2. P and Q lie on a given side of M in D/ iff f(P) and f(Q) lie on the same
side of f(M) in D} ;

3. P lies inside/on/outside C; in D7 iff f(P) lies inside/on/outside f(Cy) in
DJ;

4. N intersects M at a point/along a segment in D] iff f(N) intersects f(M)
at a point/along a segment in DJ;

5. M intersects C; in D1, cutting it at one point/cutting it at two points/ tangent
at one point/ tangent along a segment iff f(M) intersects f(C) in D}, cut-
ting it at one point/cutting it at two points/ tangent at one point/ tangent along
a segment; and

6. C; has the same intersection signature with respect to C in D that f(Cy)
has with respect to f(C») in D, where the intersection signature records if
the two circles cross or are tangent at a point or along a segment each time
they touch.

This is actually my restating of Mumma’s definition, since that definition is divided
into several pieces in different places. In clause 2 of the definition, when Mumma
refers to a point P lying on a “given side” of a line A B, he appears to mean that P
lies in the region either on left or right side of the line AB as we traverse the line
from A to B. Thus, if P and Q lie on the left side of the line AB as we travel from
Ato B in D/, then this clause requires that f(P) and f(Q) lie on the left side of the
line f(AB) as we travel from f(A) to f(B) in D). Note that when we apply this
clause, we may allow P and Q to be the same point.

Mumma intends that two diagrams will be equivalent if they share the same co-
exact features. The term co-exact was coined by Manders [4] to roughly mean those
aspects of the diagram that don’t change under small perturbations of the diagram,
that is, its topological features. Mumma uses the term co-exact in a modified way
that considers some of the topological features of the diagram, and also considers
where the points in the diagram lie with respect to the extensions of line segments
and rays, even though this is a geometric rather than topological property. Mumma’s
intent is that the co-exact features of the diagrams will be exactly those features that
should be information-bearing and that two diagrams will be considered equivalent
if they contain the same information.

However, Definition 2.1 does not quite function in the way Mumma intends.
There are some features of the diagrams that appear to be information-bearing that
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Figure 5 A fourth pair of diagrams that are equivalent under Definition 2.1.
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aren’t captured by this definition. Figure 2 shows a pair of diagrams that should have
different co-exact features (under Mumma’s use of the term co-exact) since x1 oc-
curs on different sides of the extension of the segment in the two diagrams. However,
these diagrams are equivalent under Definition 2.1, since the definition doesn’t say
anything about the side of an extension of a segment that a point falls on. Likewise,
Figure 3 shows a pair of diagrams that are topologically different but are equivalent
under Definition 2.1, since the definition doesn’t say anything about the order that
points must occur in along a circle. The diagrams in Figure 4 are equivalent because
even though the circle crosses the extension of the line segment in the second dia-
gram but not in the first, there are no points on the circle there, and when we complete
a diagram, we only add points where objects in the diagram actually intersect, not
where their extensions would intersect. (Note that, while there are eight dots on the
circle, they are not filled in, and therefore aren’t considered points in the diagram.)
Finally, the diagrams in Figure 5 are equivalent because Definition 2.1 doesn’t say
anything about what happens to end arrows of rays and lines. In each of these pairs,
we would expect that the two diagrams would convey different information, but in
each case, Definition 2.1 classifies them as being equivalent.

Eu includes construction rules that are intended to formalize the kinds of ruler and
compass constructions that are common in Euclidean proofs. (See Appendix A for a
brief listing of Eu’s construction and proof rules.) However, because Definition 2.1
does not actually capture all of the information-bearing features of its diagrams, Eu’s
construction rules are not well defined on equivalence classes of diagrams. In each of
the pairs of diagrams presented in Figures 2 to 5, we can apply one of the construction
rules to get diagrams that are not equivalent under Definition 2.1. In Figure 2, we
can extend the segment (x2, x3) to a ray with endpoint x2; in one of the resulting
diagrams, x1 lies on this ray but not in the other. In Figure 3, we can connect x2 and
x4 with a segment; in one of the resulting diagrams, x1 lies on the left of the segment
from x2 to x4, while in the other it lies on the right of this segment. In Figure 4, we
can extend the line segment (x1, x2) to a ray with endpoint x1; in one diagram this
ray will intersect the circle, and in the other it won’t. Finally, in Figure 5, we can add
a point to the ray (x1, x4); the new point will be on the left side of the line from x2
to x3 in one diagram, and on the right side in the other. Note that in Eu, the result
of connecting points to form a segment is the actual straight line that results when
the given points are connected, which is unique for a given diagram. Likewise, the
result of extending a segment to a ray or a ray to a line is the actual straight line or
ray through the given object.

Eu is set up so that proofs have two distinct stages: a construction stage followed
by a demonstration stage. Each construction step that introduces a new geometric ob-
ject into a proof must be performed twice: once in the construction stage using con-
struction rules, and then a second time in the demonstration stage, using positional
rules. The positional rules used in the demonstration stage have much stricter restric-
tions placed on when they can be used than the construction rules, which can almost
always be used. In three of the four examples just given, those for the diagrams
in Figures 2 to 4, the constructions described can be carried out in the construction
stage but cannot be directly carried out during the demonstration stage because of the
additional restrictions. Nevertheless, being able to construct nonequivalent diagrams
from equivalent diagrams even just at the construction stage is already quite prob-
lematic. It shows that we cannot treat diagrams as encoding the same information
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if they are equivalent and makes it impossible to define a reasonable semantics for
the diagrams under which all of Eu’s rules are sound. In order to make sense of this
claim, we now define a semantics for Eu.

3 Semantics of Eu

Mumma does not explicitly define a formal semantics for his diagrams, but we can
roughly define one possible semantics for the diagrams by saying that a collection
M of points, lines, rays, line segments, and circles in the Euclidean plane should be
a model of the diagram D if and only if D and M have the same co-exact features.
More precisely, we can make the following definition.

Definition 3.1 Let A be a labeled diagram, let A be a metric assertion, and let
M be a collection of points, lines, rays, line segments, and circles in the Euclidean
plane. Furthermore, let I be the set of all intersection points of objects in M with one
another, and let M’ be the result of adding the pointsin I to M. Then M is a model of
(A, A) if and only if there exists a completion A’ of A and a bijection f that matches
the diagrammatic points, lines, rays, line segments, and circles in A’ with the points,
lines, rays, line segments, and circles (respectively) in M’, such that 4 is true when
interpreted in M’ via f and the labeling, and such that for all diagrammatic points
P and Q, diagrammatic linear elements (lines, rays, or segments) Ny and N,, and
circles C; and C5 in A,

1. P lieson Ny in A’ iff f(P) lieson f(Ny)in M’;

2. P and Q lie on a given side of Ny in A’ iff f(P) and f(Q) lie on the same
side of f(Np)in M';

3. P lies inside/on/outside Cy in A’ iff f(P) lies inside/on/outside f(Cy) in
M’

4. N, intersects N at a point/along a segment in A’ iff f(N,) intersects f(Ny)
at a point/along a segment in M’;

5. Nj intersects Cp in A’, cutting it at one point/cutting it at two points/ tangent
at one point/ tangent along a segment iff f(Np) intersects f(Cy) in M’, cut-
ting it at one point/cutting it at two points/ tangent at one point/ tangent along
a segment; and

6. C; has the same intersection signature with respect to C in D that f(Cy)
has with respect to f(C,) in M’ (recall that the intersection signature records
if the two circles cross or are tangent at a point or along a segment each time
they touch).

Symbolically, if M is a model of (A, A), we write M = (A, A).

Note that this definition is almost identical to the definition we gave for diagram
equivalence. This semantics is a way of formalizing Manders’s notion that the
information-bearing pieces of a Euclidean diagram should be precisely its co-exact
features [4].

With this definition, we can then define the notion of a geometric consequence
analogously to the normal definition of a logical consequence as follows.

Definition 3.2 Let D be a set of labeled diagrams, let 4 be set of metric as-
sertions, let A, be a labeled diagram, and let A, be a metric assertion. We define
(A3, Ay) to be a geometric consequence of (D, A) if and only if given any M; that
is a model of (Ay, Ay) for every A; € D and A; € A, we can extend M; to a
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Figure 6 Diagrams F; and F5.

model M, of (A,, A») by adding additional points, lines, or circles to M if nec-
essary. Symbolically, if (A;, A5) is a geometric consequence of (D, A), we write
(D, A) (A2, 42).

This definition of geometric consequence is an adaptation of that given by Luengo
in [3]; it captures formally the idea of what it means for one diagram to follow
from another. As an example, consider the diagrams F; and F, shown in Figure 6.
F is the starting diagram for the proof of Euclid’s Proposition 1 from Book I of the
Elements [1]. It represents a single segment with endpoints x1 and x2. F, occurs in
the third step of the proof of Proposition 1; it represents the same segment along with
two circles. One of these circles is centered at x1 and passes through x2, while the
other is centered at x2 and passes through x1. Since any model containing a single
segment can be extended to a model in which this segment is a radius of two such
circles, ({F1},{®})|IC(F32, ®), where ® denotes the empty metric assertion (which
is always true).
We can now define what it means for an inference rule in Eu to be sound.

Definition 3.3 An inference rule R of Eu is sound if whenever (A, A) can be
obtained from the collections of diagrams and metric assertion sets O and -4 via the
rule R, then (D, A)[C(A, A).

Sound rules are thus those that only allow you to deduce geometric consequences
of their hypotheses. For most formal systems, knowing whether or not its rules are
sound is enough to determine whether or not all of its theorems are correct. However,
Eu is somewhat unusual in that a diagram may be derivable from another via some
rule without any claim provable in Eu reflecting this fact. (Claims are the analogues
of theorems in Eu; for a brief summary of Eu’s rules governing claims, see Appen-
dix B.) For example, some diagram D, may be obtained from D using construction
rule R, but there may not be any positional rule that allows D5 to be derived from D
in the demonstration stage. To account for this, we make the following definition.

Definition 3.4 A provable atomic claim g, A, A is correct if and only if
{1 {HIc(A, A), that is, if it is possible to extend any geometric arrangement of
points, circles, and lines in the plane to a model of (A, A). A provable conditional



34 N. Miller

o o o o o 0O 0o O o O© © 0 0 0 0
O O O O O O O O O O o o0 O O O
O O O O © O O O O O O O O 0 O
yl y2 y3 ya4 y1 y3 y4 yl  y2 y4
O O O O © O O O O O O O o 0o O

Figure 7 Diagram B and its subdiagrams B and B;.

FEu 41, A1 — Az, Az is correct if and only if ({A1}, {A1})IC(A2, A2). The sys-
tem Eu is correct if and only if every claim (atomic or nonatomic) that is provable in
Eu is correct.

We would now like to define Eu to be inconsistent if it can derive a contradiction.
In general, there are two ways that a contradiction could occur in Eu: two diagrams
could contain contradictory information about the layout of some geometric objects,
or two metric assertions could contradict one another. Mumma introduces the sym-
bol L to denote a contradiction in metric assertions. He also defines two diagrams
to be inconsistent if they each contain a subdiagram labeled by the same set of la-
bels X, but these two subdiagrams are not equivalent. Note that if two diagrams are
inconsistent, then if we try to combine them using rule C9 or P19, then there will be
no possible diagram that results. Mumma does not specify what should happen if we
have diagrams that satisfy the hypotheses of an inference rule, but none that satisfy
the conclusion. One possible solution would be to adopt the rule that if the hypothe-
ses of some rule of inference are met, but there is no possible diagram representing
the conclusion of the rule, then instead we infer L.

However, we do not need this rule to derive L from inconsistent diagrams. We
can derive L from two inconsistent diagrams D; and D, in Eu as follows: derive
diagram B, the first diagram shown in Figure 7. From diagram B, derive the two
subdiagrams B; and B,, also shown in Figure 7. Combine B; and B,, using rule
P19. This gives us the three cases C;, C», and C3 shown in Figure 8. Using the two
inconsistent diagrams D and D», eliminate cases C; and C,, leaving case C3. From
a subdiagram of diagram B and rule Q8, derive the metric assertion yly2 < yly3,
and from a subdiagram of C3 and rule Q8, derive yly3 < y1y2. Using Q9 (Transi-
tivity), derive y1y2 < yly2. Finally, using Q10, derive L.

The derivation just given shows that we can derive L from either kind of contra-
diction. We therefore now define what it means for a system like Eu to be inconsis-
tent as follows.

Definition 3.5 A formal system like Eu is inconsistent if there exists a diagram
D such that I—Eu D, 1.

A related notion is that of completeness. A system like Eu is complete if every
correct claim is provable in the system. However, it is well known that any system
based on ruler and compass constructions is incomplete in this sense, because all
ruler and compass constructions can be carried out in F' x F for any Euclidean
field F. (A Euclidean field is an ordered field that is closed under the extraction of
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Figure 8 Three cases Cy, C,, and C3 obtained by combining diagrams By and B,.

square roots.) Any point that can be constructed with a ruler and compass must exist
in every such model. Thus, no system based on ruler and compass constructions can
prove the existence of objects that don’t exist over all such fields, even if they do
exist over the reals. One example of this phenomenon is the following: it is possible
to write down a claim of Eu that expresses that any angle can be trisected. This is
certainly a correct claim over the reals, but, as is well known, it is not true in all
Euclidean fields and therefore cannot be proven in Eu.

So the most we could hope for in the way of completeness is that any claim that is
correct with respect to all Euclidean fields is provable in the system. (We can extend
the notion of M being a model of D to any Euclidean field F' in the natural way by
allowing M to be a collection of points, lines, rays, segments, and circles in F' x F
rather than in the Euclidean plane R x R.) If any claim that is correct with respect to
all Euclidean fields is provable in the system, then we say that the system is complete
with respect to Euclidean fields.

4 Eu is Unsound, Incorrect, and Inconsistent

With these definitions in hand, we can immediately see that each of the examples
from Figures 2 to 5 can be used to show that a rule of Eu is unsound. For example,
in Figure 2, the right-hand diagram is a model of the left-hand diagram, but if we
extend the segment (x2,x3) to a ray with endpoint x2 in the left-hand diagram,
there won’t be a way to extend the right-hand diagram so that it is still a model,
because if we extend the segment to a ray in the model, x1 will lie on the ray. A
similar argument applies to the other examples.

This shows that several of the rules of Eu are unsound. However, the real problem
in these examples is that the definition of equivalent diagrams doesn’t take account
of all of the co-exact features of a diagram. Thus, we might hope that we could make
Eu sound by fixing Definition 2.1. Unfortunately, this is not the case. Consider the
two diagrams D; and D, shown in Figure 9. These two diagrams are equivalent
according to Definition 2.1, and correctly so: they really do share all of the same
co-exact features. They are topologically equivalent, and every point falls on the
same side of each segment in both diagrams. However, if we extend the segment
(x1,x2) to a ray with endpoint x1 in each, using rule C5 or P13, we get the two
nonequivalent diagrams D and D’ shown in Figure 10. Since diagram D; is a
model of diagram D- that cannot be extended to a model of D;, rules C5 and P13
are unsound.
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Figure 10 Nonequivalent diagrams D’ and D) obtained by extending the segment
through x1 and x2 to aray in D and D,.

Similar arguments can be made to show that many of the rules of Eu are unsound.
Unsound rules of Eu include C3, C4, C5, C6, C7, C9, P3, P5, P9, P10, P11, P12,
P13, P16, and P17. Most of these rules are unsound because we can find equivalent
arrangements of points, lines, and circles that result in nonequivalent arrangements
after we perform the indicated operation. P12 is unsound because the inequality in
the hypothesis is backward, and P16 and P17 are unsound because their conclusions
are only true if the radius of circle d is shorter than the radius of circle ¢, which isn’t
true in all models of the premises. Q7, Q8, and Q16 are also unsound as stated by
Mumma; each one contains typographical errors that make it unsound. For details,
see the discussion of these rules in Appendix A.

Now consider the following derivation in Eu. Start with diagram D;. Using
the diagram substitution rules C2 and P2, which allow us to substitute equivalent
diagrams, derive diagram D,. Apply rules C5 and P13 to derive diagrams D} and
D}, Using the derivation given in Section 3, from the inconsistent diagrams D} and
D/, derive L.

This shows I—Eu D;,® — Dy, L, where ® denotes the empty metric assertion.
Since D1, ® has a model, but there is no possible model of Dy, L, this claim is
incorrect, and therefore Eu is incorrect.

Finally, note that g, D, ® automatically for any diagram D not containing
any circles, by the Diagrams without circles rule given in Appendix B. Since D,
does not contain any circles, this means I—Eu Dy, ®. Since I—Eu Dy, ® and
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Figure 11 Diagram D3. This diagram contains no circles but is unsatisfiable.

'_Eu Di,® — Dy, 1, by Eu’s modus ponens rule we obtain '_Eu Dy, L. Thus,
Eu is inconsistent.

As an aside, we note that the rule that allows us to derive any diagram not con-
taining any circles is also unsound with respect to our semantics. To see this, con-
sider diagram D3 shown in Figure 11. This diagram does not contain any circles,
SO '_Eu D3, ®. However, this diagram is unsatisfiable. Mumma’s definition of
the completion of a diagram adds points wherever elements of the diagram intersect
within the confines of the array of dots it is embedded in, even if the intersection
does not occur at a dot. However, it does not add points to represent intersections if
these intersections would occur outside the array of dots. Thus, the diagram shown
in Figure 11 is its own completion. Therefore, according to our semantics, it must
represent two infinite lines that do not intersect a third line but do intersect each other.
(Note that if two infinite lines in a model of a diagram intersect anywhere, then their
intersection point gets included and must be mapped to a point in the completion
of the diagram.) Since it is impossible to find two lines that do not intersect a third
line but do intersect each other in the Euclidean plane, this is another example of an
incorrect claim provable in Eu.

Furthermore, Eu is able to prove '_Eu D3, ® — D3, 1, following the proof of
Euclid’s Proposition 30 of Book I of the Elements [1]. The proof is roughly as fol-
lows: Eu can prove Euclid’s Proposition 29, which says that when nonintersecting
(i.e., parallel) infinite lines are cut by a transversal, the corresponding angles must
be equal. Eu can prove this proposition as Euclid does, using rules P20 (Angle Tri-
chotomy) and P12 (Parallel Postulate) to show that if the corresponding angles aren’t
equal, then the lines must intersect by the parallel postulate. Thus, if L; and L, are
both parallel (nonintersecting) with L3, but intersect each other at point x1, then we
can draw a transversal 7 through point x1 and through L3. The angles oy and «, that
L, and L, make with the transversal must both be equal to the corresponding angle
that 7 makes with L3, so they must be equal to one another, and we can derive the
metric assertion «; = o». However, one of these angles (without loss of generality,
assume that it is o) is contained within the other. So by Q8, we can also derive the
metric assertion &; < a». By substitution (Q6), this gives us the metric assertion
oy < ayp, and so by Q10 we can derive L. Thus, I—Eu D3, 1, giving us another
example of Eu’s inconsistency.

We could, of course, change our semantics to make diagram D3 satisfiable, but
the fact that Eu can prove D3, ® — D3, L suggests that our semantics is correct,
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Figure 12 Diagrams D} and DJ.

and D3 should not be satisfiable; rather, the rule that allows us to derive any diagram
not containing circles should be changed.

5 Can Eu Be Fixed by Changing the Definition of Equivalent Diagrams?

We saw that some of the problems with Eu could be fixed by fixing Definition 2.1.
A natural question then, given the example of diagrams D and D, from Figure 9,
is: can the rules and definitions of Eu be further modified to make the system sound
and consistent? Unfortunately, it appears that they cannot.

At first glance, it might appear that we could fix the problem by further modifying
Definition 2.1 so that diagrams D and D, are no longer equivalent. These diagrams
are clearly topologically equivalent, so any change to Definition 2.1 that makes them
not equivalent will have moved us further from the idea that the co-exact features of
a diagram are those that are topological. Nevertheless, there is a change that we can
try. The problem with these diagrams arose from the fact that when we extended a
segment, the extension of the segment intersected an existing line differently. Re-
call that we defined two diagrams to be equivalent if their completions had certain
properties in common, where a completion of a diagram D is a new diagram D’
that contains the same geometric elements but such that the number of dots in the
underlying square array of dots is increased so that every intersection point between
two geometric elements occurs at a dot in the array and is added as a point to the
diagram. We could redefine the completion of a diagram to also include as a point
every intersection point of the extension of any geometric object in the diagram with
any other geometric object or extension of a geometric object. (This change was sug-
gested to me by Mumma in response to an earlier draft of this paper.) If this change
were successful, it would suggest that we should consider the information-bearing
(co-exact) features of a diagram to be its topological features along with information
about where the objects in the diagram lie with respect to all possible extensions of
its segments and rays. Under this new definition, diagrams D; and D, would no
longer be equivalent.

However, we would just have pushed the problem back one step. Consider dia-
grams D} and D}, shown in Figure 12. These diagrams would be equivalent under
our new definition, but when we connected x1 and x2 in these diagrams using rules
C4 and P11, we would get nonequivalent diagrams that could be used to derive a
contradiction as before.
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x5 x3 x1 x2 x4

Figure 13 Diagrams E; and E5.

In fact, no matter what changes we make to the definition of equivalent diagrams,
as long as there is any way to perform a construction that would lead to more than
one possible nonequivalent resulting case, we will have the same problem. Thus, it
seems that it will not be possible to make Eu sound merely by changing the definition
of equivalent diagrams. The problem is deeper and seems to stem from the fact that
Eu doesn’t have a way to branch into cases.

6 Restriction of Positional Rules

Another possible way to try to make Eu correct and consistent would be to try to
further restrict the positional rules. In general, Eu is designed so that there are very
few restrictions on when the construction rules can be applied, but there are many
restrictions on how the corresponding positional rules can be applied. Any diagram
that is part of a claim of Eu must in effect be derived twice, once in the construction
stage using construction rules, and once in the demonstration stage, using positional
rules. Mumma’s intention behind this setup is that a complete diagram will be able
to be derived in the construction stage to show one example of how the construction
works, and then general facts true in any situation can be derived in generality in the
demonstration stage.

We cannot significantly restrict the construction rules of Eu in order to try to
regain consistency, because if we do, we will no longer be able to use Eu to try to
duplicate Euclid’s complete constructions. However, another approach that we might
try would be to further restrict the positional rules. Since in most cases, constructions
must be done in both stages, if we restrict what can be done in the demonstration
stage, we will be able to eliminate some of the inconsistencies that can be derived.

Unfortunately, this approach also suffers from a number of significant problems.
One is that as long as there are still unsound rules in the system, even if they are only
in the construction stage, we may still be able to use them to derive a contradiction.
Another is that the restrictions placed on the positional rules have weakened the
system so that there are already many simple correct geometric consequences that the
system cannot derive, and further weakening the rules will exacerbate this problem.
We will address these issues in turn.

First, we will show how a contradiction can be derived in Eu using unsound con-
struction rules, without using any positional rules at all. Consider diagram E}, the
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first diagram shown in Figure 13. This diagram shows two circles with a common
center point which intersect but do not coincide. Eu is able to derive the (correct)
claim l_Eu E|,® — E;, 1 using rules Q15, Q9, and Q10. Now, consider dia-
gram E5, the second diagram in Figure 13. Starting with diagram E,, we can derive
diagram E; in the construction stage by two applications of rule C7. Next, using
modus ponens and the previously proven claim Fgy, E1,© — Ej, L, we can end
the construction stage with a context that includes diagram E; and the metric as-
sertion L. In the demonstration stage, we start with diagram E; and use rule Q1
(metric inference from the context) to derive L. We finish the proof and conclude
'_Eu E>,® — E,, 1. Notice that since £, doesn’t contain any circles, '_Eu E,, 0.
Thus, as before, by modus ponens, we obtain |_Eu E5>, 1. So we can derive an in-
consistency in Eu from an unsound construction rule (in this case, C7) without using
any unsound positional rules.

It may, of course, be possible to modify the rules of the system so that no infor-
mation from the construction stage can be used in the demonstration stage, so that
the unsoundness of the construction rules cannot be used to derive an incorrect con-
clusion. If the construction rules are unsound and cannot be used in the derivation of
any conclusion, however, then they aren’t really a meaningful part of the system.

The other reason that trying to place further restrictions on the inference rules
is problematic is that these rules weaken the system, and there are already many
elementary geometric facts that the system is too weak to prove. For example, we
can prove the following theorem.

Theorem 6.1 Let Dy and D, be two diagrams such that Dy contains a circle ¢y
and D, contains c1 along with a second circle ¢, not in Dy. Also, let A1 and A, be
metric assertions. Then Eu cannot prove the claim D1, Ay — D, A».

Proof The diagram combination rule P19 can only be applied to two diagrams if
one of them only has a single element not occurring in the other diagram and that
element is a point, ray, or infinite line. Therefore, the diagram combination rule can
never be used to combine two diagrams if one contains a circle and the other contains
a different circle. Furthermore, no other rules allow you to add a circle to a diagram
already containing a circle. The only rule that could potentially allow you to add
such a circle would be P18, modus ponens, but this would require us to have already
proven a claim of the given form. Since no claim of this form can be proven without
having already proven a claim of this form, we see that no claim of this form can be
proven at all. O

Corollary 6.2 Let Dy and D, be two diagrams such that D, contains two circles
notin D1, and let Ay and A, be metric assertions. Then Eu cannot prove the claim
Dl, A1 d Dz, Az.

As an illustration of the effect of these theorems, let us recall the diagrams F; and
F, from Figure 6. As previously discussed, F> is a geometric consequence of Fj,
but since F, contains two circles not in Fj, Eu cannot prove Fy,® — F,, ©.

This answers a question posed but left open in Mumma’s article [10, Footnote 9]
and dissertation [7, Section 1.6.1, Footnote 14]: is Eu complete with respect to Eu-
clidean fields? Here, we see that it is not, since F;,® — F,, ® is a correct claim
relative to any Euclidean field that is expressible in Eu but not provable in Eu.

Similarly, we can prove the following theorem.
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Theorem 6.3 If Fgu D1, A1 — D3, Az, then D; cannot contain a circle along
with two linear elements L and L, that are not collinear with the center of the circle
unless the circle and linear elements collinear with L1 and L, are already present
in D].

Proof = We can easily verify this by checking that each of the inference rules from
the demonstration stage preserves this property:

1. Rules P1-P3 and P13 don’t introduce any new circles or linear elements that
aren’t collinear with already existing linear elements;

2. the conclusions of rules P4—P8, P11, and P12 can’t contain any circles;

3. the conclusions of rules P9, P14, P16, and P17 each contain a single circle
and don’t contain any linear elements not collinear with the center of the
circle;

4. the conclusions of rules P10 and P15 each contain a single circle and contain
at most one linear element not collinear with the center of the circle;

5. for rule P18, if we assume, inductively, that in the implication A, A — I', B,
the diagram I" doesn’t contain a circle and two linear elements not collinear
with the center of the circle unless A does, then the conclusion of this rule
likewise won’t contain a circle and two linear elements not collinear with the
center of the circle unless A does in the premise of the rule;

6. P19 cannot be used to add a linear element to a diagram containing a circle
or used to add a circle to any diagram, so if the conclusion contains a circle
and any linear elements, then the circle and linear elements must have already
been in both diagrams P19 was applied to; and

7. P20 and Q1-Q16 are used to derive metric assertions, not diagrams. O]

This result shows that almost none of the propositions in Book IV of Euclid’s Ele-
ments are provable in Eu, since these mainly show how to inscribe or circumscribe
a polygon in or around a circle or a circle in or around a polygon.

Likewise, we can show the following.

Theorem 6.4 If '_Eu D, A1 — D», A, then D, cannot contain two noninter-
secting lines L1 and L, unless Ly and L, are both already present in D.

Proof  As above, we can verify this by checking that each inference rule preserves
this property. The only rules that could potentially allow us to add a line L; to an
existing diagram containing line L2 are P13 and P19. However, neither rule will
apply here, since L, doesn’t intersect L; and it cannot form part of a convex broken
line that contains or intersects L. O]

This result shows that Eu cannot prove what is a key proposition of Book I of the
Elements, Proposition 31, which shows how to construct a line parallel to a given
line through a given point. In fact, we see from the preceding theorems that there are
several large classes of correct claims that are expressible but unprovable in Eu.

We should also note that because Eu does not allow case branching within proofs,
many proofs that rely on this case branching will not be expressible in Eu. For
example, consider Proposition 22 of Book I of the Elements, which shows how to
construct a triangle given three side lengths satisfying the triangle inequality. Let G
and G be the diagrams shown in Figure 14, let A be the metric assertion

x1x2 4+ x2x3 > x3x4 & x1x2 4+ x3x4 > x2x3 & x2x3 + x3x4 > x1x2,
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x1 x2 x3 x4
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Figure 14 Diagrams G; and G».

and let B be the metric assertion
A & x1x2 = x2x5 & x3x4 = x3x5.

Then one version of Proposition 22 is given by the claim G;, A — G,, B. If Eu
allowed case branching, we could give a proof of this claim as follows: first, draw a
circle around point x2 with radius x1x2, and likewise, draw a circle around point x2
with radius x3x4. These circles may or may not intersect and can intersect the
line x1x4 in a variety of ways; for example, the first circle might intersect the line
between x2 and x3, or at x3, or between x3 and x4, or at x4, or past x4. A formal
system like FG that enumerates all of the topological possibilities that can result
from applying a construction rule would tell us all of the cases we had to consider.
In each case, one of two things will happen: either the two circles will intersect, in
which case we can connect x2 and x3 to one of the intersection points to obtain G;;
or else one of the inequalities in A will be violated, so we will be able to eliminate the
diagram. So diagram G, will be a subdiagram of all of the remaining diagrams and
we will be able to draw the desired conclusion. This is more or less the argument that
Euclid gives, although, as usual, he gives the argument for a single case and leaves it
to the reader to fill in the other cases. However, without allowing case branching, it
doesn’t appear that there is any way to represent this proof in Eu.

In this case, Euclid’s proposition was expressible, but not apparently provable
in Eu. However, there are cases in which a proposition isn’t even expressible in Eu
because of the extra information contained in Eu’s diagrams about which side of a
line segment each point lies on. For example, consider the Pythagorian Theorem,
Euclid’s Proposition 47 of Book I. In the proof of this theorem, Euclid starts with
a right triangle, constructs squares on each of the sides, and then proceeds to show
that the area of the square on the hypotenuse is equal to the sum of the areas of
the other two squares. Mumma discusses this theorem in Section 1.6 of his thesis,
where he identifies this theorem with a claim that starts with a diagram containing a
single right triangle and concludes with a diagram in which the triangle has squares
drawn on the sides, along with the metric assertion that the area of the square on the
hypotenuse is equal to the sum of the areas of the other two squares. Let’s call this
Claim C. Mumma correctly points out that this concluding diagram fixes additional
information in his system, such as whether or not the corner of the square on the
hypotenuse lies above or below or on the line created by the side of one of the other
squares. Mumma then asserts that we have to prove an additional conditional for
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Figure 15 Diagram H.

each such possibility. Actually, however, the situation is worse: we won’t be able
to prove Claim C in any of the cases, because we have a single hypothesis diagram
that branches into several cases during the course of the construction, and Eu doesn’t
allow case branching. In fact, Claim C isn’t even a correct claim in Eu, because in
addition to the usual content of the Pythagorian Theorem, it also claims the additional
information about where the corners of the squares lie with respect to the sides of
the other squares. It may be possible to start with a hypothesis diagram in which the
squares are already drawn in a particular case and prove the Pythagorian Theorem in
that case. The resulting claim won’t have the same content as Euclid’s version of the
Pythagorian Theorem though, since Euclid’s proposition is a claim about all right
triangles, not just right triangles with squares already constructed on the sides.

To see why this makes a difference, consider Euclid’s proof of the next propo-
sition, Proposition 48, which shows that if the sum of the squares on two sides of
a triangle is equal to the square on the third side, then the triangle is right. During
the course of this proof, Euclid constructs a right triangle and then applies Proposi-
tion 47, the Pythagorian Theorem, to it. If we try to duplicate this proof in Eu, we
will be able to construct the right triangle, but then we will not be able to continue
the proof, because we won’t be able to apply the Pythagorian Theorem to a triangle
that doesn’t already have squares drawn on the sides. Nor will we be able to add
the squares to the sides in Eu, since as we have already noted, there are multiple
nonequivalent cases that could occur when we try to add the squares. Thus, it does
not appear that there will be any way to duplicate this proof in Eu.

7 Combination Rules in Eu

There is one additional major problem with Eu’s rules that stems from the fact that
straight lines are represented by genuinely straight lines. This problem arises in the
combination rules.

We have already mentioned one problem with the combination rules; namely, it
isn’t clear how they are supposed to work when there is no diagram that satisfies
the conclusion of the rules, even though we have diagrams that satisfy the premises.
This could be because we have two inconsistent diagrams, but with rule C9 this can
happen even when the diagrams are consistent. This is because rule C9 doesn’t allow
a line from one diagram to be coincident with a point from the other diagram, but
they may coincide in every possible combination of the two diagrams. For example,
consider diagram H shown in Figure 15. This diagram shows two triangles ABC
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and A’B’C’ such that the lines connecting the corresponding vertices of the two
triangles are concurrent and intersect at point £. (The two triangles have been drawn
with bold lines in order to make them easier to see.) Points X, Y, and Z mark
the intersection points of the corresponding sides of these triangles. According to
Desargues’ Theorem, points X, Y, and Z must be collinear in this diagram and
in any diagram equivalent to it. Now, consider a diagram H' obtained by taking the
subdiagram of H that just contains X and Y, adding the segment X Y, and extending
itto aline L. If we try to combine diagrams H and H' using rule C9, there will be no
possible combination that fits the restriction that line L can’t pass through point Z,
even though H and H’ are consistent.

Furthermore, if we weren’t aware of Desargues’ Theorem, we would have a very
hard time recognizing that there wasn’t any possible diagram that could serve as the
combination of H and H'. Since there are an infinite number of diagrams that are
equivalent to H, we could go on forever checking to see if the line though x and y
in each diagram goes through z. This example illustrates the fact that there isn’t an
obvious simple algorithm for determining if there is a diagram that can result from
applying rule C9.

One way we might attempt to create an algorithm to solve this problem would to
be to determine all of the potential topological arrangements that could conceivably
result when the diagrams are combined (using an algorithm like that of FG), and then
to try to determine if any of these arrangements can actually be satisfied by straight
lines. In general, it is shown in [5] that deciding if a diagram of FG is satisfiable by
an arrangement of actual straight lines, circles, and points is a decidable but NP-hard
problem, so it can’t always be decided in a tractable amount of time. However, this
decision procedure works by checking if a certain first-order sentence is true over the
real numbers. Eu has the additional requirement that the points must be at integer
coordinates. This is a problem, since the theory of real arithmetic is decidable, but
the theory of integer arithmetic is not. So this problem may not be decidable at
all. Given a potential arrangement of lines we should be able to write a system of
Diophantine (integer-valued) equations and inequalities that has a solution if and
only if the arrangement is realizable. It isn’t clear if the question of whether or
not this system has a solution will be decidable, but if it is, it will almost certainly
be an NP-hard problem, since the simpler problem of solving a system of linear
Diophantine equations is known to be NP-hard.

Soitisn’t clear if it is decidable if there is a possible diagram that can result when
rule C9 is applied to two given diagrams, but if it is, then it will still almost certainly
sometimes take an intractable amount of time to decide this.

Now, consider the diagram combination rule P19 from the demonstration stage.
We might expect that P19 would suffer from the same problems as C9. However,
because the set of diagrams that P19 can be applied to is severely limited, it appears
that we probably will be able to determine all of the possible diagrams that could
result in this case, although Mumma has not given an explicit algorithm for how
to do so. Even so, this example shows that the restrictions governing the diagrams
to which rule P19 applies cannot be relaxed very far. If we were allowed to apply
P19 to diagrams H and H', then when we tried to determine what diagrams could
result, we would run into problems similar to those we ran into with rule C9. This
is unfortunate, because if we could find a way to make rule P19 apply to arbitrary
diagrams, then it wouldn’t matter that we had limited the application of all of the
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other rules, since we could always add new circles or lines to a given diagram by
adding them in a separate diagram, and then combining the two diagrams. As it
stands, without relaxing the requirement that lines be represented by straight lines
and instituting a more robust system of case analysis, Eu will necessarily be quite
limited in what new geometric objects can be added to a given diagram and therefore
in what the system can prove.

8 Conclusion

Mumma claims in [7], [10], [8], and [9] that Eu is a better diagrammatic formal-
ization of Euclidean geometry than FG because it avoids the case analysis that is
a central part of FG’s methodology. However, we have shown here that Eu is in-
consistent, unable to derive many simple correct claims, and contains a construction
rule that may be undecidable. These problems are due, in part, to Eu’s lack of case
analysis. It may be possible to fix Eu in order to make it consistent by changing the
definition of equivalent diagrams and further restricting its positional rules (although
the system with these changes will still contain unsound construction rules). How-
ever, making these changes will further weaken the system, which already cannot
derive many elementary correct claims expressible in the system, and, as we have
shown, cannot derive several propositions of Euclid’s Book I of the Elements.

In order to be considered a good model for the way diagrams are used in geometry,
we would want a diagrammatic formal system, at a minimum, to be

1. correct,
2. consistent, and
3. strong enough to duplicate most elementary geometric arguments of the kind
found in the first four books of the Elements.
Eu violates all of these conditions, and it does not appear likely that there will be
any way to modify the system to meet them without relaxing the requirement that

diagrammatic lines be actually straight and adopting a system of case analysis similar
to that of FG.

Appendix A Construction and Proof Rules of Eu

A brief summary of the Construction and Proof rules of Eu is given here for refer-
ence. The rules given here have been restated in a slightly different form than in the
original and some details have been glossed over; the reader is referred to Mumma’s
thesis [7] for complete details and much more explanation.

A.1 Construction Rules
C1: Diagram extraction: From A, deduce I", where I” is a subdiagram of A.
C2: Diagram substitution: From A, deduce I", where I is equivalent to A.

C3: Adding a point: From A, deduce I", where I" is the result of adding a new
point to A, where the new point cannot be at a dot in the array that is already
collinear with three other elements in the diagram.

C4: Adding a segment: From A, deduce I, where I” is the result of adding to
A a segment that connects two previously existing points.

C5: Extending a segment to a ray: From A, deduce I, where I is the result of
adding to A a ray extending an existing segment.
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C6: Extending a ray to a line: From A, deduce I', where I" is the result of
adding to A a line extending an existing ray.

C7: Adding a circle with a given radius: From A, deduce I', where I is the
result of adding to A a diagrammatic circle with the given radius; the dia-
grammatic circle must be a convex polygon containing the given radius.

C8: Modus ponens: From A, 4 and A, A — I', B, deduce I, B.

C9: Diagram combination: From A; and A,, deduce I, where I is the combi-
nation of A; and A,, I' is consistent with every previously derived diagram
in the context, and any element in A; but not A, does not coincide in I with
any element in A, but not Aj.

C10: Empty assertion introduction: The empty metric assertion ® can be intro-
duced at any point in a derivation without any premises.

C11: Metric assertion conjugation: From metric assertions A and A’ deduce
A&A’.

C12: Atomic metric assertion extraction: From the metric assertion A, where A4
is a conjunction of atomic metric assertions, deduce A’, where A’ is one of
the conjuncts.

Positional Rules

P1: Diagram extraction: From A, deduce I", where I” is a subdiagram of A.
P2: Diagram substitution: From A, deduce I', where I is equivalent to A.

P3: Point introduction: From A, deduce I', where I is the result of adding
a point labeled by x to A such that all labels in A precede x by > and no
segment in A is extended by the definition. See [7] for an explanation of

what these conditions mean.

[e] o O
X

*—o—e

® >0
®'<0
<o

o]
P4: Segment introduction: From o o o,deriveo o o.

P5: Segment introduction with lines and rays: From §[x, y,Z], deduce y[x, y.Z],
0y
[ ] [} [ ]
where §[x, y,Z] contains o o o as a subdiagram, all other elements of
8[x, y, Z] are linear elements incident with x and not with y, and y[x, y, Z] is

the result of adding the segment joining x and y in §[x, y, Z].
P6-P8: Segment intersection with rays and lines:

@) W O O WO o W O o WO
X y X y X y X v y
° ° —e—o ° ° —eo—o
1 u a u- s U a u-
From © z O ,derive © €®z0O; from Y 7, derive Y s
o o w O
o o
o o' 5
or from “ * * % derive » * * *; where, in each case, u; and u, label

either endpoints or end-arrows and are possibly identical to x or z.
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P9: Segment introduction with circle: From §[x, y, 7], deduce y[x, y, Z], where

o R o O

8[x, y, Z] contains ° ° as a subdiagram, all other elements of §[x, y, Z]
are linear elements incident with x and not with y, and y[x, y, Z] is the result
of adding the segment joining x and y in §[x, y, Z].

P10: Segment intersection with circle:

o o R

o p
From o oY% o, derive o o\ %

o

o, where v is possibly identical to x.

P11: Segment introduction in convex broken line: From the diagram §[x;, x2,

..., Xn], deduce y[x1, X2,...,X,], where §[x1, X2, ..., X,] is a convex bro-
ken line, and y[x1, X2, ..., X,] is the diagram which results from joining
two points x; and x; in 8[x1,x2,...,x,]. A broken line is defined to be a

sequence of rays and/or segments such that no two are collinear and such that
each pair that are adjacent in the sequence share a common endpoint. Such a
broken line is considered to be convex if the area it bounds is convex, that is,
if no piece of the line crosses the extension of any other piece of the line.

P12: Parallel postulate:

Vo o o ©o Vo o o ©
X z X
o o o o
o 0o 0o o o o o o
Y W
o o o o

From o o o o oand o o » o o with the metric assertion zxv <angle WYX,

. y
derive o o

P13: Extension of rays or segments: Suppose x; and x, label a segment or ray /
in §[X] such that all linear elements of §[X] either intersect / or form part of
a convex broken line which contains or intersects /. Then from §[X], deduce
y[X, y], where y[X, y] is the result of extending / in §[X] to a segment, ray,
or line.

® <O
®'<0O

(@]

o
o
e
o
o

P14: Circle introduction: From © o 0, derive

P15: Intersections of a ray and a circle:

o o w O

o

o

O

o

o

o

From °© © ®«° and
center of the circle.

where x is possibly the
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P16-P17: Intersections of a circle and a circle:

o
o
<
o
derive o

‘1o

; from

, where z is possi-

bly equal to x.

P18: Modus ponens: From A, 4 and A, A — I', B, deduce I, B.

P19: Diagram combination: From A and X', deduce I", where I" is a combina-
tion of A and X, subject to the following conditions:
(i) there is a subdiagram X’ of both A and X' such that there is at most one
object / in X not in X’;
(ii) [ is a point, ray, or line;
(iii) X' contains at least one linear element,

(a) if [ is a linear element, a point x in X’ lies on / in X', A contains
no circles, and all linear elements in A either intersect x or else
form part of a single convex broken line which intersects x, and

(b) all possible combinations of A and X' other than I" can be shown
within the system to lead to a contradiction—that is, to a deriva-
tion of L or of a diagram inconsistent with one already derived.

P20: Angle trichotomy: Suppose that we have already derived the diagrams

o o’ o o}
fe) fe) ) [©]
X and . We can then break our proof into three cases with
additional premises.

o o7

.

O

Case 1: We assume the diagram X and the metric assertion

4PT =angle zxr’ along with all previously derived diagrams and metric
assertions;

Case 2: We assume the metric assertion gpr =angle ZXY along with all
previously derived diagrams and metric assertions; and

I"O)’

(@]

Case 3: We assume the diagram X and the metric assertion
qrr =angle zxr’ along with all previously derived diagrams and metric
assertions.

If we can then derive a contradiction in two of these three cases, we can
conclude the metric assertion added in the third case and add it to the main
branch of our proof.
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A.3 Quantitative Rules

Q1: Metric inferences from the context: From diagrams I ... [, derive met-
ric assertion A, where A was derived during the construction stage, and every
object name that occurs in A labels a geometric object in one of the diagrams
In.. Ik.

Q2: Metric assertion conjunction: From metric assertions A and A’, derive
A&A’.

Q3: Atomic metric assertion extraction: From A, derive A’, where A is a con-
junction of atomic metric assertions, and A’ is one of the conjuncts.

Q4: Equality inferences—reflexivity:
Y.

o o o o o
X y
*—oc—e o ©

From o o o, derive the metric assertion xy =geg Xxy; from x

derive xyz =angle Y7 from a diagram containing a polygon labeled
X1 ...Xp, derive the assertion X1 ...X; =area X1...Xn. (Note that the rule
for angles given here doesn’t agree with the given diagram if we follow the
usual convention that angles are named with their center vertex in the middle;
this is probably a typo in the original.)

Q5: Equality inferences—symmetry: From a metric assertion of the form s = ¢,
derive t = s.

Q6: Substitution: From a metric assertion of the form s = ¢ and another metric
assertion A, derive A[s/t] (A with the variable s substituted for 7).

Q7: Orientation independence of magnitude: From xy =seg zw, derive
yx =seg zw; from xyz =angle ZWYV; derive xzy =angle ZVW; and from
X1...Xn =area V1--- Vk,derive X, X1 ...Xy—1 =area J1...Yk- (Again, the
rule for angles doesn’t make sense as Written if we follow the usual conven-
tion that angles are named with their center vertex in the middle. What is
probably meant is: from xyz =angle WV, derive zyx =angle twv.)

Q8: Inequality inferences—< introduction:
J.

o o0 o w® O

X z )
IZ:O
From © o ©, derive the metric assertion xz <seg xy; from * g

derive the metric assertion xzy <angle XZW; and from §[poly(x1...x,)],
derive the metric assertion

X1 ... Xk <area X1Xk4+1Xk+2 -+ - Xn,

where there are diagrams

olpoly(xi...xn)] and y[poly(x1Xg+1Xk+2 - .. Xn)]

whose polygons are contained by the polygon of §[poly(x1 ...x,)]. (Note
that the rule for angles again appears to be misstated; the conclusion should
presumably be zxy < angle ZXW. Furthermore, the rule for area of polygons
given here also appears to be incorrect; if two polygons are contained in
a larger polygon, we have no way of knowing which of the two is larger.
Probably what is intended is the conclusion xj ... Xr <area X1X2...Xn.)
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Q9: Inequality inferences—transitivity: From s < ¢ and ¢ < r, derive s < r.
Q10: Inequality inferences—strictness of <: From s < s, derive L.

Q11: Summation of magnitudes:

o O o
X z Y
*—o—o

From © o o derive the metric assertion xz + zy =seg XV; from

P/
W’

o]
{4
X , derive the metric assertion wxy + yxz =angle WX and from
8[poly(x1,...,xn)], derive the metric assertion
X1...Xk + X1Xk41Xk+2 - - - Xn —area X1 ... Xn,

where there are diagrams

ol[poly(xi,....xp)] and y[poly (x1Xk41Xk+2 - - - Xn)]
whose polygons are contained by the polygon of §[poly(x1,..., xz)].
Q12: Commutativity: Froms + ¢ = s + ¢, derives +¢ =1 + 5.

Q13: Equals subtracted from equals are equal: From s + r = ¢ 4 r, derive
s =1.

Q14: Halves of equals are equal: From s + 5 = ¢ 4 ¢, derive s = ¢.
Q15: Points on circle are equidistant from center:

, derive xy =seg xZ.

Q16: Side angle side congruence:

y
o O o o %
o o

From the diagrams x Zz and u v and the metric assertions

Xy =seg UV, XZ =gseg UW, and xyz =angle UVW, derive any of the
following conclusions: yz =geg vw, zxy =angle VUW, YZX =apgle WVU,
or xyz =grea uvw. (Note that once again the hypotheses here seem to
be misstated relative to the given diagrams. The intended hypotheses are
probably xy =geg wv, yz =seg wv, and xyz =angle YWV However,
this would mean that this rule will only apply to triangles whose given side,
angle, and side lie in the same orientation as one another. This is an issue, be-
cause Euclid sometimes applies the Side Angle Side rule to triangles whose
orientations are reversed from one another.)

Q16: Empty assertion introduction: The empty metric assertion & can be intro-
duced at any point in a derivation without any premises.

Appendix B Provable Claims in Eu

Claims play the role in Eu that theorems play in most sentential proof systems; they
are the type of objects that Eu proves. Eu recognizes two kinds of claims: atomic
claims and conditional claims. An atomic claim consists of a diagram A along with
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a metric assertion A; we indicate that such an atomic claim is provable in Eu using
a turnstile symbol, as follows: '_Eu A, A. If A, A and I', B are atomic claims, then
A, A — T, B is a conditional claim. Again, we indicate that a conditional claim
is provable in Eu using the turnstile symbol: g, A,4 — I', B. Claims can be
proven in Eu using the following rules.

Diagrams without circles: If A is a diagram in which no circles appear, then
FEu 4. ©, where O is the empty metric assertion.

Substitution: If }_Eu A, A, then }_Eu Alx/y], A[x/y]; likewise, if }_Eu A,
A — I, B, then by, Alx/y], A[x/y] — I'[x/y]. B[x/y]. (Mumma does
not put any restrictions on the substitutions that can be made, but probably
we should require that x can only be substituted for y in a claim if x doesn’t
already occur as a variable in any metric assertion of the claim or as a label
in any diagram of the claim.)

Modus ponens: If I—Eu A, A and I—Eu A, A — I, B, then I—Eu I, B.

Derivation: If, starting with the diagram A and metric assertion A as assump-
tions, we can derive the diagram I" and the metric assertion B in the demon-
stration stage of a proof in Eu, using the rules of Eu summarized in Appen-
dix A, then I—Eu A A— T, B.
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