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Fractal Patterns in Reasoning

David Atkinson and Jeanne Peijnenburg

Abstract This paper is the third and final one in a sequence of three. All three
papers emphasize that a proposition can be justified by an infinite regress, on
condition that epistemic justification is interpreted probabilistically. The first two
papers showed this for one-dimensional chains and for one-dimensional loops of
propositions, each proposition being justified probabilistically by its precursor.
In the present paper we consider the more complicated case of two-dimensional
nets, where each “child” proposition is probabilistically justified by two “parent”
propositions. Surprisingly, it turns out that probabilistic justification in two di-
mensions takes on the form of Mandelbrot’s iteration. Like so many patterns in
nature, probabilistic reasoning might in the end be fractal in character.

1 Introduction

The concept of a regressus ad infinitum has afflicted many branches of philosophy,
and epistemology is no exception. As Bonjour remarks: “Considerations with re-
spect to the regress argument [are] perhaps the most crucial in the entire theory of
knowledge” (Bonjour [3], p. 18).

The epistemological regress problem traditionally takes the form of an epistemic
chain in which (a belief in) a proposition E0 is justified by (a belief in) E1, which in
turn is justified by (a belief in) E2, and so on. Since the chain does not have a final
link from which the justification springs, it seems that there can be no justification
for E0 at all. In the words of Ginet:

Inference cannot originate justification, it can only transfer it from premises
to conclusion. And so it cannot be that, if there actually occurs justification,
it is all inferential. . . . [T]here can be no justification to be transferred unless
ultimately something else, something other than the inferential relation, does
create justification. (Ginet [5], p. 148; emphasis by the author)

In earlier papers we have shown that this problem only occurs when epistemic jus-
tification is seen as a form of deductive inference, where each En is deductively
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inferred from EnC1. In such a classical infinite regress, the target proposition E0

can never receive a definite truth value. However, once we assume that each En is
only made probable by EnC1, the resolution of the problem is at hand. For an in-
finite probabilistic regress can confer a definite (unconditional) probability value on
the target proposition E0. If this probability is greater than one half, then E0 is said
to be (probabilistically) justified, since in that case E0 is more likely to be true than
to be false.1 In that sense a probabilistic regress can justify a proposition whereas
a traditional, nonprobabilistic regress cannot. This applies not only to probabilistic
regresses that have the form of one-dimensional chains (see Atkinson and Peijnen-
burg [1]), but also to probabilistic regresses that take the shape of one-dimensional
loops (see Atkinson and Peijnenburg [2]).

The matter becomes even more interesting if we replace the infinite one-
dimensional structure (a chain or a loop) by an infinite, many-dimensional prob-
abilistic network. As Fumerton has rightly observed, the regress problem is not
confined to concerns about our ability to complete a single infinite chain; rather it
manifests itself in all its overwhelming complexity when we realize that infinite re-
gresses actually “mushroom out” in many different directions (Fumerton [4], p. 57).
In the present paper we show that this proliferating pattern, however intricate it may
seem, can nevertheless be held in check. First, it turns out that a many-dimensional
probabilistic network generally converges to a unique unconditional probability
value for the target proposition E0. This means that E0 can receive a well-defined
justification not only from a single infinite chain, but also from a complicated infi-
nite network. Second, we found that such a network follows from exactly the same
recursion as does the famous Mandelbrot set. The only requirement for obtaining
these two surprising results is the condition of probabilistic support; that is, each
En is made probable by one other proposition (in the case of a one-dimensional
structure) or by more than one proposition (in the case of a many-dimensional net).

We will proceed as follows. In Section 2 we describe an example of probabilistic
justification by a one-dimensional epistemic chain, showing how the latter can yield
a well-defined probability for the target proposition E0. This example draws upon
our first paper (Atkinson and Peijnenburg [1]). In Section 3 we present a more com-
plicated example of justification, namely, one that has the form of a two-dimensional
net. In Section 4 we explain the intimate relation of this net to the Mandelbrot frac-
tal. In Section 5, we then argue that epistemic justification still exhibits a generalized
Mandelbrot structure even if it fans out in more than two dimensions.

2 A One-Dimensional Probabilistic Chain

Imagine that we are trying to develop a medicine for a certain disease and that we
want to know whether or not a particular bacterium has a certain hereditary trait T.
Bacteria reproduce asexually, so just one parent, the “mother,” produces a child,
the “daughter.” Suppose that we have bred several batches of bacteria, each batch
growing out of one single primordial ancestor. This primordial ancestor might have
T or might lack T—we do not know. However, we do know that a T-daughter is more
likely to have a mother with T than a mother without T.

We now randomly select from our batches one bacterium that we call Barbara-0.
We do not know whether Barbara-0 has T, nor do we know whether the primordial
ancestor in her batch has the trait. Let E0 be the proposition that Barbara-0 has T.
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E1 is the proposition that her mother, Barbara-1, has T, E2 that her grandmother,
Barbara-2, has T, and so on. Since E0 is more probable if E1 is true than if E1 is
false, it is the case that

P.E0jE1/ > P.E0j:E1/: (1)
Formula (1) is the condition of probabilistic support. In our example it holds for any
two bacteria, Barbara-n and Barbara-(nC 1):

P.EnjEnC1/ > P.Enj:EnC1/:

For the time being, however, we will only talk about Barbara-0 and Barbara-1, and
thus about propositions E0 and E1; it is easy enough to keep in mind that what
we say about the pair E0 and E1 also goes for E1 and E2, for E2 and E3, and so
on. The unconditional probabilities P.E0/ and P.E1/ are related by the rule of total
probability:

P.E0/ D P.E0jE1/ P.E1/C P.E0j:E1/Œ1 � P.E1/�: (2)

With
˛ D P.E0jE1/ and ˇ D P.E0j:E1/

the condition of probabilistic support (1) becomes

1 > ˛ > ˇ > 0; (3)

where we have now explicitly excluded the extreme values 1 and 0.2 Equation (2)
may now be rewritten in the form,

P.E0/ D ˇ C .˛ � ˇ/ P.E1/: (4)

Next let us make the condition of probabilistic support quantitative by supposing that
the probability that a T-daughter has a T-mother is 0:99, and the probability that a
T-daughter has a T-less mother is 0:02. Thus,

1 > ˛ D 0:99 > ˇ D 0:02 > 0: (5)

Given (5), what is the value of P.E0/; in other words, what is the unconditional
probability that the randomly selected Barbara-0 has trait T? The answer depends
not only on whether the primordial ancestor of Barbara-0 has T, but also on the
distance between this primordial ancestor and Barbara-0. If the primordial ancestor
of Barbara-0 is simply her mother, viz. Barbara-1, then the distance is at its smallest.
In this case the matter is straightforward: P.E0/ is 0:99 if Barbara-1 has T, it is 0:02
if she lacks T, and it is a value in between those two numbers if it is uncertain whether
Barbara-1 has T. If Barbara-0 has two ancestors, the distance is a little bit greater. We
must now iterate formula (4), in the sense that we must substitute “ˇC.˛�ˇ/ P.E2/”
for “P.E1/”:

P.E0/ D ˇ C .˛ � ˇ/Œˇ C .˛ � ˇ/ P.E2/�; (6)
where we are assuming that ˛ and ˇ are known and keep their values throughout the
chain. With this assumption, we find that P.E0/ is 0:9803 if E2 is true, and 0:0394 if
E2 is false. The greater the distance is between Barbara-0 and her primeval parent,
the more often will (4) have to be iterated, and the smaller will be the influence of the
primeval parent on Barbara-0. If the primal ancestor is very far away, then it hardly
matters for the value of P.E0/ whether she has T or lacks T. The difference between
the two extreme values of P.E0/ will be tiny, and P.E0/ will mainly be determined
by the joint conditional probabilities that separate Barbara-0 from her original ances-
tor. For instance, if Barbara-0 has one hundred and fifty ancestors, so that the chain
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starts with Barbara-150, then the contribution of E150 to the unconditional probabil-
ity of E0 will be rather small. Indeed, if E150 is false, so that Barbara-150 does not
have T, the probability of E0 (“Barbara-0 has T”) is 0:660, which is only marginally
different from 0:670—the number that we find when we assume that Barbara-150
has T.

What happens if the number of ancestors of Barbara-0 is infinite? We can now
give a clear answer to this question: then it does not matter whether the infinitely
remote ancestor has T or lacks T. In this infinite case, the primordial mother has
completely disappeared from the picture. All the probabilistic justification for E0

now comes from the conditional probabilities, and none comes from the infinitely
distant Urmutter. This does not imply, as Ginet and many others have thought, that
there is no justification at all. On the contrary. Although all the justification for E0 is
inferential, E0 is still probabilistically justified. We are able to compute a uniquely
determined value for P.E0/, the unconditional probability of E0, even though the
justification consists of an infinite chain of conditional probabilities; with the quanti-
ties chosen for ˛ and ˇ in (5), we find that P.E0/ equals 2

3
. In this case E0 has been

probabilistically justified, sinceE0 has been shown to be probably true—indeed, any
threshold of acceptance between 1

2
and 2

3
may be adopted in this case.3

3 A Two-Dimensional Probabilistic Net

It might be objected that our result in the previous section is based on an unreal-
istic simplification. For real epistemic justification is of course much richer and
much more complicated than a one-dimensional chain. As Fumerton has observed,
“infinite regresses are mushrooming out in. . . different directions,” so anybody who
“worr[ies] about the possibility of completing one infinitely long chain of reason-
ing, . . . should be downright depressed about the possibility of completing an infinite
number of infinitely long chains of reasoning” (Fumerton [4], p. 57).

In the present section we deal with these worries. We explain what happens when
we replace the infinite one-dimensional probabilistic chain by an infinite probabilis-
tic network in more than one dimension. Our investigation reveals that things are
not as grim as Fumerton suggests, and that the situation is on the contrary extremely
intriguing. For first, a many-dimensional network of conditional probabilities gen-
erally yields a definite unconditional probability for the target proposition E0. And
second, this network leads to an iteration that is precisely the same as Mandelbrot’s
recursion.

We start by considering a two-dimensional net, where a proposition is linked prob-
abilistically to two others. In the next section we show that this net is directly related
to the Mandelbrot set. At the end of this paper, in Section 5, we will sketch what
happens when we extend the net to more than two dimensions.

A two-dimensional net could serve as a model for the propagation of genetic traits
under sexual reproduction, in which the traits of a child are related probabilistically
to those of both mother and father. Let P.E0/ again be the unconditional probability
that Barbara-0 has trait T. However, this time Barbara-0 is an organism with two
parents, a father and a mother. For the purpose of fixing ideas it will prove convenient
to talk about sexual reproduction and about fathers and mothers, but we should bear
in mind that the formalism is much more general.
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Since Barbara-0 stems from two parents, the probability that she has T is related
to her mother and to her father. Rather than two reference classes (the mother having
or not having T), we now have four: both the mother and the father have T, neither
of them has it, the father has T but the mother does not, and the mother has T but the
father does not. The corresponding four conditional probabilities can be represented
as follows:

˛ D P.E0jE1.f /&E1.m//

ˇ D P.E0j:E1.f /& :E1.m//


 D P.E0jE1.f /& :E1.m//

ı D P.E0j:E1.f /&E1.m//;

where ˛ means “the probability that Barbara-0 has T, given that her father has it,
E1.f /, and that her mother has it,E1.m/,” and where ˇ; 
 , and ı are given analogous
readings. In this case, the analogue of the rule of total probability (2) is

P.E0/ D ˛ P.E1.f /&E1.m//C ˇ P.:E1.f /& :E1.m//C (7)

P.E1.f /& :E1.m//C ı P.:E1.f /&E1.m//:4

To iterate the two-dimensional Equation (7), as we did with the one-dimensional
(2) and (4), we would now need more complicated relations for the unconditional
probabilities appearing in this expression. It is no longer sufficient to consider P.E1/

and replace it by “ˇ C .˛ � ˇ/ P.E2/,” for now we are dealing with the probability
of a conjunction of two parents, P.E1.f / & E1.m//. Each of these parents has two
parents, so we encounter in fact the probabilities of conjunctions of four individuals
(the four “grandparents”). This can be continued further and further, involving more
and more progenitors. Such seething complication is the very essence of how many
natural systems work, but it is difficult to express the full complexity in iterated
versions of (7).

Fortunately, however, we can make simplifying assumptions. Here we will work
under three simplifications (which we will relax in Section 5).

1. Independence The probabilities for the occurrence of the trait T in females
and in males are independent of one another in any of the n generations:
P.En.f / & En.m// D P.En.f // � .P.En.m//. This assumption seems rea-
sonable when we are dealing with sexual reproduction in a large population
where sibling impregnation is taboo.

2. Gender symmetry The probability of the occurrence of the trait T is the
same for females and for males in any of the n generations: P.En.f // D
P.En.m//. This implies that we only consider inheritable traits which are
gender-independent, such as having blue eyes or being red-haired (and not,
for example, having breast cancer or being taller than two meters). With this
assumption “f” and “m” can be dropped, and in combination with the first
assumption we obtain P.En.f /&En.m// D P.En/P.En/ D P2.En/.

3. Uniformity The conditional probabilities are the same in any of the n gen-
erations. In other words, ˛; ˇ; 
 , and ı remain the same throughout the net.

Together these assumptions enable us to simplify (7) to

P.E0/ D ˛ P2 .E1/C ˇ P2 .:E1/C .
 C ı/ P.E1/P.:E1/: (8)
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This expression equates P.E0/ to the sum of three terms, each of which reflects the
probability that Barbara-0 has T, given that both her parents have it, or that neither
parent has it, or that only one parent has it. Equation (8) can be written in the form

P.E0/ D ˇ C .
 C ı � 2ˇ/ P.E1/C .˛ C ˇ � 
 � ı/ P2.E1/ (9)

(see the Appendix). In the special case that

˛ C ˇ D 
 C ı; (10)

the third term of (9) is zero, and what remains is the same as Equation (4). In other
words, in the special case (10) the two-dimensional quadratic Equation (9) reduces
to the one-dimensional linear form (4).

When the special equality (10) does not hold, this reduction is impossible; then the
P2 term describes an essentially new situation. It is precisely when P2 does not dis-
appear that probabilistic justification exhibits the same structure as the Mandelbrot
set. For in that case, as we will explain in the next section, the quadratic relation (9)
turns out to be equivalent to Mandelbrot’s famous fractal generating recursion.

4 The Mandelbrot Set

Some thirty years ago Mandelbrot introduced his celebrated iteration:

qnC1 D c C .qn/
2; (11)

where c and q are complex numbers (Mandelbrot [6]). Starting with q0 D 0, the
iteration (11) gives us successively

q1 D c;

q2 D c C c
2;

q3 D c C .c C c
2/2;

q4 D c C fc C .c C c
2/2g2; and so on:

For many values of c, the iteration will diverge, allowing qn to grow beyond any
bound as n becomes larger and larger. For example, if c D 1 we obtain

q1 D 1;

q2 D 2;

q3 D 5;

q4 D 26; and so on:

But if, for instance, c D 0:1, then qn does not diverge, and in this case actually
converges to the number 0:11271 : : : . Taken together, all the values of c for which
the iteration (11) does not diverge form the Mandelbrot set, which can be visualized
in the well-known picture shown in Figure 1.

The black area contains the points that belong to the Mandelbrot set. Each point
corresponds to a complex number, c, being the ordered pair of the Cartesian coor-
dinates, .x; y/. The edge of the Mandelbrot set forms the boundary between those
values of c that are members of the Mandelbrot set and those that are not. This
boundary, the “Mandelbrot fractal,” has the property of being infinitely structured in
a remarkable way: no matter how far you zoom in on it, you will always find a new
structure that is similar to, although not completely identical with, the Mandelbrot
set itself.
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Figure 1 The Mandelbrot set

Our aim in this section is to demonstrate that, when (10) does not hold, the qua-
dratic relation (9) is equivalent to the Mandelbrot iteration (11). As it turns out, c
will be a function of the conditional probabilities ˛; ˇ; 
 , and ı alone, and will thus
be a known quantity. The q’s, on the other hand, will be directly related to the un-
conditional probabilities; these are unknown and their values are to be determined
through the iteration.

First it will prove convenient to define

" D
1

2
.
 C ı/;

which is the mean conditional probability that the target—in our case Barbara-0—
has the trait T, given that only one of the parents has T. Equation (9) now becomes

P.E0/ D ˇ C 2." � ˇ/ P.E1/C .˛ C ˇ � 2"/ P2.E1/;

or more generally,

P.En/ D ˇ C 2." � ˇ/ P.EnC1/C .˛ C ˇ � 2"/ P2.EnC1/: (12)

At first sight, this iteration may not look very much like the Mandelbrot form (11).
In the latter we go upward as it were, starting from qn and then counting to qnC1,
whereas in (12) we start with P.EnC1/ and iterate downward to P.En/. Moreover,
(12) is about conditional and unconditional probabilities, and thus about real num-
bers between zero and one, whereas (11) is an uninterpreted formula involving com-
plex numbers. On closer inspection, however, we see that there is an important simi-
larity between (11) and (12). For both are quadratic expressions: the former contains
.qn/

2 and the latter P2.EnC1/.
In order to transform (12) into (11) we introduce a linear mapping that serves to

remove from (12) the term 2."� ˇ/ P.EnC1/, and also the coefficient .˛C ˇ � 2"/.
The unique linear mapping that does the trick, P.En/! qn, is defined by

qn D .˛ C ˇ � 2"/ P.En/ � ˇ C ": (13)
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On substituting (12) for P.En/ in (13) we obtain a formula that can be rewritten as

qn D ".1 � "/ � ˇ.1 � ˛/C .qnC1/
2: (14)

The details of the transition from (12) and (13) to (14) can be found in the Appendix.
Now define

c D ".1 � "/ � ˇ.1 � ˛/: (15)

Note that c involves only the conditional probabilities, ˛; ˇ, and ", and so is an
invariant quantity during the execution of the iteration. On the other hand, qn also
contains the unconditional probability, P.En/, which we seek to evaluate through the
iteration. With the definition (15), Equation (14) becomes

qn D c C .qnC1/
2: (16)

Evidently (16) is very similar to the standard Mandelbrot iteration (11). There is only
one cosmetic difference to which we already alluded: instead of an iteration upward
from n D 0, the iteration in (16) proceeds from a large n value, corresponding to
the primeval parents, down to the target child proposition at n D 0. Of course, this
difference has no significance for the iteration as such.

We are now in a position to take advantage of some of the lore that has accu-
mulated about the Mandelbrot iteration. Some but not all: epistemic justification as
we discuss it here deals with probabilities and those are real numbers, rather than
complex ones, so we must concentrate on the real subset of the complex numbers c
in (15), namely, those for which c D .x; 0/, corresponding to the x-axis in Fig-
ure 1. It should be noted that, when c is real, all the qn are automatically real (cf. the
explicit expressions for the first few n-values, just after Equation (11)).

It is known that the real interval �2 � c � 1
4

lies within the Mandelbrot set, but
not all of these values correspond to an iteration that converges to a unique limit-
ing value. However, let us now impose the condition of probabilistic support with
exclusion of zero and one, namely,

1 > ˛ > ˇ > 0: (30)

Then we can show from (15) that�1
4
< c < 1

4
(see the Appendix). In this domain the

Mandelbrot iteration is known to converge to a unique limit. If ˛; ˇ, and " are such
that this limit corresponds to a value of P.E0/ which is greater than a half (or more
generally greater than some agreed threshold), then E0 has been probabilistically
justified.

Although (30) resembles (3), which was the requirement of probabilistic support
for the one-dimensional chain, it should be realized that ˛ and ˇ do not have quite
the same meanings in the two contexts. For the one-dimensional chain, ˛ > ˇ means
that the probability of the child’s having trait T is greater if the mother has it than if
the mother does not have it. For the two-dimensional net, however, ˛ > ˇ means
that the probability of the child’s having trait T is greater if both of her parents have
it than if neither of them do. It is interesting in this case that the probability of the
child’s having T if only one of her parents has T plays no role: " may have any
value between one and zero, including zero itself, for (30) is a sufficient condition
that c > �1

4
.
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5 Concluding Remarks

Present day epistemology is suffused with the idea that justification comes in degrees,
but the implication has yet to be fully understood. It is that a proposition can still
have a fixed probability, not only when it is justified by an infinite one-dimensional
chain, but also by an infinite two-dimensional network. Moreover, this network is
generated by the same recursion that produces the Mandelbrot set in the complex
plane. True, we have only to do with the real line between �1

4
andC1

4
, and not with

the complex plane (where the remarkable fractal structure is apparent). But the point
is that the algorithm which produces our sequence of probabilities, and that which
generates the Mandelbrot fractal, are exactly the same. Note, incidentally, that the
real domain extends to x D 1

4
, which is on the edge of the Mandelbrot set; that is, it

is a point in the fractal itself.
We have used three simplifying assumptions in proving this, viz., those of gender

symmetry, independence, and uniformity. There are, however, strong indications that
essentially similar results also hold when these assumptions are dropped. Imagine
a situation in which the probabilities are different for males and females, as is the
case if we consider, for example, the property of being more than two meters tall.
Then there will be two quadratic iterations, one for P.En.f // and one for P.En.m//.
Each of these is related to P.EnC1.f // as well as P.EnC1.m//. This means that the
quadratic iterations are coupled, so the fixed points will satisfy quartic rather than
quadratic equations. The latter, however, is just a technical complication, for it is
still possible to find a domain in which the iterations converge. The relation is in fact
a generalized Mandelbrot iteration, being of fourth order, rather than second order,
and analogous results obtain. This indicates that the assumption of gender symmetry
is not necessary for the argument that probabilistic justification has a Mandelbrot
structure.

The same goes for the assumption that the parents are independent. Clearly, if the
parent probabilities depend on one another, we may have to include into the equation
grandparents, and perhaps great-grandparents, which of course complicates matters
considerably. However, in general terms it means nothing more than that the final
fixed-point equations will be of order even higher than four. Again a generalized
Mandelbrot-style iteration will hold sway, and again domains of convergence exist.

Furthermore, in many situations the conditional probabilities may not be uniform,
changing from generation to generation. In those cases the iteration will become con-
siderably more involved. We have seen that for the one-dimensional chain it proved
possible to write down explicitly the result of concatenating an arbitrary number of
steps. It is true that for a two-dimensional net this would be very cumbersome. How-
ever, with the use of a fixed-point theorem it is relatively simple to give conditions
under which convergence once more occurs under changing values of ˛; ˇ; 
 , and ı.

What will happen when the network has more dimensions than two? The answer
is straightforward: then the iterations and the fixed-point equations are of progres-
sively higher and higher order, necessitating computer programs for their calcula-
tion, but the picture remains essentially the same. The probabilities are determined
by polynomial recurrent expressions, and there is always a domain in which they are
uniquely determined.

We conclude that probabilistic epistemic justification has a structure that gives
rise to a generalized Mandelbrot recursion, and this still holds when we abandon
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our three simplifying assumptions, and work in more than two dimensions. Like so
many other patterns in nature, our reasoning may well have an intriguing relation to
simple algorithms that can generate a fractal form.

Appendix

(i) Derivation of (9) from

(8) P.E0/ D ˛ P2.E1/C ˇ P2.:E1/C .
 C ı/ P.E1/ P.:E1/.

Demonstration:

P.E0/ D ˛P2.E1/C ˇŒ1 � P.E1/�
2
C .
 C ı/P.E1/Œ1 � P.E1/�

D ˛P2.E1/C ˇŒ1 � 2P.E1/C P2.E1/�C .
 C ı/ŒP.E1/ � P2.E1/�:

Collect all terms involving P.E1/ together, and likewise all terms involving P2.E1/:

(9) P.E0/ D ˇ C .
 C ı � 2ˇ/ P.E1/C .˛ C ˇ � 
 � ı/ P2.E1/.

(ii) Derivation of (14) from

(12) P.En/ D ˇ C 2." � ˇ/ P.EnC1/C .˛ C ˇ � 2"/ P2.EnC1/.
(13) qn D .˛ C ˇ � 2"/ P.En/ � ˇ C ".

Demonstration:

qn D .˛ C ˇ � 2"/ P.En/ � ˇ C "

D .˛ C ˇ � 2"/ Œˇ C 2." � ˇ/ P.EnC1/C .˛ C ˇ � 2"/ P2.EnC1/� � ˇ C "

D .˛ C ˇ � 2"/ ˇ C 2." � ˇ/Œ.˛ C ˇ � 2"/P.EnC1/�C

Œ.˛ C ˇ � 2"/P.EnC1/�
2
� ˇ C ":

However, after replacing n by nC 1 in (13), we see that

Œ.˛ C ˇ � 2"/P.EnC1/� D ˇ � "C qnC1;

and therefore

qn D .˛ C ˇ � 2"/ ˇ C 2." � ˇ/.ˇ � "C qnC1/C .ˇ � "C qnC1/
2
� ˇ C "

D ˛ˇ � "2
C .qnC1/

2
� ˇ C "

and so

(14) qn D ".1 � "/ � ˇ.1 � ˛/C .qnC1/
2.

(iii) To show that �1
4
< c < 1

4
, if 0 � " � 1 and 0 < ˇ < ˛ < 1, where

(15) c D ".1 � "/ � ˇ.1 � ˛/.

Demonstration:

(a) c < ".1 � "/ D 1
4
� .1

2
� "/2 � 1

4
;

(b) c � �ˇ.1 � ˛/ > �˛.1 � ˛/ D .1
2
� ˛/2 � 1

4
� �

1
4

.
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Notes

1. Often a threshold of acceptance (dependent on the context and greater than one-half) is
introduced, and E0 is said to be probabilistically justified if the probability that E0 is true
is greater than this threshold.

2. We assume for convenience that ˛ and ˇ remain unchanged from bacterial generation to
generation. This assumption of uniformity simplifies the calculation, but is not essential.

3. Our claim that “all the probabilistic justification for E0 now comes from the conditional
probabilities” might engender the question how the conditional probabilities themselves
are to be justified. (We thank an anonymous referee for having raised this issue.) Al-
though this question is not the subject of the present paper (which only deals with the
probabilistic justification of the target proposition E0), our first, tentative, answer would
be that the conditional probabilities are justified by further probabilities, where the latter
can be conditional or unconditional. This answer will not satisfy the convinced founda-
tionalist, but we are not sure we understand what sort of answer would satisfy her. Of
course, one could define “justification” as something that can only come from a source
that itself is in no need of justification. But such a definition would, we think, come close
to a petitio.

4. Of course, in this two-dimensional case Barbara-0 also has a gender, and can in turn
become either a father or a mother. In the first case the statement that Barbara-0 has T
must be written as E0.f /, in the second case as E0.m/. Since we are going to assume
that the presence of T is independent of the gender—see the main text—we will suppress
Barbara-0’s gender and continue writing E0.
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