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Elementary Cuts in Saturated Models
of Peano Arithmetic

James H. Schmerl

Abstract A model M = (M,+,x, 0,1,<) of Peano Arithmetic (PA) is
boundedly saturated if and only if it has a saturated elementary end exten-
sion N. The ordertypes of boundedly saturated models of PA are characterized
and the number of models having these ordertypes is determined. Pairs (N, M),
where M <eng N | PA for saturated N, and their theories are investigated.
One result is: If N is a k-saturated model of PA and Mg, M| <enqg N are
such that X; < min(cf(Myp), dcf(Mp)) < min(cf(My),dcf(My1)) < k, then
(N, Mo) = (N, My).

1 Introduction

Let A be an infinite cardinal number. A linearly ordered set (A4, <) is A-dense if
whenever X, Y are (possibly empty) subsets of A suchthat X < Y and | X|, |Y]| < A,
then thereisa € A suchthat X < a < Y. Then (4, <) is a dense linear order without
endpoints (i.e., a model of DLO) if and only if it is ¥p-dense.

Consider an arbitrary structure 21 = (A4,...) in some countable language. As
usual, 2 is A-saturated if and only if whenever C C A, |C| < A, and ¥'(v) is a set
of unary formulas ¢(v) with parameters from C that is finitely realized in 2, then
Y (v) is realized in 2. Also,  is saturated if and only if it is | A|-saturated. If (A, <)
is a model of DLO, then (A4, <) is A-saturated if and only if (A4, <) is A-dense.

Let M be a nonstandard model of PA. Define an equivalence relation on the set of
nonstandard elements of M by: x, y are equivalent if and only if either x = y + n
or y = x + n for some n < w. Let [x] be the equivalence class to which x belongs,
and then let [M] be the set of all equivalence classes. The ordered set ([M], <) is the
reduced ordered set of M, and it is a model of DLO. Its ordertype p is the reduced
ordertype of M, which is the unique ordertype p such that (M, <) has ordertype
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® + Z-p. For any infinite A, (M, <) is A-saturated if and only if ([M], <) is A-
dense. Pabion [7] proved the following remarkable theorem concerning ordertypes
of A-saturated models.

Theorem 1.1 (Pabion’s Theorem) Let A be an uncountable cardinal and M be a
model of PA. Then M is A-saturated if and only if (M, <) is A-saturated.

In other words, M is A-saturated if and only if its reduced ordered set is A-dense.
In particular, M is saturated if and only if its reduced ordertype is 7, for some un-
countable «. Here, 7,, if it exists, is the unique ordertype of a xk-dense ordered set of
cardinality «. Thus, if « is uncountable and M, N are elementarily equivalent, un-
countable models of PA each having reduced ordertype 7, then they are isomorphic.

We say that a model M of PA is boundedly A-saturated if, wheneverb € C C M,
|C| < A, ¥(v) is a set of unary formulas ¢(v) with parameters from C that is
finitely realized in M, and the formula v < b is in X'(v), then X'(v) is realized
in M. Clearly, every A-saturated model of PA is boundedly A-saturated, and if N
is boundedly A-saturated and M <gng N, then M is boundedly A-saturated. An
uninteresting example is the standard model, which is boundedly A-saturated for all
A. However, if .M is nonstandard and boundedly Ro-saturated, then |M| > 280_ If
M is boundedly | M |-saturated, then it is boundedly saturated.

The following theorem gives an alternate characterization of boundedly saturated
models of PA.

Theorem 1.2 If M is a nonstandard model of PA, then M is boundedly saturated
if and only if there is a saturated N such that M <gng N.

Proof  Suppose N is saturated and k = |N|. Then N is k-saturated, so that if
M <eng N, then M is boundedly k-saturated. Since |M| < «, then M is boundedly
saturated.

For the converse, suppose M is nonstandard and boundedly saturated of cardinal-
ity k. Then k > 2% Let a € M be nonstandard. Then ({[x] € [M] : x < [a]}, <)
is a saturated model of DLO of cardinality «, so that 5, exists and « is uncountable
and regular. Therefore, there is a saturated N = M such that |N| = k. By a back-
and-forth construction, we will obtain an elementary map f : M — N that is onto
a proper initial segment of N .

Let Ny <eng N be such that Ny =~ N, the existence of which follows from the
resplendency of N . Assume that both M and Ny are well-ordered with ordertype .
When referring to the first element of a subset of M or of Ny, we will mean with
respect to these well orderings.

We will obtain an increasing sequence (f; : i < k) of elementary maps
fi + Xi —> My, where X; € M and |X;| < «. To get started, let a € M be
nonstandard, b € N realizing the same type as a, Xo = {a} and fo(a) = b. If
i <k is alimit ordinal, thenlet X; = ( {X; : j <i}and f; = J{f; : j <i}.

For the case of a successor ordinal, suppose we already have f; : X; —> Np.
Let a € M be the first element of M\ X;, and then, by the saturation of N, let
b € Ny be such that f; U {{a,b)} is an elementary map. Next, let b’ € Ny be the
first elementin {y € No : y < fi(x),x € X;}\{fi(x) : x € X; U {a}}, and then,
by the bounded saturation of M, let a’ € M be such that f; U {{a, b), (a’,b’)} is an
elementary map. Let X; 11 = X; U{a,a’} and fi+1 = f; U{{a,b),{d’,b’)}. Then
f =U{fi :i <«}is as required. O
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Thus, if M is boundedly saturated and |M | = «, then 7, exists. As is well known,
N exists if and only if « is regular and 2% < k whenever A < k. We assume until
the end of Section 4 that

Kk is an uncountable cardinal and 1, exists.

In particular, « is regular.

2 Boundedly Saturated Models

This section begins with a generalization of Pabion’s Theorem to boundedly A-
saturated models. The proof involves nothing beyond the proof of Pabion’s Theo-
rem. I recommend that the reader look at the proof of Pabion’s Theorem in [6] and
then verify that, with the obvious adjustments, it also proves Theorem 2.1. A linearly
ordered set (A, <) is boundedly A-dense if whenever X, Y are nonempty subsets of
Asuchthat X <Y and | X]|,|Y| < A, then thereisa € Asuchthat X <a < Y.

Theorem 2.1 Let A be an uncountable cardinal, and let M be a model of PA.
Then M is boundedly A-saturated if and only if its reduced ordered set is boundedly
A-dense.

If M is a model of PA, then its cofinality cf(.M) is the least cardinality A of an
unbounded subset X € M. More generally, if N is a model of PAand I/ € N a
cut (that is, a nonempty, proper initial segment closed under successors), then cf(/)
is the least cardinality A of a cofinal X C I, and its downward cofinality dcf(/) is
the least cardinality u of a downward cofinal X € N\ [ (that is, such that whenever
I <y € N, then there is x € X such that x < y). If def(/) = p and cf(]) = A,
we will refer to 7 as a (u, A)-cut. If I is a (A, A)-cut for some A, then it is balanced,
and it is unbalanced otherwise.

It follows from Theorem 1.2 of Section | that all boundedly saturated models of
PA having cardinality « have reduced ordertype 7, -A, where A = cf(M). We will
look at the seemingly wider class of models of PA having reduced ordertype 7, - ,
where |y| < «, or, what is equivalent, having reduced ordertype n,-(u* + 1), where
U, A < k are regular cardinals.

Theorem 2.2 If M is a nonstandard model of PA, then the following are equiva-
lent:

(1) M is boundedly saturated and |M | = k;
(2) there is an ordertype y such that 0 < |y| < k and M has reduced order type
rlK . )’;
(3) there is a regular infinite cardinal A < k such that M has reduced ordertype
Nic A
Proof (3) = (2) is trivial.

(2) < (1) follows from Theorem 2.1 since an ordered set has ordertype 7, - y for
some y where 0 < |y| < « if and only if it is boundedly «-dense and has cardinality
K.

(2) = (3) Suppose that M has reduced ordertype 7, - y. Then |M| = x and M
has reduced ordertype 1, -(u* + A), where u = dcf(w) and A = cf(M). Leta € M
be nonstandard. Thenthecut / = {y e M : y <a—n,n < w}isa (u, Ro)-cut.
Thus, the initial segment {[x] € [M] : [x] < [a]} of [M] has cofinality i, so u = «.
Thus, M has reduced ordertype 7, -A. O
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3 How Many Boundedly Saturated Models?

Theorem 2.2 characterizes the boundedly saturated models of PA having cardinality
K as those having ordertype 7, -A, where A < « is regular. The following theorem
gives the number of models up to isomorphism having ordertype 7 -A.

Theorem 3.1 Suppose that T is a consistent completion of PA.
(1) Up to isomorphism, there are exactly 280 models of T having reduced order-
type Ny .
(2) If A <k is an uncountable regular cardinal, then, up to isomorphism, there
is exactly one model of T having reduced ordertype 1 - A.

We will give a more refined version of Theorem 3.1 for which some definitions are
needed. Suppose M is a model of PA. For a € M, the gap containing a is the set
gap(a) consisting of those b € M such that for any elementary cut [ Ceng M, a € 1
if and only if b € I. The set of gaps is a partition of M into convex sets. If M has a
last gap, then M is short, and M is tall if it is not short. The gaptype of gap(a) is the
set of types realized by elements of gap(a). If M is boundedly Ry-saturated, then
the set of its gaptypes is a partition of the set of its 1-types, and there are 280 distinct
gaptypes. (This last fact follows from Theorem 4.5 or can be seen as a consequence
of [6, Exercise 3.6.9].)

Theorem 3.2 Suppose My, My are boundedly saturated models of PA having
cardinality k. Then, Mo = M, if and only if My = My and one of the following
holds:

(1) Mo, My are short and their last gaptypes are the same;
(2) Mo, My are tall and cf(Mo) = cf(My).

Proof  Clearly, if My = M1, then Mo = M; and either (1) or (2) holds. We prove
the converse. Suppose that My = M.

Right now, we will prove the converse only in the special case that cf(My) =
cf(M1) = k. In this case, it is clear that both M and M are saturated, and then that
Mo = M;. All the remaining cases will follow immediately from Theorem 3.3. [

Theorem 3.2 answers the question of how many boundedly saturated models M of
T there are, where |M | = x and cf(M) = A. We next consider the number of pairs
(N, M), where M <gng N and N is saturated. Some more definitions are needed.

If M <eng N, we will say that the elementary cut M is short or tall if M is short
or tall. We will also say that the elementary cut M is coshort if N\M has a first
gap and that it is cotall otherwise. Clearly, if M is short, then cf(M) = Ny, and
if M is coshort, then dcf(M) = Rg. (In fact, if @ € N, then Scl(a) N gap(a) is a
countable set that is both cofinal and downward cofinal in gap(a). Here, Scl(a), the
Skolem closure of a, is the set of those x € N that are definable in N using only the
parameter a.)

There are various ways that the term “A-homogeneous” is defined in the liter-
ature. We will be using the one where a structure 2 is A-homogeneous if, when-
ever y < Aand {(a; : i < y), (b; : i < y) are sequences from A such that
tp({a; : i < y)) = tp({b; : i <)) (or, equivalently, fo = {{a;,b;) :i < y}isa
partial elementary map), then there is an automorphism f of 2 such that f 2 fj.
If 2 has cardinality A and is A-homogeneous, then it is homogeneous. As is well
known, every saturated structure is homogeneous.
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Theorem 3.3  Suppose Mo, M1 <eng N |= PA are such that N is saturated of
cardinality k. Then (N, My) = (N, M) if one of the following hold:
(1) Mo, My are short and their last gaps have the same gaptype;
(2) Mg, My are coshort and the first gaps of N\My and N\M; have the same
gaptype;
(3) Mo, My are tall and cf(My) = cf(My) < k;
(4) Mo, My are cotall and dcf(My) = dcf(M;) < k.

Proof  If M is standard, then it is short and so only (1) applies. Since M; has the
same gaptype as My, it also is standard, so (N, My) = (N, M1). So now assume
that both M, M are nonstandard.

In each case, the idea is to use the homogeneity of N to obtain an automorphism
f that extends a particular partial elementary map fy with |[dom( fp)| < « that is
chosen so as to assure that f[My] = M.

(1) Let a be in the last gap of M), and then let  in the last gap of M; realize the
same type as a does. Let fo = {{a,b)}.

(2) Let a be in the first gap of N\ My, and then let b in the first gap of N\ M,
realize the same type as a. Let fo = {{a,b)}.

For (3) and (4), let p(x) be a minimal type realized in . (See Chapter 3.2 and
especially Theorem 3.2.10 of [6].)
(3) Let A = cf(Mp) = cf(My) < k. Let (a; : i < A)and (b; : i < A) be
increasing sequences of elements realizing p(x) that are cofinal in M, and
M, respectively. Let fo = {{a;,b;) 1 i < A}.
(4) Let u = def(Mg) = def(M;) < k. Let {a; : i < p)and (b; : i < u) be
decreasing sequences of elements realizing p(x) that are downward cofinal
in N\ My and N\ My, respectively. Let fo = {{a;,b;) 1 i < u}. O
Note that Theorem 3.3 fails to cover the situation when cf(My) = cf(M;) =
dcf(My) = dcf(My) = «; that is, both My, M are balanced cuts. Theorem 4.6
implies that there are at least 280 different isomorphism types of (N, M), where
M <eng N is a (k, k)-cut.

Question 3.4 Up to isomorphism, how many pairs (N, M), where M <gng N
and M is balanced, are there?

4 Theorvies of Pairs, |

In this and the next section we consider the possible theories of pairs (N, M ), where
N is a saturated model of PA and M <gng N . We begin with a simple lemma.

Lemma 4.1 Suppose that N is saturated and I Tgng N is an unbalanced cut.
Then, o is uniformly definable in (N, I).

Proof  Just observe that a € w if and only if there is no x such that 7 N {(x), :
n < a}is cofinal in I or {(x), : n < a}\I is downward cofinal in N\/. This
definition is independent of N and /. (The referee has pointed out that by slightly
modifying this proof we can show that cfV (1 ) = w. See [0, p. 181] for the defini-
tion.) O]

Theorem 4.2 There are sentences 01,0,,03 such that whenever M <gng N
= PA, where N is saturated and M is unbalanced, then
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(1) (N, M) E oy iff M is short;
(2) (N, M) oz iff cf(M) = Ro;
(3) (N, M) | o3 iff dcf(M) = Ro.

Proof (Essentially from Smorynski [8], Theorem 2.11) Since M is unbalanced, by
Lemma 4.1, @ is uniformly definable in (N, M). Thus, there are 0,, 03 such that
whenever M <gng N is unbalanced, then (N, M) |= o7 if and only if cf(M) = R,
and (N, M) [= o3 if and only if def(M) = Rg. Also, there is then a uniform way
to define satisfaction in M, from which it is easy to get a sentence o7 such that
(N, M) [= oy if and only if M is short. O

At first glance, it might appear that Theorem 4.2 should have a part (4) asserting that
(N, M) E o4 if and only if M is coshort. However, this is not so. The following
theorem is a very slight variant of Theorem 6.1 of Kossak and Kotlarski [4]; the proof
in [4] also proves Theorem 4.3.

Theorem 4.3 (Kossak and Kotlarski) Suppose that N is recursively saturated.
Let b,c € N be such that b > Scl(0) and gap((c);) > gap((c)i+1) for all
i < w, and then let My = inf(gap(b)) and M; = inf{(c); : i < w}. Then
(N, My) = (N, My).

Corollary 4.4 Suppose that N is saturated, and My, M1 <eng N are such that
dCf(M()) = dCf(Ml) = &0. Then (N, Mo) = (4/\[, Ml)

Proof Since N is saturated, there is » € N such that either b > Scl(0)
and either My = inf(gap(b)) or gap((b);) > gap((b);+1) for all i < w and
My = inf{(b); : i < w}. Thereis c € N that determines M; in an analogous way.
Apply Theorem 4.3 to get that (N, My) = (N, My). O

Theorem 4.5 Suppose that N |= PA is saturated. Then there are 280 different
theories of (N, M), where M <gng N is short.

Proof  There are recursive sequences (¢; (v) : i < w) and (6;(v) : i < w) of for-
mulas such that whenever T is a consistent completion of PAand I C w, then there is
a unique complete 1-type pr(v) 2 TU{p;(v) 1 i < w}U{6;(v) :i € [}U{=0;(v) :
i € w\I}. Moreover, each py(v) is a minimal type and, whenever I # J, then
p1(v), py(v) are independent (that is, they cannot be realized in the same gap of a
model of T).

Here is a sketch of the construction of the ¢; (v) and 6; (v), leaving to the reader
the verification that they are as required. Let {;(x, y) : i < w) be a recursive list
of all 2-ary formulas in the language of PA, and let (z;(x) : i < w) be a recursive
list of all Skolem terms in the single variable x. We define ¢; (v), 8; (v) inductively
on i. We use the following notation: if J € i < w, ¢(v) is any formula, and
0o(v), 01(v), ..., 0;—1(v) have already been defined, then we let

o W) =) A N\ G A\ —00).
jeJ jeiNg
Let ¢o(v) be v = v. Suppose we already have ¢; (v) and 0y (v), ..., 0;—1(v).
We first obtain ¢; 41 (v). Let ¢; +1(v) be such that PA proves

Vulgi+1(v) — @i (v)] (1)
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and
Yuv[pi+1(u) A gi+1(v) Au <v — t;(u) <], 2

and such that for all J C i, PA proves

Ywiv > w[<pij+’i1(v)] 3)
and
Yug < v < va[( /\ </),~J;l1(vk)) — (@i (vo., v1) < @i (v1,v2))] . 4
k<2
Next, define 6; (v) to be the formula
/\ ((pl-Jfl W) — “Yu:u<vAa <piJ4’_i1 (v)}] is even”) . 5)

JCi

Let I € w. It follows from sentences (1) and (3) that py (v) is a consistent type. Sen-
tence (4) guarantees that this type is 2-indiscernible and, hence, complete. Because
of sentence (3), this type is unbounded and, therefore, minimal. (See [6, Chap. 3].)
From (2) we get that distinct I, J C w yield independent minimal types.

Since the sequences {(@; (v) : i < w) and (6; (v) : i < w) are recursive, there is
a formula o (v) in the language of (N, w) that defines the set of those a € N that
realizes some py (v).

Now, let a € N realize py(v), and let M <eng N be short with gap(a) being
its last gap. Since w is uniformly definable in (N, M), there is a formula §; (v) in
the language of (N, M) (independent of M and [) that defines @ in (N, M). Thus,
there is a formula B(x) (also in the language of (N, M) and independent of M and
I) that defines 7 in (N, M). O

Theorems 3.2(1) and 4.2(1) suggest the question of whether there are short
Mo, M1 <eng N, where N is saturated of cardinality «, such that (N, My) =
(N, My) and (N, My) % (N, My). The almost equivalent question for countable
recursively saturated N was originally asked by Smorynski [8] and recently repeated
in [5].

Theorem 4.6 Suppose that N |= PA is saturated. Then there are 280 different
theories of (N, M), where M <eng N and M is balanced.

Proof By Theorem 4.5 (or, according to [3] and [8]), there are 280 different
theories of (N, M'), where M’ <gng N’ = N. For each such (N', M’), let
(N, M") = (N’,M’) be saturated of cardinality k = |N| so that M" is a
(k, k)-cut. Then N = N, so we can arrange that M” <gng N = N O

The case of unbalanced cuts will be considered in the next section.

5 Theories of Pairs, Il

The main result of this section is Theorem 5.5 concerning unbalanced elementary
cuts. This section comprises two subsections, the first of which discusses some pre-
liminary combinatorial results and the second of which contains the main result and
its proof.
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5.1 Some combinatorics For this subsection, let & be a fixed k-saturated model
of PA. Also, let A < « be a regular, uncountable cardinal. Let My, M; be (not
necessarily elementary) cuts of N such that cf(My) = dcf(M;) = A. In the next
subsection, where we apply the results of this subsection, we will be interested only
in elementary cuts My, M. By not requiring the cuts My, M; to be elementary in
this subsection, we will avoid having to repeat some arguments.

Suppose k < w. If H € N, then [H]¥ = {(x¢.x1.....x—1) € HF :
Xo < X| < -+ < Xg_1}. If S € N¥, then H is homogeneous for S if either
[HIF c Sor[HIFNS = 2.

More generally, suppose that & is a set of relations on N ; that is, for every S € §
there is k < w such that S € NX. Then, H € N is homogeneous for & if H
is homogeneous for each S € &. If H is homogeneous for §, then a function
x 1 8 — {0,1} is an 8-character of H if, for each S € § such that § € N¥,
%(S) = 1if and only if [H]¥ C S. If H is an infinite homogeneous set for §, then
it has a unique §-character.

Lemma 5.1 Let @ < A be a limit ordinal. For each v < «, let S, be a definable
relation on N, and then for each u < «, let 8, = {S, : v < u}. Foreachv < a,
let X, Teof Mo be a homogeneous set for 8, such that whenever v < U < «,
then the &,-character for X, is the same as the 8, -character for X,. Then, there
is X Ceof My such that X is homogeneous for 84 and, whenever v < «, then the
&, -character of X is the same as §,-character of X,,.

Proof  Using the «-saturation of N, get an increasing sequence (z, : u < A) that
is cofinal in My such that for each ¢ < A and v < « there is x € X, such that
z, < X < z,41. Making use of k-saturation, we can get X = {x, : u < A} such
that

(1) zy <xp < zyyr forall p < A;

(2) X is homogeneous for §;

(3) foreach v < «, the 8, -character of X is the same as the §,-character of X,.

The x,,s must satisfy a set of A formulas in the variables v, (1 < A) allowing the
parameters z,, (i < A). The set of formulas is easily seen to be finitely satisfiable.
By the «-saturation of N, such x,,s can then be obtained. This X is as required. [J

Lemma 5.1 has a dual version.

Lemma 5.2 Let o < A be a limit ordinal. For each v < «, let S, be a definable
relation on N, and then for each u < «, let 8, = {S, : v < u}. Foreachv < «,
let X, € N be a homogeneous set for 8, such that whenever v < u < «, then
M, = inf(X,) and the §,-character for X, is the same as the 8,-character for
Xy Then, there is X C N such that X is homogeneous for 8o, M1 = inf(X) and,
whenever v < a, then the 8,-character of X is the same as 8,-character of X,.

Proof This lemma can proved in the same way that Lemma 5.1 was. However,
instead, we will “reflect” to deduce it from Lemma 5.1.

Let d > M;. For each relation S € N” let S’ = {{x0,X1,...,Xs—1) € [0,d]" :
(d —x9,d —x1,...,d — xy—1) € S}. In particular, if A C N,then A’ = {x < d :
d—x € A}. Foreachv < o, let 8, = {S, : p < v}. Let M| = (N\M;)".
Thus, M| is a cut of N and cf(M[) = A. Also, X, Cot M; is homogeneous for
&, and the & -character for X is the same as the &, -character for X, whenever
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v < pu < o. Apply Lemma 5.1 to get ¥ Cgo M that is homogeneous for §/, such
that the &, -character of Y is the same as the §,-character of X|. Then, X = Y’ is
as required. O

Lemma 5.3 Supposen < w and R C N" is definable. Let 8 be a set of definable
relations on N such that | 8| < A. Let X Ccof My be homogeneous for 8. Then
there is H Ccot My that is homogeneous for § U {R} such that the 8-character of
H is the same as the §-character of X.

Proof  The proof is by induction on n. If n = 0, thenlet H = X. If n = 1, then
let H =X N Rorlet H = X\R, whichever is a cofinal subset of My. Now let
n > 1 and assume that the lemma holds for all smaller values.
We can assume that X = {x, : @ < A}, where x, < xg whenevera < 8 < A.
Inductively, we will obtain (y, : @ < A) such that for every o < A:
(1) x¢ < yo € Mo;
(2) whenever v < «, the y, < yq.
Having yg, let Ry = {(a1.az,....an—1) € N"7 ' : (yq,ai,as,...,a,_1) € R}.
Along with the y,s, we will also obtain (Y, : & < A) such that for every o < A,
(3) ya <Yy and Yy Ceor Mo;
@) {yy:v <a}UY, is homogeneous for § and the §-character of {y, : v < &}
U Y, is the same as the §-character of X;
(5) whenever v < «, then Y, is homogeneous for R,, and the { R, }-character of
Y, is the same as the { R, }-character of Y,,.

a = 0: Let yo = xo and apply the inductive hypothesis to get Y. Pick
some y, € Yg such that y, > max(yg,xq). Since Yg is homogeneous for
S U{R, : v < B}, we can apply the inductive hypothesis to get Yo, Ccof M such that
Vo < Yq, Y, is homogeneous for § U {R,, : v < «} and the (§ U {R, : v < B})-
character of Y, is the same as the (§ U {R,, : v < B})-character of Yg.

o is a limit ordinal: For each v < «, Y, Tt My, Y, is homogeneous for
8 U {S, : n =< v} and the &-character of Y, is the same as the &-character
of X. Furthermore, if 4 < v < «, then the R, -character of Y, is the same as
the R -character of Y. Thus, we can apply Lemma 5.1 to get ¥ Cgor M that
is homogeneous for § U {R, : v < o} such that whenever v < «, then the
(8 U{R,, : u < v})-character of Y is the same as the (§ U {R : u < v})-character
of Y,. Pick some y, € Y such that y > x,. We can now apply the inductive hypoth-
esis to get Yy, Ceof M such that yy < Yy, Yy, is homogeneous for § U {R,, 1 v < «}
and, for every v < «, the (8 U {R;, : v < B})-character of Y, is the same as the
(8 U{Ry : u < v})-character of Y,,.

Let Hy = {yo : @ < Aand [YVy]" ! € Ry} and H; = {ys : @ < A and
Ya Q/ Hy}. Then Hy U Hy = {yq : @ < A} Ceof My. Let H € {Hy, H;} so that
H C.o My. Then, itis clear that H is homogeneous for & U{R} and the §-character
of H is the same as the §-character of X. O

Lemma 5.3 easily implies the following dual version of it using the same type of
reflection that was used to deduce Lemma 5.2 from Lemma 5.1.

Lemma 5.4 Suppose n < w and R € N" is definable. Let 8 be a set of definable
relations on N such that |8| < A. Let X € N such that inf(X) = M; and X
is homogeneous for 8. Then there is H C N such that inf(H) = My, H is is
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homogeneous for 8 U {R} and the 8-character of H is the same as the §-character
of X.

5.2 Unbalanced elementary cuts The following theorem is the main result of this
section. Note that it is concerned with unbalanced cuts with uncountable cofinali-
ties. Unbalanced cuts having a countable cofinality were considered in Theorem 4.2,
Corollary 4.4, and Theorem 4.6.

Theorem 5.5 Suppose that N is a saturated model of PA of cardinality «
and My, My <eng N are unbalanced such that cf(My),cf(My), dcf(My),
dCf(M]) > R1. Then (:N,M()) = (JV,M])

Theorem 5.5 is a consequence of the even stronger Theorem 5.6 for which some
definitions are needed. Consider two structures 2 = (A4,...) and B = (B,...) for
the same finite relational language. Thus, whenever X € A and Y C B, then 2| X
and ‘B|Y are substructures of 2 and B, respectively. A function f : X — Y isa
partial isomorphism from A to B if X € A, Y € B and f is an isomorphism from
A\ X to B|Y.

Given an ordinal «, we define the game G* (2, ®B), which is the Ehrenfeucht-
Fraissé game of length . This game is played between Players I and II who
each make o moves, playing alternately. In the vth round of play, Player I goes
first, choosing either some a,, € A or some b, € B, and then Player II makes a
choice from the other set to produce the pair {(a,,b,) € A x B. If, after « moves,
f = {{ay,by) : v < a} is a partial isomorphism, then II wins. Otherwise, I wins.
We define A =, B if Player II has a winning strategy for G* (2, ). We mention
three basic facts:

(1) A=VBiff A =, B foreachn < w;

(2) A = Biff A =, B for some (every) k > |A|, |B|;

B) A= Biff A =, B.

When considering this game for models of PA, we will modify the language of PA
to consist of just two 3-ary relation symbols denoting + and x in order to render
models of PA as relational structures.

Theorem 5.6 Suppose that Ny, N1 are k-saturated models of PA such that
My = M. Suppose that My <eng No and My <eng N1 are elementary cuts
such that X1 < A = min(cf(My), dcf(Mp)) < min(cf(M;),dcf(M1)) < k. Then
(va MO) =2 (‘A/» Ml)

Proof Let « be the least possible, so « is regular. Without loss of generality, we
can assume that A < cf(My), dcf(M1) < .

Some more definitions are needed.

We will be concerned with expansions of models & of PA having the form
(N, ay)y<a, Where « is an ordinal and each a, € N. A subset I C N is in-
discernible for (N,a,),<q if and only if it is homogeneous for the set of all
relations on N definable using only parameters from {a, : v < «a}. If I is an
infinite set of indiscernibles for (N, a, )y <y, then we let @(1, {(a, : v < «)) be
the set of formulas ¢(xg, X1,...,Xm—1;U), Where u is a tuple of variables form
{uy : v < a} such that for some (equivalently: every) ¢y < ¢ < -+- < ¢;—1 from I,
M E= ¢(co, 1, - .., Cm—1;a). (Here it is to be understood that « is the tuple obtained
from u by replacing each u,, with a,.)
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We will prove Theorem 5.6 by exhibiting Player II’s winning strategy for the game
G*((My, Mp), (N1, My)). When Player I makes her arth move (so as to produce the
pair {ay, by)), she also chooses sets I, and J,, so that the following hold:

(1) Iy Seof My is indiscernible for (No, av)v<a;

(2) Jo € Ny is such that inf(Jy) = M and J, is indiscernible for (N1, by)v<q;
(3) @(1y,{ay :v <a)) = D(Jy, (by : v <a));

(4) whenever v < «, then @(/,, (a,, : p <)) € Py, {(a, 1 p < a));

5) yl, el < k.

We will check that Player II can always make her ath move. Only the case in which
Player I picks some a, € My will be considered: the dual case when he picks
by € M instead can be handled by using the dual lemmas.

a =0: Let/ € NgandJ C N; be such that / is indiscernible for Ny, J is indis-
cernible for Ny, I Ceof My, inf(J) = My, and @(1; D) = @(J; D). To get such [
and J, first let p(x) be a minimal type realized in Ny, and thenlet I = {a € My : a
realizes p(x)} and J = {b € N1\ M, : b realizes p(x)}.

Player I plays aq. By repeated applications of Lemmas 5.3 followed by one appli-
cation of Lemma 5.1, we can get Iy Ceot M) that is indiscernible for (Ny, ag) such
that |Iy| < x and @(I, @) € @(ly, {ap))- Here are the details.

Let 8, be the set of relations on N that are @-definable. Thus, / is homogeneous
for §. Let {S; : i < w} be the set of those relations on N that are definable using
only the parameter ag, and thenlet §; = S U {S; :i < j}for j < w. Let Xo = 1.
Inductively, use Lemma 5.3 to get Xj 11 Ceot Mo that is homogeneous for &1
such that the §;-character of X, is the same as the §;-character of X;. Then use
Lemma 5.1 to get Iy Ceot Mo that is homogeneous for 8§ U {S; : j < w} such that
for each j < w, the §;-character of /o is the same as the §;-character of X;. In
particular, the &-character of Iy is the same as the §-character of /. Clearly, I is
indiscernible for (N, ag). By replacing /o by a subset of itself, if needed, we can get
|I()| <K.

Let Jo C J be such that |Jy| < « and inf(Jy) = M;. Since N is k-saturated, it is
easy get bg such that Jy is indiscernible for (N7, bg) and @ (I, {(ao)) = @ (Jo, (bo)).

a = B + 1: Player I plays a4. By repeated applications of Lemmas 5.1 and 5.3,
we can get I, Ceot Mo that is indiscernible for (N, ay)y<a such that |I,| < «
and @y, {ay : v < B)) = P(g,{av : v < B)). The details, which are
much like those in the @ = 0 case, will be omitted. Let J, = Jg. Since N
is k-saturated, it is easy get b, such that J, is indiscernible for (N7, by )y<o and
(D(1y, {ay 1 v <)) = D(Jy, (by : v < a)).

« is a limit ordinal: Player I plays a,. At this point we have {(a,, b,) : v < ) and
we have ([, : v < ) and (J, : v < ). By Lemmas 5.3 and 5.4, we can get [ and J
such that I Ceot My, J € Ny, inf(J) = My, I is indiscernible for (N, a, )y <o and
J is indiscernible for (N1, b))y, <o. By repeated applications of Lemmas 5.1 and 5.3,
we can get Iy Ceof Mo such that |Iy| < «, Iy is indiscernible for (N, ay)y<q and
&1, {ay:v<a)) SOy, {a, :v <a)). Let J, C J be such that inf(J,) = M,
and |J4| < k. Since N is k-saturated, it is easy to get b, such that Jy, is indiscernible
for (N1, by)v<e and @Iy, (ay : v < a)) = D(Jy, (by 1V < @)).

This completes the verification that Player II has a winning strategy, thereby fin-
ishing the proof of the theorem. O
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6 Epilogue

The original purpose for writing this paper was to rectify some statements made
in [1]. The following two results are stated without proof in [1, Props. 5.1 and 5.3],
where it is said they are proved in [2]; in fact, neither appears [2].

Ifa <kand B < « 7T are infinite cardinals, then there is a model of PA having
reduced ordertype .- (™ + B).

If T is a completion of PA and T is not True Arithmetic (TA), then 7 has at
least 4 pairwise nonisomorphic models having reduced ordertype 7, -@ (and 3 if
T =TA).

The first of the above statements is false whenever @ < x as shown by Theorem 2.2.

It is “suggested” in [1] that every completion 7 2 PA has 2 nonisomorphic
models having reduced ordertype 7, -w, and it is also “suggested” that if § < k is an
uncountable regular cardinal, then every completion 7" 2 PA has, up to isomorphism,
exactly one model having reduced ordertype 7, - B. Theorem 3.1 gives the actual
number of models in each case.
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