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Rank and Dimension in
Difference-Differential Fields

Ronald F. Bustamante Medina

Abstract Hrushovski proved that the theory of difference-differential fields of
characteristic zero has a model-companion, which we shall denote DCFA. Previ-
ously, the author proved that this theory is supersimple. In supersimple theories
there is a notion of rank defined in analogy with Lascar U -rank for superstable
theories. It is also possible to define a notion of dimension for types in DCFA
based on transcendence degree of realization of the types. In this paper we com-
pute the rank of a model of DCFA, give some properties regarding rank and
dimension, and give an example of a definable set with finite rank but infinite di-
mension. Finally we prove that for the case of definable subgroup of the additive
group being finite-dimensional and having finite rank are equivalent.

1 Introduction and Preliminaries

The theory of differentially closed fields is ω-stable; thus complete types are ranked
by Lascar’s U -rank. The U -rank of a generic type (the type of a differentially-
transcendental element) of a differentially closed field is ω. Given a differentially
closed field (K , D), a differential subfield F of K , and an element a ∈ K , we define
the dimension of a over F to be tr.dg(F(a)D/F) where F(a)D denotes the differ-
ential field generated by F and a. It is easily proved that U (tp(a/F)) is finite if and
only if a has finite dimension over F . For more details on the differentially closed
fields the reader may consult [4].

The theory of difference fields has a model-companion denoted ACFA and all
completions of this theory are supersimple; thus every complete type in a model of
ACFA is ranked by the SU-rank. As for differentially closed fields, the SU-rank
of a generic element of a model of ACFA is ω. We define dimension in the same
way as for differentially closed fields. That is, let (K , σ ) be a model of ACFA, F
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a difference subfield of K and a ∈ K , and define the dimension of a over F to be
tr.dg(F(a)σ /F) where F(a)σ denotes the (inversive) difference field generated by F
and a. We can prove that SU(tp(a/F)) is finite if and only if a has finite dimension
over F . We refer to [2] for details on ACFA.

Our goal in this paper is to study rank and dimension, and their relation, in
difference-differential fields. A difference-differential field is a differential field
with an automorphism which commutes with the derivation. Hrushovski proved
that, in characteristic zero, the theory of difference-differential fields has a model-
companion (see [1] for the proof). This theory is called DCFA and it is not complete,
but its completions are easily described.

Given difference-differential field F and a difference-differential subfield E , if
a ∈ F , we denote by E(a)σ,D the difference-differential field generated by E and a.
If A ⊆ F we denote by aclσ,D(A) the (field-theoretic) algebraic closure of the
difference-differential field generated by A.

The following results are proved in [1].

Proposition 1.1 Let (K , σ, D) be a model of DCFA. Let A ⊂ K . Then the (model-
theoretic) algebraic closure acl(A) of A is aclσ,D(A).

Using linear disjointness of fields we can define independence in models of DCFA.

Definition 1.2 Let K be a model of DCFA; let A, B, C be subsets of K . We
say that A is independent from B over C , denoted A |̂ C B, if acl(A, C) is linearly
disjoint from acl(B, C) over acl(C).

Theorem 1.3

1. The independence relation defined above coincides with nonforking.
2. Every completion of DCFA is supersimple.

Remark 1.4 We have thus the next notion of forking for types: Let (K , σ, D) be a
saturated model of DCFA. Let E = acl(E) ⊆ F = acl(F) ⊂ K and a be a tuple
of K . Let p = tp(a/E) and q = tp(a/F). We say that q is a forking extension of p,
or that p forks over F , if a |̂/ E F ; otherwise, we say that q is a nonforking extension
of p.

Definition 1.5 Let E ⊆ F be two difference-differential fields; let a ∈ F .
1. We define degσ,D(a/E) to be the transcendence degree of E(a)σ,D over E if

it is finite; in this case we say that a is finite-dimensional over E . Otherwise,
we set degσ,D(a/E) = ∞ and we say that a is infinite-dimensional over E .

2. We say that a is (σ, D)-transcendental over E if a does not satisfy any
(σ, D)-polynomial equation (an equation of the form P(X) = 0 where P
is a polynomial over E in the variables {σ i (D j X) : i ∈ Z, j ∈ N}). Other-
wise, we say that it is (σ, D)-algebraic over E .

2 The SU-Rank

Since, by Theorem 1.3(2), every completion of DCFA is supersimple, types are
ranked by the SU-rank. This section is devoted to the study of the SU-rank in DCFA.
Given an element of a model of DCFA, we will construct a numeric sequence, we
will define a rank for this sequence, and we will show that this rank bounds the SU-
rank of the element. With this we prove that the SU-rank of a generic element of a
model of DCFA is ω2.
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Definition 2.1 Let (K , σ, D) be a model of DCFA. Let E = acl(E) ⊂ K and a be
a tuple of K . We define the SU-rank of p = tp(a/E), SU(p) (we can write it also
SU(a/E)), by induction as follows.

1. SU(p) ≥ 0.
2. For an ordinal α, SU(p) ≥ α + 1 if and only if there is a forking extension q

of p such that SU(q) ≥ α.
3. If α is a limit ordinal, then SU(p) ≥ α if and only if SU(p) ≥ β for all

β ∈ α.

We define SU(p) to be the smallest ordinal α such that SU(p) ≥ α but S
SU(p) � α + 1.

Given a definable set A, we define SU(A) as the SU-rank of a generic type of A.
Lascar’s inequalities hold for the SU-rank (see [3]).

Lemma 2.2 Let (K , σ, D) be a model of DCFA. Let a, b be tuples of K and E a
difference-differential subfield of K . Let α be an ordinal. Then

1. SU(a/Eb) + SU(b/E) ≤ SU(ab/E) ≤ SU(a/Eb) ⊕ SU(b/E) where ⊕

denotes the natural sum of ordinals;
2. if a |̂ E b, then SU(ab/E) = SU(a/E) ⊕ SU(b/E).

Remark 2.3 Let E = acl(E), and let us suppose that degσ,D(a/E) < ∞. Let
F = acl(F) ⊃ E . Then a |̂/ E F if and only if degσ,D(a/F) < degσ,D(a/E). Thus,
by induction on degσ,D(a/E) we can prove that SU(a/E) ≤ degσ,D(a/E).

Let (I, ≤) be the class of nonincreasing sequences of N∪{∞} indexed by N, partially
ordered as follows: if (mn), (m′

n) ∈ I , then (mn) ≤ (m′
n) if and only if for every

n ∈ N, mn ≤ m′
n .

Remark 2.4 If (mn) ∈ I , then there exist A ∈ N ∪ {∞} and B, C ∈ N such that
mn = ∞ if and only if n < A, and mn = C if and only if n ≥ A + B.

Let (mn) ∈ I . We will denote the Foundation Rank of (mn) by FR(mn).

Definition 2.5 Let (K , σ, D) be a model of DCFA, E = acl(E) ⊂ K , and a a
tuple of ∈ K . To a and E we associate the sequence (aE

n ) defined by

aE
n = tr.dg(E(a, Da, . . . , Dna)σ /E(a, Da, . . . , Dn−1a)σ ).

Remark 2.6

1. By 2.12 of [1], (aE
n ) ∈ I .

2. Assume that either a is a single element or that every element of a is a zero
of a σ -polynomial (a polynomial in the variables X, σ (X), σ 2(X), . . . ,
where X is a tuple of variables of the same length as a) over E . If
E ⊂ F = acl(F), then tp(a/E) does not fork over F if and only if a |̂ E F ,
if and only if for all n ∈ N, tr.dg(E(a, Da, . . . , Dna)σ /E(a, Da, . . . ,
Dn−1a)σ ) = tr.dg(F(a, Da, . . . , Dna)σ /F(a, Da, . . . , Dn−1a)σ ), if and
only if (aE

n ) = (aF
n ). Hence SU(a/E) ≤ FR(aE

n ).

Proposition 2.7 Let (mn) ∈ I ; let A, B, C as in Remark 2.4. If A 6= ∞ then
FR(mn) = ω · (A + C) +

∑A+B−1
j=A (m j − C); if A = ∞ then FR(mn) = ω2.
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Proof First we will consider the case that A < ∞. We observe that if B ′ > B, then∑A+B′
−1

j=A (m j −C) =
∑A+B−1

j=A (m j −C). Let α = ω ·(A+C)+
∑A+B−1

j=A (m j −C).
We shall prove by induction on α that FR(mn) = α.

For α = 0 it is clear. Suppose that the proposition holds for α. Assume that
α is a successor ordinal. Let (mn) ∈ I , and A, B, C as in Remark 2.4 such that
α + 1 = ω · (A + C) +

∑A+B−1
j=A (m j − C); this implies, in particular, that B 6= 0

and m A+B−1 > C .

Claim FR(mn) > α. Define (m′
n) such that m′

n = mn for n 6= A + B − 1 and
m′

A+B−1 = m A+B−1 − 1. Then (m′
n) ∈ I and (m′

n) < (mn). Let A′, B ′, C ′

be the numbers associated to (m′
n) by Remark 2.4. Then A′

= A, C ′
= C ,

B ′
≤ B, and ω · (A′

+ C ′) +
∑A′

+B′
−1

j=A′ (m′

j − C ′) = α. By induction hypothesis
FR(m′

n) = α < FR(mn), and the claim is proved.

Claim FR(mn) = α + 1. Let (m′
n) ∈ I such that (m′

n) < (mn). Let A′, B ′, C ′ be
the numbers associated to (m′

n) by Remark 2.4. Then A′
≤ A and C ′

≤ C . We want
to show that FR(m′

n) ≤ α.
If A′ < A or C ′ < C , we have A′

+C ′ < A+C , and thus ω· (A′
+C ′) < ω·(A+C).

Since
∑A′

+B′
−1

j=A′ (m′

j−C ′) ∈ N, α+1 = ω·(A+C)+
∑A+B−1

j=A (m j−C) > ω·(A′
+C ′)

+
∑A′

+B′
−1

j=A′ (m′

j − C ′) and by induction hypothesis the latter equals FR(m′
n).

If A′
= A and C ′

= C , then there is k ∈ {A, . . . , A + B − 1} such that
m′

k < mk . In this case we have
∑A+B−1

j=A (m′

j − C) <
∑A+B−1

j=A (m j − C); hence

α + 1 = ω · (A + C) +
∑A+B−1

j=A (m j − C) > ω · (A + C) +
∑A+B−1

j=A (m′

j − C).
This proves the claim.

Assume now that α is a limit ordinal < ω2, and let (mn) ∈ I (with the associ-
ated numbers A, B = 0, C) such that α = ω · (A + C) with A + C 6= 0. We
shall prove that for every k ∈ N there is (m′

n) ∈ I such that (m′
n) < (mn) and

FR(m′
n) = ω · (A + C − 1) + k.

If A 6= 0, let (m′
n) ∈ I be such that m′

A−1 = C + k, m′
n = ∞ for n < A − 1,

and m′
n = C for n > A − 1. We have (m′

n) < (mn) and by induction hypothesis
FR(m′

n) = ω · (A + C − 1) + k.
If A = 0, then C 6= 0. Let (m′

n) ∈ I such that m′
n = C −1 for n ≥ k and m′

n = C
if n < k. Then (m′

n) < (mn); by induction hypothesis FR(m′
n) = ω · (C − 1) + k.

Thus FR(mn) ≥ α.

Claim FR(mn) = α. Let (m′
n) ∈ I such that (m′

n) < (mn); let A′, B ′, C ′ be
the numbers associated to (m′

n) by Remark 2.4. Then A′ < A or C ′ < C ; hence
A′

+ C ′ < A + C , and ω · (A′
+ C ′) +

∑A′
+B′

−1
j=A′ (m′

j − C ′) < ω · (A + C) = α.
By induction hypothesis FR(m′

n) < α. This shows that FR(mn) 6≥ α + 1; that is,
FR(mn) = α.

Now let us consider the case where A = ∞.

Claim α = ω2. Let (mn) be the sequence defined by mn = ∞ for all n ∈ N. By in-
duction hypothesis we know that if (m′

n) < (mn) is in I , then FR(m′
n) < ω2. Hence

FR(mn) 6≥ ω2
+ 1. On the other hand, for every k ∈ ω, let (mk

n) be the sequence
with associated numbers A = k, B = C = 0. Then FR(mn) > FR(mk

n) = ωk.
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Now, for example, we can easily compute the rank of Fix σ ∩ C of a model K of
DCFA, where Fix σ is the fixed field of K (Fix σ = {x ∈ K : σ(x) = x}) and C is
the field of constants of K (C = {x ∈ K : Dx = 0}). �

Corollary 2.8 Let a ∈ K be a generic of Fix σ ∩ C over F. Then SU(a/F) = 1.

Proof Since (aF
n ) = (1, 0, 0, 0, . . . ), by Proposition 2.7, FR(aF

n ) = 1. Thus
SU(a/F) = FR(aF

n ) = 1. �

Proposition 2.9 Let (K , σ, D) be a model of DCFA and let a ∈ K be a (σ, D)-
transcendental element of K over F = acl(F) ⊂ K . Let (mn) ∈ I . Then there is a
difference-differential field E ⊂ K such that (aE

n ) = (mn).

Proof Define b0 = a, b1 = σ(a) − a, . . . , bk+1 = σ(bk) − bk, . . . . Let A be
as in Remark 2.4. Let E = F(Di bmi : i > A)σ . As (mi ) is nonincreasing, for
all i , Di+1bmi ∈ F(Di+1bmi+1)σ ; hence E is a difference-differential field. By
construction and because a is (σ, D)-transcendental over F ,

tr.dg(E(a, . . . , Dna)σ /E(a, . . . , Dn−1a)σ ) =

tr.dg(F(a, . . . , Dna)σ /F(a, . . . , Dn−1a, Dnbmn )σ ).

Because a is (σ, D)-transcendental over F , the latter equals mn . Moreover, it is
easily proved by induction that FR(aE

n ) = SU(a/E). �

Corollary 2.10 Let a be a tuple of K such that the elements of {σ i (D j a) : i, j ∈ N}

are algebraically independent over E. Let n be the transcendence degree of a over E.
Then SU(a/E) = ω2

· n.

Proof The corollary is actually a consequence of the proof of Proposition 2.9 and
Lemma 2.2(2). �

3 An Example

In this section we exhibit a set of SU-rank 1 which is infinite-dimensional. As
we mentioned before in differentially closed fields and in ACFA, being finite-
dimensional and having finite rank are equivalent and this is an important equiva-
lence which has led, for example, to algebraic proofs of the dichotomies for those
theories (see [6]).

Example 3.1 σ(x) = x2
+ 1.

Let A be the set defined by σ(x) = x2
+ 1. Let A1 = {x ∈ A : Dx = 0} and let

A2 = {x ∈ A : Dx 6= 0}.

Theorem 3.2 A has SU rank 1 and infinite dimension.

The proof of this theorem follows from the next two lemmas.

Lemma 3.3 A1 is strongly minimal and stably embedded.

Lemma 3.4 A2 is strongly minimal and stably embedded.

Proof of Lemma 3.3 If a ∈ A1, then by 6.1 of [2] K (a)σ,D = K (a)σ has no
finite σ -stable extension. Then all extensions of σ over acl(K a) are conjugates over
K (a)σ,D (see [2], 2.8). Thus q f tp(a/K ) ` tp(a/K ) and this holds for an arbitrary
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difference-differential field K . This means that tp(a/K ) is the only nonrealized type
of A1, and A1 is strongly minimal. By 6.1 of [2], we know that A1 is trivial. As the
full induced structure of A1 is stable, A1 is stably embedded. �

Lemma 3.4 is a consequence of the following.

Proposition 3.5 Let K = acl(K ) and let a ∈ A2 \ K . Then a is differentially
transcendental over K .

Proof Let K0 = K (a)σ and Kn+1 = Kn(Dn+1a). Since

σ(Dna) =

n∑
i=0

(
n
i

)
Di aDn−i a (1)

for n > 0, each Kn is a difference field.
Let fn(X) = 2aX + bn where bn =

∑n−1
i=1

(n
i

)
Di aDn−i a when n > 0, and

f0(X) = X2
+ 1. By (1) we have that σ(Dna) = fn(Dna).

Set f 1
n (X) = fn(X) and f k+1

n (X) = ( f k
n )σ ( fn(X)). Then σ k(Dna) = f k

n (Dna).
We have then that f k

n (X) = 2kaσ(a) . . . σ k−1(a)X +C where C is a constant. Then
f k
0 is the composition of f0 with itself k times, so f k+1

0 (X) = ( f k
0 (X))2

+ 1. In
particular, f k

0 (0) ∈ N. Note that f k+1
0 (0) = f k

0 (0)2
+ 1, so that f k

0 (0) 6= 0 for all
k ≥ 0, and the numbers f k

0 (0) form a strictly increasing sequence. Given a difference
field E , a finite σ -stable extension of E is a finite field extension F of E such that
σ(F) ⊆ F .

We shall prove the following for n ≥ 1:

In Kn−1 contains no finite subset S such that σ(S) = fn(S), unless n = 1 in
which case S = {0}.

IIn K alg
n−1(Dna) has no proper finite σ -stable extensions.

IIIn Any solution of σ(x) = x in Kn is in K . This implies that, if n > 0,
the solutions of σ(x) = (2a)m x in Kn are of the form c(Da)m where
c ∈ Fix σ ∩ K ; and the solutions of σ k(x) = 2kaσ(a) . . . σ k−1(a)x in Kn
are of the form cDa where c ∈ Fix σ k ; and if n = 0 there is no solution in
K0 of σ(X) = (2a)m X for m > 0.

It will be useful to consider some variants of the first two statements:

I′
n Kn−1 contains no finite subset S such that σ k(S) = f k

n (S), unless n = 1 in
which case S = {0}.

I′′
n K alg

n−1 contains no finite subset S such that σ k(S) = f k
n (S), unless n = 1 in

which case S = {0}.

II′
n Kn has no proper σ -stable finite extensions.

II′

0 holds By 6.1 of [2] we know that K0 has no proper finite σ -stable extension.
III0 holds Let α ∈ K0 be a solution of σ(X) = (2a)m X . Choose N ≥ 0 min-

imal such that σ N (α) ∈ K (a) (such N exists because, as σ(a) =

a2
+ 1, K0 = K (a)σ = K (. . . , σ−1(a), a)). Then σ N (α) satisfies

σ(X) = (2σ N (a))m X . If N > 0, this implies that σ N (α) ∈ K (σ (a))
and contradicts the minimality of N . Hence N = 0.
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Let P, Q ∈ K [X ] be relatively prime with Q monic and such that α =
P(a)
Q(a) .

Then
Pσ (X2

+ 1)

Qσ (X2 + 1)
= (2X)m P(X)

Q(X)
.

Comparing the number of poles and zeros, we get deg(Q) = 0 and deg(P) = m. If
m > 0, then Pσ ( f0(0)) = 0 = Pσ (1); hence P(1) = 0. By induction, one then
shows that for all k > 0, f k

0 (0) is a zero of P . Since the sequence f k
0 (0) is strictly

increasing, this is impossible and III0 is proved.
Now suppose n ≥ 1.

In H⇒ I′
n . Replace S by S ∪ σ−1 fn(S) ∪ · · · ∪ (σ−1 fn)k−1(S).

I′
n ∧II′

n−1 H⇒ I′′
n . Let S ⊂ K alg

n−1 be finite and such that σ k(S) = f k
n (S) for some

k ∈ N. Then Kn−1(S)σ = Kn−1(S ∪ σ(S) ∪ · · · ∪ σ k−1(S)). By II′

n−1, S ⊂ Kn−1
and this implies n = 1 and S = {0}.

I′′
n H⇒ IIn . Suppose that L is a finite σ -stable extension of K alg

n−1(Dna) (by I′′
n ,

Dna is transcendental over Kn−1). Then the ramification locus of L over Kn gives
us a finite set S ⊂ K alg

n−1 such that σ(S) = fn(S) (see the proof of 4.8 in [2]), and
this contradicts I′′

n .

IIn ∧ II′

n−1 H⇒ II′
n . As before, we know that II′

0 holds. Let L be a finite

σ -stable extension of Kn = Kn−1(Dna). By II′

n−1, L ∩ K alg
n−1 = Kn−1. Hence

[L K alg
n−1 : K alg

n−1 Kn] = [L : Kn] = 1 by IIn .

I′′
n ∧ IIIn−1 H⇒ IIIn . Suppose there is such a solution b ∈ Kn . Applying σ

to b we get h(X), g(X) ∈ Kn−1[X ] relatively prime with g(X) monic such that
b =

h(Dna)
g(Dna) . As σ(b) = b,

hσ ( fn(Dna))

gσ ( fn(Dna))
=

h(Dna)

g(Dna)
. (2)

Note that, as h(X) and g(X) are relatively prime, hσ ( fn(X)) and gσ ( fn(X)) are
relatively prime. Otherwise, they would have a common root α in K . This implies
that h(β) = g(β) = 0 for β = σ−1 fn(α). Also we have, by IIIn−1, that one of h(X)
and g(X) is nonconstant.

As stated above, I′′
n implies that Dna is transcendental over Kn−1; then in (1) we

can replace Dna by X . We know that the left side and the right side of (2) should
have the same poles, say, α1, . . . , αm ∈ K alg

n−1.
Suppose g(X) is not constant. Then g(X) = 5m

i=1(X − αi ) and gσ ( fn(X)) =

5m
i=1( fn(X) − σ(αi )) and they must have the same roots. Thus fn({α1, . . . , αm}) =

σ({α1, . . . , αm}) which contradicts I′′
n unless n = 1 and {α1, . . . , αm} = {0}. The

same argument applies to h, but as remarked above, one of h(X) and g(X) is non-
constant, so n = 1 and we have h(X)

g(X) = αX l with α ∈ K0 and l ∈ Z.
Inverting b if necessary, we get m ∈ N such that α satisfies σ(X) = (2a)m X . By

III0 we have that m = 0 and b = α ∈ K . �

Proof of I1 K0 = K (a)σ and f1(X) = 2aX . Suppose that there is a finite sub-
set S ⊂ K0 such that σ(S) = f1(S). (σ−1 f1) defines a permutation on S, so
(σ−1 f1)

k
= id for some k > 0 (if |S| = 1, k = 1) and this implies that K0 contains
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a solution b of σ k(x) = 2kaσ(a) . . . σ k−1(a)x with b ∈ S. In fact, any element of S
is a solution of the equation.

Let N ∈ N be minimal such that σ N (b) ∈ K (a) (such N exists because
K0 = K (a)σ = K (. . . , σ−1(a), a)). Write σ N (b) =

g(a)
h(a) with g(X), h(X) ∈ K [X ]

relatively prime and h(X) monic.
Applying σ N to the equation satisfied by b we get

gσ k
( f k

0 (a))

hσ k
( f k

0 (a))
= 2k f N

0 (a) . . . f N+k−1
0 (a)

g(a)

h(a)
.

By minimality of N , g(a)
h(a) 6∈ K (σ (a)), but this is impossible if N ≥ 1. Thus N = 0

and the equation is

gσ k
( f k

0 (a))

hσ k
( f k

0 (a))
= 2ka f0(a) . . . f k−1

0 (a)
g(a)

h(a)
.

Since a is transcendental over K the last equation holds if we replace a by X . As
the right-hand side and left-hand side should have the same poles and gσ k

( f k
0 (X))

and hσ k
( f k

0 (X)) are relatively prime, we have that hσ k
( f k

0 (X)) and h(X) have the
same zeros. Comparing degrees and using the fact that h is monic, we conclude that
h(X) = 1.

Then gσ k
( f k

0 (X)) = 2k X f0(X) . . . f k−1
0 (X)g(X). So 2k deg(g) = deg(g)+2k

−1,
which implies deg(g) = 1. Then g(X) = cX + d with c, d ∈ K . Substituting in the
equation we have σ k(c) f k

0 (X)+σ k(d) = 2k X2 f0(X) . . . f k−1
0 (X)c+2k X f0(X) . . .

f k−1
0 (X)d. Since the left-hand side has only even degrees and the degree of

X f0(X) . . . f k−1
0 (X) is odd we have d = 0. Finally, as f k

0 (0) 6= 0, the right-
hand side has no constant term and we obtain c = 0; hence b = 0 and I1 is
proved.

Now we assume that Ik holds for all 1 ≤ k < n, where n ≥ 2. By what we have
shown before, the following statements hold:

I′

k for 1 ≤ k < n.

IIk for 1 ≤ k < n.

II′

k for 0 ≤ k < n.

I′′

k for 1 ≤ k < n.

IIIk for 1 ≤ k < n. �

Proof of In Assume that there is a finite set S ⊂ Kn−1 such that σ(S) = fn(S).
Let {a1, . . . , am} be a cycle in S (i.e., σ(ai ) = fn(ai+1) for 1 ≤ i ≤ m and
σ(am) = fn(a1)). Then σ(a1 + · · · + am) = 2a(a1 + · · · + am) + mbn . Let
e =

1
m (a1 + · · · + am). Then σ(e) = 2ae + bn and as fn(X) = 2aX + bn , we have

σ(e) = fn(e).
We will show that σ(X) = 2aX + bn has no solutions in Kn−1.

Case n 6= 2 We can write bn = 2nDaDn−1a+c1 where c1 ∈ Kn−2. Let us assume
that there is a solution for σ(X) = 2aX + bn in Kn−1. We can write this solution as
g(Dn−1a) where g(X) ∈ Kn−2(X). Since σ(Dn−1a) = fn−1(Dn−1a), we have the
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equation

gσ ( fn−1(Dn−1a)) = 2ag(Dn−1a) + 2nDaDn−1a + c1.

By I′′

n−1 we know that Dn−1a is transcendental over Kn−2, so replacing Dn−1a by
X we get gσ (2aX + bn−1) = 2ag(X) + 2nDaX + c1.

If we take the derivative of this equation with respect to X we get

2a(g′)σ (2aX + bn−1) = 2ag′(X) + 2nDa;

that is, Dn−1a satisfies the equation

(g′)σ (2aX + bn−1) = g′(X) +
nDa

a
. (3)

We also have 2a(g′′)σ (2aX+bn−1) = g′′(X), and by IIIn−1, g′(Dn−1a) = d(Da)−1

for some d ∈ Fix σ ∩ K . Thus g′′(X) is constant, so g′(X) is a polynomial of de-
gree at most 1 in X and its leading coefficient is d(Da)−1. Now we look at the
degrees in a of the equation (3): dega bn−1 = 0, and as dega(d(Da)−1) = 0,
dega(g′(X)) = dega(g′(0)) = u. If u ≤ 0 we have dega((g′)σ (2aX + bn−1)) = 1
and if u > 0 we have dega((g′)σ (2aX + bn−1)) = dega(g′(0)) = 2u. In both cases,
if we compute the degrees in (3) we get a contradiction.

Case n = 2 Then b2 = 2(Da)2, and the equation satisfied by e is σ(e) = 2ae
+ 2(Da)2. We will show this equation has no solutions in K1. If it has,
and as by I′′

1 we can replace Da by X , there is g(X) ∈ K0(X) such that
gσ (2aX) = 2ag(X) + 2X2. Taking the second derivative we get 4a2(g′′)σ (2aX) =

2ag′′(X) + 4; that is,

(g′′)σ (2aX) =
g′′(X)

2a
+

1
a2 . (4)

Taking the third derivative we obtain 4a2(g′′′)σ (2aX) = g′′′(X); by III1, g′′′(Da) =

d(Da)−2, which implies g′′′(X) = d X−2 and as 1
X2 is not the third derivative of a

rational function, we have d = 0. Thus g′′(X) = b ∈ K0. Recall that σ(a) = a2
+ 1

and this implies that K (σ (a)) = K (σ (a), σ 2(a), . . . ). Let M be the smallest natural
number such that σ M (b) ∈ K (a). Write σ M (b) =

P(a)
Q(a) where P and Q are relatively

prime polynomials over K . Hence P(a)
Q(a) ∈ K (σ (a)). Then

σ(P(a))

σ (Q(a))
=

P(a)

2Q(a)σ M (a)
+

1
(σ M (a))2 .

If M ≥ 1, by minimality of M , P(a)
Q(a) 6∈ K (σ (a)), but this is absurd. Hence M = 0.

So the equation is
σ(P(a))

σ (Q(a))
=

P(a)

2Q(a)a
+

1
a2 . (5)

Now we replace a by X . Then the zeros of Qσ (X2
+ 1) are contained in the zeros of

X2 Q(X). Moreover, to each zero α of Q(X) correspond two zeros of Qσ (X2
+ 1),

namely,
√

σ(α) − 1 and −
√

σ(α) − 1 (if α = 1 the corresponding zero is 0 with
multiplicity 2). Comparing the degrees in (5) we have that deg(Q) < 3.

If Q(0) = 0, then Qσ (1) = 0; hence Q(1) = 0 and Qσ (2) = 0. Thus Q(2) = 0
which is a contradiction.

If Q(0) 6= 0 then in case Qσ (0) = 0 we have that X divides Qσ (X2
+ 1). But all

the occurrences of X in Qσ (X2
+1) have an even exponent; thus Qσ (X2

+1) = cX2.
This implies that Q(X) and Qσ (X2

+ 1) are relatively prime. If r(X) is a prime
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divisor of Q(X), then it is not a pole of the left side of (5), so r(X) must divide
X P(X)+ 2X Q(X) and this implies that r(X) divides P(X) which is absurd. Hence
Qσ (X2

+ 1) divides Q(X) and this implies deg(Q) = 0. We have then Q = 1. The
equation is reduced to

Pσ (a2
+ 1) =

P(a)

2a
+

1
a2

and comparing the degrees in a we get a contradiction. Hence (4) has no solutions
in K1. This finishes the proof of In .

Now, by I′′

n+1, Dn+1a 6∈ K alg
n so tr.dg(Kn+1/Kn) = 1, and this implies that a is

differentially transcendental over K . �

Proof of Lemma 3.4 Let a ∈ A2 and a 6∈ K . By Proposition 3.5, a is differentially
transcendental over K . Then tp(a/K ) is the only nonrealized type of A2. As before,
this implies that A2 is strongly minimal.

Thus, in particular, SU(A2) = 1. Moreover, tp(a/K ) is trivial, thus 1-based.
Indeed, let a1, a2, a3 ∈ A2 be such that a1 |̂ K a2, a1 |̂ K a3, and a3 |̂ K a2. We
will show that a3 |̂ K a1a2. By 6.1 of [2], tpACFA(a3/K a1a2) is orthogonal to Fix σ
and tpACFA(Da1 Da2 . . . /K a1a2) is Fix σ -analyzable (recall that Dna1, Dna2, and
Dna3 satisfy the equation σ(X) = fn(X)). Thus, if a3 ∈ acl(K a1a2), then
a3 ∈ aclσ (K a1a2) and by 6.1 of [2], a3 ∈ aclσ (K a1) or a3 ∈ aclσ (K a2), which is
absurd. As for Lemma 3.3, A2 is stably embedded. �

4 Definable Subgroups of the Additive Group

We shall prove that a generic element of a definable subgroup of an additive group
is finite-dimensional if and only if it has finite SU-rank. First, we will mention
some properties of definable groups in supersimple theories. We refer to [5] for the
definitions and proofs.

Let T be a supersimple theory, M a saturated model of T , and G an ∞-definable
(definable by an infinite number of formulas) group over some set of parameters
A ⊂ M .

Definition 4.1 Let p ∈ S(A). We say that p is a left generic type of G over A if
it is realized in G and for every a ∈ G and b realizing p such that a |̂ Ab, we have
b · a |̂ Aa.

Proposition 4.2 Let G be a ∅-definable group, H a ∅-definable subgroup of G,
and let A = acl(A).

1. Let p ∈ S(A); then p is a generic of G over A if and only if SU(G) = SU(p).
2. SU(G) = SU(H) if and only if [H : G] < ∞.
3. SU(H) + SU(G/H) ≤ SU (G) ≤ SU(H) ⊕ SU(G/H).

We call an element a ∈ G a generic point of G if its type is a generic type. Thus a is
a generic point if and only if its SU-rank equals SU(G).

Now we reduce some questions concerning groups definable in a model of DCFA
to questions on groups definable in differentially closed fields. These ideas are ac-
tually implicit in the axioms of DCFA. As for differentially closed fields, ACFA
and algebraically closed fields, using ideals we can define a Noetherian topology for
subsets of a power of a model of DCFA. We call it the (σ, D)-topology (see [1]).

Let U be a saturated model of DCFA, let E = acl(E) ⊂ U, and let G be
a connected differential algebraic group defined over E . For each n ∈ N, let
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G(n)
= G × σ(G) × · · · × σ n(G) and let qn be the group homomorphism from G

to G(n) defined by qn(g) = (g, σ (g), . . . , σ n(g)). Let g be a generic point of G
such that the tuples g, σ (g), . . . , σ n(g) are differentially independent over E (such
a generic exists because of the axioms of DCFA). Then qn(g) is a generic point
of G(n) (in DCF); thus qn(G) is dense in G(n) (for the D-topology) and G(n) is
connected.

Let H be a definable subgroup of G. For each n ∈ N, let H (n) be the differential
Zariski closure of qn(H) in G(n). Then H (n) is a differential algebraic subgroup of
G(n).

Let H̃ (n)
= {g ∈ G : qn(g) ∈ H (n)

}. These subgroups of G form a decreasing
sequence of quantifier-free definable groups containing H . Let H̃ =

⋂
n∈N H̃ (n);

since the (σ, D)-topology is Noetherian, there is N ∈ N such that H̃ = H̃ (N ). Then
H̃ is the (σ, D)-Zariski closure of H .

Lemma 4.3 Let G be a connected differential algebraic group and let H be a
definable subgroup of G defined over E = acl(E), H̃ its (σ, D)-Zariski closure.
Then [H̃ : H ] < ∞.

Proof Let g, h ∈ G. By definition, g |̂ E h if and only if for every n ∈ N qn(g) and
qn(h) are independent over E in the sense of DCF. By Definition 4.1 and the fact
that qn(ab) = qn(a)qn(b) we have that given g ∈ H , then g is a generic of H if and
only if, for every n ∈ N, qn(g) is a generic of H (n) (in the sense of DCF). Thus a
generic of H will be a generic of H̃ and, by Proposition 4.2, SU(H) = SU(H̃) and
[H̃ : H ] < ∞. �

Lemma 4.4

1. Let H be a quantifier-free definable subgroup of Gn
a . Then H is a (Fix σ ∩C)-

vector space, so it is divisible and has therefore no proper subgroup of finite
index. This implies that every definable subgroup of Gn

a is quantifier-free
definable.

2. Let G be a definable subgroup of Gn
a , and H a definable subgroup of G. Then

G/H is definably isomorphic to a subgroup of Gl
a for some l.

Proof (1) Using the fact that every algebraic subgroup of a vector group is defined
by linear equations, it follows easily that every differential subgroup of a vector
group is defined by linear differential equations. Hence, in the notation introduced
above, each H̃n is defined by linear differential equations, and this implies that H is
defined by linear (σ, D)-equations. Thus H is stable by multiplication by elements
of Fix σ ∩ C, and is therefore a (Fix σ ∩ C)-vector space.

This proves the first assertion. The others are clear, using the fact that every
definable group has finite index in its (σ, D)-closure (by Lemma 4.3).

(2) Let L be an l-tuple of linear difference-differential equations such that H =

Ker(L). Then L defines a group homomorphism G → Gl
a with kernel H . L(G) is a

definable subgroup of Gl
a . �

Theorem 4.5 Let G be a definable subgroup of Gn
a . If G has infinite dimension

then SU(G) ≥ ω.

Proof By Lemma 4.4, G is quantifier-free definable and is a (Fix σ ∩ C)-vector
space.
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Clearly, having infinite dimension as in Section 1 implies having infinite dimen-
sion as a vector space. If g1, . . . , gn ∈ G are (Fix σ ∩ C)-linearly independent, then
the subgroup H they generate is definable and has SU-rank n (since it is definably
isomorphic to (Fix σ ∩ C)n). Thus our hypothesis implies that G contains elements
of arbitrarily high finite SU-rank, and therefore that SU(G) ≥ ω. �
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