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TWO REMARKS ON POLYNOMIALLY BOUNDED
REDUCTS OF THE RESTRICTED ANALYTIC FIELD

WITH EXPONENTIATION

SERGE RANDRIAMBOLOLONA

Abstract. This article presents two constructions motivated by a conjecture of
van den Dries and Miller concerning the restricted analytic field with exponenti-
ation. The first construction provides an example of two o-minimal expansions
of a real closed field that possess the same field of germs at infinity of one-
variable functions and yet define different global one-variable functions. The
second construction gives an example of a family of infinitely many distinct
maximal polynomially bounded reducts (all this in the sense of definability) of
the restricted analytic field with exponentiation.

§1. Introduction

Properties of Ran,exp, the real exponential field with restricted analytic

functions, have been widely studied since the mid-1990s (starting with van

den Dries and Miller [14] and van den Dries, Macintyre, and Marker [13]).

Of particular interest are the properties of Ran,Pow, the real field with

power functions and restricted analytic functions, which is a reduct, in the

sense of definability, of Ran,exp. (Most definitions are not recalled in this

section, in order to make the introduction lighter. We assume that the reader

is familiar with the terminology of model theory (see, e.g., [8, Chapters 1–5])

and with o-minimality (see, e.g., [12]); less standard notions (such as what

we mean by in the sense of definability) are made precise in Sections 2 and

3.) Miller [5] studied the theory of Ran,Pow and proved, among other things,

that Ran,Pow is polynomially bounded (and, in particular, is a proper reduct,

in the sense of definability, of Ran,exp).

Van den Dries and Miller in [15] conjectured that the structure Ran,Pow

is maximal among the polynomially bounded reducts of Ran,exp (all this in

the sense of definability).
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An important partial answer was given independently by Soufflet [10,

Proposition 5.1] and by Kuhlmann and Kuhlmann [3, Corollary 2]: they

proved that if RF is a proper reduct, in the sense of definability, of Ran,exp

that is also an expansion, in the sense of definability, of Ran,Pow, then RF and

Ran,Pow define the same subsets of R2. If Ran,Pow is not maximal among the

strict reducts of Ran,exp (in the sense of definability), then a set witnessing

this nonmaximality needs to be of arity at least 3.

As was noted by the author in [9], two o-minimal expansions of the real

field may define the same subsets of R2, while the first is a strict reduct, in

the sense of definability, of the second. However, this phenomenon cannot

appear in a saturated setting: [11, Lemma 4.7] ensures that if RL0 is a reduct

of RL1 , each of the structures RL0 and RL1 being an ω-saturated expansion

of an o-minimal ordered group, and if the structures RL0 and RL1 define

(with parameters) the same sets of arity 2, then they define the same sets

in any arity.

Hence, if the maximality result for the collection of one-variable functions

established in [3] and [10] could be transferred from the real setting to an

ω-saturated setting, the correctness of the conjecture of van den Dries and

Miller would follow.

In their original form, the results of [3] actually hold not only for expan-

sions of the reals but also for ω-saturated structures. Let Ran,exp be any

model of the theory of Ran,exp (in the language Lan,exp with relational

symbols for each subset of Rn definable in the real exponential field with

restricted analytic functions), and let Ran,Pow be its reduct to the language

Lan,Pow (the sublanguage of Lan,exp with relational symbols for each sub-

set of Rn definable in Ran,Pow). Given a reduct RF of Ran,exp, let H(RF )
denote the set of germs at +∞ of one-variable functions definable in RF
with parameters (the set H(RF ) being viewed as a subset of (the Hardy

field) H(Ran,exp)). In [3, Corollary 2] Kuhlmann and Kuhlmann state that

if RF is a proper reduct of Ran,exp and if, at the same time, RF is an

expansion of Ran,Pow, then H(RF ) =H(Ran,Pow).

For two o-minimal structures over the reals, the local compactness of

the real line ensures the equivalence between the fact of having the same

germs of one-variable functions at infinity and the fact of defining the same

subsets of R2. It is therefore natural to wonder if this property still holds

for structures over a general real closed field.

The object of Section 2 is to show that this is not the case in general. We

exhibit two o-minimal expansions of a common nonarchimedean real closed
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field that define the same germs at infinity of one-variable functions while

not defining the same global one-variable functions.

The results in Section 3 are independent of those of Section 2 but are also

motivated by the conjecture of van den Dries and Miller; furthermore, the

techniques used in both sections are similar. We show that there are many

different maximal polynomially bounded reducts of Ran,exp: the maximality

of Ran,Pow remains open, but there is no hope for Ran,Pow to be the greatest

element among the polynomially bounded reducts of Ran,exp (all this taken

in the sense of definability).

§2. Germs versus functions

In this section, we present two o-minimal expansions of a nonarchimedean

real closed field R that define (with parameters) the same germs of one-

variable functions at infinity but that do not define the same global functions

in one variable.

Definition 2.1. A function f :Rn →R is said to be a restricted analytic

function if there is a function F analytic in a neighborhood of [0,1]n such

that f(x) = F (x) for x ∈ [0,1]n and f(x) = 0 for x /∈ [0,1]n.

Let R be the field of Puiseux series (i.e., the direct limit of all the fields

of formal Laurent series in T 1/d as d ranges over N). Considering T as an

infinitesimal, R can be regarded as an ordered field extension of R, the order

on R being defined by

(
ζ =

∞∑
k=k0

akT
k/d ∧ ak0 > 0

)
⇔ ζ > 0.

Following [13, Section 2], one can extend any restricted analytic function

f :R→R to a function f̃ :R→R. Let U be an open neighborhood of [0,1],

let F : U →R be an analytic function such that f |[0,1] = F |[0,1], and consider

ζ ∈R:

• if ζ < 0 or ζ > 1, let f̃(ζ) := 0;

• if 0≤ ζ ≤ 1, let f̃(ζ) be the formal composite of Fa0 and ρ(ζ) where

– a0 is the constant coefficient of the development of ζ,

– Fa0 is the (converging) Taylor development of F at a0 (which exists

since 0≤ a0 ≤ 1),

– ρ(ζ) = ζ − a0.
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(It is possible to extend in a similar manner a restricted analytic function

of several variables; however, we need only the one-variable case in what

follows.)

Definition 2.2. Let f :R→R be a restricted analytic function, and let

f̃ :R→R be its extension to the fields of Puiseux series described above.

We will denote by Rf the structure

Rf := (R;<,+, ·, f),

and by Rf the structure

Rf := (R;<,+, ·, f̃).

Remark 2.3. The structure Rf is o-minimal. As noted in [13, Corol-

lary 2.11], it is also an elementary substructure ofRf ; that is, if φ(x1, . . . , xn)

is a first-order logic formula in the language Lf = {<,+, ·, f} and (a1, . . . ,

an) ∈ Rn, the property φ(a1, . . . , an) holds true when interpreted in Rf if

and only if the property φ(a1, . . . , an) holds true when interpreted in Rf .

Definition 2.4. Let κ be the generalized power series

1

2
+

∞∑
k=1

T k+(1/k).

For ζ ∈R, we will write

• ζ < κ if ζ < 1/2 +
∑K

k=1 T
k+(1/k) for some K ∈N,

• ζ > κ if ζ > 1/2 +
∑K

k=1 T
k+(1/k) for all K ∈N.

This defines a Dedekind cut on R.

We chose κ so that the 1-type over R associated to this cut is not defin-

able. In particular, if ζ ∈ R and ζ < κ (resp., ζ > κ), there is ξ ∈ R such

that ζ < ξ < κ (resp., ζ > ξ > κ).

Definition 2.5. Let f̃ :R→R be as in Definition 2.2. Under the nota-

tion of Definition 2.4, Rf |κ will denote the structure

Rf |κ :=
(
R;<,+, ·, (f̃ |[0,a])a<κ, (f̃ |[b,1])b>κ

)
.

(For convenience, we identify any partial function g :R→R to a total

function by setting g(x) = 0 for x outside of the original domain of g.)

We can now state the first result of this section.
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Proposition 2.6. For any function g : R → R definable in Rf (with

parameters), there is a positive ε ∈R such that g|(0,ε) is definable in Rf |κ .

Once this proposition is established, we will need to choose f so that Rf

defines strictly more sets than Rf |κ does.

Recall the following definition.

Definition 2.7 (see Le Gal [4]). A function f : R→ R is said to be a

strongly transcendental restricted C∞-function if f(x) = 0 for all x /∈ [0,1]

and f(x) = F (x) for all x ∈ [0,1], where

• F : U →R is a C∞-function in some neighborhood U of [0,1], and

• given any tuple x= (x1, . . . , xn) of pairwise distinct elements of U , there

exists a constant C ∈N such that, for all m ∈N, the transcendence degree

over Q of the n(m+ 2)-tuple

(
x1, . . . , xn, F (x1), . . . , F (xn), . . . , F

(m)(x1), . . . , F
(m)(xn)

)
is higher than n(m+ 2)−C.

Following [4], if x denotes the n-tuple (x1, . . . , xn), the notation jmn F (x)

denotes the n(m+ 1)-tuple (F (x1), . . . , F (xn), . . . , F
(m)(x1), . . . , F

(m)(xn));

the notation trdeg(x1, . . . , xn) denotes the transcendence degree of x over Q.

Proposition 2.8. Under the notation of Definitions 2.2 and 2.5, if f is a

restricted analytic function which is also a restricted strongly transcendental

function, then the function f̃ is not definable in Rf |κ .

Remark 2.9. Note that the assumption on f made in the hypothesis of

Proposition 2.8 is nonvacuous: [4, Proposition 2.2] ensures that there exist

(many) restricted analytic, strongly transcendental functions.

Propositions 2.6 and 2.8 imply the following.

Theorem 2.10. There exists a pair of o-minimal expansions of a common

nonarchimedean field that do possess the same set of germs at infinity of one-

variable definable (with parameters) functions but do not possess the same

set of global definable (with parameters) one-variable functions.

Proof of Proposition 2.6. Let g be definable in Rf with some parameters

β ∈Rp.

Up to compositions with ∅-definable Nash bijection between (0,1) and R,

we can find a ∅-definable function G from [0,1]p+1 to R such that g(x) =

G̃(β,x), where G̃ is the interpretation of G in Rf (see Remark 2.3).
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By the syntactic version of Gabrielov’s theorem of the complement (see

[1, Corollary]), there is some q ∈N and some set X ⊂ [0,1]p× [0,1]2× [0,1]q

such that the graph of G is π(X), where π denotes the projection on the

first p+2 coordinate axes, and such that X is described by a finite Boolean

combination of formulas of the form

P
(
y1, . . . , yp+2+q, f(y1), . . . , f(yp+2+q), . . . , f

(m)(y1), . . . , f
(m)(yp+2+q)

)
= 0

and

Q
(
y1, . . . , yp+2+q, f(y1), . . . , f(yp+2+q), . . . , f

(m)(y1), . . . , f
(m)(yp+2+q)

)
> 0

for P and Q some polynomial with coefficients in Z.

Let X̃ be the interpretation of X in Rf , and let X̃β be its fiber over β

(defined by X̃β = {z ∈R2+q; (β, z) ∈ X̃}).
By definable choice (see [12, Proposition 6.1.2]), for ε > 0 small enough,

there is a definable function ζ : (0, ε)→ X̃β such that for all 0< x< ε one has

(x, g(x)) = π′(ζ(x)) (where π′ denotes the projection Rp ×R2 ×Rq →R2).

Up to taking an even smaller ε, we can assume that each component ζi of

ζ is continuous. If for each 1≤ i≤ 2 + q we denote ξi = lims→0 ζ(s) ∈ [0,1],

we can further shrink ε so that each set Li = ζi((0, ε)) is either a singleton

or an open interval and its topological closure lies entirely in one side or the

other of the cut κ (the side depending on whether ξi > κ or ξi < κ).

Let Γ be the graph of g|(0,ε). We now have that

Γ = π′(ζ((0, ε)))⊂ π′
(
X̃β ∩

2+q∏
i=1

Li

)
⊂ Γ.

Since, for each i, the topological closure of each Li lies in one side or the

other of the cut κ, there is some ci such that

• either (0≤ ci < κ and (∀x ∈R, (x ∈ Li → 0≤ x≤ ci))),

• or (κ < ci ≤ 1 and (∀x ∈R, (x ∈ Li → ci ≤ x≤ 1))).

Because the set X̃β∩
∏2+q

i=1 Li is a Boolean combination of sets of vanishing

and sets of positivity of polynomials in the functions (z1, . . . , z2+q) �→ zi and

(z1, . . . , z2+q) �→ f
(d)
|Lj

(zj) with coefficients in R, it is definable in Rf |κ . It

follows that g|(0,ε) is definable in Rf |κ .

Before proving Proposition 2.8, we need the following real version of it.
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Lemma 2.11. Let f : R → R be a restricted analytic function. Assume,

furthermore, that f is a strongly transcendental restricted C∞-function. Con-

sider (a, b) ∈R2 with 0< a< b < 1. Then f is not definable in the structure

(R;≤,+, ·, f |[0,a], f |[b,1]).

Proof of Lemma 2.11. Suppose that f is definable in (R;<,+, ·, f |[0,a],
f |[b,1]) with some parameters. Let g(x) = f(ax), and let h(x) = f(x+ b(1−
x)). By [1, Lemma 3], we can find some p ∈N, a finite collection of subsets

Xν of [0,1]2 × [0,1]p, and a finite collection V of points in [0,1]2 × [0,1]p

such that

(1) the graph of g is the union of the projections on the first two coordinates

of V and of Xν ;

(2) each Xν is the intersection of the positivity set Pν of a finite set Ων

of functions, with the zero set Zν of a finite set Θν of functions, where

each function in Ων and Θν is given as a polynomial with real coeffi-

cients in the functions (z1, . . . , z2+q) �→ zi, (z1, . . . , z2+q) �→ g(d)(zj), and

(z1, . . . , z2+q) �→ h(e)(zk);

(3) for each ν, the set Xν is an analytic manifold of dimension 1 given near

each of its points by the transverse intersection of analytic hypersurfaces

defined by each function in Θν ; and

(4) the projection on the first two coordinates has full rank 1 when restricted

to each Xν .

The projection of V being finite, we can find some c ∈R and ε > 0 such

that (c − ε, c + ε) ⊂ (a, b) and such that the set {(x, y) ∈ R2; c − ε < x <

c+ ε, y = f(x)} is the image by the projection π : [0,1]2 × [0,1]p → [0,1]2 of

an analytic manifold Γ given on some open set U ⊂ [0,1]2 × [0,1]p as the

conjunction of p+ 1 transverse smooth hypersurfaces of the form

{
z ∈ U ;P

(
z, jm2+qg(z), j

m
2+qh(z)

)}
for some polynomial P and so that π|Γ is a one-to-one submersion between

Γ and the graph of the restriction of f to (c− ε, c+ ε).

Let γ be the preimage of (c, f(c)) ∈R2 by π|Γ, and let β be a tuple made

of the coefficients involved in the different polynomials P used to describe

Γ in U .

By the chain rule and an easy induction, we can find, for all D ∈ N, a

rational function ΦD with rational coefficients such that

jD1 f(c) = ΦD
(
β,γ, jD+m

n+p g(γ), jD+m
n+p h(γ)

)
.
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Let η be an s-tuple whose coordinates are all the different images of the

coefficients of γ by the map x �→ ax and x �→ x+b(1−x). Then for all D ∈N

there is a rational function ΨD with rational coefficients such that

(2.1) jD1 f(c) = ΨD
(
a, b, β, γ, η, jD+m

n+p f(η)
)
.

Since c ∈ (a, b), c is not a coordinate of η. The function f being strongly

transcendental, there is C ∈N such that for all D ∈N,

(s+ 1)(D+ 1)−C ≤ trdeg
(
c, jD1 f(c), η, jDs f(η)

)
≤ trdeg

(
c, jD1 f(c), η, jD+m

s f(η), a, b, β, γ
)
.

But by (2.1),

trdeg
(
c, jD1 f(c), η, jD+m

s f(η), a, b, β, γ
)
= trdeg

(
c, η, jD+m

s f(η), a, b, β, γ
)
,

so that

(s+ 1)(D+ 1)−C ≤ s(D+m+ 1) + trdeg(c, η, a, b, β, γ).

However, the latter inequality cannot hold for large integers D: this is a

contradiction.

Proof of Proposition 2.8. Generalizing Lemma 2.11 to R is an easy syn-

tactic manipulation.

Suppose by contradiction that f is definable in Rf |κ . By finiteness of first-

order logic formulas, f is definable in the structure (R;≤,+, ·, f̃ |[0,a], f̃ |[b,1])
for some a and b in R with 0< a< κ< b < 1.

Let Lf,g,h be the expansion of the real ordered field language obtained by

adding three extra functional symbols of arity 1 (denoted, without ambigu-

ity, f , g, and h), let Lf (resp., Lg,h) be its reduct obtained by removing the

symbols g and h (resp., the symbol f ), and let Rf,g,h be the Lf,g,h-expansion

of the real closed field R in which f (resp., g and h) is interpreted by f̃

(resp., f̃ |[0,a] and f̃ |[b,1]).
We then have

Rf,g,h |= ∃β
((
y = f(x)

)
↔ φg,h(x, y,β)

)
,

where φg,h is an Lg,h-formula.
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We can add new existential quantifiers so that each atomic formula ap-

pearing in the formula φg,h(x, y,β) either is in the pure language of rings or

is of one of the forms v = g(u) or v = h(u) for some variables u and v.

Let a and b be two distinguished variables, and let φf (x, y, a, b, β) be the

Lf -formula obtained by replacing in φg,h(x, y,β)

• each atomic formula of the form v = g(u) by a formula of the form (0≤
u≤ a∧ v = f(u))∨ v = 0, and

• each atomic formula of the form v = h(u) by a formula of the form (b≤
u≤ 1∧ v = f(u))∨ v = 0.

Then

Rf |= ∃a ∃b ∃β (0< a< b < 1)∧
((
y = f(x)

)
↔ φf (x, y, a, b, β)

)
,

and since Rf is an elementary substructure of Rf (as noted in Remark 2.3),

Rf |= ∃a ∃b ∃β (0< a< b < 1)∧
((
y = f(x)

)
↔ φf (x, y, a, b, β)

)
,

which contradicts Lemma 2.11.

Remark 2.12. Note that the question of whether Hardy fields of germs

at infinity of one-variable functions determine the structure was asked with

the hope of combining [11, Lemma 4.7] and [3, Corollary 2]. In the example

presented in this section, even though we could have replaced Rf by an

ω-saturated Lf -structure, κ and Rf |κ were chosen precisely so that the

structure Rf |κ is not ω-saturated.

Consider Rf,f |κ , an ω-saturated elementary expansion of the structure

(
R;<,+, ·, f̃ , (f̃ |[0,a])a<κ, (f̃ |[b,1])b>κ

)
.

No analogue of Proposition 2.6 holds for the reducts Rf and Rf |κ of Rf,f |κ :
there is a realization χ ∈R of the type κ, and the germ at χ of the realization

of f is not the germ of a function definable in the structure Rf |κ , precisely
by the analogue of Proposition 2.8.

§3. No greatest element

In this section, we show that there are infinitely many polynomially

bounded structures (RFn)n∈N which are pairwise distinct maximal reducts

of the restricted analytic field with exponentiation (all this in the sense of

definability).

But first, let us state precisely what we mean by in the sense of defin-

ability.
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Definition 3.1. Given two structures M0 = (M ; · · · ) and M1 = (M ; · · · )
on the same universe M , we say that M0 is a (strict) reduct, in the sense

of definability, of M1 (or that M1 is a (strict) expansion, in the sense of

definability, of M0) if M0 defines, with parameters, (strictly) fewer sets

than does M1.

Note that the fact that M0 is a reduct, in the sense of definability, of M1

does not imply that M0 is a reduct, in the classical sense, of M1; note also

that M0 can be a strict reduct of M1 in the classical sense without being

a strict reduct in the sense of definability.

Definition 3.2. Recall that an expansion of the real field is said to

be polynomially bounded if whenever f is a one-variable definable function,

f(x) grows at most as fast as a polynomial function as x goes to +∞. (That

is, there is some d ∈N such that ∃M, (x >M → |f(x)| ≤ xd).)

Polynomial boundedness is an important dividing line among o-minimal

expansions of the reals. The growth dichotomy theorem of [6] states that

polynomial boundedness is a necessary and sufficient condition for an o-

minimal expansion of the real field not to define the exponential function.

(Note that [2] ensures that, given an o-minimal expansion of the real field,

one can always expand it further by adding the exponential, while keeping

o-minimality.)

Definition 3.3. We denote by Ran the expansion of the real field by all

restricted analytic functions (see Definition 2.1), by Ran,exp the expansion

of Ran by the exponential function, and by Ran,Pow the expansion of Ran by

all the power functions (functions fr :R→R defined by fr(x) = xr if x > 0,

fr(x) = 0 if x≤ 0).

The structure Ran is o-minimal and polynomially bounded following

important results from Khovaskii, 
Lojasiewicz, and Gabrielov (see [12, Intro-

duction]) and its expansion Ran,exp is still o-minimal (as first proved in [14]).

The structure Ran,Pow is a strict reduct, in the sense of definability, of Ran,exp

but a strict expansion, in the sense of definability, of Ran (by [5]).

As recalled in the introduction, van den Dries and Miller conjecture in

[15] that Ran,Pow is maximal among the polynomially bounded reducts of

Ran,exp (all this in the sense of definability).

Relying on results from [4], we prove the existence of an infinite collection

of (RFn)n∈N of maximal polynomially bounded expansions of the real field

which are strict reducts of Ran,exp (all this in the sense of definability).
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The ideas involved in the proof of this theorem are largely inspired by the

techniques developed by Le Gal [4, Corollary 4.2].

First, recall the following.

Theorem 3.4 ([4, Theorem 1.2]). For each f :R→R strongly transcen-

dental restricted C∞-function, the structure Rf := (R;≤,+, ·, f) is o-minimal

and polynomially bounded.

See Definition 2.7; note that in this section, contrary to Section 2, the

function f is not required to be restricted analytic.

The next result, also from [4], states that the set of strongly transcendent

C∞-functions is hard to avoid. LetA be the set of restrictions to [0,1] of func-

tions which are analytic in a neighborhood of [0,1], with radius of convergence

at least 1 at each point of [0,1]. The norm ‖g‖= supk∈N,x∈[0,1](|G(k)(x)|)/k!
(where G is any analytic continuation of g to an open neighborhood of [0,1])

turns A into a Banach space. Let S denote the set of strongly transcendental

restricted C∞-functions.

Proposition 3.5 ([4, Proposition 2.2]). Consider η any function admit-

ting a C∞-continuation to an open neighborhood of [0,1]. Then the set

A∩ (η+ S) is comeager in A.

As a corollary, we get the following.

Corollary 3.6. Let ε : [0,1]→R be the function defined by ε(x) = e−1/x

if 0< x≤ 1 and ε(0) = 0. There is a function g ∈A such that, for all n ∈N,

the function fn : x �→ g(x) + nε(x) is a strongly transcendental restricted

C∞-function.

Proof. The proof is straightforward. For each n ∈ N, A ∩ (−nε + S) is

comeager in A. But a countable intersection of comeager sets is also comea-

ger. Therefore, A ∩
⋂

n∈N(−nε + S) is comeager in A. In particular, the

Baire category theorem implies that A∩
⋂

n∈N(−nε+ S) is nonempty.

Let g be in A∩
⋂

n∈N(−nε+S); then, for each n ∈N, fn : x �→ g(x)+nε(x)

is strongly transcendental on [0,1].

Theorem 3.7. There is a family (Fn)n∈N of collections Fn of functions

definable in Ran,exp such that,

• for each n, the structure RFn := (R;≤,+, ·, (h)h∈Fn) is a maximal poly-

nomially bounded reduct of Ran,exp (in the sense of definability), and

• for each n1 �= n2, the structures RFn1
and RFn2

do not define the same

sets.
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Proof. For each fixed n0, note that fn0 is definable in Ran,exp. By Zorn’s

lemma, we can now complete the singleton {fn0} to get a maximal set

Fn0 of functions definable in Ran,exp such that the structure RFn0
:= (R;≤

,+, ·, (h)h∈Fn0
) is polynomially bounded.

By cell decomposition, the first conclusion of Theorem 3.7 is now satisfied.

For the second conclusion of Theorem 3.7, suppose that RFn1
defines fn2

with n1 �= n2. Then RFn1
defines fn2 − fn1 = (n2 − n1)ε, contradicting the

polynomial boundedness.

Remark 3.8. Note that, given n ∈ N \ {0} and fn as in Corollary 3.6,

the structure Ran,fn (obtained by expanding the restricted analytic field by

the function fn) defines the exponential: we have produced infinitely many

polynomially bounded reducts of Ran,exp but none of them is an expansion

of Ran (all this in the sense of definability). If van den Dries and Miller’s

conjecture were to be proven true, it would follow that Ran,Pow is the unique

maximal polynomially bounded reduct of Ran,exp that expands Ran (all this

in the sense of definability): if RF is a maximal polynomially bounded reduct

of Ran,exp that expands Ran (in the sense of definability), then, by [5, Result

3.2] and maximality, RF defines all power functions and is therefore an

expansion, in the sense of definability, of Ran,Pow.

Note also that the presentation of each RFn is, in a double way, not

constructive: first, the existence of a function g as in Corollary 3.6 relies

on the Baire category theorem and is therefore nonconstructive; second,

once g is chosen, the existence of each collection Fn is also given in a non-

constructive way, as a consequence of Zorn’s lemma. This raises questions

about elementary equivalence or isomorphism (in a certain sublanguage L
of Lan,exp (conjecturally Lan,Pow)) of all these maximal structures, each seen

as a reduct to the language L of an Lan,exp-structure over R, bi-interpretable

with the standard Ran,exp (in the spirit of [7, Theorem 2.1]).
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