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Abstract We treat two different topics on the log minimal model program, especially
for four-dimensional log canonical pairs:

(a) finite generation of the log canonical ring in dimension four,
(b) abundance theorem for irregular fourfolds.

We obtain (a) as a direct consequence of the existence of four-dimensional log minimal
models by using Fukuda’s theorem on the four-dimensional log abundance conjecture.
Wecanprove (b) onlybyusing traditional arguments.Moreprecisely,weprove the abun-
dance conjecture for irregular (n + 1)-folds on the assumption that the minimal model
conjecture and the abundance conjecture hold in dimension ≤ n.

1. Introduction

In this article, we treat two different topics on the log minimal model program,
especially for four-dimensional log canonical pairs. We freely use the results on
the three-dimensional log minimal model program (see [Ko], [KeMM1]). We do
not always refer to the original articles since the results are scattered in various
places.

1.1. Finite generation of the log canonical ring in dimension four
The following theorem is the main result of Section 3 (cf. [F5, Section 3.1]).

THEOREM 1.1 (FINITE GENERATION OF THE LOG CANONICAL RING IN DIMENSION FOUR)

Let π : X → Z be a proper surjective morphism from a smooth fourfold X. Let B

be a boundary Q-divisor on X such that SuppB is a simple normal crossing
divisor on X. Then the relative log canonical ring

R(X/Z,KX + B) =
⊕
m≥0

π∗ OX

(
�m(KX + B)�

)
is a finitely generated OZ -algebra.
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It is easy to see that Theorem 1.1 is equivalent to Theorem 1.2.

THEOREM 1.2

Let π : X → Z be a proper surjective morphism from a four-dimensional log
canonical pair (X,B) such that B is an effective Q-divisor. Then the relative
log canonical ring

R(X/Z,KX + B) =
⊕
m≥0

π∗ OX

(
�m(KX + B)�

)
is a finitely generated OZ -algebra.

In Section 3, we give a proof of Theorem 1.1 by using the existence theorem of
four-dimensional log minimal models (cf. [B], [S2]) and Fukuda’s result on the
log abundance conjecture for fourfolds (see [Fk]). A key point of Fukuda’s result
is the abundance theorem for semi log canonical threefolds in [F1].

1.2. Abundance theorem for irregular fourfolds
In Section 4, we prove the abundance theorem for irregular (n + 1)-folds on the
assumption that the minimal model conjecture and the abundance conjecture
hold in dimension ≤ n (see Theorem 4.5). By this result, we know that the
abundance conjecture for irregular varieties is the problem for lower-dimensional
varieties. Since the minimal model conjecture and the abundance conjecture hold
in dimension ≤ 3, we obtain the next theorem (see Corollary 4.7).

THEOREM 1.3 (ABUNDANCE THEOREM FOR IRREGULAR FOURFOLDS)

Let X be a normal complete fourfold with only canonical singularities. Assume
that KX is nef and the irregularity q(X) is not zero. Then KX is semiample.

We also prove that there exists a good minimal model for any smooth projective
irregular fourfold (see Theorem 4.8).

THEOREM 1.4 (GOOD MINIMAL MODELS OF IRREGULAR FOURFOLDS)

Let X be a smooth projective irregular fourfold. If X is not uniruled, then there
exists a normal projective variety X ′ such that X ′ has only Q-factorial terminal
singularities, X ′ is birationally equivalent to X, and KX′ is semiample.

We note that Sections 3 and 4 can be read independently.
We work over C, the complex number field, throughout this article. We

freely use the notation in [KMM] and [KM]. Note that we do not use R-divisors.

2. Preliminaries

In this section, we collect basic definitions.
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DEFINITION 2.1 (DIVISORS, Q-DIVISORS)

Let X be a normal variety. For a Q-Weil divisor D =
∑r

j=1 djDj on X such that
Dj is a prime divisor for every j and Di �= Dj for i �= j, we define the round-
down �D� =

∑r
j=1�dj�Dj , where for every rational number x, �x� is the integer

defined by x − 1 < �x� ≤ x.
We call D a boundary Q-divisor if 0 ≤ dj ≤ 1 for every j.
We note that ∼Q denotes the Q-linear equivalence of Q-divisors.
We call X Q-factorial if and only if every Weil divisor on X is Q-Cartier.

DEFINITION 2.2 (EXCEPTIONAL LOCUS)

For a proper birational morphism f : X → Y , the exceptional locus Exc(f) ⊂ X

is the locus where f is not an isomorphism.

Let us quickly recall the definitions of singularities of pairs.

DEFINITION 2.3 (SINGULARITIES OF PAIRS)

Let X be a normal variety, and let B be an effective Q-divisor on X such that
KX + B is Q-Cartier. Let f : Y → X be a resolution such that Exc(f) ∪ f −1

∗ B

has a simple normal crossing support, where f −1
∗ B is the strict transform of B

on Y . We write

KY = f ∗(KX + B) +
∑

i

aiEi

and a(Ei,X,B) = ai. We say that (X,B) is lc (resp., klt) if and only if ai ≥ −1
(resp., ai > −1) for every i. We note that lc (resp., klt) is an abbreviation of
log canonical (resp., Kawamata log terminal). We also note that the discrepancy
a(E,X,B) ∈ Q can be defined for every prime divisor E over X .

In the above notation, if B = 0 and ai > 0 (resp., ai ≥ 0) for every i, then we
say that X has only terminal (resp., canonical) singularities.

DEFINITION 2.4 (DIVISORIAL LOG TERMINAL PAIR)

Let X be a normal variety, and let B be a boundary Q-divisor such that KX +B

is Q-Cartier. If there exists a resolution f : Y → X such that
(i) both Exc(f) and Exc(f) ∪ Supp(f −1

∗ B) are simple normal crossing divi-
sors on Y , and

(ii) a(E,X,B) > −1 for every exceptional divisor E ⊂ Y ,
then (X,B) is called divisorial log terminal (dlt for short).

For the details of singularities of pairs, see, for example, [KM] and [F2].

DEFINITION 2.5 (CENTER, LC CENTER)

Let E be a prime divisor over X . The closure of the image of E on X is denoted
by cX(E) and called the center of E on X .
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Let (X,B) be an lc pair. If a(E,X,B) = −1, cX(E) is called an lc center of
(X,B).

The following definitions are now classical.

DEFINITION 2.6 (IITAKA’S D-DIMENSION AND NUMERICAL D-DIMENSION)

Let X be a normal complete variety, and let D be a Q-Cartier Q-divisor. Assume
that mD is Cartier for a positive integer m. Let

Φ|tmD| : X ��� Pdim |tmD|

be rational mappings given by linear systems |tmD| for positive integers t. We
define Iitaka’s D-dimension:

κ(X,D) =

{
maxt>0 dimΦ|tmD|(X) if |tmD| �= ∅ for some t,

−∞ otherwise.

In the case when D is nef, we can also define the numerical D-dimension

ν(X,D) = max{e | De �≡ 0},

where ≡ denotes numerical equivalence. We note that ν(X,D) ≥ κ(X,D) always
holds.

DEFINITION 2.7 (NEF AND ABUNDANT DIVISORS)

Let X be a normal complete variety, and let D be a Q-Cartier Q-divisor on X .
Assume that D is nef. The nef Q-divisor D is said to be abundant if the equality
κ(X,D) = ν(X,D) holds. Let π : X → Z be a proper surjective morphism of
normal varieties, and let D be a π-nef Q-divisor on X . Then D is said to be
π-abundant if Dη is abundant, where Dη = D|Xη and Xη is the generic fiber of π.

DEFINITION 2.8 (IRREGULARITY)

Let X be a normal complete variety with only rational singularities. We put

q(X) = h1(X, OX) = dimH1(X, OX) < ∞

and call it the irregularity of X .
Let X be as above. If q(X) �= 0, then we call X irregular.
If X ′ is a normal complete variety with only rational singularities such

that X ′ is birationally equivalent to X , then it is easy to see that q(X) = q(X ′).

3. Log canonical ring

In this section, we prove the following theorem: Theorem 1.1.

THEOREM 3.1 (FINITE GENERATION OF THE FOUR-DIMENSIONAL LOG CANONICAL RING)

Let π : X → Z be a proper surjective morphism from a smooth fourfold X. Let B

be a boundary Q-divisor on X such that SuppB is a simple normal crossing
divisor on X. Then the relative log canonical ring
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R(X/Z,KX + B) =
⊕
m≥0

π∗ OX

(
�m(KX + B)�

)
is a finitely generated OZ -algebra.

The next proposition is well known and a slight generalization of [K3, Theo-
rem 7.3].

PROPOSITION 3.2

Let (X,B) be a proper log canonical fourfold such that KX + B is nef and
κ(X,KX + B) > 0. Then KX + B is abundant; that is, κ(X,KX + B) =
ν(X,KX + B).

Proof
See, for example, [Fk, Proposition 3.1]. We note that we need the three-dimen-
sional log minimal model program and log abundance theorem here (see [Ko],
[KeMM1], [KeMM2]). �

Let us recall Fukuda’s result [Fk]. We generalize this in Theorem 3.10.

THEOREM 3.3 (CF. [Fk, THEOREM 1.5])

Let (X,B) be a proper dlt fourfold. Assume that KX + B is nef and that
κ(X,KX + B) > 0. Then KX + B is semiample.

Proof
By Proposition 3.2, κ(X,KX + B) = ν(X,KX + B). We put S = �B� and KS +
BS = (KX + B)|S . Then the pair (S,BS) is semidivisorial log terminal and
KS + BS is semiample by [F1, Theorem 0.1]. Finally, by [F3, Corollary 6.7], we
obtain that KX + B is semiample. �

REMARK 3.4

The proof of [Fk, Proposition 3.3] depends on [K3, Theorem 5.1]. It requires [K3,
Theorem 4.3], whose proof contains a nontrivial gap (see [F2, Remark 3.10.3],
[F6]). So we adopted [F3, Corollary 6.7] in the proof of Theorem 3.3.

In this section, we adopt Birkar’s definition of the log minimal model (see [B,
Definition 2.4]), which is slightly different from [KM, Definition 3.50] (see Re-
mark 3.6 and Example 3.7).

DEFINITION 3.5 (CF. [B, DEFINITION 2.4])

Let (X,B) be a log canonical pair over Z. A log minimal model (Y/Z,BY +E) of
(X/Z,B) consists of a birational map φ : X ��� Y/Z, BY = φ∗B, and E =

∑
j Ej ,

where Ej is a prime divisor on Y , φ−1-exceptional for every j, and satisfies the
following conditions:

(1) Y is Q-factorial, and (Y,BY + E) is dlt;
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(2) KY + BY + E is nef over Z; and
(3) for every prime divisor D on X which is exceptional over Y , we have

a(D,X,B) < a(D,Y,BY + E),

where a(D,X,B) (resp., a(D,Y,BY + E)) denotes the discrepancy of D with
respect to (X,B) (resp., (Y,BY + E)).

REMARK 3.6

In [KM, Definition 3.50], it is required that φ−1 have no exceptional divisors.

EXAMPLE 3.7

Let X = P2, and let DX be the complement of the big torus. Then KX + DX

is dlt and KX + DX ∼ 0. Let Y = PP1(OP1 ⊕ OP1(−1)), and let DY be the
complement of the big torus. Then (Y,DY ) is a log minimal model of (X,DX)
in the sense of Definition 3.5. Of course, KY + DY is dlt and KY + DY ∼ 0. On
the other hand, (Y,DY ) is not a log minimal model of (X,DX) in the sense of
[KM, Definition 3.50].

We prepare the following two easy lemmas.

LEMMA 3.8

We use the notation in Definition 3.5. Then we have

a(ν,X,B) ≤ a(ν,Y,BY + E)

for every divisor ν over X. Thus, we obtain

R(X/Z,KX + B) � R(Y/Z,KY + BY + E).

Proof
It is an easy consequence of the negativity lemma (see, e.g., [KM, Proposi-
tion 3.51, Theorem 3.52]). �

LEMMA 3.9

Let π : X → Z be a projective surjective morphism between projective varieties.
Assume that (X,B) is log canonical and H is an ample Cartier divisor on Z.
Let R be a (KX + B)-negative extremal ray of NE (X) such that

R ·
(
KX + B + (2dimX + 1)π∗H

)
< 0.

Then R is a (KX + B)-negative extremal ray of

NE (X/Z) =
{
z ∈ NE (X)

∣∣ z · π∗H = 0
}

⊂ NE (X).

In particular, if KX + B is π-nef, then KX + B + (2dimX + 1)π∗H is nef.
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Proof
If (X,B) is klt, then it is obvious by Kawamata’s bound of the length of extremal
rays (see [K4]). When (X,B) is lc, it is sufficient to use [F5, Section 3.1.3] or
[F4, Section 18]. �

Let us start the proof of Theorem 1.1.

Proof of Theorem 1.1
We can assume that the fiber of π is connected. First, if κ(Xη,KXη +Bη) = −∞,
where η is the generic point of Z, then the statement is trivial. We note that the
statement is obvious when Z is a point and κ(X,KX +B) = 0. So we can assume
that κ(Xη,KXη + Bη) ≥ 0 and that κ(X,KX + B) ≥ 1 when Z is a point. Since
the problem is local, we can assume that Z is affine. By compactifying Z and X

and taking a resolution of X , we can assume that X and Z are projective and
that SuppB is a simple normal crossing divisor. By the assumption, we can find
an effective Q-divisor M on X such that KX + B ∼Q,π M ; that is, there exists
a Q-divisor N on Z such that KX + B ∼Q M + π∗N . We take a log minimal
model of (X,B) over Z by using the arguments in [B, Section 3]. Then we obtain
a projective surjective morphism πY : Y → Z such that

(
Y/Z,BY +

∑
j Ej

)
is

a log minimal model of (X/Z,B), where BY is the pushforward of B on Y

by φ : X ��� Y and Ej is exceptional over X and is a prime divisor on Y for
every j. Let A be a sufficiently ample general Cartier divisor on Z. Then
(Y,BY + E + π∗

Y A), where E =
∑

j Ej , is a log minimal model of (X,B + π∗A)
by Lemma 3.9. Since κ(Y,KY + BY + E + π∗

Y A) ≥ 1, KY + BY + E + π∗
Y A is

semiample by Theorem 3.3. In particular,

KY + BY + E = KY + BY + E + π∗
Y A − π∗

Y A

is πY -semiample. Thus,

R(Y/Z,KY + BY + E) =
⊕
m≥0

πY ∗ OY

(
�m(KY + BY + E)�

)
is a finitely generated OZ -algebra. Therefore,

R(X/Z,KX + B) =
⊕
m≥0

π∗ OX

(
�m(KX + B)�

)
is a finitely generated OZ -algebra by Lemma 3.8. We finish the proof. �

The final theorem in this section is a generalization of Fukuda’s theorem (see
Theorem 3.3).

THEOREM 3.10 (A SPECIAL CASE OF THE LOG ABUNDANCE THEOREM)

Let π : X → Z be a proper surjective morphism from a four-dimensional log
canonical pair (X,B) such that B is an effective Q-divisor and KX +B is π-nef.
When Z is a point, we further assume that κ(X,KX + B) > 0. Then KX + B is
π-semiample.
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Proof
Without loss of generality, we can assume that π has connected fibers. By
Proposition 3.2 and the log abundance theorem in dimension ≤ 3, KXη + Bη

is nef and abundant, where η is the generic point of Z. By Theorem 1.2,⊕
m≥0 π∗ OX(�m(KX +B)�) is a finitely generated OZ -algebra. Therefore, KX +

B is π-semiample by Lemma 3.12. �

The next lemma is well known. We leave the proof as an exercise for the reader.

LEMMA 3.11 (CF. [L, THEOREM 2.3.15])

Let π : X → Z be a projective surjective morphism from a smooth variety X

to a normal variety Z, and let M be a π-nef and π-big Cartier divisor on X.
Then

⊕
m≥0 π∗ OX(mM) is a finitely generated OZ -algebra if and only if M is

π-semiample.

By [KMM, Proposition 6-1-3], we can reduce Lemma 3.12 to Lemma 3.11.

LEMMA 3.12

Let π : X → Z be a proper surjective morphism between normal varieties, and
let M be a π-nef and π-abundant Cartier divisor on X. Then

⊕
m≥0 π∗ OX(mM)

is a finitely generated OZ -algebra if and only if M is π-semiample.

3.1. Appendix
In this appendix, we explicitly state the results in dimension ≤ 3 because we can
find no good references for the relative statements (cf. [Ft], [KeMM1], [KeMM2]).

THEOREM 3.13

Let π : X → Z be a proper surjective morphism between normal varieties. Assume
that (X,B) is log canonical with dimX ≤ 3 and that B is an effective Q-divisor.
Then ⊕

m≥0

π∗ OX

(
�m(KX + B)�

)
is a finitely generated OZ -algebra.

Proof
When Z is a point, this theorem is well known (cf. [Ft], [KeMM1], [KeMM2]). So
we assume that dimZ ≥ 1. By the arguments in the proof of Theorem 1.1, we can
prove that

⊕
m≥0 π∗ OX(�m(KX + B)�) is a finitely generated OZ -algebra. �

THEOREM 3.14

Let π : X → Z be a proper surjective morphism such that (X,B) is log canonical
with dimX ≤ 3. Assume that KX + B is π-nef and that B is an effective Q-
divisor. Then KX + B is π-semiample.
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Proof
When Z is a point, this theorem is well known (cf. [Ft], [KeMM1], [KeMM2]).
So we assume that dimZ ≥ 1. Without loss of generality, we can assume that π

has connected fibers. It is well known that KX + B is π-nef and π-abundant by
the log abundance theorem in dimension ≤ 2. By Theorem 3.13 and Lemma 3.12,
KX + B is π-semiample. �

We close this appendix with a remark.

REMARK 3.15

Let π : X → Z be a proper surjective morphism between normal varieties.
Assume that (X,B) is klt and that B is an effective Q-divisor. Then⊕

m≥0

π∗ OX

(
�m(KX + B)�

)
is a finitely generated OZ -algebra by [BCHM]. Therefore, by Lemma 3.12, KX +
B is π-semiample if and only if KX +B is π-nef and π-abundant by Lemma 3.12.

Of course, we know that KX + B is π-semiample if and only if KX + B is
π-nef and π-abundant without appealing to [BCHM] (see, e.g., [F6]). It is known
as Kawamata’s theorem (see [K3, Theorem 6.1]).

4. Abundance theorem for irregular varieties

In this section, we treat the abundance conjecture for irregular varieties. Let us
recall the following minimal model conjecture.

CONJECTURE 4.1 (MINIMAL MODEL CONJECTURE)

Let X be a smooth projective variety. Assume that KX is pseudoeffective. Then
there exists a normal projective variety X ′ which satisfies the following condi-
tions.

(i) X ′ is birationally equivalent to X.
(ii) X ′ has only Q-factorial terminal singularities.
(iii) KX′ is nef.

We call X ′ a minimal model of X.

In Conjecture 4.1, if KX′ is semiample, X ′ is usually called a good minimal model
of X .

CONJECTURE 4.2 (ABUNDANCE CONJECTURE)

Let X be a projective variety with only canonical singularities. Assume that KX

is nef. Then KX is semiample. In particular, κ(X) = κ(X,KX) is nonnegative.

We know that Conjectures 4.1 and 4.2 hold in dimension ≤ 3 (cf. [KMM], [Ko]).
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REMARK 4.3

In Conjecture 4.1, by [BCHM], we can replace (ii) with the following slightly
weaker condition: (ii′) X ′ has at most canonical singularities. Similarly, we can
assume that X has only Q-factorial terminal singularities in Conjecture 4.2.

REMARK 4.4

Let X be a smooth projective variety. Then X is uniruled if and only if KX is
not pseudoeffective by [BDPP].

The next theorem is the main theorem of this section.

THEOREM 4.5 (ABUNDANCE THEOREM FOR IRREGULAR (N + 1)-FOLDS)

Assume that Conjectures 4.1 and 4.2 hold in dimension ≤ n. Let X be a normal
complete (n+1)-fold with only canonical singularities. If KX is nef and q(X) �= 0,
then KX is semiample.

Proof
Let π : X → X be a resolution, and let α : X → A = Alb(X) be the Albanese
mapping. By the assumption, we have dimA ≥ 1. Since X has only rational
singularities, β = α ◦ π−1 : X → A is a morphism (cf. [R, Proposition 2.3], [BS,
Lemma 2.4.1]).

CLAIM 1

We have κ(X,KX) = κ(X,KX) ≥ 0.

Proof
Let f : X → S be the Stein factorization of α, and let F be a general fiber of f .
Then, by [K2, Corollary 1.2], we have

κ(X,KX) ≥ κ(F,KF ) + κ(S,KS),

where S is a resolution of S. We note that κ(S,KS) ≥ 0 because S → β(X) ⊂ A

is generically finite (see, e.g., [U, Theorem 6.10, Lemma 10.1]). We also note that
κ(F,KF ) = κ(G,KG) ≥ 0 since dimG ≤ n, G has only canonical singularities, and
KG is nef, where G = π(F ). Here, we used Conjectures 4.1 and 4.2 in dimension
dimG = dimF ≤ n. Therefore, we obtain κ(X,KX) ≥ 0. �

CLAIM 2

If κ(X,KX) = 0, then ν(X,KX) = 0.

Proof
By Kawamata’s theorem (see [K1, Theorem 1]), β is surjective and β∗ OX � OA.
Let G be a general fiber of β. Then κ(G,KG) = 0 by

0 = κ(X,KX) ≥ κ(G,KG) + κ(A,KA) = κ(G,KG)
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as in Claim 1, and κ(G,KG) ≥ 0 by Conjecture 4.2 in dimG ≤ n since KG is nef.
We note that X and G have only canonical singularities. By Remark 3.15 and the
assumption: Conjecture 4.2 in dimension ≤ n, KX is β-semiample. Therefore,
β : X → A can be written as

β : X
f−→ S

g−→ A,

where KX ∼Q f ∗D for some g-ample Q-Cartier Q-divisor D on S, g : S → A is a
birational morphism, and S is a normal variety. Since κ(X,KX) = 0, we obtain
κ(S,D) = 0. So it is sufficient to prove that D ∼Q 0. By [A, Theorem 0.2], we
can write D ∼Q KS + ΔS such that (S,ΔS) is klt. In particular, ΔS is effective.
By Lemma 4.6, we obtain that g is an isomorphism. Therefore, D ∼Q 0 since
κ(S,D) = 0 and S = A is an Abelian variety. �

By Claims 1 and 2, ν(X,KX) > 0 implies κ(X,KX) > 0. In this case, we obtain
κ(X,KX) = ν(X,KX) by Kawamata’s argument and the assumption: Conjec-
tures 4.1 and 4.2 in dimension ≤ n (see the proof of [K3, Theorem 7.3]). There-
fore, KX is semiample by Remark 3.15. �

We used the following lemma in the proof of Claim 2.

LEMMA 4.6

Let g : S → A be a projective birational morphism from a klt pair (S,ΔS) to
an Abelian variety A. Assume that KS + ΔS is g-nef and κ(S,KS + ΔS) = 0.
Then g is an isomorphism.

Proof
By replacing S with its small projective Q-factorialization (cf. [BCHM]), we
can assume that S is Q-factorial. We note that KS = E, where E is effective
and SuppE = Exc(g) since A is an Abelian variety. If B = g∗ΔS �= 0, then
g∗B ≤ m(KS + ΔS) for some m > 0. In this case,

1 ≤ κ(A,B) = κ(S, g∗B) ≤ κ(S,KS + ΔS) = 0.

It is a contradiction. Therefore, B = 0. This means that ΔS is g-exceptional.
Thus, KS + ΔS is effective, g-exceptional, and Exc(g) = Supp(KS + ΔS). By
the assumption, KS + ΔS is g-nef. So g is an isomorphism by the negativity
lemma. �

As a special case of Theorem 4.5, we obtain the abundance theorem for irregular
fourfolds.

COROLLARY 4.7 (ABUNDANCE THEOREM FOR IRREGULAR FOURFOLDS)

Let X be a normal complete fourfold with only canonical singularities. Assume
that KX is nef and the irregularity q(X) is not zero. Then KX is semiample.
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Proof
It is obvious by Theorem 4.5 because Conjectures 4.1 and 4.2 hold in dimension ≤
3 (cf. [Ko], [KM]). �

We close this section with the following theorem.

THEOREM 4.8 (GOOD MINIMAL MODELS OF IRREGULAR FOURFOLDS)

Let X be a smooth projective irregular fourfold. If X is not uniruled, then X

has a good minimal model. More precisely, there exists a normal projective vari-
ety X ′ such that X ′ has only Q-factorial terminal singularities, X ′ is birationally
equivalent to X, and KX′ is semiample.

Proof
We run the minimal model program. Then we obtain a minimal model X ′ of X

since KX is pseudoeffective by the assumption. Here we use the existence and
the termination of four-dimensional terminal flips (cf. [KMM, Theorem 5-1-15],
[S1], [HM, Corollary 5.1.2]). We note that q(X ′) = h1(X ′, OX′ ) = q(X) �= 0.
Therefore, by Theorem 4.5, we obtain that KX′ is semiample. �

4.1. Appendix
In this appendix, we give a remark on the abundance conjecture for fourfolds for
the reader’s convenience.

CONJECTURE 4.9 (ABUNDANCE CONJECTURE FOR FOURFOLDS)

Let X be a complete fourfold with only canonical singularities. If KX is nef,
then KX is semiample.

This conjecture is still open. By Corollary 4.7 and Kawamata’s argument (cf.
[K3, Theorem 7.3]), we can reduce Conjecture 4.9 to the following two problems.

PROBLEM 4.10

Let X be a smooth projective fourfold. If X is not uniruled and q(X) = 0, then
κ(X) ≥ 0.

PROBLEM 4.11

Let X be a projective fourfold with only Q-factorial terminal singularities. If KX

is nef, q(X) = 0, and κ(X,KX) = 0, then KX is numerically trivial; equivalently,
KX ∼Q 0.

We explain the reduction argument closely. Let X be a complete fourfold with
only canonical singularities such that KX is nef. If q(X) �= 0, then KX is semi-
ample by Corollary 4.7. So from now on, we can assume that q(X) = 0. By
taking a resolution of X and running the minimal model program (cf. [KMM,
Theorem 5-1-15], [S1], [HM, Corollary 5.1.2]), there exists a projective variety X ′
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such that KX′ is nef and X ′ has only Q-factorial terminal singularities. Let

X
f←− W

g−→ X ′

be a common resolution. Then f ∗KX = g∗KX′ by the negativity lemma. There-
fore, we can replace X with X ′ to prove Conjecture 4.9. If we solve Prob-
lem 4.10, then we obtain κ(X,KX) ≥ 0 since X has only terminal singularities.
Furthermore, if we solve Problem 4.11, then we can prove that ν(X,KX) > 0
implies κ(X,KX) > 0. By the proof of [K3, Theorem 7.3], we obtain ν(X,KX) =
κ(X,KX) (cf. Proposition 3.2). Thus, KX is semiample (cf. Remark 3.15).
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