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Abstract Weprove a Gauss-Bonnet-type formula forRiemann-Finsler surfaces of non-
constant indicatrix volume and with regular piecewise C∞-boundary. We give a
Hadamard-type theorem for N-parallels of a Landsberg surface.

1. Introduction

A major topic in Riemannian geometry is the study of the relation between
the curvature of the Riemannian metric and the topology of the manifold. This
is mainly achieved through the well-known Gauss-Bonnet-Chern theorem. The
theorem and its consequences are especially interesting in the case of Riemannian
surfaces (see [SST] for a comprehensive exposition).

The Gauss-Bonnet theorem was extended for the first time by D. Bao and
S. S. Chern to the case of boundaryless Finsler manifolds of Landsberg type
and Finsler manifolds of constant volume (see for details [BC]). In the case of
Landsberg surfaces the Gauss-Bonnet-Chern theorem is stated in a particular
form that can be regarded as a direct generalization to the Finslerian case of the
Riemannian classical result. In [SS] we have extended the Gauss-Bonnet-Chern
theorem for boundaryless Landsberg surfaces to the case of Landsberg surfaces
with smooth boundary.

The reason to restrict the considerations to Landsberg surfaces is that on
these surfaces the Riemannian volume of the indicatrix is constant and therefore
the Euler-Poincare characteristic of the manifold can be related to the curvature
in a similar way to the Riemannian case. However, the Landsberg structures
include the Berwald ones (see [I], [BCS]), which, at least in the case of surfaces,
are known to be locally Minkowski in the flat case, or Riemannian otherwise.

Recently, there are many suspicions about the existence of regular Landsberg
structures that are not Berwald (see [Sz2], [Ma], [Sz3]), but the existence of such
structures is still an open problem.
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However, the Finsler structures more general than the Lansdberg ones can
have very interesting geometrical properties, and a Gauss-Bonnet-type formula
might be a useful tool in the study of their geometry.

In [Sh1] are proved some Gauss-Bonnet-type formulas for 2n-dimensional
Riemann-Finsler manifolds whose indicatrix volume is constant. The article
also contains interesting information on different attempts to extend the Gauss-
Bonnet theorem to the Finslerian setting (see also [BS] for several discussions on
the constancy of the indicatrix volume).

On the other hand, M. Matsumoto studies a Gauss-Bonnet formula for
bounded regions on a Finsler surface, but he uses a completely different approach
than ours (see [M1]). Matsumoto’s normals and curvatures have different geomet-
rical meanings than the ones in this article. For his setting, S. S. Chern’s trans-
gression method used by us cannot be employed.

In this article we are concerned with the following question.

QUESTION

Does a Gauss-Bonnet-type formula hold in the case of Riemann-Finsler domains
with regular piecewise C∞-boundary?

The lack of angles is a sort of peculiarity of traditional Finsler geometry. We
show in the present study that the so-called Landsberg angles can be very useful
in the study of the geometry near a “corner” of a regular piecewise C∞-curve.

The article is organized as follows. We recall some basic facts on the geometry
of Riemann-Finsler manifolds in §2. We discuss here the Landsberg angles defined
as the Riemannian length of the indicatrix curve arc defined by the tips of two
unit vectors. In §3 we treat the normal lift of a curve to the indicatrix Σ which is
different from the canonical lift of a curve usually used (see, e.g., [BCS, p. 112]).
We are led in this way to the notion of N -parallels and N -parallel curvature
of a curve γ on the surface M . The difference with the Finslerian geodesics is
also discussed. An existence and unicity theorem for N -parallels is given in the
appendix.

Theorem 4.2, proved in §4, gives a partial answer to the question above. We
give here a topological lemma that allows us to relate the Euler characteristic
of M with the Chern connection 1-form in the case when the indicatrix length is
not constant, that is, in a more general case than the Landsberg structures.

The regular piecewise C∞-boundary case is discussed in §5, where we con-
struct a variation curve near the given boundary. The Gauss lemma for Riemann-
Finsler manifolds is the one that makes all the machinery work. Here is where
we prove Theorem 5.1, which gives the final affirmative answer to the question
above.

We finally show how the Gauss-Bonnet theorem controls the behavior of
N -parallels by proving a Hadamard-type theorem in §6 for Landsberg surfaces.
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2. The geometry of Riemann-Finsler surfaces

This chapter follows closely [BCS, Chapter 4].
A Finsler norm, or metric, on a real, smooth, 2-dimensional manifold M is

a function F : TM → [0, ∞) that is positive and smooth away from the zero
section, has the homogeneity property F (x,λv) = λF (x, v) for all λ > 0 and all
v ∈ TxM , and has the strong convexity property such that the Hessian matrix

gij(x, y) =
1
2

∂2F 2(x, y)
∂yi ∂yj

is positive definite at every point of T̃M = TM \ {0}.
This implies that the Finslerian unit sphere, or the indicatrix

(2.1) Σx :=
{
x ∈ TxM | F (x, v) = 1

}
⊂ TxM

at x ∈ M , is a smooth, closed, strictly convex hypersurface in TxM . In addition,
if F (x, −v) = F (x, v), then F is said to be reversible, or absolutely homogeneous
(see [M2], [BCS], [Sh2] for the basics of Riemann-Finsler manifolds).

REMARK

We gave here the definition for the case of a surface M because in this article we
deal only with surfaces, but the above definition can be easily extended to the
arbitrary dimensional case.

A smooth 2-dimensional manifold endowed with a Finsler norm is called a Finsler
structure on the surface M , or simply a Finsler surface.

In other words, a Finsler surface is a pair (M,F ), where F : TM → [0, ∞)
is C∞ on T̃M := TM \ {0} and whose restriction to each tangent plane TxM is
a Minkowski norm (see [SS] for a detailed discussion).

A Finsler structure (M,F ) on a surface M is also equivalent to a smooth
hypersurface (i.e., 3-dimensional submanifold) Σ ⊂ TM for which the canonical
projection π : Σ → M is a surjective submersion and having the property that for
each x ∈ M , the π-fiber Σx = π−1(x) is a strictly convex smooth curve including
the origin Ox ∈ TxM .

Recall that in order to study the geometry of the surface (M,F ), one con-
siders the pullback bundle π∗TM with base manifold Σ and fibres (TxM)|u,
where u ∈ Σ such that π(u) = x (see [BCS, Chapter 2]). In general, this is not a
principal bundle.

Let us remark that if we denote the projection by p : TM −→ M , then
one can start with the pullback bundle p∗TM constructed over the slit tan-
gent bundle T̃M . This is also a vector bundle whose fiber over a typical point
u = (x, y) ∈ T̃M is a copy of TxM , where p(x, y) = x ∈ M .

However, since the majority of our geometrical objects are sections of the
pullback bundle π∗TM with base manifold Σ, we prefer to use this one instead
of p∗TM over T̃M .



168 Itoh, Sabau, and Shimada

We point out that we are in fact using the same theory as in [BCS], but we
have switched the notation for p : TM −→ M to π : Σ −→ M .

It is also known (see [BCS, p. 30]) that the vector bundle π∗TM has a dis-
tinguished global section l := yi

F (y)
∂

∂xi .
Using this section, one can construct a positively oriented g-orthonormal

frame {e1, e2} for π∗TM , where g = gij(x, y)dxi ⊗ dxj is the induced Riemannian
metric on the fibers of π∗TM . The frame {u; e1, e2} for any u ∈ Σ is a globally
defined g-orthonormal frame field for π∗TM called the Berwald frame.

Locally, we have

e1 :=
1

√
g

(
∂F

∂y2

∂

∂x1
− ∂F

∂y1

∂

∂x2

)
= m1 ∂

∂x1
+ m2 ∂

∂x2
,

e2 :=
y1

F

∂

∂x1
+

y2

F

∂

∂x2
= l1

∂

∂x1
+ l2

∂

∂x2
,

where g is the determinant of the Hessian matrix gij .
The corresponding dual coframe is locally given by

ω1 =
√

g

F
(y2 dx1 − y1 dx2) = m1 dx1 + m2 dx2,

ω2 =
∂F

∂y1
dx1 +

∂F

∂y2
dx2 = l1 dx1 + l2 dx2.

Next, one defines a moving coframing (u;ω1, ω2, ω3) on π∗TM , orthonormal
with respect to the Riemannian metric on Σ induced by the Finslerian metric F ,
where u ∈ Σ and {ω1, ω2, ω3} ∈ T ∗Σ. The moving equations on this frame lead to
the so-called Chern connection. This is an almost metric compatible, torsion-free
connection of the vector bundle (π∗TM,π,Σ).

Indeed, by a theorem of Cartan it follows that the coframe (ω1, ω2, ω3) must
satisfy the structure equations

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3,

dω2 = −ω1 ∧ ω3,(2.2)

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

The functions I, J,K are smooth functions on Σ called the invariants of the
Finsler structure (M,F ) in the sense of Cartan’s equivalence problem (see, e.g.,
[BCS], [Br1], [Br2]).

This implies that on the vector bundle π∗TM there exists a unique torsion-
free and almost metric compatible connection ∇ : C∞(TΣ) ⊗ C∞(π∗TM) →
C∞(π∗TM), given by

(2.3) ∇X̂Z =
{
X̂(zi) + zjωi

j(X̂)
}
ei,

where X̂ is a vector field on Σ, Z = ziei is a section of π∗TM , and {ei} is the
g-orthonormal frame field on π∗TM .
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The 1-forms ωi
j define the Chern connection of the Finsler structure (M,F ),

where

(2.4) (ωi
j) =

(
ω1

1 ω2
1

ω1
2 ω2

2

)
=

(
−Iω3 −ω3

ω3 0

)
,

and I := A111 = A(e1, e1, e1) is the Cartan scalar for Finsler surfaces. Note that
I = 0 is equivalent to the fact that the Finsler structure is Riemannian.

REMARKS

(1) We remark that the Chern connection gives a decomposition of the tan-
gent bundle TΣ by

TΣ = HΣ ⊕ V Σ,

where the HΣ is the horizontal distribution generated by e1, e2 and V Σ is the
vertical distribution generated by ê3, where ê1, ê2, ê3 is the dual frame of the
coframe ω1, ω2, ω3.

(2) For comparison, recall the structure equations of a Riemannian surface.
They are obtained from (2.2) by putting I = J = 0.

(3) The scalar K is called the Gauss curvature of the Finsler surface. In the
case when F is Riemannian, K coincides with the usual Gauss curvature of a
Riemannian surface.

Differentiating again (2.2), one obtains the Bianchi identities

J = I2 =
1
F

(
y1 δI

δx1
+ y2 δI

δx2

)
,

(2.5)
K3 + KI + J2 = 0,

where { δ
δxi , F

∂
∂yi } is the adapted basis of TΣ, given by

δ

δxi
:=

∂

∂xi
− N j

i

∂

∂yj
.

The functions N j
i are called the coefficients of the nonlinear connection of (M,F )

(see [BCS, p. 33] for details).
The linear indices in I2, K3, J2, and so on, indicate differential terms with

respect to ω1, ω2, ω3. For example, dK = K1ω
1 +K2ω

2 +K3ω
3. The scalars K1,

K2, K3 are called the directional derivatives of K.
Nevertheless, note that the scalars I = I(x, y), J = J(x, y), K = K(x, y), and

their derivatives live on Σ, not on M as in the Riemannian case!
More generally, given any function f : Σ → R, one can write its differential

in the form

df = f1ω1 + f2ω2 + f3ω3.
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Taking one more exterior differentiation of this formula, one obtains the
following Ricci identities:

f21 − f12 = −Kf3,

f32 − f23 = −f1,(2.6)

f31 − f13 = If1 + f2 + Jf3.

One defines the curvature of the Finsler structure (M,F ) as usual by

(2.7) Ωi
j = dωi

j − ωk
j ∧ ωi

k,

where i, j, k ∈ {1,2,3}, and ωi
j is the Chern connection matrix (2.4). It easily

follows that the only essential entry in the matrix Ωi
j is

(2.8) Ω1
2 = dω1

2 = dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

We remark that the fact that the curvature 2-form is closed is a peculiarity
of Finslerian surfaces that is very useful in deriving the Gauss-Bonnet formula
in the following sections.

Recall that a Finsler surface is called Landsberg if the invariant J vanishes.
Bianchi identities imply that in this case I2 = 0 and K3 = −KI . A Finsler struc-
ture having I1 = 0, I2 = 0 is called a Berwald surface (see [BCS, Lemma 10.3.1,
p. 267] for details).

It is known that Berwald surfaces are, in fact, Riemannian surfaces if K �= 0
or locally Minkowski flats if K = 0 (see [Sz1] and [BCS, p. 278]).

We also remark that on a Landsberg surface, even though both K and g

are quantities defined on the 3-dimensional manifold Σ, the product K
√

g lives
on M (see [BCS, p. 106]).

Recall that the restriction of a Finsler norm to a tangent plane TxM gives
a Minkowski norm on TxM . For an arbitrary fixed x ∈ M , this Minkowski norm
induces a Riemannian metric ĝ on the punctured plane ˜TxM by

(2.9) ĝ := gij(y)dyi ⊗ dyj ,

where y = (yi) are the global coordinates in TxM .
Note that the Riemannian manifold (˜TxM, ĝ) is flat; that is, the Gaussian

curvature of ĝ vanishes on ˜TxM . This is a peculiarity of the two-dimensional
case (see [BCS, p. 388]).

The outward-pointing normal to the indicatrix is

(2.10) n̂out =
y

F (y)
=

yi

F (y)
· ∂

∂yi
.

Indeed, let us consider yi = yi(t) to be a unit speed parameterization of the
indicatrix Σ. By derivation with respect to t of the formula gij(y)yiyj = 1, one
obtains

gij(y)yiẏj = 0,

where the dot notation means derivative with respect to t.
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In the following, let us consider the indicatrix Σx as a Riemannian sub-
manifold of the punctured Riemannian manifold (˜TxM, ĝ) with the induced Rie-
mannian metric h, and let y(t) = (y1(t), y2(t)) be a unit speed (with respect to h)
parameterization of Σx.

Obviously, F is Euclidean if and only if the main scalar I restricted to Σx

vanishes. In other words, I|Σx
“measures” the deviation of F on TxM from an

Euclidean inner product.
The volume form of the Riemannian metric ĝ on TxM is

(2.11) dV =
√

g dy1 ∧ dy2,

where
√

g =
√

det(gij), and the induced Riemannian volume form on the sub-
manifold Σx is

(2.12) ds =
√

g

F
(y1ẏ2 − y2ẏ1)dt.

Along Σx the 1-form ds coincides with

(2.13) dθ =
√

g

F 2
(y1 dy2 − y2 dy1).

The parameter θ is called the Landsberg angle.

REMARKS

(1) The formula ds =
√

g(y1ẏ2 − y2ẏ1)dt is valid as long as the underlying
parameterization traces Σ out in a positive manner.

(2) The Riemannian length of the indicatrix is therefore defined by

(2.14) L :=
∫

Σx

ds,

and it is typically not equal to 2π as in the case of Riemannian surfaces. This
fact was noted for the first time by M. Matsumoto [M2]. Since the indicatrix is a
1-dimensional submanifold, its Riemannian length and the Riemannian volume
are, in fact, identical.

The Riemannian length of the indicatrix Σx is an integral where the integration
domain also depends on F . One would like, however, to work with integrals over
the standard unit circle

(2.15) S1 =
{
y ∈ ˜TxM : (y1)2 + (y2)2 = 1

}
,

even with the price of a more complicated integrand.
It follows immediately that the indicatrix length in a Minkowski plane can

be computed by

(2.16) L =
∫
S1

√
g

F 2
(y1 dy2 − y2 dy1).

Indeed, the 1-form

(2.17) dθ =
√

g

F 2
(y1 dy2 − y2 dy1)
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is a closed 1-form on ˜TxM . By the use of Stokes’s theorem, one can easily see
that integrating this over two corresponding arcs (see (2.21)) of S and S1, one
obtains the same answer (see [BCS, pp. 101, 102]).

One defines in this way the length function of the indicatrix Σx by

(2.18) L : M → [0, ∞), x �→ L(x) =
∫

Σx

1
F

ds,

or, equivalently,

(2.19) L(x) =
∫

Σx

dθ.

Let us also remark that

(2.20) dθ = ω1
2 |Σx

,

that is, dθ is equal to the pure part dy of ω1
2 ; therefore there is no harm if we

write

(2.21) L(x) =
∫

Σx

ω1
2 .

We define the Landsberg angle �x(X,Y ) of two Finslerian unit vectors X,Y ∈
TxM (with the same origin, say, y = 0, or glided to have the same origin) and
the tips on the indicatrix curve, as the oriented Riemannian angle of X and Y

measured with the induced Riemannian metric ĝ.
In other words, for any two unit vectors X,Y as above, their Finslerian angle

is given by

�x(X,Y ) :=
∫
S1

�
XY

√
g

F 2
(y1 dy2 − y2 dy1) =

∫
Σx |(X,Y )

√
ĝ(ẏ, ẏ)dt

(2.22)
=

∫
Σx |(X,Y )

dθ,

where S1
�

XY
and Σx|(X,Y ) are the arcs on the unit Euclidean circle and the indica-

trix curve described by the directions of the vectors X and Y , respectively. Since
the angle �x(X,Y ) is described by the integral of the 1-form dθ, it is customary
to call it the Landsberg angle.

REMARK

In this point it is important to remark that there are big differences between the
Euclidean angles used in plane geometry and the Landsberg angles defined above
(see Figure 1). Imagine the indicatrix of a Finsler space to be a translated ellipse
(this is actually the case of a Randers metric) and the Euclidean unit circle inside
it. We represented the Euclidean circle in the interior of the Finslerian indicatrix
(they might actually intersect) only to make this explanation easy to follow. We
denote the intersection points of the indicatrix with the coordinate axes by A,
B, A′, B′, and we denote the corresponding arcs by L1, L2, L3, L4, respectively.
Moreover, we denote by E1, E2, E3, E4 the corresponding arcs on the Euclidean
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Figure 1. The Landsberg angle

unit circle. Obviously, the four Euclidean angles determined by the coordinate
axes are all equal to π/2, and their sum equals 2π.

On the other hand, the Landsberg angles determined by the coordinate axes
are described by the ĝ-Riemannian lengths of the indicatrix arcs L1, L2, L3, L4,
respectively. One can easily see that the usual properties of angles known to hold
good in the Euclidean plane do not hold anymore. Indeed, note, for example,
that the opposite angles are not equal anymore, L1 �= L3, L2 �= L4, nor does the
sum of adjacent angles equal π. However, we do know that the sum of L1, L2,
L3, L4 equals the total length of indicatrix L.

A special case would be the case of an absolutely homogeneous Finsler
norm, that is, the case when the induced Minkowski norm satisfies the con-
dition F (−y) = F (y). In this case, the indicatrix, without being an ellipse, it is
still a central symmetric curve, and therefore, the opposite angles are equal! In
particular, L1 = L3 and L2 = L4.

3. The normal lift of a curve

Let us consider a smooth (or piecewise C∞) curve γ : [0, r] → M with the
tangent vector γ̇(t) = T (t), parameterized such that F (γ(t), γ̇(t)) = 1, and let N

be the normal vector along γ defined by

gN (N,N) = 1,

gN (T,N) = 0,(3.1)

gN (T,T ) = σ2(t).



174 Itoh, Sabau, and Shimada

We point out that here gN means

(gN )ij =
1
2

∂2F 2

∂yi ∂yj

(
γ(t),N(t)

)
.

This kind of normal vector was introduced by Z. Shen ([Sh2, p. 27]) and used
by us in the formulation of the Gauss-Bonnet theorem for Landsberg surfaces
with smooth boundary (see [SS]).

The normal lift (shortly N -lift) γ̂⊥(t) of γ(t) to Σ is given by

γ̂⊥ : [0, r] → Σ,
(3.2)

t �→ γ̂⊥(t) =
(
γ(t),N(t)

)
.

The tangent vector T̂ ⊥ to the normal lift γ̂⊥ is given by

T̂ ⊥(t) = ˆ̇γ⊥(t) =
d

dt
γ̂⊥(t) = γ̇i(t)

∂

∂xi |(x,N)

+
d

dt
N i(t)

∂

∂yi
|(x,N)

(3.3)
= T i(t)

δ

δxi |(x,N)

+ (D(N)
T N)i ∂

∂yi
|(x,N)

.

The local coefficients of the covariant derivative with reference vector N along
γ are given by

(3.4) D
(N)
T U = (D(N)

T U)i · ∂

∂xi |γ(t)

=
[dU i

dt
+ T jUkΓi

jk(x,N)
]

· ∂

∂xi |γ(t)

for any U = U i(x) ∂
∂xi vector field along γ, where Γi

jk are the Chern connection
coefficients; that is, ωj

i = Γj
ikdxk.

Note that the term D
(N)
T N in (3.3) means the covariant derivative of N along

γ with reference vector N .
We recall here a useful lemma ([SS, Lemma 7.1]):

LEMMA 3.1

We have

(3.5)
d

dt
gN (V,W ) = gN (D(N)

T V,W ) + gN (V,D
(N)
T W ) + 2A(V,W,D

(N)
T N)|(x,N)

,

where A is the Cartan tensor (see [BCS, p. 30]).

Using this, we obtain

gN (D(N)
T N,N) = 0,

gN (D(N)
T T,N) + gN (T,D

(N)
T N) = 0,(3.6)

gN (D(N)
T T,T ) = σ(t)

dσ

dt
− A(T,T,D

(N)
T N).

Similarly to the notion of Finslerian geodesics, we can define the notion of
the N -parallel of a Finsler structure.
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DEFINITION 3.1

A curve γ on the surface M , in Finslerian natural parameterization, is called an
N -parallel of the Finslerian structure (M,F ) if and only if we have

(3.7) D
(N)
T N = 0.

It follows from (3.3) that the tangent vector to the normal lift of an N -parallel
curve γ on M is given by T̂ ⊥ = T i δ

δxi |(x,N)
. In other words, we obtain the fol-

lowing characterization of an N -parallel of a Finsler surface.

PROPOSITION 3.2

A curve on M is an N -parallel curve if and only if its normal vector N is trans-
ported parallel along γ.

REMARKS

(1) If γ is an N -parallel, then we have

gN (D(N)
T T,N) = 0,

(3.8)
gN (D(N)

T T,T ) = σ(t)
dσ

dt
.

(2) The curve γ is an N -parallel if and only if ∇T̂ ⊥ l = D
(N)
T N = 0. This

implies that gN (∇T̂ ⊥ l, l) = 0; that is, ∇T̂ ⊥ l is orthogonal to the indicatrix.

In case of an arbitrary curve γ on M , from

gN (D(N)
T N,N) = 0, gN (T,N) = 0

it follows that the vector D
(N)
T N is proportional to T ; that is, there exists a non-

vanishing function k
(N)
T (t) such that

(3.9) D
(N)
T N = − k

(N)
T (t)
σ2(t)

T, σ(t) �= 0.

The function k
(N)
T (t) is called the N -parallel curvature of γ. The minus sign

is put only in order to obtain the same formulas as in the classical theory of
Riemannian manifolds.

In other words, we have

(3.10) gN (D(N)
T N,T ) = −gN (D(N)

T T,N) = −k
(N)
T (t).

Since {N,T } is a basis, we also obtain

(3.11) D
(N)
T T = k

(N)
T (t)N + B(t)T,

where we put

(3.12) B(t) =
1

σ(t)
dσ(t)

dt
− 1

σ2(t)
A|(x,N)

(T,T,D
(N)
T N).
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By making use of the cotangent map of γ̂⊥, we compute

γ̂⊥ ∗ω1 ∂

∂t
= ω1(T̂ ⊥)|(x,N)

=
√

g

F
(N2T 1 − T 2N1) = σ(t),

γ̂⊥ ∗ω2 ∂

∂t
= ω2(T̂ ⊥)|(x,N)

= gN (N,T ) = 0,

(3.13)

γ̂⊥ ∗ω3 ∂

∂t
= ω3(T̂ ⊥)|(x,N)

=
√

g

F
[N2(D(N)

T N)1 − N1(D(N)
T N)2]

= − k
(N)
T (t)
σ(t)

(for details see also [SS]).
Therefore we obtain

γ̂⊥ ∗ω1 = σ(t)dt,

γ̂⊥ ∗ω2 = 0,(3.14)

γ̂⊥ ∗ω3 = − k
(N)
T

σ(t)
dt.

If we denote by {ê1, ê2, ê3} the dual frame on Σ of the orthonormal coframe
{ω1, ω2, ω3}, then we obtain the fact that the tangent vector to the normal lift
of γ̂⊥ is

(3.15) T̂ ⊥ = σ(t)ê1 − k
(N)
T

σ(t)
ê3 ∈ 〈ê1, ê3〉,

where 〈ê1, ê3〉 is the 2-plane generated by ê1, ê3.
Note that in the case when γ is an N -parallel, we have

(3.16) D
(N)
T T =

1
σ(t)

dσ(t)
dt

T,

and

γ̂⊥ ∗ω1 = σ(t)dt,

γ̂⊥ ∗ω2 = 0,(3.17)

γ̂⊥ ∗ω3 = 0.

Finally, we remark that the tangent vector to the normal lift of an N -parallel
is

(3.18) T̂ ⊥ = σ(t)ê1.

REMARK

Let us remark that the N -lift used in this section is different from the canonical
lift (or tangential lift) of a curve. Indeed, for an arbitrary curve γ : [0, r] → M
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with the usual properties, the canonical lift of γ to Σ is given by

γ̂ : [0, r] → Σ,
(3.19)

t �→ γ̂(t) =
(
γ(t), γ̇(t)

)
.

This is well defined because (γ(t), γ̇(t)) ∈ Σ because of the Finslerian natural
parameterization of γ (see [BCS, p. 112]).

Let us consider now the normal vector V along γ with respect to the tangent
vector T defined by

gT (T, V ) = 0.

Here, by gT we mean

(gT )ij =
1
2

∂2F 2

∂yi ∂yj

(
γ(t), T (t)

)
.

We have the fundamental relations

gT (T,T ) = 1,

gT (T, V ) = 0,

and let us put

μ2(t) := gT (V , V ).

We also obtain

gT (D(T )
T T,T ) = 0,

gT (D(T )
T T, V ) + gT (D(T )

T V , T ) = 0,(3.20)

gT (D(T )
T V , V ) = μ(t)

dμ

dt
− A(V , V ,D

(T )
T T ).

The local coefficients of the covariant derivative with reference vector T along γ

are given by

(3.21) D
(T )
T U = (D(T )

T U)i · ∂

∂xi |γ(t)

=
[dU i

dt
+ T jUkΓi

jk(x,T )
]

· ∂

∂xi |γ(t)

for any U = U i(x) ∂
∂xi vector field along γ, where Γi

jk are the Chern connection
local coefficients.

One can see that the term D
(T )
T T in (3.20) means the covariant derivative

of T along γ with reference vector T .
From

gT (D(T )
T T,T ) = 0, gT (T, V ) = 0

it follows that the vector D
(T )
T T is proportional to V ; that is, there exists a

nonvanishing function k
(T )

V (t) such that

D
(T )
T T = k

(T )
V (t)V .
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The function k
(T )

V (t) is called the signed curvature of γ over T .
On the other hand, note that from gT (D(T )

T T, V ) + gT (D(T )
T V , T ) = 0, we

obtain gT (D(T )
T V , T ) = −gT (D(T )

T T, V ) = −k
(T )

V (t).
We also obtain

γ̂∗ω1 = 0,

γ̂∗ω2 = dt,(3.22)

γ̂∗ω3 = − k
(T )

V
μ

dt (μ �= 0).

In the case when γ is a Finslerian geodesic, we have by definition D
(T )
T T = 0,

and therefore

gT (T,D
(T )
T V ) = 0,

gT (V ,D
(T )
T V ) = μ(t)

dμ(t)
dt

.

It follows that

D
(T )
T V =

1
μ(t)

dμ(t)
dt

V

and

γ̂∗ω1 = 0,

γ̂∗ω2 = dt,(3.23)

γ̂∗ω3 = 0.

The tangent vector to the tangential lift γ̂ of a Finslerian geodesic γ is

T̂ = ê2.

We end this section by pointing out that this theory reduces to the classical
theory in the case of a Riemannian surface.

Let us assume that our Finslerian structure on M is actually a Riemannian
one, and let us denote the Riemannian metric on the surface M by g. Then the
normal along a curve γ on M , naturally parameterized, is defined by

g(T,T ) = 1,

g(T,N) = 0,(3.24)

g(N,N) = 1.

Therefore the two types of normals N and V defined above coincide, and σ =
μ = 1.

The tangent lift of γ to Σg is

γ̂ : [0, r] → Σg,

t �→ γ̂(t) =
(
γ(t), T (t)

)
,
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where Σg is the total space of the unit sphere bundle of the Riemannian structure
(M,F ). Its tangent vector is

T̂ (t) = ˆ̇γ(t) =
d

dt
γ̂(t) = γ̇i(t)

∂

∂xi |(x,T )

+
d

dt
T i(t)

∂

∂yi
|(x,T )

= T i(t)
δ

δxi |(x,T )

+ (DT T )i ∂

∂yi
|(x,T )

,

where DT T is the usual covariant derivative along γ with respect to the Levi-
Civita connection of g.

By derivation, we obtain

g(DT T,T ) = 0,

g(DT T,N) + g(DT N,T ) = 0,

g(DT N,N) = 0.

From g(DT T,T ) = 0, g(T,N) = 0, it follows that

DT T = kN (t)N,

where the function kN (t) is the usual Riemannian signed curvature of γ.
On the other hand, from

g(T,DT N) = −g(DT T,N) = −kN (t),

g(DT N,N) = 0,

we obtain

DT N = −kN (t)T.

Let us consider now the N -lift of γ to Σg defined as above. By computations
similar to those in the Finslerian case, in the Riemannian case we obtain

k
(N)
T = kN = k

(T )
N ;

that is, the N -parallel curvature and the signed curvature over T coincide with
the usual Riemannian signed curvature.

Moreover, the curve γ is a Riemannian geodesic if and only if one of the fol-
lowing relations hold:

(1) kN = 0,
(2) DT T = 0,
(3) DT N = 0;

that is, on a Riemannian geodesic the vectors T and N are equally parallel
transported along γ. In other words, on a Riemannian manifold, the Riemannian
geodesics, and the N -parallel curves coincide.

4. The Gauss-Bonnet theorem for Finsler surfaces with smooth boundary

The proof of the Gauss-Bonnet theorem for Finsler manifolds without bound-
ary was given by D. Bao and S. S. Chern in [BC] using the transgression method.
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Using their method we have extended the result to Landsberg surfaces with
smooth boundary (see [SS]).

In the present article, we give a Gauss-Bonnet-type formula for Riemann-
Finsler surfaces where the indicatrix volume does not need to be constant any-
more, using an idea of B. Lackey [L].

We start by discussing the case of a Riemann-Finsler surface with smooth
boundary.

Let (M,F ) be a compact Riemann-Finsler surface, and let D ⊂ M be a
domain with smooth boundary ∂D = γ : [a, b] �→ M , given by xi = xi(t). We
assume γ to be unit speed, that is, F (γ(t), T (t)) = 1, where T (t) = γ̇(t).

PROPOSITION 4.1

Let (M,F ) be a compact oriented Finslerian surface, and let D ⊂ M be a domain
with boundary ∂D. Let N : ∂D → Σ be the inward-pointing Finslerian unit nor-
mal on ∂D.

Then, we have∫
D

1
L(x)

[X∗(Kω1 ∧ ω2 − Jω1 ∧ ω3) − d logL(x) ∧ X∗(ω3)]

(4.1)
+

∫
N(∂D)

1
L(x)

ω2
1 = X (D),

where L(x) is the Riemannian length of the indicatrix Σx, X is a unit prolon-
gation of N , K is the Gauss curvature, and X (D) is the Euler characteristic
of D.

Proof
The proof follows [BCS, p. 106] or [SS]. Indeed, note first that we can extend
the normal vector field N on γ to a vector field V on M with only finitely many
zeros x1, x2, . . . , xk in D \ ∂D. It is then known that the sum of indices of X is
equal to the Euler characteristic X (D) (see, e.g., [Spiv, p. 561]).

By removing from D the interiors of the geodesic circles Sε
α (centered at xα

of radius ε > 0), one obtains the manifold with boundary Dε. Note that in this
case, the boundary of Dε consists of the boundaries of the geodesic circles Sε

α

and the boundary of D.
Since V has all zeros in D \ ∂D, it follows that V has no zeros on Dε and

therefore we can normalize it, obtaining in this way the application

(4.2) X =
V

F (V )
: Dε → Σ, x �→ V (x)

F (V (x))
.

Using X , we can lift Dε to Σ constructing in this way the 2-dimensional
submanifold X(Dε) of Σ such that we can integrate formula (2.8) over this sub-
manifold.

However, before doing this, we make the following remark.
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From the degree theory (see, e.g., [Mil]) it results that

lim
ε→0

∫
X(Sε

α)

ω2
1 = −iα(X)

∫
Σxα

ω2
1 = −iα(X)L(xα),

where iα(X) is the index of X at xα. Here the indicatrix Σxα is traced in the
counterclockwise orientation.

Since all the indicatrices are smooth closed convex curves enclosing the origin,
it follows that L(x) �= 0 for any x ∈ M . Using Lackey’s idea (see [L]), we compute
the index of X at an arbitrary fixed zero point xα by

(4.3) −iα(X) =
1

L(xα)
lim
ε→0

∫
X(Sε

α)

ω2
1 = lim

ε→0

∫
X(Sε

α)

1
L(xα)

ω2
1 ,

where we have used the fact that when taking the limit of the integral ω2
1 , the x-

terms actually do not contribute anymore because the metric radius continuously
shrinks.

By summing over the zeros of X and using Stokes’s theorem, it follows that

−X (D) = −
k∑

α=1

iα(X) =
k∑

α=1

lim
ε→0

∫
X(Sε

α)

1
L(xα)

ω2
1 =

k∑
α=1

lim
ε→0

∫
X(Sε

α)

Π

=
k∑

α=1

lim
ε→0

∫
X(Sε

α)

Π +
∫

N(∂D)

Π −
∫

N(∂D)

Π =
∫

∂X(Dε)

Π −
∫

N(∂D)

Π(4.4)

=
∫

D

X∗(dΠ) −
∫

N(∂D)

Π,

where we put

(4.5) Π :=
1

L(x)
ω2

1 .

In this way we obtain the following.

TOPOLOGICAL LEMMA

Let (M,F ) be a compact oriented Finslerian surface, and let D ⊂ M be a domain
with smooth boundary ∂D. Let N : ∂D → Σ be the inward-pointing Finslerian
unit normal on ∂D.

Then, we have

(4.6) −
∫

D

X∗(dΠ) +
∫

N(∂D)

Π = X (D),

where the notation is the same as above.

This is the extension of the topological lemma in [L, page 331] to the case of
Finsler surfaces with smooth boundary.

We need now to compute the first term of the sum in the left-hand side
of (4.6).
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In order to prove (4.1), a straightforward computation gives

dΠ = d
[ 1
L(x)

ω2
1

]
=

1
L(x)

[dω2
1 − d logL(x) ∧ ω2

1 ]

=
1

L(x)
[−Kω1 ∧ ω2 + Jω1 ∧ ω3 − d logL(x) ∧ ω2

1 ],

and Proposition 4.1 is proved. �

Let us remark that in the first integral of the sum in the left-hand side of (4.1),
we should have written L ◦ X(x) instead of L(x). However, since L(x) is the
length of the indicatrix at x ∈ M , and X is a unit vector field on M , one can
easily see that L(x) and L ◦ X(x) give actually the same value. The same is true
for the unit vector N , and we simplify the notation in this article by writing
simply L(x).

We can evaluate the second term in the left-hand sum of (4.1) as∫
N(∂D)

1
L(x)

ω2
1 =

∫
∂D

N ∗
( 1

L(x)
ω2

1

)
=

∫
∂D

1
L(x)

N ∗(ω2
1)

(4.7)

=
∫

γ

1
L(x)

k
(N)
T (t)
σ(t)

dt,

where we have used (3.14).
From Proposition 4.1 and formula (4.7) we conclude the following.

THEOREM 4.2 (THE GAUSS-BONNET FORMULA FOR FINSLER SURFACES WITH SMOOTH BOUNDARY)

Let (M,F ) be a compact oriented Finslerian surface, and let D ⊂ M be a domain
with boundary ∂D = γ. Let N : ∂D → Σ be the inward-pointing Finslerian unit
normal on ∂D.

Then, we have∫
D

1
L(x)

[X∗(Kω1 ∧ ω2 − Jω1 ∧ ω3) − d logL(x) ∧ X∗(ω3)]

(4.8)

+
∫

γ

1
L(x)

k
(N)
T (t)
σ(t)

dt = X (D),

where L(x) is the Riemannian length of the indicatrix Σx, N is the inward-
pointing normal to the boundary ∂D, X is a unit prolongation of N , K is the
Gauss curvature, and X (D) is the Euler characteristic of D.

REMARKS

(1) If (M,F ) is a Landsberg surface, then J = 0, L(x) = L = constant and
therefore (4.8) gives the Gauss-Bonnet formula for Landsberg surfaces (see [BC],
[BCS] for the boundaryless case, and see [SS] for the smooth boundary case). In
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other words, we have

(4.9)
1
L

∫
D

K
√

g dx1 ∧ dx2 +
1
L

∫
γ

k
(N)
T (t)
σ(t)

dt = X (D)

with the same notation as above and where g is the determinant of the induced
metric gij .

(2) If M is a compact orientable boundaryless Finsler manifold, then the
Gauss-Bonnet formula reads

(4.10)
∫

D

1
L(x)

[X∗(Kω1 ∧ ω2 − Jω1 ∧ ω3) − d logL(x) ∧ X∗(ω3)] = X (D).

One can see that this formula agrees with [Sh1].
(3) If (M,F ) is Riemannian, then one obtains immediately the usual Gauss-

Bonnet formula for Riemannian surfaces with smooth boundary (see, e.g., [Spiv,
p. 558], [SST, p. 34], and many other places).

5. The Gauss-Bonnet theorem for Finsler surfaces with regular piecewise
C∞ -boundary

Let (M,F ) be a compact Finsler surface, and let D ∈ M be a domain with
regular piecewise C∞-boundary ∂D = γ : [a, b] �→ M , given by xi = xi(t). Let
a = t0 < t1 < · · · < tk = b be a partition of [a, b] such that γ is C∞ on each closed
subinterval [ts−1, ts], s ∈ {1,2, . . . , k}. We assume γ to be unit speed, that is,
F (γ(t), T (t)) = 1, where T (t) = γ̇(t).

For the sake of simplicity, let us assume that our boundary curve γ has only
one corner x0 = x(t0) for some t0 ∈ [a, b]. In the case of k corners, we sum the
quantities to be obtained below.

As in the proof of Theorem 4.2, we take the N -lift of γ to Σ:

(5.1) γ̂⊥ : [a, b] → Σ, t �→
(
x(t),N(t)

)
,

where N is defined as above by gN(t)(T (t),N(t)) = 0 for all t ∈ [a, b] \ {t0}.
Note that in the case of one corner, the N -lift γ̂⊥ is not a closed curve

anymore.
Indeed, let us denote by T − and T+ the tangent vectors to γ in x0; that is,

(5.2) T − = lim
t↗t0

T (t), T+ = lim
t↘t0

T (t),

and define the corresponding normals at x0 by

(5.3) gN − (N −, T −) = 0, gN+(N+, T+) = 0,

respectively.
It follows that, at the point x0, the tangent vector T (t) has a discontin-

uous jump from T − to T+, and similarly, the normal vector N(t) also has a
discontinuous jump from N − to N+.

When lifting the curve γ to Σ, we obtain a C∞-curve γ̂ in Σ with the
ends (x0,N

−) and (x0,N
+). Note that N −,N+ ∈ ˜Tx0M and that F (x0,N

−) =
F (x0,N

+) = 1 (see Figure 2).
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Figure 2. The normal lift of a regular C∞ piecewise curve with a corner

Now, since N − and N+ are two vectors in Tx0M with the origin in x0 and
the tips on the indicatrix, their Landsberg angle is

�x0(N
−,N+) =

∫
�

N −N+
dθ =

∫
�

N −N+

√
g

F 2
(y1 dy2 − y2 dy1)

(5.4)

=
∫ τ2

τ1

√
ĝ(ẏ, ẏ)dτ,

where y = y(τ) is a unit speed parameterization of the indicatrix and N − = y(τ1),
N+ = y(τ2). Here the Landsberg angle is always evaluated using the positive
oriented indicatrix arc joining the points N −, N+. Here the positive orientation
on the indicatrix is given by ds.

We proceed further and extend the normal vector field N along γ to a smooth
section of TM defined along the subset γ ⊂ M .

Intuitively, the most natural way of doing this is to consider the set of vectors
in Tx0M with the origin in x0 and the tips on the indicatrix segment Nτ1

τ2
:=

{N(τ) : τ ∈ [τ1, τ2]} and to join the points u−
0 := (x0,N

−) and u+
0 := (x0,N

+)
in Σ by the arc of indicatrix curve (x0,N

τ1
τ2

) (see Figure 3). Unfortunately, this
method is not yet good enough because one does not obtain in this way a smooth
section of TM along γ and therefore, the existence of the prolongation vector
field X is not guaranteed anymore.

However, this idea works well if we consider a smooth variation of γ on M .
Indeed, let us consider a variation γ̃ε : [0,1] → M of γ depending on a small

ε > 0 such that limε→0 γ̃ε = γ as set of points.
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Figure 3. The Landsberg angle on a Finslerian indicatrix

We define

(5.5) γ̃1(ε, t) = expγ(t)

(
εN(t)

)
,

where N is the normal vector field along γ. Since N has a discontinuous jump
from N − to N+ at x0, the curve γ̃1 also has a jump.

Indeed, let us remark that for a fixed, small enough ε > 0, we obtain a smooth
curve γ̃1(ε, t) on M going around γ, while for a fixed t, we have a transversal
Finslerian geodesic with initial conditions (γ(t),N(t)).

Note also that for a fixed t1 the tangent vector T̃t1(ε) of γ̃1 at the point
γ̃1(t1, ε) is given by the parallel translation of the tangent vector T (t1) of γ at the
point γ(t1) along the transversal geodesic expγ(t1)(εN(t1)), where gN(t1)(N(t1),
T (t1)) = 0. Using now the properties of parallel displacement (see [BCS, pp. 140,
141]), it follows that at any small enough ε > 0 we have

gÑt1 (ε)

(
Ñt1(ε), T̃t1(ε)

)
= 0,

where Ñt1(ε) is the tangent vector of the transversal geodesic expγ(t1)(εN(t1))
at the point γ1(t1, ε).

These remarks assure us that the variation curve γ̃1 has its ends on the
geodesics expx0

(εN −) and expx0
(εN+), for small enough ε > 0; that is, γ̃1 is not

a closed loop.
Next, we complete the curve γ̃1 with an arc of curve γ̃2 which connects

smoothly the ends of γ̃1 such that γ̃ = γ̃1 ∪ γ̃2 is a closed smooth variation of γ

on M . The easiest way to do this is exponentiate the indicatrix arc between N −

and N+; that is, we consider

(5.6) γ̃2(ε) = expx0
(εNτ1

τ2
).

One can now easily see that γ̃ = γ̃1 ∪ γ̃2 is a closed smooth variation near γ

whose tangent vector T̃ is given along γ̃1 by the parallel displacement of T along
the transversal geodesic σt(ε) = γ̃1(ε, t) and along γ̃2 by expx0∗ W , where W is
the tangent vector along the indicatrix curve. The Gauss lemma for Riemann-
Finsler manifolds (see, e.g., [BCS, p. 140]) assures us that ĝx0(εN,W ) = 0 and



186 Itoh, Sabau, and Shimada

Figure 4. A magnified view of the landscape around the point x0

gÑ (Ñ , T̃2) = 0, where Ñ and T̃2 are the normal and tangent vectors, respectively,
along γ̃2.

From the discussion above, one can see now that the tangent vector of γ̃1

at x−
0 = expx0

(εN −) is gÑ − -orthogonal to Ñ − := d
dε γ̃1(t, ε) and that the tangent

vector of γ̃2 at the same point x−
0 is also gÑ − -orthogonal to Ñ − due to the Gauss

lemma. Therefore the unitary left and right tangent vectors at x−
0 have the same

direction, so they must coincide (see Figure 4).
Therefore we can conclude that the curve γ̃ is smooth at x−

0 when we take
the limit ε → 0. The same argument applies at x+

0 = expx0
(εN+).

We point out, however, that since we have moved the point x0 a little along
the transversal geodesic expx0

(εN −), the indicatrix also changes from Σx0 to
Σx−

0
. However, we finally take the limit ε → 0 so that this small displacement

cannot cause much harm.
Having all these done, we can now consider the bounded domain D̃ ⊂ M

with smooth boundary ∂D̃ = γ̃ = γ̃1 ∪ γ̃2 and apply to it the same method as
in §4.

Indeed, writing our topological lemma for D̃ and taking the limit, we obtain

−
∫

D

X∗(dΠ) + lim
ε→0

∫
Ñ(∂D̃)

Π = X (D)

with the obvious notation.
The term concerning the boundary becomes

lim
ε→0

∫
Ñ(∂D̃)

Π = lim
ε→0

∫
γ̃1

Ñ ∗(Π) + lim
ε→0

∫
γ̃2

Ñ ∗(Π)

=
∫

γ

N ∗(Π) +
1

L(x0)

∫
N

τ1
τ2

ω2
1 .

We compute now the second integral in the sum above.



Gauss-Bonnet-type formula on Riemann-Finsler surfaces 187

Note that we are now integrating on the segment Nτ1
τ2

, where there is no
variation of x; therefore the integrand reads

ω2
1 =

√
g

F 2
(y1δy2 − y2δy1) =

√
g

F 2
(y1ẏ2 − y2ẏ1)dτ,

where yi = yi(τ) is a unit speed parameterization of the indicatrix Σx0 and
{dxi, 1

F δyi} is the dual cobasis of the adapted basis { δ
δxi , F

∂
∂yi }. Here δyi =

dyi + N i
j dxj (see [BCS, p. 96] for details).

Recall that the tangent vector to the indicatrix is given by

λ = ẏ1 ∂

∂y1
+ ẏ2 ∂

∂y2
.

Therefore, we have∫
N

τ1
τ2

ω2
1 =

∫ τ2

τ1

ω2
1(λ)dτ =

∫ τ2

τ1

√
g

F 2
(y1ẏ2 − y2ẏ1)dτ

(5.7)

=
∫ τ2

τ1

dθ = �x0(N
−,N+).

Putting all these together, we obtain the following main result.

THEOREM 5.1 (THE GAUSS-BONNET THEOREM FOR FINSLER SURFACES WITH REGULAR C∞

PIECEWISE BOUNDARY)

Let (M,F ) be a compact oriented Finslerian surface, and let D ∈ M be a domain
with regular piecewise C∞-boundary ∂D = γ, which consists of the union of k

piecewise smooth curves. Let N : ∂D → Σ be the inward-pointing Finslerian unit
normal on ∂D.

Then, we have∫
D

1
L(x)

[X∗(Kω1 ∧ ω2 − Jω1 ∧ ω3) − d logL(x) ∧ X∗(ω3)]

(5.8)

+
∫

γ

1
L(x)

k
(N)
T (t)
σ(t)

dt +
k∑

s=1

1
L(xs)

�xs(N
−,N+) = X (D),

where L(x) is the Riemannian length of the indicatrix Σx, X is a unit prolon-
gation of N , K is the Gauss curvature, �xs(N

−,N+) is the Landsberg angle of
the unit vectors N − and N+, and X (D) is the Euler characteristic of D.

REMARKS

(1) If (M,F ) is a Riemannian manifold, then the Gauss-Bonnet theorem
formulated above reduces to the classical Gauss-Bonnet theorem on Riemann-
ian manifolds. Indeed, it suffices to remark that, in the Riemannian case, the
Euclidean angle �xs(T

−, T+) equals the angle �xs(N
−,N+) which is also an

Euclidean angle. Nevertheless, in the Riemannian case, the sum of interior and
exterior angles at a corner equals π, but this is not the case anymore in the
Finslerian case, as already discussed in §2.
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(2) If D is a domain with regular piecewise C∞-boundary ∂D = γ on a
Landsberg surface (M,F ), then we obtain

(5.9)
1
L

∫
D

K
√

g dx1 ∧ dx2 +
1
L

∫
γ

k
(N)
T (t)
σ(t)

dt +
1
L

k∑
s=1

�xs(N
−,N+) = X (D)

with the obvious notation.

6. A Hadamard-type theorem for N -parallels

We discuss here an application of the Gauss-Bonnet formula (5.9) for Landsberg
surfaces.

In Riemannian geometry it is known that the Gauss-Bonnet theorem imposes
restrictions on the behavior of geodesics. Namely, the Hadamard theorem states
that on a simply connected Riemannian surface of nonpositive Gauss curvature
K ≤ 0, a geodesic cannot have self-intersections.

We prove a similar result for the N -parallels of a Landsberg surface. First,
note the following.

LEMMA 6.1

Let x0 be a point on M, and let us denote by Σx0 ∈ Tx0M the indicatrix curve of
(M,F ) at x0. Then we have

(6.1)
1

L(x0)
�xs(N

−,N+) < 1,

where L(x0) is the Riemannian length of the indicatrix Σx0 and �xs(N
−,N+) is

the Landsberg angle of the unit length vectors N −, N+.

The proof is trivial. For a positive orientation, the Riemannian length of the indi-

catrix arc
�

N −N+ at x0 is always smaller than the total length of the indicatrix
Σx0 (see Figure 3).

We can now give the following.

THEOREM 6.2

On a simply connected Landsberg surface (M,F ) of nonpositive Gauss curvature
K ≤ 0, the N-parallels cannot have self-intersections.

Proof
Let us assume that the N -parallel γ : [a, b] → M can have self-intersections, and
let us denote such a point by x0.

This is equivalent to saying that on M we have a domain D with close regular
piecewise C∞-boundary ∂D = γ. The boundary curve on M is an N -parallel
having a corner at x0.
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Figure 5. A self-intersecting N -parallel curve

Applying now the Gauss-Bonnet formula (5.9) for the domain D with bound-
ary ∂D = γ, we obtain

(6.2)
1
L

∫
D

K
√

g dx1 ∧ dx2 +
1
L

�x0(N
−,N+) = 1,

where N −, N+ are the left and right normals, respectively, to the boundary in
the point x0, as before.

One can see now that this formula leads to a contradiction, showing in this
way that the assumption is false. Indeed, since K ≤ 0 is a nonpositive function,
the integral in the left-hand side of (6.2) is nonpositive. On the other hand, from
Lemma 6.1 we know that the second term in the sum in the left-hand side of (6.2)
is less than 1. But this is not possible; therefore we have reached a contradiction.

It follows that the N -parallel curve γ cannot have a self-intersection; in other
words, the situation in Figure 5 cannot happen. �

REMARKS

(1) Recall that Euler’s theorem for polyhedra states that for any triangula-
tion of a compact surface M , the Euler characteristic of M is given by

(1) X (M) = �vertices − �edges + �faces,

where the symbol � means the number of. In particular, if we have a bounded
region D on a simply connected surface M as in Figure 5, then D is homeomor-
phic to a triangle; that is,

(2) X (D) = �vertices − �edges + �faces = 3 − 3 + 1 = 1.

This is the reason we have 1 in the right-hand side of (6.2).
(2) There is a second part of the Hadamard theorem that states that on any

simply connected Riemannian surface of nonpositive Gauss curvature K ≤ 0, two
distinct geodesics cannot have two points of intersection. This kind of result also
extends to the case of N -parallels, but it is a little more complicated and is going
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to be discussed in a forthcoming article together with other applications of the
Gauss-Bonnet theorem.

Appendix. The existence and unicity of N -parallels

Formula (3.16) is useful for the study of existence and unicity of the N -parallels
of a Finsler surface (M,F ).

Indeed, following an idea of M. Matsumoto [M1] from the conditions that
define the N -parallels, namely,

F (x,N) = 1, gN (N,T ) = 0

or, equivalently,

gij(x,N) · N iN j = 1,

gij(x,N) · N iT j = 0,

where i, j = 1,2, it follows that

[gi1(x,N) · N i]T 1 + [gi2(x,N) · N i]T 2 = 0.

From here, it follows that there exists a positive scalar k such that

− gi1(x,N) · N i

T 2
=

gi2(x,N) · N i

T 1
= k > 0

(or with opposite signs) and therefore

gi1(x,N) · N i = −k · T 2,

gi2(x,N) · N i = k · T 1.

Using now the zero-homogeneity of gij , we obtain the equations

gi1(x, p) · pi = −T 2,
(7.1)

gi2(x, p) · pi = T 1,

where i = 1,2 and p is a vector proportional to N .
Taking into account that the Jacobian of the equation (7.1) is just

det |gij(x, p)| �= 0,

it follows by the theorem of implicit functions that we can solve these equations
with respect to the unknowns p1, p2.

Finally, we can put

(7.2) N i :=
pi

F (x, p)
, i = 1,2.

One can easily see that this N = (N i) satisfies condition (3.1).
We point out that the solutions N1, N2 of the equation (7.1) depend actually

on T .
We can rewrite (3.16) as

(7.3)
d2γi

dt2
+ Γi

jk

(
γ(t),N(t)

)dγj

dt

dγk

dt
=

d

dt
[logσ(t)]

dγi

dt
,
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where N(t) = N(γ(t), γ̇(t)) from (7.2).
An initial condition can be given by

γi(t0) = 0,
(7.4)

γ̇i(t0) = T i
0,

with i = 1,2 and corresponding to the normal initial condition

(7.5) γi(t0) = 0, N i(t0) = N0,

where N0 are given as solutions of (7.1) for T = T0.
Then, by an argument similar to that in the case of geodesics, we know from

the general theory of ODEs that (7.3) with initial conditions (7.4) have unique
solutions.

A detailed study of the N -parallels will be given elsewhere.
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