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Abstract This article addresses frame multiresolution analyses (FMRAs) and FMRA
frame wavelets in the setting of reducing subspaces of L2(Rd). For a general expansive
matrix, we obtain a characterization and some conditions for a frame-scaling function
to generate an FMRA, and we prove that an arbitrary reducing subspace must admit
an FMRA. For an expansive matrix M with | detM | = 2, we establish a sufficient and
necessary condition for FMRAs to admit a single FMRA frame wavelet, give an explicit
construction of FMRA frame wavelets, and study the relation between s-frame wavelets
and FMRA frame wavelets. These results are also new in the setting of L2(Rd).

1. Introduction

An at most countable set {fi : i ∈ I} in a separable Hilbert space H is called a
frame for H if there exist 0 < A ≤ B < ∞ such that

(1) A‖f ‖2 ≤
∑
i∈I

| 〈f, fi〉 |2 ≤ B‖f ‖2

for f ∈ H, where A, B are called the lower frame bound and the upper frame
bound, respectively. In particular, {fi : i ∈ I} is called a Parseval frame for H if
A = B = 1 in (1). The fundamentals of frames can be found in [8], [14] and [6]. N

denotes the set of positive integers, and Z denotes the set of integers. Given d ∈ N,
we denote by L2(Rd) the Hilbert space of square-integrable functions on R

d, by x
k

the kth component of x, by |x| the Euclidean norm of x for x ∈ R
d, and by T

d =
[−1/2,1/2)d the d-dimensional torus, respectively. For a Lebesgue measurable set
E in R

d, we denote by |E| its measure, denote by χE the characteristic function
of E, and define (E )̃ := E +Z

d. A (d × d)-matrix M is called an expansive matrix
if it is an integer matrix with all its eigenvalues greater than 1 in the module. We
denote by M ∗ the transpose of M . Throughout this article, relations between
two measurable sets in R

d such as equality, disjointness, or inclusion are always
understood up to a set of measure zero, and similarly, equality or inequality
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between measurable functions is always understood in the “almost-everywhere”
sense. For a measurable function f on R

d, we define its support by

supp(f) =
{
x ∈ R

d : f(x) �= 0
}
.

It is well defined up to a set of measure zero. The Fourier transform of an
arbitrary f ∈ L1(Rd) ∩ L2(Rd) is defined by

f̂(·) :=
∫

Rd

f(x)e−2πi〈x,·〉 dx

on R
d, and the Fourier transforms of the functions in L2(Rd) are understood as

its unitary extension. Let Ω be a measurable set in R
d with nonzero measure.

We denote by FL2(Ω) the closed subspace of L2(Rd) of the form

FL2(Ω) :=
{
f ∈ L2(Rd) : f̂(·) = 0 on R

d \ Ω
}
.

Given a d × d expansive matrix M , define the dilation operator D and the shift
operator Tk on L2(Rd) for each k ∈ Z

d by

Df(·) := | detM |1/2f(M ·), Tkf(·) := f(· − k)

for f ∈ L2(Rd). Obviously, they are both unitary operators on L2(Rd). Given f ,
g ∈ L2(Rd), define the bracket product of f and g by

[f, g](·) :=
∑
k∈Zd

f̂(· + k)ĝ(· + k)

on Rd. In particular, write

Φf := [f, f ].

We denote by V0(f) the closed linear span of {Tkf : k ∈ Z
d}, that is,

V0(f) := span{Tkf : k ∈ Z
d}.

A function f is called a frame function with frame bounds A and B if {Tkf : k ∈
Z

d} is a frame for V0(f) with frame bounds A and B and is called a Parseval
frame function if {Tkf : k ∈ Z

d} is a Parseval frame for V0(f). A function f is
said to be M -refinable if there exists a Zd-periodic measurable function mf such
that

f̂(M ∗ ·) = mf (·)f̂(·)
on R

d, where mf is called the symbol of f . We always denote by mf its symbol
for an arbitrary M -refinable function f . A function f is called an M -refinable
frame function (M -refinable Parseval frame function) if it is M -refinable and
a frame function (a Parseval frame function). A closed subspace X of L2(Rd)
is called a reducing subspace if DX = X and TkX = X for each k ∈ Z

d. The
following proposition provides us with a characterization of reducing subspaces.

PROPOSITION 1 ([7, THEOREM 1])

Given a d × d expansive matrix M , a closed subspace X of L2(Rd) is a reducing
subspace if and only if X = FL2(Ω) for some measurable set Ω in Rd satisfying
Ω = M ∗Ω.
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By Proposition 1, a nonzero reducing subspace X always corresponds to a set
Ω ⊂ R

d with nonzero measure for which

M ∗Ω = Ω and X = FL2(Ω).

So, to be specific, we denote a reducing subspace by FL2(Ω) instead of X . In
particular, L2(Rd) is a reducing subspace of L2(Rd), and FL2([0, ∞)) (Hardy
space) is also a reducing subspace of L2(R).

Given ψ ∈ FL2(Ω), ψ is called a frame wavelet for FL2(Ω) if {DjTkψ : j ∈
Z, k ∈ Z

d} is a frame for FL2(Ω); ψ is called an s-frame wavelet for FL2(Ω)
if ψ̂ = χE for some measurable set E in R

d, and {DjTkψ : j ∈ Z, k ∈ Z
d} is a

Parseval frame for FL2(Ω).

DEFINITION 1

Given a d × d expansive matrix M and a reducing subspace FL2(Ω) of L2(Rd),
a sequence {Vj }j∈Z of closed subspaces of FL2(Ω) is called a frame multiresolu-
tion analysis (FMRA) associated with M for FL2(Ω) if the following conditions
are satisfied:

(i) Vj ⊂ Vj+1 for j ∈ Z;
(ii)

⋃
j∈Z

Vj = FL2(Ω) and
⋂

j∈Z
Vj = {0};

(iii) Vj = DjV0 for j ∈ Z;
(iv) there exists φ ∈ FL2(Ω) such that {Tkφ : k ∈ Z

d} is a frame for V0.

Herein, we call φ a frame-scaling function of the FMRA. From the definition, we
know that φ is an M -refinable frame function satisfying

(2) V0 = V0(φ), Vj = DjV0 for j ∈ Z.

So we also say that φ generates the FMRA. Given an FMRA {Vj }j∈Z for FL2(Ω),
we always denote by Wj the orthogonal complement of Vj in Vj+1 for j ∈ Z. Then
Wj = DjW0 for j ∈ Z. A function ψ in FL2(Ω) is called an FMRA frame wavelet
for FL2(Ω) if there exists an FMRA {Vj }j∈Z for FL2(Ω) such that ψ ∈ W0 and
that ψ is a frame wavelet for FL2(Ω), which is equivalent to {Tkψ : k ∈ Z

d} being
a frame for W0 since FL2(Ω) =

⊕
j∈Z

Wj .
Ron and Shen in [12] investigated the construction of frame wavelets for

L2(Rd) in a general multiresolutional analysis (MRA) setting. Benedetto and Li
in [1] obtained an explicit expression of FMRA frame wavelets for L2(R) when
M = 2. In [9], an explicit expression of FMRA frame wavelets for L2(R2) was
established for four classes of 2 × 2 expansive matrices with determinant ±2. Dai,
Diao, Gu, and Han in [7] characterized s-frame wavelets for a general FL2(Ω).
Lian and Li in [11] discussed one-dimensional FMRA frame wavelets for FL2(Ω)
when M = 2. This article addresses multivariate FMRAs and FMRA frame
wavelets associated with a general expansive matrix in the setting of reducing
subspaces.
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In Section 2, we investigate frame-scaling functions generating an FMRA for
a reducing subspace FL2(Ω) related to a general expansive matrix M . A char-
acterization and some sufficient conditions for such frame-scaling functions are
established. It is also proved that an arbitrary reducing subspace must admit an
FMRA. Section 3 is devoted to the case | detM | = 2. We characterize FMRAs
admitting a single FMRA frame wavelet for a reducing subspace and obtain an
explicit expression of FMRA frame wavelet. Furthermore, we discuss the relation
between s-frame wavelets and FMRA frame wavelets. These results are also new
in the setting of L2(Rd).

2. The characterization of frame-scaling functions generating
an FMRA for FL2(Ω)

Given a d × d expansive matrix M and a reducing subspace FL2(Ω) of L2(Rd).
In this section, we characterize frame-scaling functions generating FMRAs, give
a sufficient condition for such frame-scaling functions in the setting of FL2(Ω),
and discuss how to obtain an FMRA for a reducing subspace from an FMRA for
L2(Rd). Furthermore, we prove that an arbitrary reducing subspace of L2(Rd)
always admits an FMRA. For this purpose, we first introduce the notion of quasi
norm associated with M .

DEFINITION 2

Given a d × d expansive matrix M , a nonnegative function ρ defined on R
d is

called a quasi norm associated with M if the following conditions hold:

(i) ρ(x) = 0 if and only if x = 0;
(ii) there exists a constant c1 such that ρ(x + y) ≤ c1(ρ(x) + ρ(y)) for x,

y ∈ R
d;

(iii) ρ is continuous on R
d and smooth on R

d \ {0};
(iv) there exists a constant δ > 1 such that ρ(M ∗ ·) = δρ(·);
(v) there exist positive constants c, α1, α2, β1, β2 such that

c−1|x|α1 ≤ ρ(x) ≤ c|x|β1 when |x| ≤ 1,

c−1|x|α2 ≤ ρ(x) ≤ c|x|β2 when |x| ≥ 1.

The existence of such a quasi norm can be found in [13]. It is easy to check that,
for α > 0, ρα is also a quasi norm if ρ is a quasi norm.

For an arbitrary φ ∈ L2(Rd), define Vj as in (2) for j ∈ Z. Then
⋂

j∈Z
Vj = {0}

by [3, Theorem 1.1]. So, we have the following proposition by Definition 1.

PROPOSITION 2

Given a d × d expansive matrix M and a reducing subspace FL2(Ω) of L2(Rd),
let φ ∈ FL2(Ω), and let Vj be defined as in (2). Then {Vj }j∈Z is an FMRA
associated with M for FL2(Ω) if and only if

(i) φ is an M -refinable frame function;
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(ii)
⋃

j∈Z
Vj = FL2(Ω).

By [5, Theorem 2.1], we have the following.

PROPOSITION 3

A function φ in L2(Rd) is a frame function with frame bounds A and B if and
only if Aχsupp(Φφ)(·) ≤ Φφ(·) ≤ Bχsupp(Φφ)(·) on R

d. In particular, φ is a Parse-
val frame function if and only if Φφ(·) = 1 on supp(Φφ).

PROPOSITION 4

Given a d × d expansive matrix M and a set {εi : 0 ≤ i ≤ | detM | − 1} of repre-
sentatives of distinct cosets in Z

d/M ∗
Z

d, let f , g ∈ L2(Rd) be two M -refinable
functions. Then

[f, g](M ∗ ·) =
| detM |−1∑

i=0

mf

(
· + (M ∗)−1εi

)
(3)

× mg

(
· + (M ∗)−1εi

)
[f, g]

(
· + (M ∗)−1εi

)
on R

d. In particular,

(4) Φf (M ∗ ·) =
| detM |−1∑

i=0

∣∣mf

(
· + (M ∗)−1εi

)∣∣2Φf

(
· + (M ∗)−1εi

)
on R

d.

Proof
Note that

Z
d =

| detM |−1⋃
i=0

(M ∗
Z

d + εi),

where the union is a disjoint union. By the refinable properties of f and g, we
can obtain the proposition, and we omit the details here. �

PROPOSITION 5

Given a d × d expansive matrix M , for an arbitrary M -refinable frame function f ,
the symbol mf can be chosen such that mf ∈ L∞(Td).

Proof
Suppose that f is an M -refinable frame function with frame bounds A and B.
By Propositions 4 and 3, we have

Φf (M ∗ ·) = |mf (ξ)|2Φf (·) +
| detM |−1∑

i=1

∣∣mf

(
· + (M ∗)−1εi

)∣∣2Φf

(
· + (M ∗)−1εi

)
≥ |mf (·)|2Φf (·),
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which implies that

A|mf (·)|2 ≤ B

on supp(Φf ). Choose mf (·) = 0 on R
d \ supp(Φf ). Then

f̂(M ∗ ·) = mf (·)f̂(·)
on R

d with mf ∈ L∞(Td). The proof is completed. �

By an argument similar to that in [11, Theorem 1], we have the following propo-
sition.

PROPOSITION 6

Given a d × d expansive matrix M and an M -refinable function φ, define Vj as in
(2) for j ∈ Z. Then ⋃

j∈Z

Vj = FL2(Ω)

with Ω =
⋃

j∈Z
(M ∗)j supp(φ̂).

By Propositions 2, 5, and 6, we have the following theorem.

THEOREM 1

Given a d × d expansive matrix M and a reducing subspace FL2(Ω) of L2(Rd),
let φ ∈ FL2(Ω), and let Vj be defined as in (2). Then {Vj }j∈Z is an FMRA
associated with M for FL2(Ω) if and only if

(i) φ is an M -refinable frame function with mφ ∈ L∞(Td);
(ii)

⋃
j∈Z

(M ∗)j supp(φ̂) = Ω.

REMARK 1

In particular, if Ω = R
d in the theorem, we obtain a characterization of {Vj }j∈Z

as an FMRA associated with M for L2(Rd).

THEOREM 2

Given a d × d expansive matrix M , let E be a bounded set with nonzero measure
satisfying E ⊂ M ∗E, let Ω =

⋃
j∈Z

(M ∗)jE, and let φ be a function in L2(Rd)
such that, for some 0 < A ≤ B < ∞,

(5) AχE(·) ≤ |φ̂(·)| ≤ BχE(·)
on R

d. Then φ generates an FMRA associated with M for FL2(Ω) if and only if(
(M ∗)−1E

)̃
∩ E = (M ∗)−1E,(6)

Tk

( φ̂(M ∗ ·)
φ̂(·)

)
=

φ̂(M ∗ ·)
φ̂(·)

(7)
on

(
(M ∗)−1E

)
∩

(
(M ∗)−1E + k

)
for k ∈ Z

d.



Multivariate FMRAs and FMRA frame wavelets 89

Proof
Since E is bounded, there exists 0 < A′ ≤ B′ < ∞ such that A′χ(E)̃ (·) ≤ Φφ(·) ≤
B′χ(E)̃ (·) by (5), and thus φ is a frame function by Proposition 3. So, by
Theorem 1, φ generates an FMRA for FL2(Ω) if and only if φ is M -refinable.
Note that E ⊂ M ∗E. By (5), it is equivalent to the fact that there exists mφ ∈
L∞(Td) such that

mφ(·) =

⎧⎨⎩
φ̂(M ∗ ·)

φ̂(·) on (M ∗)−1E,

0 otherwise
(8)

on E. Therefore, we need to prove only that (8) holds for some mφ ∈ L∞(Td) if
and only if (6) and (7) hold.

Necessity. Since mφ is Z
d-periodic, from (8) we have(

E \ (M ∗)−1E
)

∩
(
(M ∗)−1E

)̃
= ∅.

So, ((M ∗)−1E )̃ ∩ E ⊂ (M ∗)−1E. Also, observing that (M ∗)−1E ⊂ E leads to (6).
For any ξ ∈ ((M ∗)−1E) ∩ ((M ∗)−1E + k), we have

Tk

( φ̂(M ∗ξ)

φ̂(ξ)

)
= Tk

(
mφ(ξ)

)
= mφ(ξ) =

φ̂(M ∗ξ)

φ̂(ξ)
,

which gives (7).
Sufficiency. Define

mφ(·) =

⎧⎨⎩Tk

( φ̂(M ∗ ·)
φ̂(·)

)
on (M ∗)−1E + k with k ∈ Z

d,

0 otherwise,

which is well defined by (7) and the fact E ⊂ M ∗E. Indeed, since E ⊂ M ∗E,
we have ξ − k ∈ (M ∗)−1E ⊂ E for ξ ∈ (M ∗)−1E + k. So φ̂(ξ − k) �= 0; there-
fore Tk( φ̂(M ∗ ·)

φ̂(·) ) makes sense. For ξ ∈ ((M ∗)−1E + k1) ∩ ((M ∗)−1E + k2) with

k1 �= k2, let ξ − k1 = η; then η ∈ (M ∗)−1E and η − (k1 − k2) ∈ (M ∗)−1E. So
η ∈ ((M ∗)−1E) ∩ ((M ∗)−1E + (k1 − k2)), which implies that

φ̂(M ∗η)

φ̂(η)
= Tk2−k1

( φ̂(M ∗η)

φ̂(η)

)
=

φ̂
(
M ∗(η − (k2 − k1))

)
φ̂(η − (k2 − k1))

by (7). It follows that

φ̂(M ∗(ξ − k1))

φ̂(ξ − k1)
=

φ̂(M ∗(ξ − k2))

φ̂(ξ − k2)
,

namely,

Tk1

( φ̂(M ∗ξ)

φ̂(ξ)

)
= Tk2

( φ̂(M ∗ξ)

φ̂(ξ)

)
.
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It is easy to check that mφ is Z
d-periodic, so mφ ∈ L∞(Td) due to (5). From (6),

we can obtain (8). Indeed, on E,

mφ(·) =

⎧⎨⎩Tk

( φ̂(M ∗ ·)
φ̂(·)

)
on (M ∗)−1E + k with k ∈ Z

d,

0 otherwise,

=

⎧⎨⎩Tk

( φ̂(M ∗ ·)
φ̂(·)

)
on E ∩ ((M ∗)−1E + k) with k ∈ Zd,

0 otherwise.
(9)

By (6), we have

E \
⋃

k∈Zd

(
((M ∗)−1E + k) ∩ E

)
= E \ (M ∗)−1E,

from which it follows that mφ(·) = 0 on E \ (M ∗)−1E by (9). However, mφ(·) =
φ̂(M ∗ ·)

φ̂(·) on (M ∗)−1E. Equation (8) therefore holds. �

THEOREM 3

Given a d × d expansive matrix M . An arbitrary reducing subspace FL2(Ω) of
L2(Rd) admits an FMRA associated with M .

Proof
Suppose that ρ is a quasi norm associated with M as in Definition 2. Define

G0 =
{
ξ ∈ R

d : ρ(ξ) ≤ 1
}
;

then

M ∗G0 =
{
η ∈ R

d : ρ(η) ≤ δ
}
.

However, by (iv) and (v) in Definition 2, we have G0 ⊂ M ∗G0, and G0 is bounded,
which implies that (M ∗)j0G0 ⊂ T

d for some j0 ∈ Z. Again by the continuity of ρ

and the fact that ρ(0) = 0, G0 contains a neighborhood of the origin zero. Take
G = (M ∗)j0G0. Then

G ⊂ M ∗G and R
d =

⋃
j∈Z

(M ∗)jG.

Define φ0 via its Fourier transform by φ̂0 = χG. It is easy to check that (6)
and (7) hold for G. Then φ0 generates an FMRA associated with M for L2(Rd)
by Theorem 2. Define φ via its Fourier transform by φ̂ = χE with E = G ∩ Ω.
Then

E ⊂ M ∗E and Ω =
⋃
j∈Z

(M ∗)jE,

and (6) and (7) hold for E. So φ generates an FMRA associated with M for
FL2(Ω) by Theorem 2. The proof is completed. �
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THEOREM 4

Given a d × d expansive matrix M and a measurable set E in R
d satisfying

E ⊂ M ∗E, let Ω =
⋃

j∈Z
(M ∗)jE. Assume that f ∈ L2(Rd) generates an FMRA

associated with M for L2(Rd) and that |E ∩ G| > 0, where G = supp(f̂). Define
φ via its Fourier transform by

φ̂(·) = f̂(·)χE(·)(10)

on R
d. Then φ generates an FMRA associated with M for FL2(Ω) if and only if

(i) (M ∗)−1(E ∩ G) = ((M ∗)−1(E ∩ G))̃ ∩ (E ∩ G);
(ii) there exists a positive constant C such that Φφ(·) ≥ C on (E ∩ G)̃ .

Proof
Since f generates an FMRA for L2(Rd), in view of Remark 1, we have⋃

j∈Z
(M ∗)jG = R

d. It follows that⋃
j∈Z

(M ∗)j(E ∩ G) =
(⋃

j∈Z

(M ∗)jE
)

∩
(⋃

j∈Z

(M ∗)jG
)

=
⋃
j∈Z

(M ∗)jE = Ω,

where we have used the fact that E ⊂ M ∗E and G ⊂ M ∗G due to the refinable
property of f . Note that supp(φ̂) = E ∩ G. By Theorem 1, to finish the proof,
we need to prove only that φ is M -refinable with mφ ∈ L∞(Td) if and only if

(11) (M ∗)−1(E ∩ G) =
(
(M ∗)−1(E ∩ G)

)̃
∩ (E ∩ G).

Suppose that there exists mφ ∈ L∞(Td) such that

φ̂(M ∗ ·) = mφ(·)φ̂(·)(12)

on R
d. It follows that ((M ∗)−1(E ∩ G))̃ ⊂ supp(mφ) by Z

d-periodicity of mφ,
which together with (12) implies that(

(M ∗)−1(E ∩ G)
)̃

∩ (E ∩ G) ⊂ supp(mφ) ∩ (E ∩ G)

= supp
(
φ̂(M ∗ ·)

)
= (M ∗)−1(E ∩ G).

However, we also have (M ∗)−1(E ∩ G) ⊂ E ∩ G by (12). Equation (11) therefore
follows.

Conversely, suppose that (11) holds. Since supp(φ̂) = E ∩ G, we have

φ̂(M ∗ ·) = f̂(M ∗ ·)χE(M ∗ ·) = f̂(M ∗ ·)χ(M ∗)−1(E∩G)(·)

on R
d by (10), which together with (11) leads to

φ̂(M ∗ ·) = f̂(M ∗ ·)χ((M ∗)−1(E∩G))̃(·)χE∩G(·) on R
d.
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Since f ∈ L2(Rd) generates an FMRA for L2(Rd), by Remark 1 there exists
mf ∈ L∞(Td) such that f̂(M ∗ ·) = mf (·)f̂(·) on R

d. So

φ̂(M ∗ ·) = mf (·)χ((M ∗)−1(E∩G))̃(·)f̂(·)χE(·) = mf (·)χ((M ∗)−1(E∩G))̃(·)φ̂(·)

on R
d, and consequently, φ is M -refinable with mφ ∈ L∞(Td). The proof is

completed. �

3. The construction of FMRA frame wavelets

This section is devoted to the construction of FMRA frame wavelets. In the
setting of reducing subspace FL2(Ω) with | detM | = 2, we obtain an explicit
expression of FMRA frame wavelets. The relation between s-frame wavelets and
FMRA-frame wavelets is also studied.

PROPOSITION 7

Given a d × d expansive matrix M , let f ∈ L2(Rd) be an M -refinable frame
function. Define f � via its Fourier transform by

f̂ �(ξ) :=

⎧⎨⎩
f̂(ξ)√
Φf (ξ)

ξ ∈ supp(f̂),

0 otherwise.

Then f � is an M -refinable Parseval frame function, and V0(f) = V0(f �).

Proof
By the definition of f �, we have f � ∈ V0(f) and supp(f̂ �) = supp(f̂), which implies
that V0(f) = V0(f �) by [2, Corollary 2.2]. However, f � is a Parseval frame func-
tion by Proposition 3. So, to finish the proof, we only need to prove that f �

is M -refinable. Since f is M -refinable, we have (M ∗)−1supp(f̂) ⊂ supp(f̂), and
mf (·) = 0 on supp(f̂) \ ((M ∗)−1supp(f̂)). It follows that f � is M -refinable with

mf�(·) =

√
Φf (·)

Φf (M ∗ ·)mf (·)χ((M ∗)−1supp(f̂))̃ (·).

The proof is completed. �

PROPOSITION 8

Given a d × d expansive matrix M and an M -refinable frame function f , define
V0(f) and V1(f) as in (2) and W0(f) as the orthogonal complement of V0(f)
in V1(f). Let {εi : 0 ≤ i ≤ | detM | − 1} be a set of representatives of distinct
cosets in Z

d/M ∗
Z

d. Then, for an arbitrary g ∈ V1(f), g ∈ W0(f) if and only if

| detM |−1∑
i=0

mg

(
· + (M ∗)−1εi

)
mf

(
· + (M ∗)−1εi

)
Φf

(
· + (M ∗)−1εi

)
= 0

on Rd, where mg is a Zd-periodic measurable function satisfying ĝ(·) =
mg((M ∗)−1·)f̂((M ∗)−1·).
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Proof
g ∈ W0(f) if and only if g ⊥ V0(f), which, by a simple argument, is equivalent to
[g, f ] = 0. However, by a simple computation, we have

[g, f ](·) =
| detM |−1∑

i=0

mg

(
(M ∗)−1 · +(M ∗)−1εi

)
× mf

(
(M ∗)−1 · +(M ∗)−1εi

)
Φf

(
(M ∗)−1 · +(M ∗)−1εi

)
,

which leads to the proposition. The proof is completed. �

Now we turn to FMRA frame wavelet construction in the setting of reducing
subspaces when | detM | = 2. For this purpose, we quote the following proposi-
tion.

PROPOSITION 9 ([10, LEMMA 4.2])

Given a d × d expansive matrix M with | detM | = 2, let {0, δ} be a set of repre-
sentatives of distinct cosets in Z

d/M ∗
Z

d. Then there exists 1 ≤ k0 ≤ d such that
(2(M ∗)−1δ)k0 is an odd number.

THEOREM 5

Given a d × d expansive matrix M with | detM | = 2 and an M -refinable frame
function φ, let {0, δ} be a set of representatives of distinct cosets in Z

d/M ∗
Z

d.
Write F = supp(Φφ), and write Fδ = F − (M ∗)−1δ. Define V0(φ) and V1(φ) as
in (2), and define W0(φ) as the orthogonal complement of V0(φ) in V1(φ). Then
there exists ψ ∈ W0(φ) such that {Tkψ : k ∈ Zd} is a frame for W0(φ) if and only
if F ∩ Fδ ⊂ (M ∗)−1F .

Proof
By Proposition 7 and its proof, without loss of generality, we assume that φ is an
M -refinable Parseval frame function, and we only need to prove that, under such
assumption, there exists ψ ∈ W0(φ) such that {Tkψ : k ∈ Z

d} forms a Parseval
frame for W0(φ) if and only if F ∩ Fδ ⊂ (M ∗)−1F .

For necessity, suppose that {Tkψ : k ∈ Z
d} is a Parseval frame for W0(φ).

Write supp(Φψ) = E. Then Φψ = χE by Proposition 3. Let {0, σ} be a set of
representatives of distinct cosets in Z

d/MZ
d, and define

φ1(·) =
√

2φ(M ·), φ2(·) =
√

2φ(M · − σ).(13)

Then {Tkφi(·) : i = 1,2, k ∈ Z
d} is a Parseval frame for V1(φ). Note that

{Tkφ,Tkψ : k ∈ Zd} is also a Parseval frame for V1(φ). So, by [4, Lemma 2.3],
we have

Φφ1(·) + Φφ2(·) = Φφ(·) + Φψ(·).(14)

By a simple computation, (14) can be rewritten as

Φφ

(
(M ∗)−1·

)
+ Φφ

(
(M ∗)−1(· + δ)

)
= Φφ(·) + Φψ(·),
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which implies that

χM ∗F (·) + χM ∗Fδ
(·) = χF + χE

by Proposition 3. It follows that F ∩ Fδ ⊂ (M ∗)−1F .
For sufficiency, suppose F ∩ Fδ ⊂ (M ∗)−1F . Define ψ via its Fourier trans-

form by

ψ̂(·) = mψ

(
(M ∗)−1·

)
φ̂
(
(M ∗)−1·

)
with

mψ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
e2πiξk0 mφ(ξ + (M ∗)−1δ), ξ ∈ F ∩ Fδ,

1, ξ ∈ (F \ Fδ) \ (M ∗)−1F,

0 otherwise,

where k0 is as in Proposition 9. Next, we divide the proof into three steps to
prove that ψ is as desired.

Step 1 : ψ ∈ W0(φ). By Propositions 3 and 8, we only need to prove that

mφ(·)mψ(·)χF (·) + mφ

(
· + (M ∗)−1δ

)
mψ

(
· + (M ∗)−1δ

)
χFδ

(·) = 0.(15)

It clearly holds on Rd \ (F ∪ Fδ). So we only need to prove that (15) holds on
F ∪ Fδ .

Applying Propositions 3 and 4 to φ here, we have

χ(M ∗)−1F (·) = |mφ(·)|2χF (·) +
∣∣mφ

(
· + (M ∗)−1δ

)∣∣2χFδ
(·),(16)

which implies that

(M ∗)−1F ⊂ F ∪ Fδ,(17)

mφ(·) = 0 on (F \ Fδ) \ (M ∗)−1F,(18)

mφ

(
· + (M ∗)−1δ

)
= 0 on (Fδ \ F ) \ (M ∗)−1F.(19)

By (17),

F ∪ Fδ = (F ∩ Fδ) ∪
(
((M ∗)−1F ) \ (F ∩ Fδ)

)
∪

(
(F \ Fδ) \ (M ∗)−1F

)
∪

(
(Fδ \ F ) \ (M ∗)−1F

)
.

By (18) and (19), (15) holds on ((F \ Fδ) \ (M ∗)−1F ) ∪ ((Fδ \ F ) \ (M ∗)−1F ).
Also, observing that ((M ∗)−1F ) \ (F ∩ Fδ) is (M ∗)−1δ-shift invariant, we have

mψ(·) = mψ

(
· + (M ∗)−1δ

)
= 0

on ((M ∗)−1F ) \ (F ∩ Fδ), which gives (15) on this set. On F ∩ Fδ , a simple compu-
tation leads to (15) due to the fact that e2πi(ξ+(M ∗)−1δ)k0 = −e2πiξk0 . (15) there-
fore follows.

Step 2 : ψ is a Parseval frame function. By a simple computation and Prop-
osition 3, we have

Φψ(·) =
∣∣mψ

(
(M ∗)−1·

)∣∣2χM ∗F (·) +
∣∣mψ

(
(M ∗)−1 · +(M ∗)−1δ

)∣∣2χM ∗Fδ
(·),(20)
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which together with the definition of mψ implies that

Φψ = χE ,

where E = M ∗((F ∩ Fδ) ∪ [(F ∪ Fδ) \ (M ∗)−1F ]). So ψ is a Parseval frame
function by Proposition 3.

Step 3 : {Tkψ : k ∈ Z
d} is complete in W0(φ). Suppose f ∈ W0(φ), f ⊥ V0(ψ).

We only need to prove that f = 0. Since f ∈ W0(φ), we have f ⊥ V0(φ) and

f̂(M ∗ ·) = mf (·)φ̂(·)(21)

for some Z
d-periodic measurable function mf . By an argument similar to that

in Proposition 8, we have the equation system

mφ(·)mf (·)χF (·) + mφ

(
· + (M ∗)−1δ

)
mf

(
· + (M ∗)−1δ

)
χFδ

(·) = 0,(22)

mψ(·)mf (·)χF (·) + mψ

(
· + (M ∗)−1δ

)
mf

(
· + (M ∗)−1δ

)
χFδ

(·) = 0.(23)

By (21), it suffices to prove that mf = 0 on F . On F ∩ Fδ , the coefficient deter-
minant of the equation system

det

(
mφ(ξ) mφ(ξ + (M ∗)−1δ)

mψ(ξ) mψ(ξ + (M ∗)−1δ)

)
= −e−2πiξk0 �= 0,

which implies that mf (ξ) = 0. On (F \ Fδ) ∩ (M ∗)−1F , we have |mφ(·)| = 1.
Combined with (22), it follows that mf (·) = 0. On (F \ Fδ) \ (M ∗)−1F , mψ(·) = 1,
which leads to mf (·) = 0 by (23). Therefore, mf (·) = 0 on F . The proof is
completed. �

THEOREM 6

Given a d × d expansive matrix M with | detM | = 2 and a reducing subspace
FL2(Ω) of L2(Rd), let {0, δ} be a set of representatives of distinct cosets in
Z

d/M ∗
Z

d with (2(M ∗)−1δ)k0 being odd for some 1 ≤ k0 ≤ d, let {Vj }j∈Z be
an FMRA associated with M for FL2(Ω), let φ be a frame-scaling function
of the FMRA, and let W0 be the orthogonal complement of V0 in V1. Write
F = supp(Φφ) and Fδ = F − (M ∗)−1δ. Then there exists ψ ∈ W0 such that
{Tkψ : k ∈ Z

d} is a frame for W0 if and only if F ∩ Fδ ⊂ (M ∗)−1F . In this
case, define ψ via its Fourier transform by ψ̂(·) = mψ((M ∗)−1·)φ̂((M ∗)−1·) with

mψ(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λe2πiμξk0 mφ(ξ + (M ∗)−1δ)Φφ(ξ + (M ∗)−1δ), ξ ∈ F ∩ Fδ,

a, ξ ∈ (F \ Fδ) \ (M ∗)−1F,

b, ξ ∈ (Fδ \ F ) \ (M ∗)−1F,

0 otherwise,

where a, b, λ ∈ C, μ ∈ {1, −1}, aλ �= 0. Then {Tkψ : k ∈ Z
d} is a frame for W0,

and thus {DjTkψ : j ∈ Z, k ∈ Z
d} is a frame for FL2(Ω).

Proof
The first part is an immediate consequence of Theorem 5. For the rest, replacing,
respectively, (15), (16), (20), (22), and (23) by the following equations, then, by
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the same procedure as in Theorem 5, we can finish the proof:

mφ(·)mψ(·)Φφ(·)
(24)

+ mφ

(
· + (M ∗)−1δ

)
mψ

(
· + (M ∗)−1δ

)
Φφ

(
· + (M ∗)−1δ

)
= 0,

(25) Φφ(M ∗ ·) = |mφ(·)|2Φφ(·) +
∣∣mφ

(
· + (M ∗)−1δ

)∣∣2Φφ

(
· + (M ∗)−1δ

)
,

Φψ(·) =
∣∣mψ

(
(M ∗)−1·

)∣∣2Φφ

(
(M ∗)−1·

)
(26)

+
∣∣mψ

(
(M ∗)−1 · +(M ∗)−1δ

)∣∣2Φφ

(
(M ∗)−1 · +(M ∗)−1δ

)
,

mf (ξ)mφ(ξ)Φφ(ξ)
(27)

+ mf

(
ξ + (M ∗)−1δ

)
mφ

(
ξ + (M ∗)−1δ

)
Φφ

(
ξ + (M ∗)−1δ

)
= 0,

mf (ξ)mψ(ξ)Φφ(ξ)
(28)

+ mf

(
ξ + (M ∗)−1δ

)
mψ

(
ξ + (M ∗)−1δ

)
Φφ

(
ξ + (M ∗)−1δ

)
= 0.

The proof is completed. �

In what follows, we focus on the relation between s-frame wavelets and FMRA
frame wavelets. For this purpose, we quote the following proposition, which is
another statement of [7, Theorem 2].

PROPOSITION 10

Given a d × d expansive matrix M and a reducing subspace FL2(Ω) of L2(Rd),
a function ψ defined by ψ̂ = χE for some measurable set E in R

d is an s-frame
wavelet for FL2(Ω) if and only if

(i) E ∩ (E + k) = ∅ for k ∈ Z
d \ {0};

(ii) E ∩ (M ∗)jE = ∅ for j ∈ Z \ {0};
(iii)

⋃
j∈Z

(M ∗)jE = Ω.

THEOREM 7

Given a d × d expansive matrix M (not necessarily | detM | = 2) and a reducing
subspace FL2(Ω) of L2(Rd). Let E be a measurable set in Rd satisfying⋃

j∈Z

(M ∗)jE = Ω,(29)

E ∩ (M ∗)jE = ∅ for j ∈ Z \ {0},(30)

(M ∗)−jE ⊂ T
d when j ≥ j0 for some j0 ∈ Z.(31)

Define ψ via its Fourier transform by ψ̂(·) = χ(M ∗)−j0E(·) on R
d. Then ψ is an

FMRA frame wavelet.
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Proof
We use the notation in Theorem 6. Write E0 =

⋃−j0−1
j=− ∞(M ∗)jE, and define φ via

its Fourier transform by φ̂ = χE0 . Then, by (29) and (31),

E0 ⊂ M ∗E0 ⊂ T
d,(32) ⋃

j∈Z

(M ∗)jE0 =
⋃
j∈Z

(M ∗)jE = Ω.(33)

By (32), we have

(E0)̃ ⊂ (M ∗)−1(Td + M ∗
Z

d),
(34)

(E0)̃ − (M ∗)−1δ ⊂ (M ∗)−1(Td + M ∗
Z

d − δ),

which implies that

(E0)̃ ∩
(
(E0)̃ − (M ∗)−1δ

)
= ∅.(35)

From (32), we also have Φφ = χ(E0 )̃ , φ is M -refinable, and thus φ is an M -refinable
frame function by Proposition 3. Also in view of (33), φ generates an FMRA
{Vj }j∈Z for FL2(Ω) by Theorem 1, where Vj = span{DjTkφ : k ∈ Z

d}. Note
that F = (E0)̃ and Fδ = (E0)̃ − (M ∗)−1δ. Choose mψ = χ(F \Fδ)\(M ∗)−1F , and
define ψ via its Fourier transform by

ψ̂(·) = mψ

(
(M ∗)−1·

)
φ̂
(
(M ∗)−1·

)
.(36)

Then, by (35) and Theorem 6, ψ is a frame wavelet associated with the FMRA
{Vj }j∈Z. From (36), it follows that

ψ̂ = χ(M ∗E0)∩((M ∗(F \Fδ))\F ).

Observing that F = (E0)̃ and E0 ⊂ T
d, we have

(M ∗E0) ∩
(
(M ∗(F \ Fδ)) \ F

)
= (M ∗E0) \

(
(M ∗(E0)̃ − δ) ∪ (E0)̃

)
= (M ∗E0) \ (E0)̃

by (35). However, by (32) and (30), we have

(M ∗E0) \ (E0)̃ = (M ∗E0) \ E0 = (M ∗)−j0E.

Therefore,

ψ̂ = χ(M ∗)−j0E .

The proof is completed. �

Given a d × d expansive matrix M and a reducing subspace FL2(Ω) of L2(Rd).
Suppose ψ defined by ψ̂ = χE is an s-frame wavelet for FL2(Ω), and E is
bounded. Then, by Proposition 10 and Theorem 7, ψ0 defined by ψ̂0 = χ(M ∗)−j0 E

for some j0 ∈ Z is an FMRA frame wavelet. However, ψ is not necessarily an
FMRA frame wavelet. Next, we give such an example.
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EXAMPLE 1

Given 1/2 ≤ α,β ≤ 1, an expansive matrix M =
(

0 1

−2 0

)
, and a reducing sub-

space FL2(Ω) of L2(R2), where Ω =
⋃

j∈Z
(M ∗)jE with

E =
{

ξ ∈ [0,1)2 : 0 ≤ ξ1 ≤ α, − β

α
(ξ1 − α) ≤ ξ2 ≤ 1

}
∪

{
ξ ∈ [0,1)2 : α ≤ ξ1 ≤ 1,0 ≤ ξ2 ≤ 1

}
,

then ψ defined by ψ̂ = χE is an s-frame wavelet for FL2(Ω), while it cannot be
derived from an FMRA for a reducing subspace.

Proof
It is easy to check that

E ∩ (E + k) = ∅ for 0 �= k ∈ Z
2,(37)

E ∩ (M ∗)jE = ∅ for 0 �= j ∈ Z.(38)

So ψ is an s-frame wavelet for FL2(Ω) by Proposition 10. Next, we prove by
contradiction that ψ cannot be derived from an FMRA for a reducing subspace.
Suppose that ψ is derived from an FMRA {Vj }j∈Z for some reducing subspace
with φ being its frame-scaling function. Then the reducing subspace must be
FL2(Ω) since ψ is an s-frame wavelet for FL2(Ω). Denote by Wj the orthogonal
complement of Vj in Vj+1. Then

V0 =
−1⊕

j=− ∞
Wj .

Also, we observe that supp(f̂j) ⊂ (M ∗)jE for fj ∈ Wj leads to supp(φ̂) ⊂⋃−1
j=− ∞(M ∗)jE. Since Djψ ∈ V0 for j < 0, we have (M ∗)jE = supp((Djψ)̂ ) ⊂

supp(φ̂) for j < 0, and consequently,

supp(φ̂) =
−1⋃

j=− ∞
(M ∗)jE.(39)

By the refinable property of φ, we have (M ∗)−1supp(φ̂) = supp(φ̂) ∩ supp(mφ),
which implies that

−2⋃
j=− ∞

(M ∗)jE =
( −1⋃

j=− ∞
(M ∗)jE

)
∩ supp(mφ)(40)

by (39). Take D = {ξ ∈ (M ∗)−2E : −1/2 ≤ ξ1 ≤ −1/4, −1/2 ≤ ξ2 ≤ −1/4}. Then
|D| > 0, and mφ(·) �= 0 on D. From (38) and (40), it follows that mφ(·) = 0 on
(M ∗)−1E, and thus mφ(·) = 0 on D+

(
1
0

)
due to the fact that D+

(
1
0

)
⊂ (M ∗)−1E.

It contradicts the fact that mφ(·) �= 0 on D by Z
2-periodicity of mφ. The proof

is completed. �
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