On Deligne’s conjecture for Hilbert
motives over totally real number fields

Cristian Virdol

Abstract In this article we prove that if Deligne’s conjecture holds for motives associ-
ated to Hilbert modular forms of weight at least 3, then Deligne’s conjecture holds for
arbitrary base change to totally real number fields of motives associated to Hilbert mod-
ular forms of weight at least 3.

1. Introduction

Let M be a motive defined over a number field F' with coefficients in a num-
ber field E. One can associate to M an L-function L(M,s) having values in
E®qpC. From the proprieties of the restriction of scalars, one knows that
L(M,s) =L(Resg/q M,s). When M is critical, one has the +-period defined by
Deligne ¢ (Resp/g M) € E®qC. Then Deligne’s conjecture states the following.

CONJECTURE 1.1
If M is a critical motive defined over F with coefficients in E, then

L(M,0)/¢" (Respjo M) € E@1C E®qC.

This conjecture is known to be true for rank 1 motives if F' is either totally real
or a CM field (see [B]) and for motives associated to classical modular forms of
GL(2)/Q (see [D]).

In this article, we prove the following result. (We remark that in the proof
of this theorem, we assume the Tate conjecture for motives; see §4 for details.)

THEOREM 1.2

Let F be a totally real number field, let Ir be the set of infinite places of F, let f
be a Hilbert cusp form of weight k = (k;)rcr. of GL(2)/F, where all k; have the
same parity and all k. > 3. Let M(f)(j) be the j-Tate twist of the motive M(f)
associated to f, where j is an integer such that (ko+1)/2 < j < (ko +k°)/2, where
ko = max{k, | 7 € Ir} and k® =min{k, |7 € Ir}. Assume that Conjecture 1.1
is true for all the motives of the form M(g)(j), where g is an arbitrary modular
form of weight k of GL(2)/L, and L is an arbitrary totally real finite extension
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of F. Then Congecture 1.1 is true for all the motives of the form M(f)(5)/F’,
where F' is an arbitrary totally real finite extension of F.

Note the following point: We don’t know that the motive M (f)(j)/F’ corre-
sponds to a Hilbert modular form since arbitrary totally real base change is not
yet established.

2. Periods for motives

Consider a motive M defined over a number field F' with coefficients in a number
field E. Denote by I'r the absolute Galois group Gal(Q/F). We recall now the
definition of the L-function (M, s) of M. Consider the étale cohomology H (M)
for each prime ideal A of E. It is conjectured that the Galois representation
pxr: I'rp — GL(HA(M)) is unramified outside the residual characteristic { of A
and a finite set S of primes of F' independent of A\. Denote by V := Hy (M) the
representation space of py. If p is a prime ideal of F' prime to I, we choose an
inertia group I, at p and a geometric Frobenius Frob,,. It is conjectured that the
characteristic polynomial Z,(M,X) = det(1 — px(Froby,)|y 1, X) has coefficients
in E and is independent of A\. Assume all these conjectures. Denote by I the
set of infinite places of E. For 7 € I, put

Lo(1,M,s) =7Z,(M,N(p)™*)""
and

L(t,M,s) = HLK](T, M,s).

One has the isomorphism F ®g C = C!# given by e® 2 — (2-7(€))rer,. One can
define a function L(M, s) taking values in F ®g C by arranging L(7, M, s).

Let Lo (M, s) be the infinite part of the L-function of M which is a product
of D-functions. If one puts A(M,s) = L(M,s)L.(M,s), then the conjectural
functional equation has the following form:

A(M,s)=e(M,s)A(M",1—s),

where €(M, s) is a multiple of an exponential function of s with values in £ ®gC
and MV is the dual of M. We say that an integer n is critical for M if neither
Loo(M,s) nor Loo(MY,1 — s) has a pole at s =n. We call M critical if M is
critical at zero.

Consider now a motive M defined over Q with coefficients in E. Let Hp(M)
denote the Betti realization of M. Then Hg(M) is a finite-dimensional vector
space over E. The complex conjugation F, acts on Hg(M), and one gets a
decomposition

Hp(M)=HE (M) & Hg (M),

where HZ (M) denote the eigenspaces of Hg(M) with eigenvalues +1.
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Assume that the motive M is homogeneous of weight w. Then one has the
Hodge decomposition

Hp(M)2oC= @ H"(M),
ptg=w
where HPI(M) is a free E ®g C-module.
Let Hpr(M) denote the de Rham realization of M. Then Hpr(M) is
a finite-dimensional vector space over F. One has the comparison isomorphism

as (F ®qg C)-modules.
Define the Hodge filtration {F™} on Hpgr(M) by

I (F™(Hpr(M)) ®¢ C) = @ H™(M).
p=>m
For M a motive of odd weight w = 2p+ 1, define F*(M) =: FPTY{(Hpr(M))
(for a motive M of even weight w = 2p, one can define in a similar way F* (M),
see [Y, §2]). If one defines H3 (M) = Hpr(M)/F¥ (M), then one has the com-
parison isomorphisms

(2.1) It HE (M) ©oC = HE (M) ©g C.

Let ¢t (M) = det(I*) be the determinants calculated using E-rational basis.
Hence ¢t (M) € (E®gC)* are determined up to multiplication by elements of E.

If M is a motive defined over F' with coefficients in F, let Ir be the set of
infinite places of F. Then Hpgr(M) is a free E ®qg F-module of some rank d(M),
and for each o € Ir, one has the Betti realization Hp(M?) which is a vector
space of dimension d(M) over E. The number d(M) is called the rank of M.

We recall now the definition of the restriction of scalars Resg/p (M) of M
to a subfield F’ of F. For the de Rham side one forgets the F-vector space
structure and put Hpr(Resp/p/(M)) = Hpr(M) as an F'-vector space. For the
Betti side, one sets Hp(Resp/r (M)7) =€D,, ,_, Hs(M"). Hence Resp, (M)
is a motive over F” of rank [F : F'|d(M) with coefficients in E.

3. L-functions

Let F' be a totally real number field, and let Ir be the set of infinite places of F'.
If 7 is an automorphic representation of weight k = (k;)rcr,. of GL(2)/F, where
all k; have the same parity and all k; > 2, then there exists (see [T]) a A-adic
representation

pax i Dp— GLa(0,) — GLo(Q)),

which satisfies L(px,x,s) = L(f,s) and is unramified outside the primes divid-
ing nl. Here O is the coefficients ring of 7 and A is a prime ideal of O above
some prime number /, n is the level of 7, and f is the modular form of GL(2)/F
of weight k corresponding to 7. In order to simplify the notation, we denote by
pr the representation p, . (By fixing an isomorphism i : Q; — C, we can regard
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always pr as a complex-valued representation.) We know the following result
(see [V, Theorem 1.1].)

THEOREM 3.1

If  is a cuspidal automorphic representation of weight k as above of GL(2)/F
for some totally real number field F and F' is a totally real extension of F, then
there exists a totally real finite Galois extension F" of Q containing F' and a
prime X of the field coefficients of m, such that pr
exists an automorphic representation " of weight k of GL(2)/F" and a prime (3
of the field of coefficients of '’ such that px |r,., = prr g.

T 8 modular; that is, there

Fix a cuspidal automorphic representation 7 as in the Theorem 3.1. Let F'/F
be a totally real finite extension. Then one can find a totally real finite Galois
extension F” of Q containing F’, a prime A of the field coefficients of = and
an automorphic representation 7" of GL(2)/F" and a prime ( of the field of
coefficients of 7" such that pr x|r,, = pr 5.

By Brauer’s theorem (see [Se, Theorems 16, 19]), one can find some subfields
F; C F” such that Gal(F" /F;) are solvable, some characters ¢; : Gal(F"/F;) —

Q*, and some integers m;, such that the trivial representation
1:Gal(F"/F") — Q*

can be written as 1 = Zz?f m; Ind g:}gf«“:??)) ©; (a virtual sum). Then

i=u

F 7 me
L(pﬂ'|FF/ 5 S) = H L(p'fT|FF/ ® Indrii 902" S)
i=1
i=u
Tpr mi
= [ L(Indpt (prlrs, @ 0i). )
=1

=T L(orlrs, @i 8)™.
i=1
Since pr|r,,, is modular and Gal(F"/F;) is solvable, from Langland’s base

change for solvable extensions one can deduce easily that the representation
p,r|pF7, is modular, and thus there exists an automorphic representation m; of
weight k such that p,|r r, = pr;- Denote by f; the modular form corresponding
to ;. Then l

i1=u i=u
(3.1) L(pﬂ'|FF/ ,8) = H L(pm ® pi,8)"™ = H L(fi, i, 8)™,

i=1 i=1

where L(f;,p;,s) are defined in §4.

4. Deligne’s conjecture for M (f)(j)/r

Let F be a totally real number field, and let f be a modular form of weight k
as in §3 of GL(2)/F. Let 6 be a Hecke character of F' of finite order. For n an
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ideal of the ring of integers Of of F, define a(n) by T'(n)f = a(n) f, where T'(n)
is the Hecke operator of level n. The field of coefficients of f is by definition the
field Qf generated by the values a(n) over Q. It is well known that Q; is a finite
extension of Q. We consider a number field &/ which contains Q¢ and the field
of coefficients Q(f) of 6. Put

L(f,0,s)=> _a(T(n))f(n)N(n)*.

n

For 7 € Iy, we define

L(r, f,0,s) = Z a(T(n))TQ(n)TN(n)_s.

Using the isomorphism F ®g C =2 CI2, one gets an (E ®q C)-valued L-
function L(f,0,s) by arranging the factors L(7, f,6,s). In the same way, one
can define the L-function L(f,s).

Let f be a modular form of weight k of GL(2)/F, and let M (f) be the motive
conjecturally corresponding to f. Then M (f) is a motive of rank 2 over F' with
coefficients in Qy. By the definition of M(f), we have L(M(f),s) = L(f,s).
Since the modular form f has weight k, if we define kg = max{k, | 7 € Ir} and
kY =min{k, | 7 € Ir}, then any integer (ko — k°)/2 < j < (ko +k")/2 is a critical
value for M(f).

Let m € Z, and let T(m) be the Tate motive over F. Put M(f)(m)=
M(f)®T(m). One has

L(M(f)(m),s) =L(M(f),m+s).

Hence, from the fact that M (f) is critical at j for (ko — k°)/2 < j < (ko +k°)/2,
one gets that M(f)(j) is critical at zero. If 6 is a finite-order character of a
number field, then we denote by M (6) the motive corresponding to . Then M (9)
satisfies L(6,s) = L(M(9), s).

Now we prove Theorem 1.2.

Proof

Thus we assume from now on that k, > 3 for all 7 € Ir. Using the same notation
as in §3, we assume that f is the cuspform corresponding to the cuspidal automor-
phic representation 7 which appears in Theorem 3.1. Since k° > 3, we know from
[S, Proposition 4.16] that for each integer j such that (ko+1)/2 < j < (ko +k°)/2,
we have L(f;,¢i,7) # 0. Thus for such a j, from formula (3.1) above we obtain
the identity

L(M(f)/p,j) = f[L(fi»SDhj)mi'
i=1

Define Eq :=Qy Uijf@(gpl), where Q(¢p;) is the field of coefficients of ;. By
extending their fields of coefficients, we regard the functions L(M(f),ps,s) and
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L(f;,¢i,s) as having values in F; ®Q C. Hence we get
(4.1) L(M(f)/pr5) H]L (fir i)™ € By ®qC.

Since 1 = Z:zqf m; In dgj}g::;? )) i, we get the equality of motives (by assum-
ing the Tate conjecture for motives)

Resp o (M (f) /5 (j EB (Resrp, jo(M(f)/r, ® M(2:)(5)™,

from which, by looking at the E; rational basis (see (2.1)), we obtain trivially

(12) et (Respya (M) () = [T e (Resr o (M), & M) ()™

Under the assumptions of Theorem 1.2, we have
L(M(g)(5),0)
¢t (Resp /(M (g)(5)))
for any modular form g of weight k of GL(2)/L, for L totally real number field.
Thus we get

€eQ,®1

L(M(fi) © M(:)(4),0)
¢t (Resp, jo(M(fi) @ M(i))(5))
because f; ® ¢; is a modular form. From (4.1) and (4.2), we deduce Theorem 1.2:
L(M(f)(G)r,0)
ct(Respr (M (f)(7)/p))
Actually, in this last result one can replace E; by Qy since M(f)(j),r has
coefficients in Q. O

cbki®l1

e FE®1.
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