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Abstract This new concept of continued fractional measure of irrationality for the real
number a is introduced with the help of the classical measure of irrationality. Some rela-
tionships between this new and the classical measures are included.

1. Introduction

Following Erdős [4], we call C(a) = inf{I(y);y = [a1c1, a2c2, . . .], cn ∈ Z
+} the

continued fractional measure of irrationality for the number a while a = [a1, a2,

. . .] is its continued fractional expansion and I(x) is the measure of irrationality
of the number x. In some sense the continued fractional measure of irrational-
ity better characterizes the nature of the number a, mainly in the direction of
the approximation of its partial continued fractions in average. We prove the
following theorem.

THEOREM 1.1

Let K ≥ 2 and a1 ≥ 1 be integers, and define a continued fraction a = [a1, a2, . . .]
with an+1 = aK

n + n! for each n = 1,2, . . . . Then C(a) = I(a) = K + 1.

In the same spirit, Erdős [4] defined the irrational sequences and proved that the
sequence{22n } ∞

n=1 is irrational (see also [9]). Later Hančl, Nair, and Šustek [7]
defined in a similar way the expressible set of the sequence. More information
about this can be found in [8], [10], [11], and [12]. Davenport and Roth [3]
proved that if limsupn→∞(

√
logn/n) log log qn = ∞ and an ∈ Z

+ for every n ∈
Z

+, then the number a is transcendental (see also [1]). Matala-aho and Merilä
[16] found some measures of irrationality for the Ramanujan-type q-continued
fractions. As an application of their work, let us mention the results concerning
the Ramanujan-Selberg continued fractions (see [18]) and the Eisenstein con-
tinued fractions (see [5]). Certain hypergeometric functions in connection with
the measure of irrationality and continued fractions were studied in Shiokawa
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[17]. Further, Komatsu [15] published some results concerning the Hurwitz and
Tasoev’s continued fractions. By using the monodromy principle for hypergeo-
metric functions, Huttner and Matala-aho [14] obtained measures of irrationality
for certain Gauss continued fractions (see also Hata and Huttner [13]), while
Bundschuh [2] worked with the special continued fractions containing a finite
number of arithmetic progressions and found some estimations of the measures
of irrationality for them. Throughout the whole article we consider a = [a1, a2, . . .]
to be the continued fraction expansion such that an ∈ Z

+ for each n ∈ Z
+.

The nth partial fraction is equal to pn/qn = [a1, a2, . . . , an]. The continued
fraction expansion of the number a is infinite, so a is an irrational number. The
measure of irrationality of the number a we define as

I(a) = − lim inf
n→∞

logqn
|a − (pn/qn)|

since we know that the best approximations are directly in its partial fractions.
We also use the well-known inequality for the approximation of the nth partial
fraction

1
q2
n(an+1 + 2)

<
∣∣∣a − pn

qn

∣∣∣ <
1

q2
nan+1

,

which follows, for example, from Hardy and Wright [6, (10.7.5)]. The notation [x]
means the integral part of the real number x. Denote Z

+ to be the set of all
positive integers. For convenience, set log2 0 = 0.

2. Main results

THEOREM 2.1

We have

C(a) = 2lim supn→ ∞(1/n) log2 log2 an + 1.

COROLLARY 2.1

We have

I(a) ≥ 2lim supn→ ∞(1/n) log2 log2 an + 1.

COROLLARY 2.2

Let limsupn→∞(1/n) log2 log2 an = ∞. Then C(a) = I(a) = ∞, and thus a is a
Liouville number.

THEOREM 2.2

Let K be a real number with K > 1. Assume that

(2.1) 1 < R1 = lim inf
n→∞

a1/Kn

n ≤ limsup
n→∞

a1/Kn

n = R2,

where R1 and R2 are real numbers; R2 can also be infinity. Then

(2.2) K + 1 ≤ I(a) ≤ log2 R2

log2 R1
(K − 1) + 2.
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EXAMPLE 2.1

Let R1, R2, and K be the real numbers with K > 1 and 0 < R1 ≤ R2. Set

an = [2(2R1| sin(log logn)|+2R2(1− | sin(log logn)|))Kn

]

for each n ∈ Z
+. Then lim infn→∞ a

1/Kn

n = 22R1 , limsupn→∞ a
1/Kn

n = 22R2 , and
I(a) = K + 1.

EXAMPLE 2.2

Let R1, R2, and K be the real numbers with K > 1 and 0 < R1 ≤ R2. Set

an = 2(R1(1+(−1)[log log n])+R2(1+(−1)1+[log log n]))Kn

for each n ∈ Z
+. Then lim infn→∞ a

1/Kn

n = 22R1 , limsupn→∞ a
1/Kn

n = 22R2 , and
I(a) = (R2/R1)(K − 1) + 2.

REMARK 1

Examples 2.1 and 2.2 demonstrate in some sense that we cannot substantially
improve upper and lower bounds for the measure of irrationality in Theorem 2.2.

COROLLARY 2.3

Let K be a real number with K > 1. Assume that 1 < limn→∞ a
1/Kn

n < ∞. Then
I(a) = K + 1 and a is a transcendental number.

EXAMPLE 2.3

Let K be a real number such that K > 1. Set an = [2Kn

] for each n ∈ Z
+. Then

I(a) = K + 1.

3. Proofs

Theorem 1.1 is the immediate consequence of Theorem 2.1 and Corollary 2.3 as
follows. First, we have

a
1/Kn+1

n+1 = (aK
n + n!)1/Kn+1

= a1/Kn

n

(
1 +

n!
aK

n

)1/Kn+1

= a
1/K
1

n∏
k=1

(
1 +

k!
aK

k

)1/Kn+1

which implies that

1 ≤ a
1/K
1 < a

1/K2

2 < · · · < a1/Kn

n < a
1/Kn+1

n+1 < · · · < a
1/K
1 21/Kn+1

.

Hence 1 < limn→∞ a
1/Kn

n < ∞.

Proof of Theorem 2.1
The proof falls into two cases.

(1) First we prove that C(a) ≥ 2lim supn→ ∞(1/n) log2 log2 an + 1. Suppose that
there exists the sequence {cn} ∞

n=1 of positive integers such that I(y) = I([a1c1,
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a2c2, . . .]) < 2lim supn→ ∞(1/n) log2 log2 an + 1. Set An = ancn for each n ∈ Z
+. So

there exist Q ≥ 2 and sufficiently small δ1 such that

I(y) = I([A1,A2, . . .]) = Q < Q + 4δ1 ≤ 2lim supn→ ∞(1/n) log2 log2 an + 1

≤ 2lim supn→ ∞(1/n) log2 log2 An + 1.(3.1)

From this we obtain

(3.2) limsup
n→∞

A1/(Q−1+3δ1)
n

n = ∞.

This implies that for infinitely many N ,

(3.3) A
1/(Q−1+3δ1)

N+1

N+1 > sup
j=1,2,...,N

A
1/(Q−1+3δ1)

j

j .

Otherwise, there exists n0 such that for every n > n0,

A
1/(Q−1+3δ1)

n+1

n+1 ≤ sup
j=1,2,...,n

A
1/(Q−1+3δ1)

j

j = sup
j=1,2,...,n−1

A
1/(Q−1+3δ1)

j

j

= · · · = sup
j=1,2,...,n0

A
1/(Q−1+3δ1)

j

j ,

a contradiction with (3.2). Now from (3.3) we obtain that for infinitely many N ,

AN+1 >
(

sup
j=1,2,...,N

A
1/(Q−1+3δ1)

j

j

)(Q−1+3δ1)
N+1

≥
(

sup
j=1,2,...,N

A
1/(Q−1+3δ1)

j

j

)(Q−2+3δ1)((Q−1+3δ1)
N+(Q−1+3δ1)

N −1+···+1)

(3.4)

≥
( N∏

k=1

(
sup

j=1,2,...,N
A

(Q−1+3δ1)k

(Q−1+3δ1)j

j

))(Q−2+3δ1)

≥ D0

( N∏
k=1

Ak

)(Q−2+3δ1)

,

where D0 is a positive real number that does not depend on n. Let [A1,A2, . . . ,

Ak] = Pk/Qk be the kth partial fraction of the number A = [A1,A2, . . .]. This
and (3.4) yield that for infinitely many N ,∣∣∣A − PN

QN

∣∣∣ ≤ 1
Q2

NAN+1
≤ 1

Q2
ND0(

∏N
k=1 Ak)(Q−2+3δ1)

≤ 1

QQ+2δ1
N

.

But this is the contradiction with (3.1), and C(a) ≥ 2lim supn→ ∞(1/n) log2 log2 an +1
follows.

(2) Now we prove that C(a) ≤ 2lim supn→ ∞(1/n) log2 log2 an + 1. To prove this,
we find for every sufficiently small positive real number δ2 the sequence {cn} ∞

n=1 of
positive integers such that I(y) = I([a1c1, a2c2, . . .]) < 2lim supn→ ∞(1/n) log2 log2 an +
1 + 2δ2. Set S = 2lim supn→ ∞(1/n) log2 log2 an + 1. From this we obtain that there
exists n0 such that for each n > n0 we have

an < 2(S−1+δ2)
n

.
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Now we take the sequence {cn} ∞
n=1 of positive integers such that c1 = c2 = · · · =

cn0 = 1 and for every n > n0

(3.5) 2(S−1+δ2)
n ≤ An = ancn ≤ 2(S−1+δ2)

n+1

where we set An = ancn for each n ∈ Z
+. From (3.5) we obtain that there exists

a positive real number D1 which does not depend on n and such that for every
positive integer n

D1

n∏
k=1

2(S−1+δ2)
k ≤

n∏
k=1

Ak.

Hence

(3.6) D22(S−1+δ2)
n+1/(S−2+δ2) ≤

n∏
k=1

Ak

where D2 is a suitable positive real constant which does not depend on n. Let
[A1,A2, . . . ,Ak] = Pk

Qk
be the kth partial fraction ofthe number A = [A1,A2, . . .].

Inequalities (3.5) and (3.6) yield that for every sufficiently large positive integer n,∣∣∣A − Pn

Qn

∣∣∣ ≥ 1
Q2

n(An+1 + 2)
≥ 1

Q2
n8

(
(1/D2)

∏n
k=1 Ak

)(S−2+δ2)
≥ 1

QS+2δ2
n

.

From this and the fact that partialcontinued fractions are the best approxima-
tions we obtain that I(A) ≤ S + 2δ2. �

Proof of Theorem 2.2
From (2.1) we obtain that for every sufficiently small δ3 there exists n0 such that
for each n > n0 we have

1 < R1 − δ3 ≤ a1/Kn

n ≤ R2 + δ3.

Hence

(3.7) 2Kn log2(R1−δ3) ≤ an ≤ 2Kn log2(R2+δ3).

It implies that there exists a positive real number D3 such that for all sufficiently
large positive integers n we have

(3.8) D32log(R1−δ3)/(K−1)Kn+1 ≤
n∏

k=1

ak.

Now the proof falls into two cases.
(1) First we prove that I(a) ≥ K + 1. From (3.7) we obtain

limsup
n→∞

1
n

log2 log2 an ≥ log2 K.

Then this and Corollary 2.1 imply that I(a) ≥ K + 1.
(2) Now we prove that I(a) ≤ (log2 R2)/(log2 R1)(K − 1) + 2. To prove this

we estimate the partial continued fractions of the number a. By the way, we
assume that R2 < ∞ since the case R2 = ∞ is trivial. From (3.7) and (3.8) we
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obtain that for every sufficiently large positive integer n we have∣∣∣a − pn

qn

∣∣∣ ≥ 1
q2
n(an+1 + 2)

≥ 1

q2
n4

(
(1/D3)

∏n
k=1 ak

)((K−1) log2(R2+δ3))/ log2(R1−δ3)

≥ 1

q
(((K−1) log2(R2+2δ3))/ log2(R1−δ3))+2
n

.

This and the fact that partial continued fractions are the best approximations
yield I(a) ≤

(
((K − 1) log2(R2 + 2δ3))/ log2(R1 − δ3)

)
+ 2. But this holds for all

sufficiently small δ3. Thus I(a) ≤ (log2 R2/ log2 R1)(K − 1)+2 and (2.2) follows.
�

Corollaries 2.1 and 2.2 are immediate consequences of Theorem 2.1. Corollary 2.3
is an immediate consequence of Theorem 2.2. Example 2.3 is an immediate con-
sequence of Corollary 2.3.

Proof of Example 2.1
(1) First, we prove that I(a) ≥ K + 1. From the fact that the sequence

{| sin(log2 log2 k)| } ∞
k=1is dense in [0,1], we obtain lim infn→∞ a

1/Kn

n = 22R1 and
limsupn→∞ a

1/Kn

n = 22R2 . This and Theorem 2.2 yield I(a) ≥ K + 1.
(2) Let ε be sufficiently small, and let n be sufficiently large. From the mean

value theorem we obtain that for every k, j ∈ {[n/2], . . . , n,n + 1},∣∣| sin(log2 log2 k)| − | sin(log2 log2 j)|
∣∣

≤ | sin(log2 log2 k) − sin(log2 log2 j)|(3.9)

=
∣∣∣(k − j) cos(log2 log2 ζ)

1
ζ log2 ζ

∣∣∣ ≤ 3
log2 n

,

where ζ ∈ [[n/2], n + 1]. The definition of the sequence {ak } ∞
k=1 and (3.9) yield

that for every k ∈ {[n/2], . . . , n,n + 1}

2(2R2+(2R1−2R2)(| sin(log2 log2 n)|+(3/log2 n)))Kk

≤ ak

≤ 2(2R2+(2R1−2R2)(| sin(log2 log2 n)|−(3/log2 n)))Kk

;

hence

(3.10) S(1−ε)Kk

n ≤ ak ≤ S(1+ε)Kk

n ,

where

Sn = 22R2+(2R1−2R2)| sin(log2 log2 n)|.

Now we prove that I(a) ≤ K + 1. To prove this we find the lower bound for∏n
k=1 ak. Inequality (3.10) implies that

n∏
k=1

ak ≥
n∏

k=[n/2]

ak ≥
n∏

k=[n/2]

S(1−ε)Kk

n ≥ S((1−2ε)/(K−1))Kn+1

n .
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This and (3.10) yield∣∣∣a − pn

qn

∣∣∣ ≥ 1
q2
n(an+1 + 2)

≥ 1

q2
n4

(∏n
k=1 ak

)((K−1)(1+ε))/(1−2ε)

≥ 1

q
((K−1)(1+2ε))/(1−2ε)+2
n

.
�

Proof of Example 2.2
(1) We have either ak = 22R1Kk

or ak = 22R2Kk

. From this we obtain
lim infn→∞ a

1/Kn

n = 22R1 and limsupn→∞ a
1/Kn

n = 22R2 . This and Theorem 2.2
yield I(a) ≤ R2/R1(K − 1) + 2.

(2) Now we prove that I(a) ≥ (R2/R1)(K − 1) + 2. Let s be a sufficiently
large positive integer and ε let be a sufficiently small positive real number. Set n+
1 = 222s+1

. Then an+1 = 22R2Kn+1
and ak = 22R1Kk

for all k = (n + 1)/2, . . . , n.
From this we obtain

n∏
k=1

ak ≤
(n−1)/2∏

k=1

22R2Kk
n∏

k=(n+1)/2

22R1Kk ≤ 2((2R1(1+ε))/(K−1))Kn+1
.

This yields∣∣∣a − pn

qn

∣∣∣ ≤ 1
q2
nan+1

≤ 1

q2
n

(∏n
k=1 ak

)(R2(K−1))/(R1(1+ε))
≤ 1

q
2+(R2(K−1))/(R1(1+2ε))
n

.

This implies that I(a) ≥ R2/R1(K − 1) + 2. �
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