Toeplitz CAR flows and type | factorizations

Masaki Izumi and R. Srinivasan

Abstract Toeplitz CAR flows are a class of Ep-semigroups including the first type IIT
example constructed by R. T. Powers. We show that the Toeplitz CAR flows contain
uncountably many mutually non-cocycle-conjugate Ep-semigroups of type I1I. We also
generalize the type ITI criterion for Toeplitz canonical anticommutation relation (CAR)
flows employed by Powers (and later refined by W. Arveson), and show that Toeplitz
CAR flows are always either of type I or type III.

1. Introduction

E. Wigner’s famous theorem establishes that any one-parameter group of auto-
morphisms {a; : t € R} on B(H), the algebra of all bounded operators on a
separable Hilbert space H, is described by a strongly continuous one-parameter
unitary group {U;}, through the relation

a:(X) = Ad(U,)(X) = U, XU}, VX € B(H).

An analogous statement of Wigner’s theorem for an Ep-semigroup, a continuous
semigroup of unit-preserving endomorphisms of B(H), is that the semigroup
is completely determined by the set of all intertwining semigroups of isometries.
That is, the Ep-semigroup {«; : t € (0,00)} is completely described, up to cocycle
conjugacy, by the set of all Cp-semigroups of isometries {U,}, satisfying

Oét(X)Ut:UtX, VXEB(H)

A subclass of Fy-semigroups, where this analogy is indeed true, are called type I
Ey-semigroups. But due to the existence of type II and type III Ey-semigroups
in abundance, it is well known by now that such an analogy does not hold for
Fy-semigroups in general.

In [12], Powers raised the question whether such an intertwining semigroup of
isometries always exists for any given Ep-semigroup. He answered this question
(see [11]) in the negative by constructing an Ep-semigroup without any inter-
twining semigroup of isometries. This is the first example of what is called a
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type III Ey-semigroup. For quite some time this was the only known example of
a type III Ey-semigroup, even though it was conjectured that there are uncount-
ably many type III Ey-semigroups, which are mutually non-cocycle-conjugate.
In 2000, B. Tsirelson (see [17]) constructed a one-parameter family of noniso-
morphic product systems of type III. Using previous results of Arveson [3], this
leads to the existence of uncountably many FEg-semigroups of type III, which are
mutually non-cocycle-conjugate. Since then there has been a flurry of activity
along this direction (see [5], [7], [9]).

In this article, we turn our attention to the first example of a type III Ey-
semigroup produced by Powers, which can be constructed on the type I factor
obtained through the Gelfand-Naimark-Segal (GNS) construction of the CAR
algebra corresponding to a (nonvacuum) quasi-free state. Although his purpose
in [11] is to construct a single type III example, his construction is rather general,
and it could produce several Fy-semigroups by varying the associated quasi-free
states. However, it is not at all clear whether they contain more than one cocycle
conjugacy class of type III Fy-semigroups. As is emphasized in Arveson’s book
(see [4, Chapter 13]), the 2-point function of Powers’s quasi-free state is given
by a Toeplitz operator whose symbol is a matrix-valued function with a very
subtle property. Arveson clarified the role of the Toeplitz operator in Powers’s
construction and gave the most general form of the symbols for which the same
construction works. We refer to the Eyp-semigroups obtained in this way as the
Toeplitz CAR flows. Arveson also made a refinement of a sufficient condition
obtained by Powers for the Toeplitz CAR flows to be of type III.

One of our main purposes in this article is to show that there exist uncount-
ably many cocycle conjugacy classes of type III Toeplitz CAR flows. More pre-
cisely, we explicitly give a one-parameter family of symbols, including that of
Powers, that give rise to mutually non-cocycle-conjugate type III examples. We
also generalize Powers and Arveson’s type III criterion mentioned above and
give a necessary and sufficient condition in full generality, which solves Arveson’s
problem raised in [4, p. 417]. In particular, our result says that Toeplitz CAR
flows are always either of type I or of type III, which is a CAR version of the
same result obtained in [5] (see also [8], [9]) for product systems arising from
sum systems or, equivalently, generalized canonical commutation relation (CCR)
flows.

As in our previous work [9], we employ the local von Neumann algebras of an
Ep-semigroup as a classification invariant. In [9], we computed the type of the von
Neumann algebras corresponding to bounded open subsets of (0, 00) for a class of
generalized CCR flows. The key fact in our previous computation is that the von
Neumann algebras in question always arise from quasi-free representations of the
Weyl algebra. Since an analogous statement does not seem to be true in the case
of Toeplitz CAR flows (even if the usual twisting operation in the duality for the
CAR algebra is taken into account), we have to take an alternative approach. For
this reason, we use the notion of a type I factorization, introduced by H. Araki
and J. Woods [2], consisting of the local von Neumann algebras corresponding to
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a countable partition of a finite interval. For each such fixed partition, whether
the associated type I factorization is a complete atomic Boolean algebra of type I
factors or not, is a cocycle conjugacy invariant of type III Ey-semigroups.

2. Preliminaries

We use the following notation throughout the article.

For a family of von Neumann algebras { M }eca acting on the same Hilbert
space H, we denote by \/, ., M2 the von Neumann algebra generated by their
union (Jyc, Mx. We always denote by 1 either the identity element in a C*-
algebra or the identity operator on a Hilbert space. When we need to specify the
C*-algebra 2 or the Hilbert space H, we use the symbols 1g or 1, respectively.

For a bounded positive operator A on a Hilbert space H, we denote by tr(A)
the usual trace of A, which could be infinite. For X € B(H), we denote its
Hilbert-Schmidt norm by || X || = tr(X*X)'/2.

For a tempered distribution f on R, we denote by f the Fourier transform of
f with normalization

fp) = / f@)e P de, [ e LM(R).

For an open set O C R, we denote by D(O) the set of smooth functions on O
with compact support. For a measurable set F C R, we denote by |E| and xg
its Lebesgue measure and its characteristic function, respectively.

2.1. Ejp-semigroups and product systems
We briefly recall the basics of Ey-semigroups and product systems. The reader
is referred to Arveson’s monograph [4] for details.

DEFINITION 2.1
Let H be a separable Hilbert space. A family of unital *-endomorphisms « =
{at}i>0 of B(H) is an Eyp-semigroup if
(i) thesemigroup relation ag0ay = a4+ holds for all s, € (0,00) and g = id;
(ii) the map t — (az(X)E,n) is continuous for every fixed X € B(H),&,n€ H.

For an Ejp-semigroup o = {ay };>0 and positive ¢, we set

Eat)={T € B(H);u(X)T=TX, VX € B(H)},

which is a Hilbert space with the inner product (T,S)1y = S*T. The system of
Hilbert spaces £, = {€4(t) }+>0 satisfies the following axioms of a product system.

DEFINITION 2.2
A product system of Hilbert spaces is a one-parameter family of separable com-
plex Hilbert spaces E = {E(t)}+s0, together with unitary operators

Usi: E(s) @ E(t) — E(s+t) for s,t e (0,00),

satisfying the following two axioms of associativity and measurability.
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(i) (Associativity) For any s1, s2,s3 € (0,00),
U81782+83(1E(81) ® U82,83) = Usl+sz,83(U81,sz ® 1E(83))~
(ii) (Measurability) There exists a countable set EY of sections
(0,00) 3t — hy € E(t)

such that ¢ — (hy, h}) is measurable for any two h,h' € E°, and the set {h;;h €
E°} is total in E(t) for each t € (0,00). Further, it is also assumed that the map
(5,t) = (Us,t(hs @ hy), h ) is measurable for any two h,h’ € E°.

Two product systems ({E(t)},{Us:}) and ({E'(t)},{U;,}) are said to be iso-
morphic if there exists a unitary operator V;: E(t) — E(t)’ for each t € (0,00)
satisfying

ViritUsi =U (Vo @ V).

Arveson showed that every product system is isomorphic to a product sys-
tem arising from an FEy-semigroup and that two FEjy-semigroups « and [ are
cocycle conjugate if and only if the corresponding product systems &, and &3
are isomorphic.

For a fixed positive number a and for 0 < s <t < a, we define the local von
Neumann algebra AL (s,t) C B(E(a)) for the interval (s,t) by

AE(S,t) = Us,t—s,a—t ((C]-E(s) @ B(E(t - 5)) & ClE(a—t))Us,t—s,a—t*a

where Us t—s,.0-t =Ut,a—t(Ust—s®1g, ,) =Usa—s(1p, @Ui_5 4—¢). For any open
subset O C [0,a], we set AF(0) =V ;.o AP(I), where I runs over all intervals
contained in O. When a = 1, we simply write A (s,t) for AZ(s,t). When E =
Eq, we often identify B(F(a)) with B(H) N a,(B(H))'. When we need to dis-
tinguish them, we denote by o the isomorphism from B(H) N a,(B(H))" onto
AE(0,a) given by the left multiplication. By this identification, the inclusion
AE(s,t) C B(E(a)) is identified with

as(B(H) Nay—o(B(H))') € B(H) N, (B(H))' .
In what follows, we often omit U, ; and simply write zy instead of Us +(z ®y)
if there is no possibility of confusion.
DEFINITION 2.3
A unit for a product system FE is a nonzero section
u={u; € Ey;t >0},
such that the map t ~— (uy, h¢) is measurable for any h € E° and
Ustp = Ugyt, Vs, t€ (0,00).

In order to avoid possible confusion, we refer to the condition ||z|| =1 for a vector
x € E(t) as normalized instead of unit throughout the paper. An intertwining
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Cp-semigroup of isometries of an Fy-semigroup « is naturally identified with a
normalized unit for &,.

A product system (Ep-semigroup) is said to be of type I if units exist for
the product system and they generate the product system; that is, for any fixed
t € (0,00), the set

n
1,2 n . _ i
{utlutz--ﬂtn, E ti=tu EUE}
i=1

is a total set in E;, where U is the set of all units. It is of type II if units exist
but do not generate the product system. An Ej-semigroup is said to be spatial
if it is either of type I or type II. We say that a product system is of type III, or
unitless, if no unit exists.

Type I product systems are further classified into type I,, n=1,2,...00,
according to their indices n. There exists only one isomorphism class of type I,
product systems.

We recall V. Liebscher’s useful criterion [10, Corollary 7.7] for isomorphic
product systems in terms of the local von Neumann algebras.

THEOREM 2.4 (LIEBSCHER [10, COROLLARY 7.71)

Let E and F be product systems. If there is an isomorphism p from B(E(1))
onto B(F (1)) such that p(AF(0,t)) = AF(0,t) for t in a dense subset of (0,1),
then E and F are isomorphic.

2.2. Type | factorizations

In this subsection, we introduce a new classification invariant for type III product
systems using the notion of type I factorizations introduced by Araki and Woods
[2]. Throughout this subsection, every index set is assumed to be countable, and
every Hilbert space is assumed to be separable.

DEFINITION 2.5
Let H be a Hilbert space. We say that a family of type I subfactors {Mj}aea
of B(H) is a type I factorization of B(H) if

(i) MxcC M, for any A\, pu € A with A # p,

(ii) B(H) =V yex Ma.
We say that a type I factorization {M}xea is a complete atomic Boolean alge-
bra of type I factors (abbreviated as CABATIF) if for any subset I' C A, the von
Neumann algebra \/, . M, is a type I factor.

Two type I factorizations {Mx}rea of B(H) and {N,} e’ of B(H’) are said to
be unitarily equivalent if there exist a unitary U from H onto H' and a bijection
o: A— A’ such that UMAU* = N(y)-

EXAMPLE 2.6
Let E be a product system, and let {a,}52, be a strictly increasing sequence of
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nonnegative numbers starting from zero and converging to a < oco. Then {A¥(a,,,
ant1) 152, is a type I factorization of B(E(a)) because

B(E(a)) = \/ AZ(0,1)
0<t<a
holds (see [4, Proposition 4.2.1]). For a fixed sequence as above, the unitary
equivalence class of the type I factorization { AL (a,, a,1+1)}2% is an isomorphism
invariant of the product system E. In particular, whether it is a CABATIF or
not is used to distinguish concrete type III examples in Section 5. As we see now,
this invariant may be useful only in the type III case.

When {M}rea is a type I factorization of B(H), we say that a nonzero vector
& is factorizable if for any A there exists a minimal projection py of M) such
that pré =¢&.

Araki and Woods characterized a CABATIF as a type I factorization with
a factorizable vector. Since we need a more precise statement, we briefly recall
basics of the incomplete tensor product space (abbreviated as ITPS) now.

Let {(Hx,&\)}aca be a family of Hilbert spaces Hy with normalized vectors
&x € Hy. Let F(A) be the set of all finite subsets of A, which is a directed set with
respect to the inclusion relation. For Fy, Fy € F(A) with F; C Fy, we introduce
an isometric embedding Vi, r, from @,cp Hx into @y cp, Ha by

VFl,Fm:n@( & £#>, ne ) H.

pEF>\Fy AEF,

Then the ITPS

H = ® (®§>\)H)\
AEA

of the Hilbert spaces {H)}xea, with respect to the reference vectors {€x}aeca,
is the completion of the direct limit of the directed family {@)ycp Hr}rer(a)-
When there is no possibility of confusion, we omit the superscript (®&,) for
simplicity. We denote by VF o the canonical embedding of @, Hy into H.

The product vector £ = @, &x € H is understood as Vr oo @)y oy §x, which
does not depend on F' € F(A). More generally, if {n)}rca, 7r € Hy, is a family
of vectors such that 0 <], [|7a]l < oo and if

Z ‘<77)\7€)\> - 1| <00,
AEA

then the net {Vr oo @\cpn}rer(a) converges in H. The product vector 1 =
X recamn is defined as its limit. Two product vectors 7 = &, nx and ¢ =

& e O satisfy

n,¢Q) = H<77>\7<)\>~

AEA
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For a subset A; C A, we often identify &), Hx with
(@m)e( @ )
AEA; HEA\A,

in a canonical way. When A; consists of only one point A\, we set
My = B(H)\) (9 Cl@u#/\ H, C B(H)

Then {Mjy}rea is a CABATIF. Any type I factorization unitarily equivalent
to this {M}rea is said to be a tensor product factorization. Note that there
is only one tensor product factorization, up to unitary equivalence, with each
constituent type I factor infinite dimensional.

One can find the following theorem in [2, Lemma 4.3, Theorem 4.1].

THEOREM 2.7 (ARAKI AND WOODS)

A type I factorization is a CABATIF if and only if it has a factorizable vector.
When this condition holds, then it is a tensor product factorization.

When a product system E has a unit, then it gives a factorizable vector of the
type 1 factorization {Af(a,,a,.1)}5, in Example 2.6, which is necessarily a
CABATIF thanks to Theorem 2.7.

We use the following lemma in Section 4.

LEMMA 2.8
Let H= Q. Hx be the ITPS of Hilbert spaces {Hx}xen with respect to refer-
ence vectors {Ex}aen, and let

pA:B(HA)BXHX@)l@“#H“ e M,

be the canonical isomorphism. Let R € B(H) be a self-adjoint unitary such that
RMy\R* = M), for all \ € A. Then there exist self-adjoint unitaries Ry € B(H))
and a product vector n =), Mx such that

(i) forVAeA and VX € M,,
pA(Rx) X pa(Ry) = RX R,

(ii) Ranx=mnx for all X€ A,
(iii) either Rn=mn or Rp= —n.

Proof
Since the restriction of Ad R to M, is an automorphism of period two and M
is a type I factor, there exist self-adjoint unitaries Ry € B(H)) such that

PA(RA) X pA(Ry) = RXR*, VX € M.

By replacing Ry with —R) if necessary, we may assume (Rx&x,&x) >0 for all
Ae A Let £ =@ ,cpén, and let py € My be the minimal projection satisfying
pra€ =¢&. Then gy = Rp)R* is a minimal projection of M satisfying ¢\ R = RE,
and so R¢ is a factorizable vector. The proof of [2, Lemma 3.2] shows that there
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exist a complex number ¢ of modulus 1 and normalized vectors (, € Hy such

that R =c@,cx Cr and ((x,&x) >0 for all A € A. Since gx = px(Rx)papa(Ry),
the normalized vector () is a scalar multiple of Ry&y. Let

AO - {>\ S A7 <<)\a€)\> 20}7

and let Ay = A\ Ap. Then Ay is a finite set. The two conditions (Rx&x, &) >0
and ((x,&x) > 0 imply that for any A € A;, we actually have Ry &\ = (). Let
Q@ be the spectral projection of Ry corresponding to eigenvalue 1. Then since
Ry =2Q»x — 1, we have ((x,&)) =2(QxEx,&0) — 1.
For A € Ag, by replacing Ry with —Ry if necessary, we can find a normalized
vector 1y € H), satisfying Rany =mnx. For A € Ay, we set ny = Qx&x. Then
106N

[mall® = (nx, €) 5

This shows that the product vector &), , 7x € H exists and Rxnx = 1.

It remains only to show (iii). Let ey € B(H)) be the projection onto Crn).
Then the proof of [2, Lemma 3.2] shows that the net {J],.ppx(ex)}rer(a)
strongly converges to the projection e € B(H) onto Cr. Since ReR* = e and
R is a self-adjoint unitary, we get either Rnp=mn or Rn= —n. O

2.3. Quasi-free representations of the CAR algebra
We recall some of the well-known results about quasi-free representations of the
algebra of canonical anticommutation relations (the CAR algebra).

Let K be a complex Hilbert space. We denote by 20(K) the CAR algebra over
K, which is the universal C*-algebra generated by {a(z);x € K}, determined by
the linear map = +— a(x) satisfying the CAR relations

a(x)a(y) + a(y)a(z) =0,
a(z)a(y)” +a(y) a(z) = (z,y)1,

for all z,y € K. Since 2(K) is known to be simple, any set of operators satisfying
the CAR relations generates a C*-algebra canonically isomorphic to (K).

For any state ¢ of (K), there exists a unique positive contraction A €
B(K) satisfying ¢(a(f)a(g)*) = (Af,g) for all f,g € K. We call A the covariance
operator (or 2-point function) of .

A quasi-free state wy on A(K), associated with a positive contraction A €
B(K), is the state whose (n,m)-point functions are determined by its 2-point
function as

wA (a(mn) a(ry)a(yr)” - a(ym)*) = Op,m det((Az;, yj>>7

where det(-) denotes the determinant of a matrix. Given a positive contraction,
it is a fact that such a state always exists and is uniquely determined by the
above relation. This is usually called the gauge-invariant quasi-free state (or
generalized free state). Since we are dealing only with gauge-invariant quasi-free
states, we just call them quasi-free states.
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We denote by (Ha,ma,Q4) the GNS triple associated with a quasi-free state
wa on A(K), and we set My :=m4(A(K))"”. We call m4 the quasi-free represen-
tation associated with A.

Recall that two representations 7 and 7o of a C*-algebra 2 are said to be
quasi-equivalent if there is a *-isomorphism of von Neumann algebras

0 : ()" — ma(A)”

satisfying 6(m (X)) = m2(X) for all X € A. Two states are said to be quasi-
equivalent if their GNS representations are quasi-equivalent.

We now summarize standard results on quasi-free states. For the proofs, the
reader is referred to [4, Chapter 13|, [11, Section II], and references therein.

THEOREM 2.9
Let K be a Hilbert space, let P € B(K) be a projection, and let A, B € B(K) be
positive contractions.

(i)  FEwvery quasi-free state wa of the CAR algebra A(K) is a factor state;
that is, the von Neumann algebra M 4 is a factor.

(ii) The restriction of the GNS representation wa to A(PK) is quasi-
equivalent to the GNS representation npap of A(PK), where PAP is regarded
as a positive contraction of PK.

(iii) The quasi-free state wa is of type I if and only if tr(A — A%) < co.

(iv) The two quasi-free states wa and wp are quasi-equivalent if and only if
both operators A'/? — BY/? and (1 — A)'/? — (1 — B)Y/? are Hilbert-Schmidt.

(v) The two quasi-free states wa and wp are quasi-equivalent if and only if

tr(P(1—A)P+ (1 - P)A(1 - P)) < oc.
We frequently use the following criterion, which is more or less (v) above.

LEMMA 2.10
Let A, B € B(K) be positive contractions. We assume that wg is a type I state.
Then the two quasi-free states wa and wp are quasi-equivalent if and only if

tr(B(1—A)B+ (1 - B)A(1 - B)) < .

Proof

Let P be the spectral projection of B corresponding to the interval [1/2,1]. Since
wp is a type I state, Theorem 2.9(iii), (iv) imply that P — B is a trace class oper-
ator, and wp and wp are quasi-equivalent. Thus ws and wp are quasi-equivalent
if and only if w4 and wp are quasi-equivalent, which is further equivalent to

tr(P(1—A)P+ (1 - P)A(1 — P)) < oo,

thanks to Theorem 2.9(v). Now the statement follows from the fact that P — B
is a trace class operator. (Il
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Let 7 be the period two automorphism of 2(K) determined by v(a(f)) = —a(f)
for all f € K. Since any quasi-free state wy is invariant under ~, the automor-
phism v extends to a period two automorphism % of the von Neumann algebra
M. For a (Z/2Z)-grading of A(K) (resp., Ma), we always refer to the one
coming from v (resp., 7). When there is no possibility of confusion, we abuse
the notation and use the same symbol ~ for 7.

Let wa be a type I state. Then, since every automorphism of a type I factor
is inner, there exists a self-adjoint unitary R4 € 74 ()" satisfying Ad R4(X) =
v(X) for all X € M 4. The operator R* is uniquely determined up to a multiple
of —1. In the same way, for every closed subspace L C K such that the restriction
of ma to (L) is of type I, there exists a self-adjoint unitary Ry € ma(A(L))"
satisfying Ad R4 (X) =~(X) for all X € ma(2(L))"”. For each L, we fix such an
Rf, which itself is an even operator with respect to v. When L; and Ly are
mutually orthogonal closed subspaces of K satisfying the above condition, we
then have

A _ A A A A
RLl@LQ - ELI’L2RL1RL2 - eLI;LZRLQRL17

where €7, 1, € {1,—1}.

When w is of type I, the family of operators {ima(a(f))R”; f € K} also sat-
isfies the CAR relation. We denote by 7 the representation of 2(K) determined
by 74 (a(f)) =ima(a(f))R* for all f € K and call it the twisted representation
associated with w,4. Note that the two representations w4 and 7Tf4 coincide on
the even part of A(K).

LEMMA 2.11
Let wa be a type I quasi-free state of A(K).
(i) For any subspace L C K,
Manma(A(L)) =t (L))"
(ii) Let U= (1/v/2)(1 —iRA) € M. Then
Una(X)U* =7 (X)
holds for all X € A(K).

Proof

(i) Let @ be the spectral projection of A corresponding to the interval
[1/2,1]. Then 74 and mg are quasi-equivalent, and we may assume that A is a
projection for the proof by replacing A with @ if necessary. Now the statement
follows from the twisted duality theorem [6, Theorem 2.4].

(ii) This follows from a direct computation (or from [6, Proposition 2.3]). O

As in [11], we also need to use a few facts about general factor states of A(K).

LEMMA 2.12
Let A be the covariance operator of a state ¢ of UA(K).
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(i) If A is a projection, ¢ is the pure state w 4.
(ii) If ¢ is quasi-equivalent to a quasi-free state wg, then A — B is compact.

Proof
(i) See, for example, [1, Lemma 4.3].
(ii) The statement follows from [4, Theorem 13.1.3]. O

2.4. Toeplitz CAR flows
Let V' be an isometry of a Hilbert space K. Then we have an endomorphism p of
A(K) determined by p(a(f)) =a(V f) for all f € K. For a positive contraction A,
the composition 74 o p gives a representation of (K ), which is quasi-equivalent
to my- 4y thanks to Theorem 2.9(ii). Thus if both A2 — (V*AV)Y/2 and (1 —
A)Y/? —(1-V*AV)Y/? are Hilbert-Schmidt operators, then p extends to an endo-
morphism of the von Neumann algebra M 4. In particular, if A satisfies tr(A —
A?%) < oo and {Vi}i>0 is a strongly continuous semigroup of isometries on K
satisfying the above condition for V; in place of V', then we get an Ejy-semigroup.
In what follows, we assume that K = L%((0,00),C") and that {S;};>0 is the

shift semigroup
0, 0<z<t,
Sif(x) =
flx—1t), t<a.

In his attempt to clarify Powers’s construction [11] of the first example of a
type III Ey-semigroup, Arveson [4, Section 13.3] determined the most general
form of a positive contraction A € B(K) satisfying tr(4 — A%) < oo and S} AS; =
A for all ¢, which we state now.

We regard K as a closed subspace of K= L?(R,CV), and we denote by P,
the projection from K onto K. We often identify B(K) with P, B(K)P,.

We denote by My (C) the N by N matrix algebra. For ® € L>(R) ® My (C),

we define the corresponding Fourier multiplier Cp € B(K) by

(Caf)(p) = 2(p)f(p).

Then the Toeplitz operator Ty € B(K) and the Hankel operator Hg € B(K, K1)
with the symbol ® are defined by

Tof=P.Caf, [E€EK,
Hof =1z —P1)Cof, [EK.

THEOREM 2.13 (ARVESON)
Let K = L*((0,00),CY). A positive contraction A € B(K) satisfies tr(A— A%) <
oo and S;AS, = A if and only if there exists a projection ® € L*(R) ® My (C)
satisfying the following two conditions:

(i) A=Ts;

(ii) the Hankel operator Hg is Hilbert-Schmidt.
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We call the symbol & satisfying the condition of Theorem 2.13 admissible.

Let ® € L*°(R) ® My(C) be a projection. Arveson briefly mentioned in [4,
p. 401], without giving a proof, that the condition Theorem 2.13(ii) holds if and
only if the Fourier transform ®(z) (in distribution sense) restricted to R\ {0} is
locally square integrable and

sup/ |x|tr(|<i>(x)|2) dx < oo.
5>0 J|z|>6

He also observed that any admissible symbol is necessarily quasi-continuous,
though he used only the fact that Hg is a compact operator. Now, first we figure
out the most suitable function space for the admissible symbols without using
the Fourier transform, and then we give a proof to the above characterization in
terms of the Fourier transform. We see the similarity between admissible symbols
and logarithm of spectral density functions of off-white noises discussed in [16].

We denote by T the unit circle in C. Let U be the unitary from L?*(R) onto
L3(T, g—ff) induced by the change of variables

eit:fp—'_i
p—i

(Since the Fourier transform f (p) of f € K has analytic continuation to the lower
half-plane, we need a conformal transformation between the unit disk and the
lower half-plane.) Let F' be the unitaries associated with the Fourier transform.
Then the Hankel operator Hg is transformed to the Hankel operator Hy for T
by UF, where ® and ¢ are related by ¢(e’) = ®(p) (see, e.g., [16, Section 3]).
Let ¢;;(p) be the matrix element of ¢(p). Since ¢(e) is a projection, the Hankel
operator Hy is Hilbert-Schmidt if and only if Hy,, and HE are Hilbert-Schmidt
for all i < j.

It is easy to see that the Hankel operators Hj, and Hj for h € L*°(T) are
Hilbert-Schmidt if and only if A is in the Sobolev space W21 / 2('JT); that is,

> Inlla(n)]? < oo,

neZ

where h(n) is the Fourier coefficient

R 1 [2T )
h(n):%/O h(e™)e™ " dt.

This is further equivalent to the condition that h belongs to the Besov space

3217/22 (T) because

27 2m _ 27 27 i(s f) it)|2
[h(e™) — h(e™)* / / [P (e"5FD) — h(e™)]
/ / ‘ezs ezt|2 d dt = |€zs _ 1|2 dtds

(e = 1)h(n)|?
—27r/0 Z.—ds

|€zs _ 1|2

nez

— 472 " ] lm)?

neZ
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As was done in [16, Section 3|, we can translate this condition back into that
for functions on R. Now we see that the Hankel operator Hg with a projection
® € L*°(R) ® My(C) is Hilbert-Schmidt if and only if
/ tr(|(p) — 2(q)I)
R2 lp—qf?

Although the following lemma may be found in the literature of Besov spaces,

dpdq < co.

for the reader’s convenience we give a proof of the first part. Parts (i) and (ii)
are essentially due to Tsirelson [16, Proposition 3,6].

LEMMA 2.14
Let ¥(p) be a measurable function on R giving a tempered distribution, and let
0 < pu<1. Then the following two conditions are equivalent

(1) The function 1 satisfies
/ [ (p) — ¥ (a)I?
R2

p— g+ dpdq < 0.

(2) There exists a measurable function ¥o(z) on R such that
[ lalin(a) P o <
R

and z)(x) = x1po(x) as distributions.

Moreover,

(i) if ¢ satisfies conditions (1) and (2), then

/R (2p) — v (@) 2L < oo

|p|#

(ii) 4f ¢ is an even differentiable function satisfying
o0
| 1w PE - dp < o,
0
then 1 satisfies conditions (1) and (2).

Proof
Assume that (1) holds. Since condition (1) is written as

/ lv(p+q) — ¢(g)?
RQ

|p|1+/t

dgdp < oo,

the function g — ¥(p + q¢) — ¥ (q) is square integrable for almost all p € R, and
so is the distribution (e??* —1)1)(z) by the Plancherel theorem. This shows that
the restriction of ¢ to D(R\ {0}) is given by a locally square integrable function
on R\ {0}, say, 1o(z), and that for almost all p € R, the equation

(2.1) (€P" = 1)(z) = (7" — 1)do ()
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holds as distributions in the variable x. In the above, we regard 1&0(:5) as a mea-
surable function on R by setting 1/10(0) =0. Now the Plancherel formula implies

lv(p+q) —¥(q)|? | e — 1)y (z)[?
/ |p|t+e dadp = 27T |p[+# drdp
2 px
sin® 2 |4 (x)|2
// |p|1+l‘ dpdx
21 H sin®r N
= [ [ lel (e ds,

This implies the convergence of the integral in (2), which shows that i (x) is a
tempered distribution. Since the support of 2t (z) — zo(x) is contained in {0},
we have

w(z) — wiho (@ Z erds
where ¢ € C and dy is the Dirac mass at zero. We choose p # 0 such that (2.1)
holds, and we set
eP?_1
=z 07
h() = { =Ll o
i

D, z=0.
Then

0= (e —1)(¢(x) — do(x)) = h(z) (24 (x) — wdho(x chh

It is routine work to show that ¢, =0 for all k£ from this and h(0) # 0, and we

get (2).
By tracing back the same computation as above, we can also show the impli-
cation from (2) to (1). O

Summarizing our argument so far, we get the following.

THEOREM 2.15
Let @ € L>®(R) ® My (C) be a projection. Then the following three conditions are
equivalent

(1) The symbol ® is admissible.

(2) We have

dpdg < 0.

/ tr(|2(p) — 2())
R2 p—al?
(3) There exists a My(C)-valued measurable function ®o(z) on R such that

/ |z tr (|o(2)[?) da < o0,
R

and x®(z) = 2o (z) as My (C)-valued distributions.
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Moreover,
(i) If ® is admissible, then
dp
/tr(|<1>(2p) — <I>(p)|2) — < 0.
R Ip|
(ii) If ® is an even differentiable function satisfying

Awmwwm%mm<m,

then ® is admissible.

REMARK 2.16

For an admissible symbol @, we call &, in Theorem 2.15(3) the regular part of .
It is not clear whether @, gives a distribution on R in general. However, when it is
the case, for example, when & € LY(R) ® My(C), then we have D=0y +35,2Q
for some @ € My(C).

DEFINITION 2.17
Let ® € L*(R) ® My (C) be an admissible symbol, and let A =Tg. We denote by
a® ={a?};>0 the Eg-semigroup acting on the type I factor M4 determined by

af (ma(a(f))) =mala(Sef)), VfeK.
We call a® the Toeplitz CAR flow associated with the symbol ®.

For a Toeplitz CAR flow a®, we simply denote £p := E ¢ and AL (1) := ASe(1).

EXAMPLE 2.18

When @ € My(C) is a constant projection, the corresponding Toeplitz CAR
flow is nothing but the CAR flow of index N, which gives the unique cocycle
conjugacy class of type Iy Ey-semigroups.

EXAMPLE 2.19
Powers’s first example of a type III Ey-semigroup is the Toeplitz CAR flow
associated with the symbol

1 1 e?0(r)
(I)(P) = 3 (e—ia(p) 1 ) )

where 0(p) = (1+p?)~1/%. More generally, if 8(p) is a real differentiable function
satisfying 6(—p) = 6(p) for all p € R and

/|wm%@<w
0

then Theorem 2.15 shows that the symbol ® as above is admissible. In Section 5,
we show that for 0 < v < 1/4, the symbols @, given by 60,(p) = (1 + p?)~" in
place of 6(p) above, give rise to mutually non-cocycle-conjugate type IIT E-
semigroups.
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We summarize a few facts frequently used in this article in the next lemma. For
a measurable subset £ C R, we set Kp = L?(E,C"). We denote by Pg the
projection from K onto K. When I C (0,00), we often regard Py as an element
of B(K). For simplicity, we write K; = Ko and P; = P for t > 0.

LEMMA 2.20
Let ® € L°(R) ® My (C) be an admissible symbol, and let &y be the regular part
of ®. We set A=Ts.

(i)  The relative commutant M N (Ma)' is w4 (A(K))".

(ii) Let I and J be two mutually disjoint open sets in R. We assume that
I and J have only finitely many connected components. Then P;CePr is a
Hilbert-Schmidt operator with Hilbert-Schmidt norm

1 .
I1PsCaPills = a3 [ 10 +001]ex(@a()) .

(iii) Let I C (0,00) be an open (finite or infinite) interval. Then the restric-
tion of wa to A(K7) is of type I, and the commutator [Ce, Pr| is Hilbert-Schmidt.

Proof
(i) The statement follows Lemma 2.11(i).
(ii) Let f € D(I,CY) and g € D(J,CV). Then

(Cat.g) Z / P)is 5 (v dp—Z / P)isf; + g (0) d,

zgl

—

where gl#(x) = g;(—x). Since f; * gz# € D(R\ {0}), we get

Ny
(Caf,g)= Z %/R(ﬁo(z)ijfj*gz#(x)dx

1,7=1
N 1 -
N Z 2_/ Po(y — 2)ij f5(y)gi(x) dz dy.
i,j=1 T JRr2

Since x s (x)x1(y)®Po(y — ) is square integrable (as we see below), the operator
P;Cs Py is Hilbert-Schmidt, and its Hilbert-Schmidt norm is

ﬁ /R X (@ () tr (o (y — 2)[?) do dy = ﬁ /R (T +6) N It (| Do (8)[2) dt
< 00,

where we use Theorem 2.15(3).
(iii) Applying (ii) to I and J =R\ I, we see that (1 — P;)Cq Py is Hilbert-
Schmidt. This and Theorem 2.9(ii), (iii) show the first statement. Since

Co,Prl=(1; — Pr)CoPr — PiCs(1; — Pr),
the commutator [Cg, Pr] is Hilbert-Schmidt. O
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3. Adichotomy theorem

Based on Powers’s argument in [11], Arveson proved the following type III cri-
terion in [4, Theorem 13.6.1].

THEOREM 3.1 (ARVESON-POWERS)
Let ® € L*(R) ® Mn(C) be an admissible symbol having the limit
®(00):= lim D(p).
e}

lp|—

If the Toeplitz CAR flow o® is spatial, then

/Rtr(@(p) — P(00)?) dp < .

The purpose of this section is to generalize Theorem 3.1 and to show the following
dichotomy theorem, which can be considered as an analogue of [5, Theorem 39].

THEOREM 3.2
Let ® € L®(R) @ My (C) be an admissible symbol. Then the following conditions
are equivalent

(i)  The Toeplitz CAR flow a® is of type Iy.

(i) The Toeplitz CAR flow a® is spatial.

(iii) There exists a projection @ € My (C) satisfying

AMW@—@%@<w

In particular, every Toeplitz CAR flow is either of type I or type III.

The implication from (i) to (ii) is trivial. That from (ii) to (iii) is a generaliza-
tion of Theorem 3.1. Although we follow the same strategy as in the proof of
Theorem 3.1, we make a significant simplification of the argument using Arve-
son’s classification of type I product systems (see Lemma 3.5), which allows
us to obtain the statement of this form. Since a? with a constant projection
Q € My(C) is of type Iy, the implication from (iii) to (i) follows from an L2-
perturbation theorem stated below, which can be considered as an analogue of
[9, Theorem 7.4(1)].

THEOREM 3.3
Let @,0 € L*°(R) @ My (C) be admissible symbols. If

AMW@—MM%@<m

then a® and o are cocycle conjugate.

We first give a representation-theoretical consequence of the above square inte-
grability condition.
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LEMMA 3.4
Let &,% € L*°(R) ® Mn(C) be admissible symbols. We set A=Tg and B="Ty.
Then

/R (|2 (p) — U(p)[?) dp < o0

if and only if for any (some) nondegenerate finite interval I C (0,00), the two
quasi-free states wp, ap, and wp,pp, of A(Ky) are quasi-equivalent.

Proof
Thanks to Lemma 2.10, the two states wp, ap, and wp, pp, are quasi-equivalent
if and only if the following quantity is finite:

tI‘(PIC@Plcl_\pP[C@P] + P]Cl_.:I)P[Cq/chl_@P])
= tr(leq/(P]CQP[)QCHf\p + C\IJ(P[leq:.P])QC\p) .
Since PfAP; — (PrAPr)? and PrBP; — (PrBPr)? are trace class operators (see

Theorem 2.9(iii), Lemma 2.20(iii)), we can replace (P;CqPr)? with PiCyP; and
(P;Cy_gPr)? with PrC;_P; in the above formula, and we get

tr(C1—w PrCo PrCi_g + Cy PrC1_o PiCy)
= CaPrC1wllfis + [[C1-a PrCu || fis-

Since the commutators [Ci_g, Pr] and [Cs, Pr] are Hilbert-Schmidt (see Lem-
ma 2.20(iii)), the right-hand side is finite if and only if

1Coa—w) Prllfis + |C—ayu Prllfis
is finite. Proposition 13.4.1 of [4] shows that this is equal to

[ (o) - vw)P) db

and we get the statement. O

Proof of Theorem 3.3

Assume that ® — WU is square integrable. Let A =T and B =Ty. We apply
Theorem 2.4 to E = &p and F = &y and show that a® and a¥ are cocycle
conjugate.

Thanks to Lemma 3.4, the two representations 74 and wp are quasi-equiva-
lent when they are restricted to 20(K7). This implies that there exists an isomor-
phism pg from 74 (A(K71))"” onto mp(A(K7))" satistying po(ma(a(f))) =7p(a(f))
for all f € K;. Since pg preserves the grading, we may assume po(Rf}l) RB by
replacing RB with —Rﬁl if necessary. We may also assume R4 = R RK(1
and RP = RE RIB((MO).

We claim that po extends to an isomorphism p; from (w4 (A(K;)) U {RA})”

onto (mp(A(K1)) U{RB})" satisfying p;(R4) = RE. Indeed, since Rﬁ(l,m) com-

o)
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mutes with w4 (A(K71)), we have

1
(ra(@A(K1) U{R})" =

2 2
For the same reason,
1+ RE 1-RE
(mp(A(K:)) U {RB})” = C (Q[(Kl))” S %75’ (Q[(K1))”7

and so pg extends to p; satisfying p; (Rf}(lm)) =p1 (Rle(l,oo))' In consequence,
we have p;(R4) = RB.

Let p be the restriction of p; to M4 Naf(My)’, which is identified with
B(£5(1)). Thanks to Lemma 2.11(i), it is generated by {ma(a(f))R?; f € K1}.
Then the image of p is generated by {rp(a(f))R?; f € K1}, and so it is MpnN
af (Mp)', which is identified with B(£y(1)). In the same way, we can see that
p satisfies p(A®(0,s)) = AY(0,s) for any 0 < s < 1. Thus we get the statement
from Theorem 2.4. O

Now we start the proof of the implication (ii) = (iii) in Theorem 3.2. Recall
that v is the grading automorphism (74 (a(f))) = —mwa(a(f)).

LEMMA 3.5
Let ® € L®(R) ® My(C) be an admissible symbol. If a® is spatial, then there
exists a unit V = {V; }yso for a® satisfying v(Vi) =V; for all t > 0.

Proof
Since v commutes with af for all ¢ > 0, it induces an automorphism of the cor-
responding product system £. When &g is of type Ilp, it is easy to show the
statement, and so we assume that the index of £¢ is not zero. Let E be the sub-
product system of £,+ generated by the units, and let 5 be the automorphism
of E induced by . Then the statement follows from the following claim: For
any period two automorphism [ of any type I product system F, there exists
a unit of F fixed by 8. Note that the type I product systems are completely
classified, and the action of Aut(E) on the set of units Ug is well known (see [3,
Section 3.8]).

Let L be a Hilbert space whose dimension is the same as the index of E,
and let U(L) be the unitary group of L. Then Aut(F) is identified with G =
R x L x Y(L) having the group operation

A&U) (s, V) = A+ p+Im(E, Un), £+ Un, UV).

The set Ug together with the Aut(FE)-action on it is identified with C x L with
the G-action

2
()‘ang) '(a,ﬂ): ((L+Z>\— @ - <U777£>7£+U77)

Any element g € G, of order two is of the form g = (0,£,U) with U? =1 and
U& =—¢. Now we can see that (0,(1/2)¢) € C x L is fixed by g. O
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The following lemma is a slight generalization of [11, Lemma 4.5] and [4, Lemma
13.6.5]. For later use, we show a little stronger statement than we need in this
section.

LEMMA 3.6
Let ® € L*®(R) ® Mn(C) be an admissible symbol, and let A=Tg. If V € Ep(t)
is a normalized vector satisfying v(V') = £V, then there exists a pure y-invariant

state @ of U(Ky) such that Vma(X)V = p(X)1 for any X € A(Ky).

Proof
Throughout the proof, the symbol af(f) means either a(f) or a(f)*. Let fi,
foreo oy fn € Ky, and let X = al(f1)al(f2)--a’(fn). Then for any g € K, we have

V*ra(X)Vra(al(g)) = Vira(Xal(Sig))V = (-1)"V*7ra(al(Sig)X)V
= (=1)"ma(a’(9))V*ma(X)V.

If n is even, this shows that V*m4(X)V is in the center Z(My) of M4, and so
it is a scalar. If n is odd, the operator RAV*714(X)V is a scalar for the same
reason, and on the other hand, it is an odd operator with respect to v. Thus
V*1A(X)V =0, which shows that there exists a y-invariant state ¢ such that
V*ra(X)V =p(X)1 for all X € A(K}).

It only remains to show that ¢ is pure. Recall that the twisted represen-
tation 7% is defined by 7t (a(f)) =ima(a(f))R* and that M4 Naf(Ma) =
7t (A(K))"”. We denote by 7 the irreducible representation of A(K;) on Eg(t)
given by m(X) = (7% (X)) on E(t), where o(Y) denotes the left multiplication
of Y. Then the pure state of A(K;) given by X — (n(X)V,V) = V*rl(X)V
coincides with ¢ because both ¢ and this state are y-invariant, and 74 and 7%
coincide on the even part of A(K}). O

Proof of (i) = (iii) in Theorem 3.2

Let ® € L>®(R) ® My(C) be an admissible symbol, and let A =Tg. Assume
that a® is spatial. Then Lemma 3.5 shows that there exists a normalized unit
V ={Vi}i>0 satistying v(V;) = V; for all . Let ¢ be the state of 2(K) defined by
(X)) = (ma(X)V1024,V104) for X € A(K7), and let B € B(K;) be the covari-
ance operator for ¢. Then Lemma 3.6 shows that V*m4(a(f))V; =0 for any
f € K;. We claim that there exists a positive contraction @Q € L*((0,1)) ® My (C)
such that B is the multiplication operator of ). To prove the claim, it suffices to
show that B commutes with P; for all 0 <t < 1. Indeed, if f € K; and g € K, 1),
then

Vima(alfale)) Vi = Vi Vi ma(a(f) Vima (a(S79)) Viee = 0.

Thus we get P(;,1)BP; =0, and the claim is shown.

Note that ¢ is quasi-equivalent to wp,ap,. We claim that B is a projec-
tion. Let K(K7) be the set of compact operators of Ki, and let ¢: B(K;) —
B(K1)/K(K7) be the quotient map. Then, thanks to Lemma 2.12(ii), we have
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q(PLAPy) = q(B). Since wp, ap, is a type I state, we have q(PLAP;)? = q(PLAPy),
and so B — B? is a compact operator. This is possible only if Q(z) is a projection
for almost every z € (0,1), and so B is a projection.

Since B is a projection, Lemma 2.12(i) implies ¢ =wp. Since wp, ap, and
wp are quasi-equivalent, Theorem 2.9(v) implies

ICe(P1 — B)lfiis + | Cr-o Blls
= tr((P1 —B)Cs (P, — B)+ BCl_q)B) < 0o.
A computation similar to that in [4, Proposition 13.4.1] shows that the left-hand

side is

o [ [ o) - Q@) pae.

Thus the integral
tr(|2(p) — Q(x)|*) dp
R

is finite for almost every x € (0,1), and the proof is finished. O

EXAMPLE 3.7

Let 6(p) be a real smooth function satisfying 8(—p) = 6(p) for all p € R and
0(p) = log(log |p|) (or O(p) =log® |p| with 0 < a < 1/2) for large |p|. Then ®
associated with 6 in Example 2.19 is an admissible symbol without having limit
at infinity. While Theorem 3.1 does not apply to such ®, now we know from
Theorem 3.2 that the Toeplitz CAR flow a? is of type IIL

4. Type |l factorizations associated with Toeplitz CAR flows

Thanks to Theorem 3.2, we have a complete understanding of spatial Toeplitz
CAR flows now. The purpose of this section is to calculate the invariant we intro-
duced in Subsection 2.2 in the case of type III Toeplitz CAR flows.

THEOREM 4.1

Let ® € L*>°(R) ® Mn(C) be an admissible symbol, and let {a,}52, be a strictly
increasing sequence of nonnegative numbers such that ag =0, and it converges to
a finite number a. Let I, = (an,ant1) and O =, o I2,.

(i If

> (g = Pr,)CaPr, |Ifis < o,

n=0

then {A2 (1)}, is a CABATIF.
(i) If {A2(I,)}22, is a CABATIF, then ||(1z — Po)CaPollhg < 0o.

We prepare a few facts used in the proof of (i) first.
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LEMMA 4.2
Let H be a Hilbert space, and let P,Q € B(H) be projections. Then

(1= P)QP|lus = /(1 — Q) PQ||us.

Proof
There is a decomposition of H into closed subspaces (each subspace could possi-
bly be {0})

H=H ®Hy® Hs® Hy®C*® Hj

such that the two projections are expressed as

1z, 0
P=1H1@1Hg@0@( g o) @0,

S

2
Q=1y, 001y, ® (ES Ci) @0,

where ¢ and s are nonsingular positive contractions satisfying ¢ + s2 = 1y, (see
[15, p. 308]). Then we have

2
=tr(c?s?),
HS

2 _ 1 0 2 cs
1 p 9 _ S CS
(1 -Q)PQ|%s H (_cs c? 0 0/ \es s?
2s? es? ?
|55, )

=tr(2cs + %55 4 Fs?)
= tr(c?s*(c® + %)) = tr(c*s?).

la-Peris=| (2 o)

2

HS

HS

LEMMA 4.3
Let the notation be as in Theorem 4.1, and let A=Tg. We set

B=Y P, APy, + P40y AP 00)-
n=0
Then the following conditions are equivalent
(i)  The assumption of Theorem 4.1(i) holds.
(ii) The quasi-free state wg is of type I
(iii) The two quasi-free states wa and wp are quasi-equivalent.

Proof
Theorem 2.9(iii) and Lemma 2.20(iii) imply that (i) and (ii) are equivalent. We
show the equivalence of (i) and (iii). We set I_; = (a,00). Since wy4 is of type I,
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Lemma 2.10 shows that ws and wp are quasi-equivalent if and only if the fol-
lowing quantity is finite:

tr(A(lK — B)A+ (1K — A)B(lK — A))

o0

= Z tI‘(P+C<I>P]nC'1,¢.P[an>P+ + PJFC’l,(pP[n C@P]n01,¢.P+)
n=-—1
= > (IC1-eP1,CaPy|[fis + |CaPr, Cr—a Py |[s).
n=—1
Note that since
> (IC1-aPr,Ca(lz — Py)lfs + CoPr, Ci—a(1z — Pi)lfis)
n=—1
§ Z tr((l )Cq;.P[ C<1>( —P+)
n=-—1

+(1 —P+)01 @P] Ci_ q>( —P+))
= |PiCo(1z — Py)lliis + [P+ Ci-a (1 — Py)llfis
=2[|PL Co(1z — Py)lls < oo,

the above quantity is finite if and only if

> IC -0 Pr, Callfis < oo

n=-—1

Thanks to Lemma 4.2, this is equivalent to

Z I(1z = Pr,)Ca Pr, |[fis < 00

n=—1

Since ||(1z — Pr_,)CaPr_, ||} < 00, we conclude that (i) is equivalent to (iii). [

Proof of Theorem 4.1(i)

Assume that the assumption of Theorem 4.1(i) holds. It suffices to show that for
any strictly increasing sequence of nonnegative integers {n,, }5°_,, the von Neu-
mann algebra AL (E) :=\/""_, A2 (I,,,,) is a type I factor, where E=J>~_, I,
Note that A% (F) is always a factor (see [9, Remark 8.2]). We may assume no =0
without loss of generality. Identifying B(£®(a)) with M4 NaX(Ma)’, we see

that it suffices to show that the factor

\/a MAﬂa

m=0

is of type I. Recall that we have My N af(Ma) = 74 (A(K:))”, where
wh(a(f)) =ima(a(f))R*. Since
af (RY) = +Ry,,

My)')

Anypy+1 = C0ngy (

A pA
00) :teKt7K(t,oo)R RK,Q
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we get

a? (MA N afnmranm (MA)’)

Ay

"

= {rh(a(fRE, R wha(f) ek, )

Anm

Thanks to Lemma 2.11(ii), it suffices to show that the factor

Anm

\ {mala(h) B, SR, 7a(a(f)s feKs,, )"
m=0

is of type L.
Let

m
1

Nowi=\/ {ma(alN) R, Rt walalH)s fek, ',

ang, an g
k=0

and let J,,, =y~ (@n,_1+1,an, ). Since

and
"

R {malalN)RE, . R, ma(a(h)'s fe Ko, ),

we can show

m
A A * "
Nm = \/ {ﬂ—A (a(f))RK‘]k7RK‘]k TA (a’(f)) 5 f S Klnk }
k=0
by induction, where we use the convention Rf}JO = 1. Thus to prove the statement,
it suffices to show that the factor

o0
V Ama(a(N)RE,, R, malal£)s f €K, }
m=0
is of type L.

Let B be as in Lemma 4.3. Since w4 and 7p are quasi-equivalent, there
exists an isomorphism 6 from M4 onto Mp satisfying 6(wa(f)) =0(wp(a(f)))
for any f € K. Since 6 preserves the grading, we may assume G(R’;}I) = Rﬁl for
any interval I C (0,00). Thus to prove the statement, it suffices to show that the
factor

N o=\ {mp(a(N)RE, RE, ms(a(f)": fe K1, }"
m=0

is of type L.

Since J,, is disjoint from F, the self-adjoint unitary R}%}m commutes with
any mp(a(f)) with f € Kg. Thus A is generated by the factor representation
7 of A(Kp) determined by w(a(f)) =np(a(f))R7 for fe Ky, . Let w be the
state of A(Kg) defined by w(X) := (n(X)Qp,0p) for X € A(Kg). Since 7 is a
factor representation, the GNS representation of w is quasi-equivalent to 7.
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We claim that w coincides with wp,pp,. Let X; € (K, ), i=0,1,...,m,
be of the form

X =al(f)a (f3) -+ a'(£)
with f7 e K, , where a(f) means either a(f) or a(f)*. Then we have 7(X;) =
mp(X)RE ", and

w(Xng . Xm) = <7TB(X1X2 . ~Xm)YQB,QB>,

where Y is an element in the even part of m5(A(K3%))"”. Since B commutes with
Py, for any n, if one of l1,1s,...,[,, is odd, then approximating ¥ by polynomials
of rp(af(f)) with f € Kz, we see that the right-hand side is zero. (Consider the
contributing 2-point functions.) When 1,1, ...,[,, are all even, we have

W(Xle : "Xm) = <7TB(X1X2 . "Xm)QB,QB> :wB(Xle e ’Xm)7

which shows w =wp,pp,. Thus to prove the statement, it suffices to show that
wp,BPy 18 of type L.
Since Pg commutes with B, we get
tr(PgBPg — (PgBPg)?) = tr(Pp(B — B?)) < tr(B — B?).

Now the statement follows from Theorem 2.9(iii) and Lemma 4.3. O
We proceed to the proof of Theorem 4.1(ii).

LEMMA 4.4
Let L,, n=0,1,..., be Hilbert spaces, and let L = EBZOZO L,. Assume that ¢ is
a y-invariant state of A(L) satisfying the following two conditions

(i) For any natural number n and X; € A(L;), i=0,1,...,n,
P(X1 X2 Xn) = o(X1)p(X2) - 0(Xn).

(ii) The restriction @, of ¢ to A(Ly) is a pure state for any n.

Then ¢ is a pure state.

Proof

Let (Hp,7n,$,) be the GNS triple of ¢, and let H = @5 (¥ H,, be the
ITPS of the Hilbert spaces {H,}52, with respect to the reference vectors
{Q,}152,. We set Q=& Q. Since ¢, is a y-invariant state of A(L,,), there
exists a self-adjoint unitary R,, € B(H,,) satisfying R, m,(X)Q,, = m,(v(X)) for
all X € A(L,). We introduce a representation 7 of (L) on H by setting 7(a(f))
for fe L, as

WO(a(f)) ® 1®z°:1 Hy,» n =0,
Ry@R1 @+ @ Rn1 @mp(a(f)) ®1ge , H,, n>0.

Then 7 is irreducible, and the pure state 1) of (L) defined by (X ) = (7(X)Q, )
satisfies conditions (i) and (ii). Moreover, the restriction of ¢ to 2(L,,) coincides

m(a(f)) = {
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with ¢,,. Since {p,}52, and condition (i) uniquely determine ¢, we conclude
that ¢ =1 and it is a pure state. O

LEMMA 4.5

If the assumption of Theorem 4.1(ii) holds, then there exist normalized vectors
Ve&s(a), Vi, € Es(ant1 — an), and Wy, € Es(a — any1), n=10,1,2,..., such
that V' is factorized as V =VoViVo--- Vo, Wy, and v(V,,) = £V,,, v(W,,) = W,

for any nonnegative integer n.

Proof
Assume that {A® (1)}, is a CABATIF. Then thanks to Theorem 2.7, there
exists a sequence of Hilbert spaces with normalized vectors {(Hp,&,)}o2, and
unitary U from ITPS H := @, , " H, onto £s(a) such that UM, U* = A (1,,),
where

M, = B(Hn) & (C1®

m#n Hm :

For X € MsNa®(My), we denote by o(X) € B(Es(a)) the corresponding
left multiplication operator. We claim that for any 0 <t < a, there exists ¢; €
{1,—1} such that y(X) = &0 (Rg,)X for any X € £*(t). Indeed, let ¢ be the
constant determined by af (R*) = ¢;Rg, R*. Then

v(X)=RAXR*" = R4%f (R*)*X = ¢,Rjt X,
which shows the claim.

The claim (or Lemma 2.11) implies that for any X € M4 Na®(My), we
have R‘I‘}aX R‘;}a* =v(X). Thus U(R‘I‘}a) is a self-adjoint unitary satisfying

o(Rt, )AS (I)o (R, )" = AX(I,).

For the same reason, the operator U(Réln) is a self-adjoint unitary in AL (I,)
satisfying

(4.1) o(Ri,)Xo(Ry,)" =o(Ry, )Xo(Rg, ), VX e Al(I,).

Applying Lemma 2.8 to the self-adjoint unitary R = U*J(Rf}a)U € B(H),
we get a product vector n =&, 1, € H and self-adjoint unitaries R,, € B(H,,)
satisfying the three conditions in the conclusion of Lemma 2.8. We may assume
[I7.|l =1 by normalizing each 7,. We set V :=Un. Then we have (V) =
€0 (R )V ==%V.

Let e, € M,, be the minimal projection satisfying e, n =7 for all n, and set
fn="Ue,U*, which is a minimal projection of A®(I,,). Then we have f,V =V
for all n. For each n, we can choose a normalized vector V,, € Eg(ant+1 — an) O
that for any X € Eg(a,) and YV € Eg(a — any1), we have f,(XV,Y) =XV, Y.
Since the self-adjoint unitary Up, (R,)U* € A%(I,,) satisfies the same equation
as (4.1) in place of U(Réjn ), we have either Up, (R, )U* = U(Rf}ln) or UR,U* =
—U(Ré]n). Thus pp(Ry)enpn(Ry)* = e, implies U(Rf}ln)fna(R?}In)* = fn.
Since f,, is a minimal projection of AZ(I,,) and a(R}‘}I”) € A2(1,) is a self-adjoint
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unitary, this shows that XV,,Y is an eigenvector of J(R‘I‘}I ) and R‘;}I XV,Y =
+XV, Y. On the other hand, since o (RZ )=+R7 and

An+1—0n

-1
Ry, XV,Y =X(ag — (R{)VL)Y,

we see that V,, is an eigenvector of J(an+17an). Thus we get v(V,,) = £V,.
Letting W,, = (V1Va--- V,,)*V, we finish the proof. O

Proof of Theorem 4.1(ii)
Since ||(1z — Po)CoPollig = tr(PoAPo — (PoAPp)?), it suffices to show that
the restriction of m4 to A(Kp) is a type I representation thanks to Theorem
2.9(ii), (iii).

Let Ly, = Kay,\1—as,, and let L=@D, ; L,,. We denote by 7 the represen-
tation of (L) on H 4 determined by

m(a(f)) =ma(a(Say, ) = g, (ma(al(f))), f€ Ln.

Since m(A(L)) =74 (A(Kp)), it suffices to show that 7 is a type I representation.
Let V, V,,, and W,, be the normalized vectors obtained in Lemma 4.5. We set
(X)) = (m(X)VQa,VQ4) for X € A(L). Then ¢ is a state of A(L) whose GNS
representation is quasi-equivalent to m. We show that ¢ is pure using Lemma 4.4.
Lemma 3.6 shows that there exists a y-invariant pure state ¢, of 2(L,,) sat-
isfying V¥ma(X)V,, = 0n(X)1 for all X € A(L,,). Let X; € A(L;), i =1,2,...,n.
Then
V*’/TA(X()Xl cee Xn)V

= W5, Vs Vi Vg ma(Xo)ag, (ma(X1)) -~ ag,, (1a(Xn)) VoV -+ Van Wan

= W5, Vo ViVEma(Xo)VoVima(X1) - ag,, ., (a(Xn)) Va - Voo Wan

= po(Xo)Wa, Vi, - Vama(Xn) - ag, _a, (TA(Xn)) Vo - Van Won

= p0(Xo0) 1 (X1) W3, Vay, -+ Vima(Xa) - g, o, (ma(Xn)) Vi Vau Wan

= =o(Xo)p1(X1) - on(Xn).

Thus Lemma 4.4 shows that ¢ is a pure state, and in consequence, 7 is a type |
representation. O

In order to apply Theorem 4.1 to concrete examples, we state the assumptions
of Theorem 4.1 in terms of the regular part ®y of the Fourier transform &.

LEMMA 4.6
Let the notation be as in Theorem 4.1. Assume that ® is an even function.
(i) The assumption of Theorem 4.1(i) holds if and only if

/Ooo Zmin{{ﬂ, |In‘}t1"(|(§0(x)|2) da < co.
n=0
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(ii) The assumption of Theorem 4.1(ii) holds if and only if
o
/ 106 (0 + )| tr(|%o (2)]?) da < oo,
0
where O © (O + x) is the symmetric difference of O and O translated by x.

Proof

(i) The statement follows from |(I,, \ (I, + t))| = min{|¢|,|I,|} and Lem-
ma 2.20(ii).

(ii) We set J_1 :=(—00,0), Jo:= (a,00), and J,, = I,—1 for n € N. Then

oo o0

I(1g = Po)CaPolfis= Y. > P, CoPr, s

m=—1n=0

The statement follows from this and Lemma 2.20(ii). O

Lemma 4.2 implies ||(1z — Pr)CoPg|}g = ||C1—oPrCsl/}s. Thus by using
Fourier transform, we can also get the following criteria, though we do not use
them in this article.

LEMMA 4.7
Let the notation be as in Theorem 4.1.
(i) The assumption of Theorem 4.1(i) holds if and only if

tr(|2(p) — (91 = . 2 [Tnl(P—9)
/R2 =2 Zsm — dpdgq < 0.

n=0

(ii) The assumption of Theorem 4.1(ii) holds if and only if

[ 20) 2@ P)oo ~ o) dpdy <.

5. Examples
Applying Theorem 4.1 to concrete sequences, we get the following theorem, which

provides us with a computable invariant for type III Toeplitz CAR flows.

THEOREM 5.1
Let ® € L*®(R) @ My (C) be an admissible symbol satisfying ®(p) = ®(—p) for
allpeR, and let 0 < p<1. We set ap=0,

i 1
an:;m’ nen,

and a =1im,, .o a,. Then the following three conditions are equivalent

(1) The type I factorization { A2 (an,an+1)}, is a CABATIF.

(2) We have
> te((2(p) — 2(9)?)
/0 /0 e
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(3) We have

/00 xt tr(|<i>0(x)|2) dzr < 0.
0

Moreover,
(1) If {AZ(an,an1)}>, is a CABATIF, then

e d
/ tr(|®(2p) — @(p)|?) p—fj < 00.
0
(i) If @ is differentiable and
/ tr(|®'(p)|*)p* " dp < oo,
0

then {A2 (an,ans1)}% is a CABATIF.

Proof
The statement follows from Lemma 2.14, Lemma 4.6, and Lemma 5.2 applied to
h(z) =ar~1L. O

The following lemma is more or less [9, Lemma 8.6].

LEMMA 5.2
Let h(x) be a nonnegative strictly decreasing continuous function on (0,00) sat-
isfying limg o h(x) = 00, lim, .o A(x) =0, and

/01 h(z) dz < .

We set ag =0,

I, = (an,an+t1), and O =, —; Ion. Then the sequence {a,}22, converges, and

z(h(z)—1) <06 (0 + )| §2§:min{x,|ln\} §2/Ih(t)dt, vz > 0.
0

n=0

Proof
Note that we have

o0 h™'(n+1)
> hTl(k) g/ h(t)dt —nh~Y(n+1),
k=n+1 0

and in particular, the sequence {a,}22, converges. Since min{z,|L,|} = |1, \
(I, £ )|, the middle inequality follows from the definition of O.
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For fixed z > 0, we take the unique nonnegative integer n satisfying h=*(n +
1) <z <h7*(n) (or, equivalently, n < h(z) <n +1). Then

me{x |Ik|}fZa:+Z|Ik 7n:c+Zh (k+1)

H(n+1)
g/o h(t)dt +n(z —h~'(n+1))

g/ozh(t)dt

When n is even, counting only contribution from {ng}(n /2 , we get
[(U+2)\U| > 5:1:
In a similar way, we get
U\ (U +2)| = 2,
and so
UG (U + )| >nz> (h(z) — 1)z

When n is odd, we have |(U+2)\U| > ((n+1)/2)x and |[U\ (U 4+ )| > ((n +
1)/2)x in a similar way, which shows |U © (U + )| > zh(z). O

Now we apply Theorem 5.1 to concrete examples.

THEOREM 5.3
For v >0, let 0,(p) = (1 +p?)™", and let

1 1 et (p)
‘I’V(P>=§(ewu(p> 1 )

Then ®,, is admissible. Let o := a® be the corresponding Toeplitz CAR flow.
(i) Ifv>1/4, then o is of type L.
(ii) If0<wv <1/4, then o is of type III.
(iil) If 0 <1y <we <1/4, then & and o2 are not cocycle conjugate.

Proof

The fact that ®, is admissible follows from Theorem 2.15(ii). Conditions (i)
and (ii) follow from Theorem 3.2. To show (iii), we choose y in the interval
(1 —4vs,1 —4v1), which satisfies 0 < px < 1. Applying Theorem 5.1(i), (ii) to this
pand ® =0, i=1,2, we see that {Ay"2(an,an1)}, is a CABATIF, while
{Af”1 (@, ant1) 102 is not. Therefore o and a2 are not cocycle conjugate. [

REMARK 5.4
Let ® be as in Example 3.7, and let g and {a,}, be as in Theorem 5.1.
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Then Theorem 5.1(i) implies that {A®(an,a,4+1)}2%, is not a CABATIF for any
0 < p < 1. This shows that a® is not cocycle conjugate to o for any v.
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