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selecting a different h for each s by minimizing L(s).
An estimator of V(s) is given by

s—1
Vh(s) = _20 éh(j)Bh(j)-
j=

However, as in the case s = 1, V,(s) for any s > 1
provides a biased estimator of V(s). Indeed, under
regularity conditions similar to, but slightly stronger
than, those specified in Theorem 4.2 of Bhansali
(1986), an asymptotically unbiased estimator of V(s),
to terms of order h/T, is given by

T
We may, therefore, estimate L(s) by

-1
Li(s) = Vh(s)<1 + %)(1 - %) )
and for each s, choose h so that L(s) is minimized.
Observe that for s = 1, Lx(s) reduces to the FPE
criterion of Akaike (1970).

We note that in the context of fitting ARMA models
nonparametrically, i.e. without requiring that there is
a “true” order ( po, go), the question of how to estimate
V(s) is closely connected with the discussion in Sec-
tion 3. My question to Hannan is: what, if any, are
the statistical properties of the procedure due to
Adamyan, Arov and Krein (1971), which has been
described after equation (3.4). Of course, as discussed
by Franke (1985b), in the Hannan-Rissanen proce-
dure, an approximation to the transfer function

Vils) = V,,(s)<1 - i)_.

Comment

David R. Brillinger

Throughout his whole career Ted Hannan has in-
variably put a finger on directions in which the field
of time series later moved. We can anticipate that
being the case with this present paper as well. State
space . representations and corresponding ARMA
models seem destined to be in the forefront of time
series research for many future years in much the
same way that linear regression is so pervasive in
traditional statistics research.

On a surprising number of occasions, techniques
developed to handle time series problems have gone
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B(w), say of the b(u), is constructed by solving the
“Box-Jenkins” equations. This approximation is re-
alizable if, e.g., f(w) is known, and it is optimal from
the point of view of entropy maximization. When
should the approximation to B(w) proposed by
Adamyan, Arov and Krein be preferred to this ap-
proximation? Note that for n = 1, an “autoregressive”
estimator of the function g(w) = l}(w)B‘l(w) is given
by &»(w) = An(w){A,(w)} !, where A, (w) is the transfer
function of the a,(j).
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on to become central to statistics generally, so all
statisticians may gain from paying some attention to
the problems studied here. As examples of techniques
going on to broader use, one may mention the work
by Parzen and Rosenblatt on spectral density esti-
mation that led to later work on probability density
estimation and the work by Akaike on dimension
estimation for autoregressive processes that led to
techniques for dimension estimation in general para-
metric problems.

One thing this paper does is to make apparent the
debt time series researchers owe to engineers. The
engineers recognized basic problems and often devel-
oped effective solutions. Engineering contributions
abound in the book by Kailath (1980). A particularly
important one is the work by Schweppe (1965) and
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Mehra (1971) showing how the Kalman filter may be
employed to determine the Gaussian likelihood in the
case of processes with state space formulations (in
particular, ARMAs). In connection with this work it
somehow seems appropriate to set down the classic
engineer’s line,

Every engineering problem has a solution.

(I suppose statistical consultants have to have the
same attitude.)

In his paper Professor Hannan reviews a number of
problems and techniques at the heart of contemporary
time series research: state space representations and
approximations, dead and real time algorithms for
fitting state space representations and he also presents
various asymptotic results. Throughout, his concern
is with the case of vector-valued time series. Often the
techniques for the vector case are seen to be far from
elementary extensions of the usual techniques for real-
valued series. It is interesting to see the development
of a host of procedures for Hankel matrices. Proce-
dures for Toeplitz matrices have long been central to
work with stationary time series.

Material in the paper is presented concerning the
approximation of “known” transfer functions and
concerning model fitting to empirical data. I will sep-
arate my comments correspondingly.

In my own work with state space models, I strive to
have the substantive matter suggest a specific form
for the model. In particular this typically leads to a
variety of structural zeros (in the matrices, A, B, C of
(2.3)) and to scientifically interpretable parameters.
This mechanistic modeling approach further tends to
reduce the problems associated with estimating di-
mensionality substantially. This last material is meant
as a comment on my experience, not a question. A
question Ldo have is the following: Pade approximants
have long been proposed to handle the construction
of rational approximations. (A recent reference is Lii
(1985).) I wonder, are there any clear connections
between those approximations and the ones of this
paper? 1 wonder too about connections with the
e.-transformation employed in what has been called
G-spectral estimation for somehow this work seems
related. (One reference is Gray, Houston and Morgan
(1978).) A comment to end with here is a repetition of
Professor Hannan’s that a crucial issue in the utility
of the approximations developed is—is the norm em-
ployed “a suitable measure of closeness with which to
work”? Presumably, eventually experience will show
its inadequacies and strengths.

Professor Hannan, in the paper, emphasizes the
technique of “Gaussian estimation,” with a penalty
term for dimension. Recently, I (Brillinger, 1985) have
found the use of a criterion involving third order
moments as well as second order, to lead to improved

estimates. It is meant for series that are not Gaussian.
Specifically, let IT denote the second order periodo-
gram at frequency 27s/T and let f, denote the corre-
sponding power spectral value. Then the estimating
equations of Gaussian estimation are

U [ _
g‘.az—fs)ao/ff_o.

Suppose now that I7, denotes the third order perio-
dogram’ and f., the corresponding bispectral value.
Then, the method of bispectral fitting looks for solu-
tions of the equations

o,
§(IsT_fs) aa/fg

2_7!' _ afr,s _
T ISR~ )T / ofifres = 0.

In the work cited, these equations were solved by
iteratively reweighted least squares for an AR(2)
model. They come from setting down a likelihood
based on both second and third order periodograms.
The standard errors of the coefficients were found to
get smaller and a further parameter, the skewness of
the errors, could be estimated. The asymptotic distri-
bution of these estimates may be set down via the
general lemma given in Brillinger (1975).

Consider next the problem of estimating dimen-
sionality. In the fitting of M(p, q), for example, —2
log likelihood is corrected by »(0)/T at one place, with
v(0) = (p + q)n? by v()log T/T at another and by
v(0)Cr/T at a third. Taking note of the current wave
of research on penalized maximum likelihood, with
the determination of the multiplier of the “smooth-
ness” term by cross-validation, I am led to propose a
correction term Ap + ugq instead, with A and u deter-
mined by some form of cross-validation. (For example
by extensions of the procedures in Beltrao and Bloom-
field (1987) or Wahba and Wold (1975).) Intuitively,
I feel that p is the more important parameter here

. and that the fitting procedure should allow of this

possibility.

I noticed that no mention was made of prewhitening
in the sections on statistical aspects. (For the nontime
series readers, prewhitening involves the fitting early
on of a crude model to the data, to make the obser-
vations analyzed more nearly independent.) It seems
to me that prewhitening substantially simplifies the
analysis on many occasions. I wondered what Profes-
sor Hannan’s current attitude to prewhitening was? I
also wondered if Professor Hannan had any prefer-
ences as to how to assess the reasonableness of models
fit? Presumably he would compute some measures, or
plots, based on residuals.

I end by remarking what a pleasure it has been for
me to read and learn from the many papers that Ted
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Hannan has written. With his retirement, I expect to
see papers being generated even more rapidly.
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Comment

R. Dahlhaus

This paper by Hannan is an excellent review of an
important topic in time series analysis: the approxi-
mation of a nonparametric time series by a parametric
rational one. The paper gives insight into the problems
which arise and offers a variety of methods to tackle
these problems.

To regard a fitted parametric model as an approxi-
mation to a nonparametric time series is clearly the
correct point of view when dealing with parametric
time series analysis. Many interesting papers dealing
with related problems have been published in recent
years and there is great need for further results to
develop the theory sufficiently. The present paper is
an important contribution to this goal.

It was therefore a pleasure for me to read this
stimulating paper and to have been asked to comment
on it. I will restrict my comments to the problem of
estimation and in particular to the case of a one-
dimensional process which is approximated by an
autoregressive process.

;l. THE APPROXIMATION CRITERION

Since the goal of the paper is the approximation of
the transfer function, it seems to be natural to take a
criterion which measures the quality of the approxi-
mation directly. Suppose the original series has an
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infinite autoregressive representation

©
Z asYt_s = & With &t i.i.d.,
s=0

Ee, =0, var(e) = o2,

and Y, is approximated by an AR(k)-process whose
coefficients are estimated from the data by a;(k), - - -,
dr(k), 62. An appropriate approximation criterion then

would be, for example,

(1) 51; _: %’%—13&
where

AN = i aexp(—ils)
and B

k
AN = X a,(R)exp(=irs).

Considering the relative difference between AN
and A()\) is natural, since for Yule-Walker estimates
(1) is approximately equal to o 2T(d(k) — a(k))
R(a(k) — a(k)) with R = {cov(Y;, Y;)};;, which tends
weakly to a x7 distribution (if the true process Y, is
also an AR(k)-process), while the limit behavior of
the absolute difference would depend on A(M\). The
choice of the #, norm seems to be mainly for
calculational convenience. However, by using the
approximation log(s/d:) = (¢/ax) — 1 (or by adding
the penalty term 2[(¢/6,) — 1 — log(a/a)] for the
innovation variance estimate to the criterion (1)) one



