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but inaccurate, estimate will lead us astray in practice.
Our inferences can be erroneous and lead us to poor
policy decisions.

The large effects on estimation and inference that
can be attributed to misclassification suggest that
resources should be allocated to estimation of these
error rates prior to the implementation of a mass
screening program and on an ongoing basis for the
duration of the program. The costs of classification
errors are high to both individuals and society. The
existence of a screening program itself may alter
behavior of individuals, and the disease process
may change from the intervention after screening and
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We are indebted to Professor Gastwirth for an
enlightening discussion regarding the reliability of the
results of screening tests in two rather important
areas: AIDS and lie detectors. His main concern is
with the conditional probabilities of correct classifi-
cation and the sampling error of their frequentist
estimators.

I would like to outline an approach that I believe
might be more informative and illuminating for infer-
ring the results of such screening tests. For the sake
of simplicity, let us assume that there is a properly
identified population and a single test (multiple tests
and varying populations would only further serve to
complicate the situation but not change the concep-
tual framework for handling such problems).

With the use of Prof. Gastwirth’s notation, we have
a table exhibiting the following probabilities:
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where, e.g., P(D) = «, P(S|D) = n, P(S|D) = ¢;
P(S) = 79 + (1 — x)(1 — 8) = p. The critical so-called
PVP,
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from improvements in both the screening method and
therapy. These and other related issues in the evalu-
ation of medical screening procedures are discussed
in Goldberg and Wittes (1981).
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and the probability of a false negative,
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say,

are functions of the three parameters, «, n and 6.

The type of sampling that Professor Gastwirth deals
with in the paper presumably would yield a likelihood
function for 6, » and =,
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recalling that 7 is a function of 8, n and «. Suppose a
joint prior for 5, # and =, g(n, 0, 7) is available. Then
the posterior density of 6, » and « is

p(6, n, =|d) o« L(6, n, 7)g(n, 0, 7),

 where d = (ry, r2, 01, ng, t, n).

Clearly, if we were diligent and clever enough, we
could find from p (8, , 7 | d) the joint posterior density
of 7 and p, say p(r, p | d). Ostensibly then for any set
S on the unit square we could find

P[(r, p) €ES] = P,

or conversely for any fixed P we could find the
“smallest” set Sp such that

P[(7, p) € Sp] = P.

Similar results could be obtained marginally for either
p or 7. This would be much more informative than the
calculation of the approximate standard errors of
the estimates € and F. Of course this would require
a good deal of heavy calculation involving numerical
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integration and approximation as well as some
prior knowledge about 6, 5, # which no doubt is avail-
able in the AIDS case, for example. Note that Profes-
sor Gastwirth indicates that = is probably around .01
in a particular low risk AIDS population.

For reasonably large data sets, uniform distributions
for the three parameters would not in all likelihood
induce posterior distributions that appreciably dif-
fered from ones based on somewhat more informative
priors. Indeed one could also explore various condi-
tional posterior probabilities of 7, say, given one or
two of 6, 5, = or functions of them.

The expectation of 7 or p is of course the minimum
mean squared error predictor of 7 or p.

If in the future one could only observe individuals
who would test positive for D and M among those
actually are in class D, then 7 is the limiting propor-
tion, i.e.,

T m N

with distribution function P(r | d), assuming stability
of the population. Hence,  and P(7 | d) so interpreted
inform us about the potential fraction of the class S
who are also D, when observation is limited to S.
However, for a new individual or testee who has been
classified as S and regards himself as exchangeable
with the previous n testees, he would calculate his
predictive probability of being D as

deP(‘rld')

where P(7|d’) is the posterior distribution of 7 de-
rived from the likelihood modified by adding 1 to ¢
and n, respectively. -

This is the probability that concerns him. What
should concern the health authorities is developing
screening tests that give rise to distributions for r that
are concentrated more and more closely about one.

Consider the situation wherein a hospital adminis-

trator will receive only individuals who are classified .

as S (the laboratory does not inform him how many
were S). These individuals will, within a fixed time
* period, either exhibit D or D and those that exhibit D
will require a bed. The administrator would like to
compute the number M of beds he will need given that
he will be assigned K individuals classified as S. In
such situations where there is a censoring of S we can
compute

P[M =m]= (nKz> f (1 — 7)¥™ dP(7 | d).

Note that

tm =T
with P(7 | d) as the probability distribution of . For
sufficiently large K we could use

P(r =y|d)
as an approximation for
P(MK! =y)

if in fact this calculation becomes too burdensome to
execute.

Suppose, on the other hand, the total sample of
individuals  screened in the laboratory was known to
the administrator. Assuming these individuals were
exchangeable with the original n testees then the
calculation follows along these lines:
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a computation more complex but more informative as
more is known.

Thus the predictive approach outlined facilitates
inferring probabilities of interest to (a) the testee,
(b) some hospital, clinic or institution involving a -
finite number of testees or (c) a public health authority
or commissioner concerned with a very large number
(close enough to infinity so as to make no appreciable
difference between PIMN™ = y] and P[r = y]) of
potential testees. These predictive probabilities, com-
bined with other ingredients, would be the basis for
forming conclusions, making decisions and taking
whatever actions are indicated.

and

PM=m|K=Fk)=
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