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Comment

Philip Hougaard

I welcome this paper, because there is need to spread
the knowledge of the saddlepoint approximation. The
approximation is very useful, both in theory and in
practice, but it is still not used as much as it deserves.
I would like to comment on the tail area approxima-
tion and on approximations to ratios. Furthermore, I
will present the approximation to the noncentral
gamma distribution. This is on one hand an example
to show the usefulness and accuracy of the approxi-
mation and on the other hand there is need to publish
as many specific formulas as possible, because many
potential users do not make these derivations on their
own. Specific formulas will be helpful for increasing
the use of the saddlepoint approximation.

This paper has shown that a number of quantities,
sums, estimates, score statistics and likelihood ratio
statistics can be approximated in similar ways. Even
though the approximations are very good, they can be
improved in various ways, by renormalization or by
the first terms in the remainder. Interestingly, the
longest section is that on further developments.
Therefore the paper is filled with ideas and this makes
it difficult to do a simple and fast derivation, but it is
most inspiring and I have learned a lot from the
examples I have studied, including the one reported
below. I think we still need more experience with these
many approximations, but I also see possibilities for
further work. Can the approximation (28) due to
Lugannani and Rice be generalized to more compli-
cated models, both curved models and multivariate
models? More work is needed on treatment of nui-
sance parameters, both concerning estimates and test
statistics. Also we need substitutes for the moment
generating function when it is too complicated.

Concerning approximation of the tail area discussed.

in Section 6.3, it is typically difficult to explicitly
integrate the density approximation. However, in the
one-parameter nonlinear regression it is possible. In
fact, it is much simpler to derive an approximation for
the distribution function rather than the density,
because this requires no use of moment generating
functions or conjugated families. In these models the
set of observations y for which 6(y) < 6 is approxi-
mately a half space, given by the derivative 7 of the
mean value vector function n calculated at 6. Locally
around 6 the only possible error in this approximation
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is caused by a set of observations on one side of the
mean value space, and further away from it than the
radius of curvature. On a global basis it is as usual
more difficult to express whether the approximation
is good. The advantage of this approach is that the
probability of the half space can be calculated exactly
by using the mean 7 = 5(f,) under the true value 6,.
This is different from the standard normal approxi-
mation that is based on the linear tangent space of
the mean value curve at either 6, or §. We find the
approximation, first noticed by Pazman (1984),

P < 0) =~ &7 (n'n)"*n"(n — no)}

where o2 is the variance on an observation. The deriv-
ative gives the saddlepoint approximation for the
density.

The saddlepoint approach is also very useful for
studying ratios, say R = X/Y, if we know the joint
moment generating function of (X, Y). This gives an
approximation different from that based on the
moment generating function of R. Even though this
was noticed already by Daniels (1954, Section 9), it is
apparently not well known. If X and Y are bivariate
normal we get the approximation suggested by Hink-
ley (1969). If X and Y are independent and gamma
distributed R follows an F distribution. The saddle-
point approach yields a density proportional to the
true one. The factor is explained by the Stirling
approximation applied to all of the three gamma func-
tions in the normalizing constant. Even if X and Y
are dependent, being the diagonal of a Wishart dis-
tributed matrix, the approximation is proportional to
the true density. This example corresponds to the
ratio of variances in a bivariate normal distribution.
This was also realized by Daniels (1954).

Finally, I would like to consider an example, which
to my knowledge has not been studied before, the
noncentral gamma distribution. Cox and Reid (1987)
studied other approximations for this distribution.
The density is only given as an infinite sum

— ,—A—0x < _A_r
flx) = e ,go r' T(r+v)
with three parameters 6, v and A. The latter is the
noncentrality parameter; if A\ = 0, the distribution is
the familiar gamma of shape vy and inverse scale 6.
The moment generating function is simply

o= 25 )

r+y
0 r+y—1
’

&4

Statistical Science. NINORY

www.jstor.org



SADDLEPOINT METHODS 231

Interestingly, the equation (2) for ¢ is a quadratic
equation, which can be solved explicitly. The solution
can be described as ¢ = —0 + ¢%, where for A = 0,
e = —x/v and for A > 0,

e={—vy + (v2 + 4N0x)Y2}/(200).

It is convenient to express the density by means of ¢
rather than ¢ and this gives

f(x) = (2m) V{200 + e (0e)”
- exp(—fx + x/e — X\ + Ne).

We have excluded n from the formula because the
repetition parameter is already included in the param-
eters. As described by Reid (equation (8)), this formula
can be improved by renormalization, at least for A =
0. In that case the approximation should be multiplied
by

c(v, 0) = ¥y V*(2x)?e™/T(v)

in order to get the true density. This factor is inde-
pendent of 6. Interestingly, it is helpful to act as if it
applies also to non-zero values of . This gives for
small to moderate values of A, approximations of an
impressive quality. Figure 1 shows an example, y = 2,
6 = 1, A = 4, which has a clear noncentrality. The
mean and variance are 6 and 10, respectively. A central
gamma with the same mean and y would have a
variance of 18. It is difficult to see any differences on
Figure 1 and therefore Figure 2 shows the ratio of the
approximate density to the true density. The approx-
imate density named renormalized is c(vy, 0)f(x) nor-
malized as if A = 0, and stays within 2% of the true
density over the range studied. With smaller X\ this
approximation is even closer to the exact.

In practice we are more interested in fractiles of
these distributions and therefore we need approxi-
mations to tail areas. The approximation (28) origi-
nally due to Lugannani and Rice (1980) is simply
calculated and surprisingly accurate in this case. We
find

y =sgn(d — ¢ )[2{x(0 — ™)
— (=X + hay + v log ay)}]'?,
2= (0 — e 1)(200e® + ye2)'2

In the example mentioned above, the true 0.95 fractile
is 11.888. The approximate fractile is 11.893, which
has a true level of 0.95012. This is a typical example.
In fact it is very difficult to find cases where the
approximate fractile is markedly wrong. The worst
cases are the central case (A = 0) with few repetitions
(small v) and in particular at the lower to mediate
range. For example, in the rather extreme case of
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y=2,0=1and \=4.

v = 1, corresponding to a single degree of freedom and
A = 0 the approximate 1% fractile has a true level of
0.88% and the exact probability of being below the
approximate median is 48.9%. We cannot demand that
an approximation should perform better than this.

That brings me around to my conclusion. The
approximaticns studied by Nancy Reid in this paper
have in most cases a terrific accuracy and therefore
the only possible objection to them is computational.
To be provocative, if the saddlepoint approximation
is simpler than the exact distribution, we rarely need
the exact distribution.
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