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Comment

Leo Breiman

It is a pleasure to comment on papers where one
finds much of merit together with major issues on
which one can contend. This is the case with Ramsay’s
work. I have become impressed with the usefulness of
splines over the past few years. They have nice theo-
retical properties as well as being a good practical tool
in data analysis. Their use in statistics is not wide-
spread, so I welcome this article because it may lead
to increased interest and applications.

Now, as to my comments:

Ramsay’s example on ACE will probably strike ter-
ror into the hearts of hundreds of contented ACE
users. His ACE runs on the gasoline consumption data
purport to show an extreme dependence on the order
in which variables are entered into ACE.

We have used the same data (kindly published in
the article) and are completely unable to replicate his
results. We thought he might be using the monotone
option in ACE, so we ran it this way. Then we ran it
without the monotone option. We also ran ACE on
the data with a 40% fixed window size, which (see
below) is roughly equivalent to using one interior knot.

In all three cases we changed the order in which
variables were entered and compared the results.
These are given in Figure 1. The differences, due to
the change in order of entering variables, is miniscule.
I don’t understand how Ramsay got the results he did,
but my best guess is that some mistake was made in
doing his ACE runs.

The ACE algorithm has been circulated and used
far and wide over the last few years. In practice, it has
proven a generally robust and illuminating data analy-
sis tool.

I am very wary of the assumption of monotonicity.
I was, for instance, against the inclusion of monotizing
transformations as an option in the ACE algorithm.
But my co-author, Jerome Friedman, argued me into
it asserting that, whatever the reason, lots of statisti-
cians like monotone transformations.

No one has decreed that phenomena in nature are
inherently monotone. By restricting yourself to
monotone transformations, you risk missing some
important discoveries. For example, in the ACE
paper (Breiman and Friedman, 1985) we give an
example of ACE runs on an air pollution data set
where one of the predictor variables is the pressure
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difference at two meteorological stations. One is in
the Los Angeles basin and the other about 30 miles to
the north.

In previous analyses of this data, many monotone
transformations had been tried on this variable, and
it always wound up as having very little predictive
power. ACE produced a transformation on this vari-
able that resembled — |x |. In this transformed mode,
it became a strongly predictive variable. In retrospect,
the reason is obvious. Any kind of pressure difference,
either positive or negative, encourages a moving air
mass, and reduces pollution in the Basin.

I only know of infrequent cases in which I would
insist on monotone transformations. Finding non-
monotonicity can lead to interesting scientific discov-
eries. If the appropriate transformation is monotone,
then the fitted spline functions (or ACE transforma-
tions) will produce close to a monotonic transforma-
tion. So it is hard to see what there is to gain in the
imposition of monotonicity.

Ramsay claims that in practical applications a very
small number of interior knots are sufficient. He cites
two interior knots as being usually good enough. This
is contrary to my experience.

The number of knots in a spline fit can be viewed
as equivalent to the window size in a smoother. In
fact, because spline fitting is a linear operation, one
can compute the shape of the windows produced by
spline fitting.

For one interior knot in a quadratic spline the
windows are very broad, being equivalent (under a
sensible definition) to a fixed window size smoother
that uses about 35% of the data. For two interior
knots, the equivalent window size is 29% of the data.
For six interior knots the equivalent window size is
15%, and 10 interior knots drop it to 10% of the data.

Now a smoother with a 30% window will capture
only the broadest gross features of the data. It will
oversmooth the peaks and valleys and wipe out any
salient fine features of the data. Unless one is willing
to live with these oversmoothing characteristics, two
knots are not sufficient.

The setting of an appropriate window size for the
data is a critical and complex problem. In ACE it is
done by using a smoother that selects a locally optimal
window size ranging from 7% of the data to 30%. In
smoothing splines it is done by choosing the optimal
size of the penalty parameter through cross-validation.
A large literature has developed in the theory
and practice of choosing a good kernel sharpness
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parameter in density estimation, which is simply an-
other reflection of the window size problem.

Two things can be done in choosing the appropriate
number of knots. One can assume the same number
of knots on each variable, and, in predictive situations
such as regression, use cross-validation to determine
the optimal number. Burman (1988) has shown that
this procedure has good asymptotic properties.

The procedure I favor and have extensively tested
was suggested by Smith (1978). de Boor (1978) states
that a wide variety of functions can be fitted with
splines provided the knots are “well-chosen.” My
impression, after much experimentation, is the
same—that few knots suffice providing that they are
in the right place.

Unfortunately, direct numerical methods for mov-
ing knots around and trying to find optimal place-
ments have not been very successful. Smith’s method
approaches knot placement in an indirect way that
works well.

For bivariate data, the idea is this: place plenty of
knot points along the x-axis. My experience is that
the best placement is to have about equal number of
data points between knots with knots at the minimum
and maximum values of x.

Now regress y against the truncated power function
basis for the spline functions (I have been using cubic
splines). The advantage in using this basis is that each
coefficient corresponds to a single knot.

The next is to do classical deletion of variables. In
this case, deleting a variable corresponds to deleting a
knot. The deletion can either be done by best subsets
or by simple backward deletion. In my version, I do
simple backward deletion to keep the algorithm fairly
efficient.

All knots are eventually deleted, Mallows’ C, crite-
rion is computed along the way, and the number of
knots retained is determined by the minimum number
of knots for which C, does not exceed its minimum
value plus a small threshold. For 25 data points I use
seven interior knots, and ten for 75 data points.

One interesting feature of this process is that it
corresponds to a locally adaptive window size. Deleting
a knot at a point has the effect of broadening the
window size in the vicinity of that point. Thus what
this process does is to keep small window sizes in the
vicinity of rapid changes of the function and widen
the window size elsewhere.

One other point might be interesting in terms of
Ramsay’s comments on the confidence intervals for
the spline functions. The variance of most smoothing
methods tends to funnel out near the end points of
the data. This is a very natural result of the fact that
near the end points the smooth around a point has to
depend mainly on points to one side of it.

To cut down on this variability, I impose the con-
dition that the spline function be linear at the end
points, and as knots are removed adjacent to the end
points that the linearity extend over the interval.
There are two advantageous results. The first is that
the funneling of variance effect at the end points is
decreased. The second is that the spline basis consists
only of the truncated power functions plus a linear
and constant term.

Steve Peters and I have run a large simulation
comparing four smoothers that do automatic window
size selection (the above procedure, smoothing splines,
supersmoother and a cross-validated kernel
smoother). The modified Smith procedure did very
well. It was able to track even relatively complex
functions such as a function constant except for a
sharp spike near the middle of the range.

This idea can be extended to multivariate proce-
dures, and we are working on a spline version of ACE
incorporating this approach. It is true that using the
truncated power basis can lead to computational dif-
ficulties involving ill-conditioned matrices, but these
are relatively easy to get around.

There is one disturbing aspect of splines I have
come across. When using a fixed window size smoother
on bivariate data, the window size, by very definition,
stays constant as one moves across the data, except
near the end points where it decreases. In this sense
every interior point is given equal weight in determin-
ing the smooth.

But in fitting splines, the weights assigned to var-
ious points depend on their position relative to the
knots. This can be most easily seen by graphing the
equivalent window sizes versus x(n), for equispaced
{x(n)}. For two interior knots this graph has four
maxima separating three minima. The heights of the
two largest peaks are 35. The heights in the two lowest
minima are 20. Thus, in the spline fit some points are
weighted almost double that of others.

I don’t know what effect this has on the fit. But a
simple fix to this effect would be desirable. More
research on this potential problem would be helpful.

The class of monotone cubic splines is not the
integral of the class of M-splines with non-negative
coefficients. A quadratic spline can be non-negative
and still have negative coefficients in the M-spline
basis (a look at Figure 1 in the article is convincing).
For linear splines, simple linear inequality constaints
on the coefficients can insure non-negativity. For
quadratic splines, the constaints become nonlinear in
the coefficients.

It is not clear what the effect is of working only
within this restricted class of monotone splines,
or what monotone splines are ruled out. The
author’s procedure gives simpler and more efficient
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optimization algorithms, as compared to allowing all
monotone splines and optimizing under the nonlinear
constraints. But I remain uncomfortable about the
exclusion.

In describing the fitting of the yarn data, the author
states that “The- fitting criterion could be least
squares, but this is not desirable when the dependent
variable is being transformed,” and he opts for maxi-
mum likelihood or Bayesian approaches; in this in-
stance for maximum likelihood.

The reason why least squares is not desirable is not
stated. Least squares is an old and reliable friend.
Maximum likelihood or Bayesian approaches always
impose distributional assumptions on the data which
are usually difficult to verify. If you clap when Tink-
erbell asks “do you believe in fairies” then fine. If you
are in doubt, as I often am with real data, then use an
earthy friend.

Ramsay states “Interval estimates for the transfor-
mation and structural parameters can be obtained by
asymptotic techniques, jackknifing or bootstrapping.”
After this is stated, he passes by. But this is a very
moot point. The ability of any of these to give accurate
confidence intervals for finite data sets in the present
context has never, to my knowledge, been thoroughly
investigated.

In particular, the ability of jackknifing and of boot-
strapping, or of any resampling method, to give accu-
rate answers in complex regression situations is still
in doubt.

In the same section, Ramsay refers to the problem
of confidence intervals when some parameters are
zero. In his regression set-up, if the transformation on
the response is held constant, then the problem is that
of least squares regression where a non-negativity
constraint is put on the coefficients. In the solution
some parameters are zero and the rest are positive.

Ramsay’s suggestion is to treat the zero coefficients
as being fixed at zero (i.e., out of the model) and to
derive confidence intervals for the remainder. One

difficulty with this is that if a new data set is sampled.

from the same underlying distribution and the proce-
dure repeated, then a different set of parameters may

be zeroed, and parameters formerly zero may have
positive values.

A very similar question is involved in deletion of
variables in a regression. The usual procedure for
deriving confidence intervals (in statistical packages)
is to do the deletion. Then after the number of vari-
ables to be retained is somehow decided, proceed as if
these were the only variables around in the first place
and derive standard confidence intervals based on
those variables remaining in the equation.

This is a highly questionable and certainly biased
procedure. If for nothing else, what are the confidence
intervals for the coefficients of the variables deleted
in forming the final reduced equation? I don’t know
of any satisfying answers.
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ADDED NOTE

Mainly due to Professor Ramsay’s efforts, we have
resolved the issue of the different ACE outputs. A few
months after we began releasing copies of ACE, my
co-author, Jerome Friedman, added a subroutine
called SCALE to the code.

SCALE does a linear regression of y on the inde-
pendent variables x,, - -, x,, getting the regression
equation Y, 8,.x,. Then ACE takes the initial value of
the transform of x,, to be 8,.x» (all means have been
subtracted). In the original code, the initial transform
of x,, is identically zero. I was running the later ver-
sion, and Professor Ramsay had the earlier version.
When he ran the code I sent him, his results were
similar to mine. In this example, with almost linear
transforms and heavy correlation between the two
predictor variables, it is clear that the use of SCALE
would stabilize the ACE results.



