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Comment: On Multivariate Jeffreys’ Priors

José M. Bernardo

Kass presents a lucid, well written description of
the differential geometric foundations of such perva-
sive concepts in statistics as Fisher information, the
Kullback-Leibler metric and information numbers, or
the loglinear structure of exponential families. As the
author points out, these topics directly relate to the
role of reference priors in Bayesian Inference—an
issue he regards as of “ongoing vital importance”—
and one would expect a deeper understanding of such
an issue from his work. I will concentrate on this
point.

JEFFREYS’ PRIORS

Kass very clearly describes some of the more basic
aspects of Jeffreys’ priors. Specifically, I would like to
draw your attention to four of those:

(i) Jeffreys’ general rule is generated by the nat-
ural volume element of the information metric.
(ii) The main intuitive motivation for Jeffreys’
priors is not their invariance, which is certainly
a necessary, but in general far from sufficient,
condition to determine a sensible reference
prior; what makes Jeffreys’ priors unique is
that they are uniform measures in a particular
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metric which may be defended as the “natural”
choice for statistical inference.

(iii) The existence of Jeffreys’ priors requires rather
strong, if fortunately frequent, regularity con-
ditions.

(iv) Multivariate Jeffreys’ priors are often inade-
quate to obtain marginal reference posterior
distributions for its elements—as Jeffreys him-
self realized—and there does not seem to be an
agreed systematic alternative; independent
treatment of orthogonal parameters, when ap-
plicable, is only an ad hoc partial solution. Key
references for the type of problems which may
be encountered from routine use of Jeffreys’
multivariate priors are Stein (1959) or Dawid,
Stone and Zidek (1973).

While (i) and (ii) are possibly sufficient to be sus-
picious about any method for generating reference
priors which does not reduce to Jeffreys’ in one-
dimensional regular problems, (iii) leaves room for
improvement and (iv) clearly requires new work.
When reading Kass’ paper, I was hoping for some new
hints about (iv) but I could not recognize any; I hope
to see some comments in the rejoinder.

REFERENCE PRIORS

In my development of reference priors (Bernardo,
1979)—which reduce to Jeffreys’ for one-dimensional
regular problems—I explicitly recognized the impor-
tance of identifying parameters of interest and
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nuisance parameters and tailoring the reference prior
to this choice in order to avoid the problems men-
tioned above. The suggestion was to use a two-step
reference prior. First find the conditional reference
prior for the nuisance parameters given the parame-
ters of interest, then find the reference prior for the
parameter of interest in the marginal model formed
by integrating out the nuisance parameters.

Two limitations of the method have however been
observed. First, the conditional reference prior found
in the first step is often improper, and yet it is sub-
sequently used to form the marginal model for the
parameter of interest; rigorously justifying this step
requires a limiting operation on proper versions of the
problem; Berger and Bernardo (1989) described and
illustrated this approach. Second, it has been observed
that merely grouping the parameters of a model into
“parameters of interest” and “nuisance parameters”
may not go far enough; recent work led Jim Berger
and me to recommend providing a complete ordering
of all parameters of a model, so that the reference
prior is determined through a series of one-dimen-
sional conditional steps. The ideas are well illustrated
with the trinomial model that Kass uses throughout.

THE TRINOMIAL MODEL

Suppose that we are interested in the proportion 6,
of individuals in the population that suffer a particular
disease d;, and have a random sample of n people
classified into three categories; say we have y;
individuals with disease d,, y, with disease d, and
n — y, — y. that are healthy. Thus, we have the
trinomial model .

p(ylel, 02’ n)
n!
~ !yl — 31— 32!
and 6, is our parameter of interest. Jeffreys’ prior
Ty (oly 02) iS

w50, 0,) = (2m)707V%0;V%(1 — 6, — 0,) 72,

whose shape is that of Figure 1.

The corresponding marginal posterior distribu-
tion, given {y:, ¥»., n}, is the Beta distribution
Be(6,|y: + Y, n — y + 1); in particular,
E;[0, | y1, nl = (3, + %2)/(n + 3/2).

On the other hand, the reference prior wz(6,, 6;) for
the ordered sequence (6, ;) is

(01, 02) = w(0:)w(02 | 6.
= (x 20721 — 0)) /0541 — 6, — 62) ™%,

whose: shape is that of Figure 2, showing a higher
concentration of probability mass than Jeffreys’
around the point (6,, 6;) = (1, 0).

0763(1 — 0, — 65)" 7>,

FIG. 2. Reference prior for the sequence {0., 02} in the Trinomial
model.

The corresponding marginal posterior distribution
of 0, is Be(0, | y, + Y2, n — y1 + 2) and Eg[0: |1, n] =
1 +%)/(n+1)

Suppose now that one realizes that the second dis-
ease d, has been subclassified into, say, k diseases and
it is desired to use the whole data. If one used Jeffreys’
multivariate prior for the corresponding multinomial
model with % + 2 cells, the resulting marginal poste-
rior distribution for 6; would be Be(f;|y: + Y,
n — vy + (k + 2)%) and, hence, E;[0:]|y:, n] =
(y1 + ¥2)/(n + (k + 3)%2). For large k this may be made
arbitrarily small; thus, our conclusions on 6, the
prevalence of disease d;, would dramatically depend
on the number of alternative diseases that one chooses
to consider. This does not seem reasonable to me.

The reference prior is essentially immune to this
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difficulty. Indeed the reference prior for the ordered
sequence (6, ---, 0,,) is (see Berger and Bernardo,
1989 for details)

7rR(01’ D) om)

= 7l'(01’)7l'(02 lol) et 7r(0m l 017 027 ctt 90m—1)

= (x ) ﬁ 0721 — B, 6) 7],

and the corresponding marginal reference distribution
for 6, is
yYms ) =wr(01| y1, 1)

= Be(01 |y1 + 1/2, n—y; + 1/2),

wr (01|51, - -

no matter how many cells are considered.

Comment

C. R. Rao

Geometric ideas do help in suggesting intuitive so-
lutions to some complex problems and also in obtain-
ing explicit solutions to specific problems through
geometric methods. In his paper, “The geometry of
asymptotic inference,” Dr. Kass has demonstrated
these two aspects by providing us with an excellent
review of the past work and presenting some new ideas
on the use of differential geometry in interpreting
and developing statistical methodology. As Dr. Kass
observed, differential geometry is a branch of mathe-
matics “which is largely unfamiliar to most statisti-
cians and may seem rather technical.” I hope his paper
will create some interest and encourage research in
the differential geometric approach to statistical prob-
lems. However, I am tempted to share the caution

expressed by Dr. D. J. Finney, in a similar situation,

referring to some recent papers in multivariate analy-
sis: “Amongst the many papers on statistical science
published today, some appear to find outlets to math-
ematical theory without materially assisting scientific
research.” One may not fully subscribe to Dr. Finney’s
view, but the message is clear that enrichment of
statistical methodology can take place only if its de-

C. R. Rao is Eberly Professor of Statistics at Pennsyl-
vania State University and Adjunct Professor at the
University of Pittsburgh. His mailing address is: De-
partment of Statistics, Pond Laboratory, Pennsylvania
State University, University Park, Pennsylvania
16802.

ADDITIONAL REFERENCES

BERGER, J. O. and BERNARDO, J. M. (1989). Estimating a product
of means: Bayesian analysis with reference priors. J. Amer.
Statist. Assoc. 84 200-207.

BERGER, J. O. and BERNARDO, J. M. (1989). Ordered group refer-
ence priors with applications to multinomial and variance
components problems. Technical Report 01/89, Dept.
Estadistica, Presidencia de la Generalidad Valenciana,
Spain.

BERNARDO, J. M. (1979). Reference posterior distributions for
Bayesian inference (with discussion). J. Roy. Statist. Soc.
Ser. B 41 113-147.

DAWID, A. P., STONE, M. and ZIDEK, J. V. (1973). Marginalization
paradox in Bayesian and structural inference (with discussion).
J. Roy. Statist. Soc. Ser. B 35 189-223.

STEIN, C. M. (1959). An example of wide discrepancy between
fiducial and confidence intervals. Ann. Math. Statist. 30
877-880.

velopment is motivated by practical problems that are
formulated in statistical terms. In this process, so-
phisticated mathematics could be used. I hope and
believe as Dr. Kass does, that although “no claim can
be made as yet that differential geometric research
has made inroads into a large class of problems that
is otherwise unreachable, the methods are so powerful,
and the connections with statistics so plausible, that
some further developments, of great methodological
importance, might well occur.”

In introducing differential geometric methods in
statistics, I was motivated by the problem of discrim-
ination between “populations” or “probability distri-
butions ” (p.d.’s), which naturally led to the need to
introduce a metric in the space of p.d.’s. With a
distance defined between two p.d.’s, it is possible to
study the configuration of a given set of p.d.’s in terms
of clusters and their hierarchical relationships.

In the case of a parametric family of p.d.’s charac-
terized by a set of densities {f(x, 6): 8 € O}, the
metric was introduced by furnishing the parameter
space O with a Riemannian quadratic differential
metric (QDM)

(1) Y. 8;d0;do;

where 6 = (6, 02, ---)’, and (g;) is the Fisher infor-
mation matrix (see Rao, 1945).

Using the QDM, one can compute the geodesic
distance between any two p.d.’s represented by any
two parameters 6 and ¢, which we denote by D, (6, ¢).



